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Introduction

The Autonomous Agents and MultiAgent Systems (AAMAS) conference series brings together researchers from
around the world to share the latest advances in the field. It provides a marquee, high-profile forum for research in
the theory and practice of autonomous agents and multiagent systems. AAMAS 2002, the first of the series, was held
in Bologna, followed by Melbourne (2003), New York (2004), Utrecht (2005), Hakodate (2006), Honolulu (2007),
Estoril (2008), Budapest (2009) and Toronto (2010). You are now about to enter the proceedings of AAMAS 2011,
held in Taipei, Taiwan, as AAMAS celebrates its 10th anniversary as the successful merger of three related events
that had run for some years previously.

In addition to the general track for the AAMAS 2011 conference, submissions were invited to three special tracks:
a Robotics track, a Virtual Agents track and an Innovative Applications track. The aims of these special tracks
were to give researchers from these areas a strong focus, to provide a forum for discussion and debate within the
encompassing structure of AAMAS, and to ensure that the impact of both theoretical contributions and innovative
applications were recognized. Each track was chaired by a leader in the field: Maria Gini for the robotics track,
James Lester for the virtual agents track, and Peter McBurney for the innovative applications track. The special
track chairs provided critical input to selection of Program Committee (PC) and Senior Program Committee (SPC)
members, and to the reviewer allocation and the review process itself. The final decisions concerning acceptance of
papers were taken by the AAMAS 2011 Program Co-chairs in discussion with, and in full agreement with the special
track chairs.

Only full paper submissions were solicited for AAMAS 2011. The general, robotics, virtual agents, and innovative
applications tracks received 452, 31, 51, and 41 submissions respectively, for a total of 575 submissions.

After a thorough and exciting review process, 126 papers were selected for publication as Full Papers each of which
was allocated 8 pages in the proceedings and allocated 20 minutes in the Program for oral presentation. Another
123 papers were selected as Extended Abstracts and allocated 2 pages each in the proceedings. Both Full Papers
and Extended Abstracts are presented as posters during the conference.

Of the submissions, more than half (338) have a student as first author, which indicates an exciting future for the
field. Representation under all submissions of topics (measured by first keyword) was broad, with top counts in
areas such as teamwork, coalition formation, and coordination (31), distributed problem solving (30), game theory
(30), planning (26), multiagent learning (24), and trust, reliability and reputation (17).

We thank the PC and SPC members of AAMAS 2011 for their thoughtful reviews and extensive discussions. We
thank Maria Gini, James Lester and Peter McBurney for making the Robotics, the Virtual Agents and the Innovative
Applications tracks a success. We thank Michael Rovatsos for putting together the proceedings. Finally, we thank
David Shield for his patience and support regarding Confmaster during every stage between the submission process
and the actual AAMAS 2011 event. The Program represents the intellectual motivation for researchers to come
together at the Conference, but the success of the event is dependent on the many other elements that make up
the week especially the tutorials, workshops, and doctoral consortium. We thank all members of the Conference
Organising Committee for their dedication, enthusiasm, and attention to detail, and wish to particularly thank
Von-Wun Soo as Chair of the Local Organising Committee for his contributions.

Kagan Tumer and Pınar Yolum,
AAMAS 2011 Program Co-Chairs

Peter Stone and Liz Sonenberg,
AAMAS 2011 General Co-Chairs
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Marek Grześ, Jesse Hoey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963

Multiagent Argumentation for Cooperative Planning in DeLP-POP
Pere Pardo, Sergio Pajares, Eva Onaindia, Pilar Dellunde, Llúıs Godo . . . . . . . . . . . . . . . 971
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I’ve Been Here Before! Location and Appraisal in Memory Retrieval
Paulo F. Gomes, Carlos Martinho, Ana Paiva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1039

From Body Space to Interaction Space - Modeling Spatial Cooperation for Virtual Humans
Nhung Nguyen, Ipke Wachsmuth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047

Effect of Time Delays on Agents’ Interaction Dynamics
Ken Prepin, Catherine Pelachaud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1055

Main Program – Extended Abstracts

Red Session

A Computational Model of Achievement Motivation for Artificial Agents
Kathryn E. Merrick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067

Incremental DCOP Search Algorithms for Solving Dynamic DCOPs
William Yeoh, Pradeep Varakantham, Xiaoxun Sun, Sven Koenig . . . . . . . . . . . . . . . . . . 1069

MetaTrust: Discriminant Analysis of Local Information for Global Trust Assessment
Liu Xin, Gilles Tredan, Anwitaman Datta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071

Efficient Penalty Scoring Functions for Group Decision-making with TCP-nets
Minyi Li, Quoc Bao Vo, Ryszard Kowalczyk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073

A Curious Agent for Network Anomaly Detection
Kamran Shafi, Kathryn E. Merrick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075

Agents, Pheromones, and Mean-Field Models
H. Van Dyke Parunak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077

Basis Function Discovery using Spectral Clustering and Bisimulation Metrics
Gheorghe Comanici, Doina Precup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079

Incentive Compatible Influence Maximization in Social Networks and Application to Viral Marketing
Mayur Mohite, Y. Narahari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1081

On Optimal Agendas for Package Deal Negotiation
Shaheen Fatima, Michael Wooldridge, Nicholas R. Jennings . . . . . . . . . . . . . . . . . . . . . 1083

An Abstract Framework for Reasoning About Trust
Elisabetta Erriquez, Wiebe van der Hoek, Michael Wooldridge . . . . . . . . . . . . . . . . . . . . 1085

Message-Passing Algorithms for Large Structured Decentralized POMDPs
Akshat Kumar, Shlomo Zilberstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1087

Jogger: Models for Context-Sensitive Reminding
Ece Kamar, Eric Horvitz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1089

Spatio-Temporal A* Algorithms for Offline Multiple Mobile Robot Path Planning
Wenjie Wang, Wooi Boon Goh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091



Influence of Head Orientation in Perception of Personality Traits in Virtual Agents
Diana Arellano, Nikolaus Bee, Kathrin Janowski, Elisabeth André, Javier Varona, Francisco J.
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Özgür Kafalı, Paolo Torroni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175

ADAPT: Abstraction Hierarchies to Succinctly Model Teamwork
Meirav Hadad, Avi Rosenfeld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1177

Rip-off: Playing the Cooperative Negotiation Game
Yoram Bachrach, Pushmeet Kohli, Thore Graepel . . . . . . . . . . . . . . . . . . . . . . . . . . . 1179

Interfacing a Cognitive Agent Platform with a Virtual World: a Case Study using Second Life
Surangika Ranathunga, Stephen Cranefield, Martin Purvis . . . . . . . . . . . . . . . . . . . . . . 1181

Message-Generated Kripke Semantics
Jan van Eijck, Floor Sietsma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1183

Substantiating Quality Goals with Field Data for Socially-Oriented Requirements Engineering
Sonja Pedell, Tim Miller, Leon Sterling, Frank Vetere, Steve Howard, Jeni Paay . . . . . . . . . . 1185



Normative Programs and Normative Mechanism Design
Nils Bulling, Mehdi Dastani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187

Privacy-Intimacy Tradeoff in Self-disclosure
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ABSTRACT
Integrating culture as a parameter into the behavioral mod-
els of virtual characters to simulate cultural differences is
becoming more and more popular. But do these differences
affect the user’s perception? In the work described in this
paper, we integrated aspects of non-verbal behavior as well
as communication management behavior into the behavioral
models of virtual characters for the two cultures of Germany
and Japan in order to find out which of these aspects affect
human observers of the target cultures. We give a literature
review pointing out the expected differences in these two
cultures and describe the analysis of a multi-modal corpus
including video recordings of German and Japanese inter-
locutors. After integrating our findings into a demonstrator
featuring a German and a Japanese scenario, we presented
the virtual scenarios to human observers of the two target
cultures in an evaluation study.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Intelligent agents; I.6.7 [Simulation and Model-
ing]: Model Development

General Terms
Human Factors, Design, Experimentation

Keywords
Virtual Agents, Multiagent Systems, Culture, Communica-
tion Management, Nonverbal Behavior

1. MOTIVATION
A vast part of our communication happens non-verbally.

While we might be thinking about what we want to commu-
nicate verbally, we manage our non-verbal behavior mostly
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tual characters across Germany and Japan, B. Endrass, M. Rehm, A.A.
Lipi, Y. Nakano and E. André, Proc. of 10th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011),
Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei, Tai-
wan, pp. 441-448.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

subconsciously. Thereby, we integrate our personality, emo-
tional state and cultural background into our behavior. How
this behavior is interpreted depends on the listener’s social
and personal background as well. Enormous effort has been
done so far in integrating these personal or social factors
into the behavior models of virtual characters.

Culture has come in focus lately as another important fac-
tor that influences the success of an interaction with a virtual
character. How different culture-specific behavior patterns
of virtual characters are perceived and interpreted across
different cultures has not been studied so far. In this paper,
we integrated findings about such culture-specific behavior
patterns into the behavior model of virtual characters. Our
main goal is to find out which aspects of behavior result
in a positive or negative impression on the user. Thus, the
interpretation of different behavioral aspects is tested in iso-
lation, making use of the same underlying dialog. For the
implementation and evaluation, we choose the basic behav-
ioral dimensions of communication management in terms of
pauses and overlaps between turns as well as gestural ex-
pressivity and body posture. The former have been shown
to be basic structuring mechanisms for face to face commu-
nications [9], the latter have been shown to differ broadly
between cultures [5]. In addition, all have been attributed
as provoking misunderstandings in inter-cultural communi-
cations [27].

For that task, several challenges had to be solved. A stan-
dardized video corpus was collected in the participating cul-
tures [26] and the data was analyzed in the target cultures
simultaneously with equal quality [24], [8] and [20]. In or-
der to integrate the findings into a multiagent system, on
the one hand the virtual characters’ appearances have to be
adapted to their cultural background on the other hand dif-
ferent behavioral models have to be built in order to match
the cultural-background. To evaluate these models, stud-
ies have been set up in the participating cultures. In our
previous work, we concentrated on either the analysis of be-
havioral differences or evaluation studies in only one culture.
The aim of this paper is to find out which behavioral aspects
have an effect on the perception of human observers of the
two target cultures and whether participants prefer agent be-
havior that was designed for their own cultural background.

This paper is organized as follows: In the following sec-
tion (Section 2), we discuss related work in the research
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field of integrating culture into virtual agent applications.
In the next chapter (Section 3), we introduce some theo-
retical background and state our expectations about differ-
ences in behavioral aspects for the two cultures of Germany
and Japan drawn from the literature. In Section 4, we de-
scribe a video corpus, that was recorded in the above men-
tioned cultures as well as our analysis of culture-related dif-
ferences. We focus on the above-mentioned basic behavioral
dimensions of gestures, postures and communication man-
agement. Then, we describe the integration of our findings
into a demonstrator (Section 5). Section 6 then gives details
on our study, where we evaluated whether participants have
preferences for agent behavior that was designed to match
their own cultural background, before we conclude the paper
(Section 7).

2. RELATED WORK
The aim of the work described in this paper is to integrate

different aspects of culture-specific behaviors into a multia-
gent system in order to find out which behaviors affect the
user’s perceptions. In the following we summarize some re-
lated work on integrating culture into the behavioral models
of virtual characters.

Only a few attempts have been made to integrate the as-
pect of culture into the behavioral models of virtual charac-
ters. An example includes the Tactical Language Training
System (TLTS) by Johnson and colleagues [16]. In order to
complete the tasks provided by the system, trainees have to
learn a foreign language. So far, four versions of TLTS have
been implemented: Iraqi, Dari, Pashto, and French [17].
Through interaction with the people in the virtual world,
the learner is supposed to develop cultural sensitivity.

Aylett et al. [1] introduce an educational application that
uses fantasy characters in order to develop intercultural em-
pathy. Culture-related differences are expressed through dif-
ferent symbols and rituals. The agents adapt their behav-
ior in a culture-specific way and interpret incoming events
according to cultural background. Our aim, however, is the
simulation of behavioral aspects in existing national cultures
in order to find out which patterns affect the user’s percep-
tion.

An approach that focuses on the perception of virtual
characters simulating synthetic cultures is presented in Mas-
carenhas et al. [21]. For their simulation, two different
groups of characters were created that differed in their ritu-
als and cultural dimensions. A perception study showed that
the subjects found significant differences in the cultures and
were able to relate these differences to the phenomenon of
culture.

Focusing on the different perception of virtual charac-
ters’ appearances across cultures, Koda et al. [18] designed
culture-specific comic-style agents to show different emo-
tions to subjects from different cultures. The characters
were perceived differently across cultures and emotions were
interpreted more correctly in the corresponding culture. In
[19], Koda et al. have a closer look at different regions of
the face and conducted a cross-cultural study in Hungary
and Japan in order to test the impact of facial regions as
cues to recognize the emotions of virtual agents. In their
results the authors report that Japanese subjects found fa-
cial cues in the eye region more important than Hungarians
subjects, who vice versa concentrated more on facial cues in
the mouth region.

An evaluation study that investigates the different per-
ception of verbal and non-verbal behaviors is introduced by
Iacobelli et al. [14]. In their work, the authors focus on eth-
nicity, by changing behaviors of the character and leaving
the appearance constant. Ethnic identity and engagement
were evaluated and their results reveal that users were able
to relate the virtual agents correctly. This inspired our re-
search and brought up the question which of the behaviors
we plan on integrating affects the user’s perception most.

An approach that deals with non-verbal behavior is pre-
sented in [15]. Jan et al. simulate cultural differences in
non-verbals such as proxemics and gaze. In a user study,
the authors evaluated whether their participants perceived
differences between behaviors associated with their own cul-
tural background and behaviors simulating a different cul-
tural background. In a similar manner, we want to find out
if users from Germany and Japan prefer behaviors that are
built to match their own cultural background for the aspects
of communication management behaviors, gestural expres-
sivity and posture.

In the CUBE-G project [23], we aim on the integration
of culture-specific behaviors for interaction with embodied
conversational agents in order to build a training scenario for
human users. Therefore, culture-specific behavior has been
analyzed in a video corpus. So far, we analyzed non-verbal
behaviors [25] and communication management behaviors
[8] and integrated our findings into a demonstrator featuring
a German and a Japanese dialog scenario. Furthermore, the
impact of these behavioral differences has been partly evalu-
ated by German observers. The studies showed that German
participants preferred the German communication manage-
ment scenario over the Japanese scenario. Japanese par-
ticipants have not been considered yet. For non-verbal be-
havior, the question of whether observers prefer non-verbal
behaviors in virtual scenarios that correspond to their own
culture remaines still unanswered. The aim of this paper is
to correlate the results in non-verbal behaviors and commu-
nication management behaviors with an evaluation study in
both participating cultures.

3. THEORETICAL BACKGROUND
As we stated above, we are looking at different aspects of

behavior in the two cultures of Germany and Japan. In par-
ticular, we focus on communication management behaviors
(pauses in speech and overlaps), body posture and gestu-
ral expressivity. In this section, we introduce these behav-
iors and state our expectations in culture-related differences
drawn from the literature.

As one aspect of behavior that might affect the perception
of a particular conversation, we had a closer look at com-
munication management behaviors. So-called regulators are
used in order to manage communication [27]. Vocalics in-
clude verbal feedback signals (such as ”uh-huh”) as well as
the usage of silence in speech or interruptions of the com-
munication partner. Depending on the usage of these vocal-
ics, a different rhythm of speech can evolve. Kinesics and
oculesics comprise non-verbal regulators. According to [27],
communication can be managed though hand gestures and
body postures (kinesics) or eye and face gaze (oculesics).

These regulators are used to control the flow and pauses
of a conversation and are considered culture-specific behav-
iors. In addition, regulators are used at a very low level of
awareness since they are learned at a very young age [27].
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Table 1: Hofstede’s scores on the five dimensions of
culture for the two cultures of Germany and Japan
as well as the world average.

Culture / Germany World Average Japan
Dimension

PDI 35 55 54
IDV 67 64 46
MAS 66 48 95
UAI 65 61 92
LTO 31 41 80

We therefore consider regulators as an interesting aspect of
behavior that might have an effect on the perception of a
given conversation depending on the culture of the listener.
This is in line with Ting-Toomey [27], who states that a dis-
criminative use of regulators can cause intercultural distress
or misunderstandings.

Another interesting aspect of behavior is the expressiv-
ity of non-verbal behaviors. How we exhibit a gesture can
sometimes be more crucial for the observer’s perception than
the gesture itself. Differences in the dynamic variation can
be described according to expressivity parameters [22]. The
spatial extend, for example, describes the arm’s extend to-
ward the torso. The speed of a gesture and the power of
the arm can vary as well. The fluidity parameter describes
the continuity between consecutive gestures, while the repet-
itivity holds information about the repetition of the stroke.
The last expressivity parameter, overall activation, counts
the amount of gestures that are performed. How gestures
are executed can depend on several individual and social
factors such as personality, emotional state or culture.

Next in this study, we examined posture as another kind
of non-verbal behavior. Posture is defined as a motion or
position shift of the human body [3]. Based on previous
studies, we defined four parameters to describe the charac-
teristics of postures. The four parameters are duration till
which a person remains in the same posture, spatial extent
used in a posture, rigidness or relaxation apparent from the
posture and mirroring as number of instances when an in-
dividual unconsciously imitates a partner’s posture during a
conversation. We already found that these parameters are
useful in describing the culture variations in postures [20].

3.1 Culture-specific expectations
In the social sciences, culture is a well established research

field. There are several approaches that define culture and
describe differences in their behavior. A well-known model
of culture was introduced by Hofstede [12], who built a five
dimensional model in order to distinguish cultures. Over
20 different cultures were categorized in a broad empirical
survey. Table 1 shows the scores of the two cultures of Ger-
many and Japan, as published on Hofstede’s web page [11].
Please note that these scores were normalized across cultures
to stay between 0 and 100 in the first version and extended
later, when more cultures were added and more extreme
values were observed.

The Power Distance dimension (PDI) describes the ex-
tent to which a different distribution of power is accepted by
the less powerful members of a culture. The Individualism
dimension (IDV) describes the degree to which individuals
are integrated into a group. On the individualist side ties

between individuals are loose, and everybody is expected
to take care for him- or herself. On the collectivist side,
people are integrated into strong, cohesive in-groups. The
gender or masculinity dimension (MAS) describes the dis-
tribution of roles between the genders and how masculine
values are perceived. In feminine cultures, the roles differ
less than in masculine cultures, while competition is rather
accepted in masculine cultures and status symbols are of
importance. In the uncertainty avoidance dimension (UAI),
the tolerance for uncertainty and ambiguity is defined. It in-
dicates to what extent the members of a culture feel either
comfortable or uncomfortable in unstructured or unknown
situations. The long-term orientation dimension (LTO) has
been added afterwards, in order to explain differences be-
tween Asian and Western cultures. Values for long term ori-
entation are, for example, thrift and perseverance; whereas
examples for values for the short term orientation are re-
spect for tradition, fulfilling social obligations, and saving
one’s face.

The positioning on these dimensions affects one’s behav-
ior. Taking a look at the cultural dimensions in isolation,
Hofstede [13] introduces so-called synthetic cultures that
find themselves on one of the extreme ends of each dimen-
sion. For these synthetic cultures he describes prototypical
behavior norms. For the behavioral aspects investigated in
our research, the individualism dimension and the power
distance dimension are of special interest.

For collectivistic cultures, he states that silence may occur
in conversations without creating tension. This observation
does not hold true for individualistic cultures. In addition,
he states that the usage of pauses can be a crucial feature
in collectivistic cultures. Germany is a more individualistic
culture than Japan (see Table 1, IDV). As a consequence, it
should be more likely in the German culture that pauses in a
conversation create tension and are thus tried to be avoided.
In Japanese conversations, on the other hand, pauses can be
considered a feature of the conversation.

Another behavioral aspect is affected by the power dis-
tance dimension. High-power cultures are described as ver-
bal, soft-spoken and polite and interpersonal synchrony is
much more important than in low-power cultures, whose
members tend to talk freely in any social context [27]. One
possibility to achieve interpersonal synchrony in a conver-
sation is giving feedback. This feedback often occurs dur-
ing the speaking floor of the interlocutor. This should oc-
cur more often in the Japanese culture due to their higher
value on the power distance dimension (see Table 1, PDI).
The individualism dimension is also related to the expres-
sion of emotions and the acceptable emotional displays in a
culture. In individualistic cultures it is more acceptable to
publicly display emotions than it is in collectivistic cultures
[6]. This also suggests that non-verbal behavior is expressed
more emotional in German conversations than in Japanese
ones. We expect displaying emotions more obviously should
affect the expressivity of gestures in a way that parameters
such as speed, power or spatial extent are increased for a
higher arousal in emotion.

Strengthening our expectations about the usage of silence
in speech and overlapping speech, Ting Toomey [27] states
that the beliefs expressed in talk and silence are culture-
dependent. Following Hall’s categorization of cultures [10]
into high- and low context communication cultures, Ting
Toomey [27] observes that conversation in high context com-
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munication cultures relies mainly on physical context. Mean-
ing can be transported through non-verbal cues, such as
pauses, silence and prosody. In contrast, low context com-
munication cultures tend to explicitly code information. Clear
descriptions and a high degree of specificity are used com-
monly in these cultures. Germany is described as one of the
most extreme low context cultures, while Japan finds itself
on the extreme high context side [27]. Thus, communication
management behaviors such as pauses in speech or over-
lapping speech, should occur more frequently in Japanese
conversations. Verbal feedback is given in every culture
but the meaning can vary with the communicative func-
tion expressed in the feedback. In Japanese conversations,
for example, communication partners explicitly communi-
cate that they are listening by using the utterance ”hai hai”,
while the literal translation ”yes - yes” would communicate
more than that. Frequency and positioning of pauses and
overlaps can vary across cultures, too. Overlapping speech
is often considered as impolite. But feedback utterances
are often performed while it is still the interlocutor’s turn
without wanting to gain the turn. As we stated above, ac-
knowledgments are very common in Japanese conversations.
Thus, we expect a high amount of overlapping speech in
Japanese conversations that are short but frequent. In addi-
tion, Ting Toomey [27] states that silence serves as a critical
communication-device in Japanese communication patterns.
Pauses reflect the thoughts of the speaker and can contain
strong contextual meaning.

Similar findings are described by Trompenaars and Hampden-
Turner [28], who divide cultures into Western, Latin and
Oriental cultures. While Germany is considered a Western
culture, Japan would count as an Oriental culture (including
Asian cultures). In line with Hofstede and Ting-Toomey,
Trompenaars and Hampden-Turner describe Western cul-
tures as verbal and state that their members get nervous
when there are long pauses. In addition, they state that
interruptions are considered as impolite. Thus, communica-
tion in Western cultures is managed as follows: interlocutors
start talking after the other conversation partner stopped.
In Oriental cultures silence is more important and can be
considered a sign of respect. Pauses are used to process in-
formation or assure that the conversation partner gives away
the speaking floor.

Summarizing our culture-specific expectations drawn from
the literature, we expect more pauses in speech and overlap-
ping speech such as in feedback behavior in Japanese conver-
sations than in German ones. Gestures and postures should
be more expressive in prototypical German behavior than in
prototypical Japanese behavior.

4. EMPIRICAL VERIFICATION
Behavioral tendencies described in the literature are some-

times rather abstract. As we stated above, we expect more
pauses in speech in Japanese conversations than in German
ones, for example. In order to integrate our expectations
into the behavior model of virtual characters, we need more
details such as number or length of pauses. To answer these
and other questions, we recorded and analyzed a video cor-
pus in the two target cultures (see [23]). Three prototypical
interaction scenarios were videotaped, while more than 20
subjects participated in each of the two cultures. In a total,
around 20 hours of video material were collected. Subjects
interacted with actors whom they did not know in advance in

order to ensure that all subjects meet the same conditions
and that all scenarios last for about the same time. For
the first scenario, participants were asked to get acquainted
with one another since they had to solve a task together
later. Recordings started already during this time. The
analysis described in the next section focuses on this first
time meeting scenario, which lasted for around 5 minutes
for each subject.

4.1 Analysis
As we stated above, we concentrate on several aspects of

behavior such as the usage of pauses, overlapping speech,
gestural expressivity and posture. The corpus described
above was analyzed in order to find culture-related differ-
ences in these aspects [8] [24]. In the following section, we
summarize our results:

For the analysis of pauses in speech, we considered as a
pause the parts of the conversation where none of the con-
versation partners spoke and took into account the pauses
that lasted for more than one second and more than two
seconds respectively. In that manner, we sorted out very
brief pauses that are used for breathing for example. Com-
paring the two cultures, we found more pauses in speech in
the Japanese conversations. In the German videos, we found
on average 7.1 pauses that lasted for more than one second
and 1.3 pauses on average that lasted for more than 2 sec-
onds. In the Japanese videos, we observed 31 pauses on av-
erage that lasted over 1 second and 8.4 pauses that lasted for
more than 2 seconds. Figure 1 (left) shows the distribution
of short (more than 1 second) and long pauses (more than
2 seconds) that were found on average per minute in each
video. Comparing the amount of pauses in speech across the
two cultures, using the two sided t-test, we achieved signif-
icance for both, pauses that last for more than 1 second (p
< 0.001) and pauses that last for more than 2 seconds (p <
0.001).

Regarding overlapping speech, we considered time spans
where both conversation partners spoke at the same time
as overlapping speech. Pragmatics, such as using overlaps
for feedback behavior, were not taken into account yet. The
average occurrences of overlapping speech per subject per
minute for the two cultures are shown in Figure 1 (right).
We observed 6 overlaps per minute in German conversations
on average, while in Japanese conversations 9 overlaps per
minute occurred on average. Comparing the frequency of
overlapping speech across the two cultures, we achieved sig-
nificant results for the total amount of overlaps (p = 0.04).
No significance was achieved for overlaps that last for more
than 0.5 seconds (p = 0.31) and 1 second (p = 0.12). By
trend, we observed more overlaps in the Japanese conversa-
tions for all lengths, which is in line with our expectations
described above.

As we stated above, we analyzed gestures according to
expressivity parameters (see Section 3). Each parameter
was coded using a seven-point scale. Analyzing the two cul-
tures, we found significant differences for all parameters (us-
ing ANOVA with p< 0.01 for all parameters). Figure 2 (left)
shows the average ratings of the expressivity parameters for
the two cultures of Germany and Japan. Gestures were per-
formed faster and more powerfully in the German videos
than in the Japanese one’s. In addition, German subjects
used wider space for their gestures compared to Japanese
subjects who used less space. Gestures were also performed
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Figure 1: Pauses (left) and overlaps in speech (right) per minute, averaged over participants.

Figure 2: Ratings of expressivity parameters (left) and posture characteristics (right) in German and Japanese
culture.

more fluently in the German conversations and the stroke of
a gesture was repeated less in the Japanese conversations.
For the analysis of posture, we used Bull’s coding scheme [2]
to label the posture type/shape. Figure 2 (right) shows the
arm posture changes that were extracted from studying the
corpus data of German and Japanese subjects. The value
for duration was derived by calculating the average number
of posture shifts observed in the data. To get the score for
mirroring, we looked at the total number of common posture
shapes of both interactors in each turn. The value for spa-
tial extent and rigidness were assigned based on the average
of 7 point scale ratings done by multiple annotators. We
used the opposite word relax instead of rigidness to make
the word easy to understand. Figure 2 (right) indicates that
Japanese subjects remained in the same posture longer, en-
gage in more frequent mirroring, take up less space, and
display a more rigid posture in comparison to German sub-
jects.

The postures most frequently observed in the German
videos (folding the arms in front of the trunk (FAs) and
putting the hands in the pockets of the trousers (PHIPt))
and in the Japanese videos (joining both hands in front of
the body (JHs)) are exemplified in Figure 3 (left and mid-
dle). It is notable that ratings for postures frequently ob-
served in the German corpus such as PHIPt and FAs were
rated higher in spatial extent and lower in rigidness, com-
pared to postures frequently observed in the Japanese data
such as JHs and PHB (put hands back). Details of how val-
ues of each of the posture traits in relation to culture were
obtained, are provided in [20].

5. SIMULATION
In order to simulate the behavioral tendencies described in

the literature and verified by our empirical corpus study for
the German and the Japanese cultures, we use the Virtual
Beergarden scenario [4]. In the scenario, an arbitrary num-
ber of agents can be loaded that are able to move around in
the scenario freely, exhibit gestures and communicate with
each other. For the simulation of different cultures, culture-
specific characters were modeled. Thus, we created proto-
typical German looking and prototypical Japanese looking
characters (see Figure 3, left and middle) whose appearances
(skin, hair or shape of the face) have been adapted to their
cultural background.

Verbal behavior is realized by a text-to-speech component.
For the different characters, different voices can be used, e.g.
German, English or Japanese speech synthesis. Non-verbal
behaviors are divided into gestures, postures and movement
animations. Gestures can be culture-specific or not. An ex-
ample of a culture-specific gesture is, for example, a bow for
the Japanese greeting. Examples for culture-specific pos-
tures are shown in Figure 3 (left and middle). General ges-
tures such as beat gestures can be exhibited by every agent.
The performance of these gestures, however, can be cus-
tomized and thus be performed in a culture-specific way. To
this end, every gesture is divided into three phases: prepa-
ration, stroke and retraction. The preparation and retrac-
tion phases are used to blend the animations. A gesture
could, for example, be chosen while the agent already per-
forms another gesture or stands in a certain posture. The
stroke phase can be performed in different ways taking into
account the expressivity parameters. The parameter speed,
for example, can be varied by playing the animation faster or
slower; the parameter repetition can be changed by playing
the stroke phase several times.
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Figure 3: Culture-specific agents in the Virtual Beergarden (left: Germany; middle: Japan) and during the
evaluation study (right: Japanese agents showing Japanese vs. German postures).

6. EVALUATION
Most misunderstandings in inter-cultural communication

are caused by differences in non-verbal behavior [27]. In an
evaluation study, we investigate whether the culture-related
differences that we found in the literature and in our video
corpus are perceived by human observers during agent in-
teraction.

6.1 Design
In order to find out which of the behavioral aspects do

have an impact on the user’s perception, we simulated them
in isolation. For the study conducted in Germany, the Ger-
man looking characters were used and for the study con-
ducted in Japan, we used the Japanese looking characters.
In addition, we used language specific text-to-speech sys-
tems for the Western and Asian characters (German and
Japanese) to match the prosody of the speech of the target
culture. Thus, participants should not assume a cultural
background different from their owns.

For each behavioral dimension, participants were shown
two videos with face to face dialogs. In one video, the char-
acters performed prototypical German behavior, in the other
prototypical Japanese behavior for the specific behavioral
aspect. In the study, participants had to state their pref-
erence by providing ratings on a 6 graded scale, containing
three grades on each side, starting from ”rather this video”
to ”by any means this video”. For the two parted study, we
stated the following two hypotheses:
H1: For each behavioral dimension, German participants
prefer the videos showing German behavior over the Japanese
versions.
H2: For each behavioral dimension, Japanese participants
prefer the videos showing Japanese behavior over the Ger-
man versions.

In order to avoid side effects evoked by gender, we showed
mixed gender combinations in the videos. That is, one fe-
male and one male character interacted with each other in
both cultures. To avoid preference for one of the videos due
to the semantics of speech, we used Gibberish, a fantasy
language that represents a language without any specific
meaning of the words. To this end, words were generated
that have the same statistical distribution of syllables as
the words from the target language. The same dialog was
retained during the whole study changing only aspects of

the non-verbal and communication management behaviors.
Keeping the dialog consistent also assured that the users’
perceptions are not influenced by other linguistic features,
such as the length of the sentences.

In order to get participants acquainted with the situation
of listening to a Gibberish dialog, we showed a neutral con-
versation first. In this video, the dialog described above was
performed without any non-verbal behavior or any pauses in
speech or overlapping speech. After this neutral video, six
pairs of videos were shown in random order, each lasting for
half a minute and containing differences in one of the follow-
ing aspects of behavior (see Figure 3 (right) for a sreenshot
of the evaluation study as it was conducted in Japan):

• Pauses in speech: As we observed more pauses in the
Japanese corpus, the simulated dialogs reflecting typ-
ical Japanese conversations contain more pauses as
well. Taking into account our corpus findings, Ger-
man agent dialogs contained one pause that lasted
one second, whereas the Japanese version contained
two pauses that lasted one second and one pause that
lasted two seconds.

• Overlapping speech: Following our analysis of overlap-
ping speech, we integrated one overlap that lasted 0.3
seconds and two overlaps that lasted 0.5 seconds into
the German dialog. The Japanese dialog contained
three overlaps that lasted 0.3 second, one that lasted
0.5 seconds and one that lasted one second.

• Communication management: Videos showing com-
munication management behavior contained both: pauses
and overlaps as described above.

• Speed of gestures: Our findings showed that in the
German corpus gestures are performed faster than in
the Japanese one. Thus, in one pair of the videos the
gestures were customized according to speed. Three
gestures were shown in both videos, but played faster
in the German and slower in the Japanese behavior
model.

• Spatial extent of gestures: Similar to gesture speed,
another screen in the study contained two videos show-
ing gestures with a different spatial extent. According
to our findings, gestures had a smaller spatial extent
in the Japanese models.
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• Postures: The posture evaluation does not take the re-
sults on mirroring into account yet, but looks only into
the interpretation of dominant body postures found in
our corpus study for the two cultures.

6.2 Results and Discussion
As we stated earlier, we designed two different versions

of our evaluation study. One utilizing the German-looking
characters and a German text-to-speech system and another
one using the Japanese-looking characters and a Japanese
text-to-speech system, each showing both behavioral mod-
els. Instruction texts as well as preference questions matched
the participants’ mother tongue. In the German evaluation
study, 15 participants took part (6 female and 9 male), while
in the Japanese study 17 people participated (3 female and
14 male). All subjects were students (with one exception
in the German study) in an age range between 20 and 45.
In the evaluation study, participants had to decide which of
the videos they liked better, assuming that participants pre-
fer videos showing virtual characters that behave in a way
that was designed for their own cultural background. In a
goodness-of-fit test, we tested whether the observed pattern
of events significantly differed from what we might have ex-
pected by chance alone.

Significantly more than 50% of our German participants
had a preference for the version with German overlapping
speech and spatial extent in gestures (both with chi2 = 8,067
and p = 0.005 with df = 1). For pauses in speech, commu-
nication management and posture, we almost achieved sig-
nificance (with chi2 = 3.26 and p = 0.071 with df = 1 for
all three aspects). However, by trend German participants
showed a preference for the videos simulating prototypical
German behavior for all aspects of behavior.

Results in the Japanese study are less strong. Significantly
more than 50% of our Japanese participants had a prefer-
ence for the version with Japanese posture behavior (with
chi2 = 4.675 and p = 0.029 with df = 1). For other behav-
ioral patterns, we cannot claim any evidence. The results for
pauses in speech and overlapping speech, however, were a bit
surprising for the Japanese study as participants seemed to
favor the German videos over the Japanese ones (although
not significant). We attribute the missing semantics of the
Gibberish dialogs as the main reason for this result, based
on the following observations: On the German side pauses
are generally viewed as somewhat awkward and overlaps as
rude regardless of the semantic content of utterance. On the
other hand, as discussions with our Japanese project part-
ners showed afterwards, the use of pauses and overlaps in the
Japanese language seems to be tight to the semantics of the
utterances and is acceptable in one case and unacceptable in
another. Thus, without having the necessary semantic clues
at hand, Japanese participants might have been tempted to
go for the “safe” solution and vote for the version with less
pauses and overlaps.

This “failure” highlights a very important aspect of cross-
cultural interaction in research teams. Despite frequent dis-
cussions and experience in cross-cultural projects, the de-
veloper’s own cultural expectations are always present and
sometimes interfere with the development. In this case, the
seemingly good solution of using Gibberish for the tests, due
to the arguments given above, lead us to missing an impor-
tant feature of Japanese dialogs, i.e. its high context nature
as Hall puts it [10].

Interestingly, the results for communication management
behavior seem to be more related to the results from pause
behavior than the results from overlapping behavior. We
made similar observations in [7], where we considered com-
munication management behaviors for the two cultures of
Arabia and US America. The analyses suggested too, that
the impact of pause behavior was stronger than the impact
of overlapping behavior to human observers.

Although, we only had a limited number of participants
in our study, for some cases we have significant results sug-
gesting that behavioral patterns are preferred that were de-
signed for the participants cultural background. However,
for none or the behavioral patterns, we found evidence that
more than 50% of our participants prefered behavior that
did not match their cultural background.

7. CONCLUSION
In this paper, we investigated different behavioral dimen-

sions for the two cultures of Germany and Japan, in or-
der to find out which of these aspects affect the human ob-
server. Focusing on parts of communication that are per-
formed rather subconscious and where the influence of cul-
ture can play a crucial role without even realizing it, we
concentrated on aspects of non-verbal behavior and com-
munication management and did not consider semantics of
speech yet. Culture-related differences have been extracted
from the literature for the two cultures of Germany and
Japan and strengthened by a empirical corpus study in the
two target cultures. Results have been integrated into a mul-
tiagent system that demonstrates the simulation of cultural
patterns of behavior.

For our evaluation study, behavioral aspects were tested
in isolation. In that manner, we wanted to find out which of
these aspects affect the perception of the user. Our prelim-
inary evaluation study in Germany revealed that subjects
significantly preferred the version that resembled behavior
observed for their own cultural background for some of the
behavioral aspects (overlapping speech and spatial extent of
gestures). For all other aspects participants seemed to pre-
fer the German versions at least by trend. In the Japanese
evaluation study, we found out that Japanese subjects signif-
icantly preferred postures designed for their cultural back-
ground. Only for pauses in speech and overlapping speech
we observed a controversial trend. One reason for this out-
come might be the missing semantics of the shown dialogs.
Since the Japanese version contained both more pauses and
more overlaps in speech, but lacked the context in which
they occur, participants chose the safe solution, i.e. the ver-
sion with less pauses and overlaps. As a consequence, we
think that pauses and overlaps need to be placed very care-
fully and in relation to the actual dialog.

Reflecting on our findings, we plan to refine our models
in communication management by adding context. In an-
other step, we want to combine all the aspects of behavior
that we investigated in isolation and build a scenario with
virtual characters that behave according to their cultural
background on different channels. In that way, we want to
believably simulate different cultural backgrounds and cre-
ate an awareness for these differences on the user’s side.
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Martin, E. André, G. Chollet, K. Karpouzis, and
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ABSTRACT
Narrative time has an important role to play in Interac-
tive Storytelling (IS). The prevailing approach to control-
ling narrative time has been to use implicit models that
allow only limited temporal reasoning about virtual agent
behaviour. In contrast, this paper proposes the use of an
explicit model of narrative time which provides a control
mechanism that enhances narrative generation, orchestra-
tion of virtual agents and number of possibilities for the
staging of agent actions. This approach can help address a
number of problems experienced in IS systems both at the
level of execution staging and at the level of narrative gen-
eration. Consequently it has a number of advantages: it is
more flexible with respect to the staging of virtual agent ac-
tions; it reduces the possibility of timing problems in the co-
ordination of virtual agents; and it enables more expressive
representation of narrative worlds and narrative generative
power. Overall it provides a uniform, consistent, principled
and rigorous approach to the problem of time in agent-based
storytelling. In the paper we demonstrate how this approach
to controlling narrative time can be implemented within an
IS system and illustrate this using our fully implemented IS
system that features virtual agents inspired by Shakespeare’s
The Merchant of Venice. The paper presents results of an
experimental evaluation with the system that demonstrates
the use of this approach to co-ordinate the actions of virtual
agents and to increase narrative generative power.
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H5.1 [Multimedia Information Systems]: Artificial, aug-
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Algorithms
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1. INTRODUCTION
Time plays a central role in many aspects of narration [22]

both at the story and at the discourse level. Time deter-
mines pace, dramatic tension as well as the aesthetic of story
visualisation and staging. Existing Interactive Storytelling
(IS) systems have emphasised the causal aspects of agents’
actions but have not incorporated time in their narrative
generation mechanism in a principled fashion.

The prevailing approach in IS has been to use AI planning
for narrative generation and empirical solutions for the syn-
chronisation of agents’ actions, often arrived at by a process
of trial and error or using deliberately underspecified rep-
resentations that assume uniform execution time of agent
actions. These approaches can work well, as demonstrated
by a number of successful IS prototype systems, including [2,
27, 19], but they miss an opportunity to use action duration
as an element of story presentation at the discourse level.

An alternative approach to controlling narrative time is
to extend the representation of narrative actions to rein-
corporate temporal aspects (such as duration, concurrency,
overlap and so on) in the planning process that is used for
narrative generation. This would ensure that generated nar-
ratives contained explicit information about the timing of
agent actions which could be used during the staging of the
narrative. While the IS research community has enthusias-
tically embraced AI planning due to its capability for propa-
gating causality, to date, there has been no use of dedicated
temporal planning architectures. Yet these architectures are
potentially useful for IS since it is likely that there are narra-
tive situations that require dedicated temporal architectures
(ones which are similar to the temporally expressive problems
documented in the AI planning literature [8]). Applying
temporal planning to narrative generation would provide a
sound and principled approach to further increase the gener-
ative power of IS systems and to expand the range of stories
that can be generated.

The use of temporal planning within the process of nar-
rative generation is an approach that neatly re-incorporates
aspects of the problem that have tended to be solved by trial
and error. Clear benefits of this approach include: (i) it will
enable the generation of story and discourse from shared
principles; (ii) it will simplify development and production;
(iii) it will improve integration of action and motion at the
technical level. In addition, we anticipate that the approach
will yield the following advantages: (i) help improve system
reliability, e.g. by overcoming problems associated with tim-
ing and co-ordination of virtual agent actions; (ii) provide a
wider range of possibilities for staging and cinematographic
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aspects of virtual agent actions; and (iii) increase the gener-
ative power of the system, i.e. the range of agent situations
and narratives that can be generated.

Throughout the paper we illustrate our discussion with
examples taken from an interactive narrative that we have
developed which features virtual agents and situations in-
spired by Shakespeare’s play The Merchant of Venice [24].

The paper is organised as follows. In the next section we
consider related work. This is followed in section 3 with dis-
cussion of issues related to the explicit temporal representa-
tion of actions and narratives. Section 4 gives an overview of
our approach to generating temporal narratives. The results
of an evaluation using our implemented system are presented
in section 5. Section 7 summarises our conclusions.

2. RELATED WORK

2.1 Interactive Storytelling
A number of prototype IS systems have been developed

that use AI planning for narrative generation [2, 27, 19].
These systems ignore the staged execution time of agent ac-
tions during narrative generation. Instead, they have adopted
a range of solutions to the handling of temporal aspects
at the staging level. One such approach is the use of ex-
ecutability conditions [15] to specify conditions for success-
ful execution of actions [4]. This approach has been used
to co-ordinate the actions of virtual agents but its failure
to reason about temporal aspects such as staged execution
time can make it unreliable. It also requires time-consuming
empirical solutions for the actual production of interactive
narratives thereby limiting its scalability.

A form of executability condition is used in the execution
management architecture Zocalo [27] to ensure that actions
are executed in legal world states. The system makes some
allowance for the time taken for actions to execute (a state
of executing is maintained) and action effects are not acti-
vated until actions have successfully completed. However
there is no explicit reasoning about action duration during
narrative generation and this could make the system unreli-
able. For example, this omission may only become apparent
during staged execution when an agent arrives too late to
co-ordinate with another agent.

The Logtell system [19] also features an overall man-
ager of the IS system which is responsible for controlling
the staging of a partially-ordered plot output by their IPG
generator. The system makes use of temporal logic as a rep-
resentation for the state of the system, which can be used in
particular when authoring the narrative. However no men-
tion is made of its use for resolving the problems of temporal
dynamics faced by narrative generation.

HPTS [11] is a system that reasons about time to han-
dle the synchronisation of behavioural agents. Reactive be-
haviours are described within a runtime environment to han-
dle parallel state machine execution and synchronisation of
agents. This approach orchestrates the synchronisation of
low level action execution (sometimes referred to as the mo-
tion level), such as motion blending and interruption.

An alternative approach is the use of Petri Nets which has
been explored to handle the unfolding of story plots and the
co-ordination of virtual agent behaviour [3]. However the
behaviour of such a system is reactive and only includes de-
liberation about localised temporal aspects of the problem.
Also localised in its approach is the use of cascaded Finite

State Machines in SceneMaker [14]. This represents an
orchestrated approach to temporal and synchronisation is-
sues but its static strategy is rather inflexible and temporal
reasoning is at the“microscopic” level not the planning level.

2.2 Research in Automated Planning
On the other hand temporal planning is a very active re-

search topic in the field of AI planning which has gener-
ated multiple approaches, targeted specifically at temporal
problems. These include logic based planning [1], partial or-
der planning (Zeno [20], Vhpop [28]), hierarchical planning
(Nonlin [25], Oplan [12]), extended state space progres-
sion search planning (Sapa [10], SGPlan [6]) and hybrid
planning systems combining features of different temporal
planning architectures (Tempo [8], Crikey [7]). Early sys-
tems such as Zeno could tackle complex temporal problems
but they suffered from performance limitations. More re-
cently systems such as SGPlan, Tempo and Crikey have
overcome efficiency problems to the point where they now
have potential for application to IS.

3. REPRESENTING NARRATIVE TIME
IS systems that use planning for narrative generation use a

representation of the narrative world that includes informa-
tion about virtual agent behaviours represented as pre- and
post-condition actions. These actions detail the way that
the agent action is expected to change the state of the nar-
rative world when it is staged in a visual environment. Not
only can these actions describe the capabilities of an agent,
but they can also describe properties inherent in the process
itself – in particular their staged execution time. This no-
tion of execution time may be represented either explicitly
or implicitly: an implicit representation enabling the narra-
tive generator to reason about relative orderings of actions;
an explicit representation extending this to enable reasoning
about complex temporal interactions1.

3.1 Narrative Action Representation
In an implicit representation no temporal information is

included in the description of agent actions and the assump-
tion is that the effects of actions are instantaneous (the clas-
sical STRIPS assumption [13]). In contrast, explicit rea-
soning about the duration of actions makes it possible to
take into account the more sophisticated interplay between
the occurrence of actions themselves, not just their con-
sequences. It shows the continuous evolution of the story
world over time as actions unfold rather than merely showing
actions as their consequences. This explicit durative repre-
sentation provides a means to represent conditions that can
be used for agent synchronisation: before an agent is able to
start an action (e.g. in order for an agent to start to listen
to another agent, they must be within earshot); at the end
of the action (e.g. in order for an agent to make a selection
between a number of alternatives, they must have reached
their decision); or must remain true over the duration of the
action as an invariant (e.g. during the time an agent listens
to an agent singing they must stay in earshot). The dura-
tive action representation also makes it possible to specify
which narrative effects occur immediately, as a virtual agent
starts to perform an action (e.g. when a virtual agent sings,

1We note the correspondence between implicit and explicit
models [17] and qualitative and quantitative models [7].
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Figure 1: System Architecture: input is a domain model (knowledge base) represented temporally; the plan-
based generator builds the narrative incrementally by decomposing the problem into a series of sub-problems
which are then tackled in turn using a temporal planner; for 3D visualisation, the temporal narrative actions
output by the planner map to UnrealScript action descriptions.

the sound starts immediately), and which are delayed until
the agent finishes the action (e.g. an agent spends time per-
suading another agent, the effect of having been persuaded
is activated at the end).

An illustration of the need for temporal reasoning is pro-
vided by act III scene ii of our Merchant of Venice system.
In the scene there are specific narrative actions that require
an informed decision by an agent. These actions must unfold
whilst the agent acquires additional information through
other actions (e.g. conversations). One such action is the se-
lection of a casket by a character, Bassanio, in an attempt to
win the hand in marriage of another character, the wealthy
heiress Portia. A durative representation of the action is2:

(:durative-action select-casket
:parameters (?c - char ?ca - casket ?l - location)
:duration (= ?duration 4)
:condition (and ....

(over all (selecting ?c ?l))
(at end (selecting ?c ?l))
(at end (decided-to-select ?c ?ca)))

:effect (and
(at start (selecting ?c ?l))
(at end (selected ?c ?ca ?l))
(at end (not (selecting ?c ?l)))))

This illustrates the temporal properties of the action where
deliberation lasts for the duration of the action (over all
the character is selecting) but this must be finalised for the
action to end when post-conditions are activated.

A non-durative version of this narrative action is cumber-
some and does not capture the unfolding of agent deliber-
ation over time. This may prevent the action from being

2We chose PDDL3.0 [16] because of its expressive power
and since it is a standard action description compatible with
multiple planning approaches.

synchronised with other agent actions or being interrupted
(either by other agents or users in an interactive setting). In
addition, deliberation has dramatic value in terms of staging
and understandability: it enables the spectator to see agents’
decision processes and the factors that influence them.

3.2 Narrative Representation
Temporal narrative plans include information about the

time each agent action is scheduled to start and the expected
duration of each action. The following example:

0.001: (select-casket bassanio lead casket-room) [4.00]
0.002: (give-hint-in-song portia casket-room) [3.00]
0.003: (listen-to-song bassanio casket-room lead) [3.00]

is a representative example of the paradigm, showing the
start time on the left of the action name and the duration
on the right. This example occurs in act III scene ii of the
Merchant of Venice where one of the characters, Bassanio,
is deliberating about the selection of a casket whilst simul-
taneously acquiring information from hints that are given
to him in song by another character. The temporal aspect
of the action, namely the character’s decision process (de-
liberation) can now be staged as an important element of
discourse, as it incorporates important information on the
relation between characters. Also, it allows for interference
by other agents (or the user) thereby supporting further nar-
rative generation

In contrast, capturing this in a non-temporal narrative is
problematic since there is no way to specify start times and
duration of actions. Actions can be left partially ordered
(either generated by a partial order planner [28] or by lifting
a partially ordered narrative from a totally ordered one [26])
but the required overlap between actions cannot be captured
without explicit representation of time.
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Figure 2: Merchant of Venice example illustrating the role of reasoning about staged execution time: (a)
staging failure when narrative actions are not synchronised; (b) successful staging when reasoning about
staged execution time during narrative planning identifies required concurrencies between actions.

4. NARRATIVE GENERATION
Generation of narratives that feature concurrent durative

agent actions requires a planning architecture that can rea-
son about explicit temporal information. Research in AI
planning has led to the development of a number of ded-
icated temporal planning architectures (discussed in sec-
tion 2). Recent, hybrid temporal planners such as Tempo
and Crikey have managed to overcome the performance
limitations of earlier partial order planners and the incom-
pleteness experienced by the extended space progression plan-
ners. Since our motivation includes being able to generate
narratives that feature overlapping concurrent agent actions,
we have chosen to use the Crikey system of Coles et al[7]
in our implemented narrative generator. The system will
use Crikey in combination with narrative structuring infor-
mation since, without such information, the planner could
end up generating sparse narratives or even no narrative at
all [23]. The generator will use the information to guide
Crikey towards the generation of narratives that are suffi-
ciently rich and in keeping with the narrative genre.

The narrative structuring information represents key nar-
rative situations that can be used like intermediate goals to
guide the planner. After [21], we refer to these situations
as constraints but they have also been described in the lit-
erature as author goals [23] and are similar to the notion of
landmarks [18] that have featured in AI planning. The con-
straints for a narrative world are represented as a partially
ordered set of predicates – a declarative representation which
separates this information from action descriptions and may
help facilitate its specification and maintenance.

Our implementation is based on the decomposition ap-
proach of [21]. This can be summarised as follows: use an
input set of constraints to decompose the process of narra-
tive generation into a sequence of sub-problems; generate a
narrative for each decomposed sub-problem; and then as-
semble the final narrative by composition of the sequence of
narratives. This approach implements a higher level of rep-
resentation, where the constraints enable reasoning about
narrative at the meta-level. The constraints can also be
re-combined for different total orderings (as used in our ex-
periments, see section 6).

Our contribution has been to extend their approach to
handle temporal reasoning. These extensions were possible
because of fundamental properties of the system that en-
abled the control program to be integrated with different
base planners. An overview of the architecture of our imple-
mented experimental system is shown in figure 1. The input
is represented using the representation language PDDL3.0
which permits both implicit and explicit representations of
the narrative domain to be input to the system. The con-
trol mechanism uses the input constraints to decompose
the problem and then sends decomposed sub-problems to
Crikey. As narrative actions are received from Crikey
by the control mechanism they are sent to a visualisation
module. The switch to temporal planning provides a direct
route to mapping between planning actions and their visu-
alisation through the transfer of PDDL3.0 temporal param-
eters to animation control structures (UnrealScript action
descriptions).
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5. QUALITATIVE EVALUATION
The objective of our evaluation was to provide data for

the systematic assessment of system performance and be-
haviour. Here we evaluate the approach qualitatively, with
reference to sample Merchant of Venice narratives generated
by our system and shown in figures 2 and 3. These narratives
provide answers to some key questions about our approach
to controlling narrative time, namely: (1) can our approach
help to avoid timing problems as agent actions are staged?
(2) does our approach provide a mechanism to exploit in-
formation about the staging of agent actions? (3) does our
approach to explicit temporal representation and reasoning
increase the generative power of the system?

5.1 Avoiding Timing Problems
Failure to reason explicitly about temporal aspects of the

IS domain at the point of narrative generation can cause
problems that only become apparent when the virtual agent
actions are staged. This can manifest itself both in real-time
failure of the system and failure at the “production” level
which it may be possible to repair through ad hoc local
solutions. For example, if action duration isn’t reasoned
about during narrative generation then an agent may fail
to meet up with another agent because they arrive too late,
after the other agent has already left.

A scene from our Merchant of Venice system, shown in fig-
ure 2, illustrates how this situation can arise. In this scene
one character, Antonio, is endeavouring to reach another
character, Bassanio, in time to bid him farewell before he
departs to sea. In principle, it is possible to generate a nar-
rative for this scenario without reasoning about the staged
execution time of the actions and then to use executabil-
ity conditions (as used in [4]) to try to synchronise agents
by testing that conditions for successful execution of agent
actions hold. In this example the actions for Antonio are
to rush to the port and then bid farewell to Bassanio as he
leaves; the actions for Bassanio are to board the boat and
then depart on his voyage. The first action for Bassanio
has him boarding the ship and since this is independent of
the first action for Antonio, rushing to the port, they can
be staged and visualised in a concurrent fashion (which also
gives interesting opportunities for exploration of automated
camera control). The executability conditions for Bassanio’s
next action, departing aboard ship, do not mention anything
about Antonio’s location. Hence the action can start being
visualised irrespective of the actual on-stage localisation of
Antonio. Depending on how long Antonio takes to arrive at
the port, it can happen that this doesn’t occur until Bassanio
has completely departed from the port, making it impossible
for Antonio’s final action, that of bidding his friend farewell,
to be executed in the visual environment. This situation is
depicted in figure 2.

How would explicit reasoning about time at the point
of narrative generation mean such situations were avoided?
The critical consequence of reasoning about the staged exe-
cution time of these agent actions is the recognition of the
requirement that Bassanio must still be at the port when
Antonio bids farewell to him, in other words that these ac-
tions are staged at the same time. This is shown in figure 2:
the narrative generator has considered the duration of the
actions, identified the required concurrency between them
and forced them to overlap.

5.2 Providing Information for Staging
Our use of an explicit model of time results in generated

narratives that include scheduled start times for each agent
action and their duration, precisely the information that can
be utilised for staging actions in different ways.

Act I scene (iii) of the Merchant of Venice provides an il-
lustration of the generation of this staging information. The
narrative for this scene (figure 3) shows the scheduled ac-
tions for the characters named Antonio, Bassanio and Shy-
lock. The start of the narrative includes actions which bring
them together on the Rialto ready to discuss the loan of
a sum of money and subsequently seal a bond committing
them to this arrangement. The red line drawn through the
narrative in figure 3 shows the point at which this scene be-
gins in the original play – opening with Bassanio and Shy-
lock in conversation on the Rialto and continuing with the
arrival of Antonio who joins them in conversation. This use
of scene changes in classical theatre can be seen as a “tweak”
which enables characters to appear at different locations as
and when needed with no need to reason about their actions
during the elapsed time (this tweaking of time has also been
used in IS systems to avoid reasoning about agent actions
whilst they are “off-screen” [21]).

However, in IS the objective is to provide different possi-
ble directions for the narrative and if there is a possibility
that agent actions may need to be staged then they must
be reasoned about. In our Merchant of Venice example, this
means that earlier portions of the narrative (i.e. those before
the start of the original scene from the play) need to be rea-
soned about during narrative generation. Consequently, the
narrative in figure 3 also includes agent actions for the time
before they enter into conversation. This allows for mul-
tiple ways of staging these actions, for example, focussing
on one agent and their actions and motivations prior to the
conversation, rather than cutting directly to them.

5.3 Generative Power
There are narratives that can only be generated with an

explicit temporal approach. The scene depicted in figure 3
where the character Bassanio is enquiring about a loan and
Shylock is simultaneously listening can be used to illustrate
this. The action of Bassanio enquiring about the loan re-
quires that Shylock listens to Bassanio for the whole of the
enquiry. The action can be represented as:

(:durative-action listen-to-enquiry
:parameters (?c1 ?c2 - char ?l - location)
:duration (= ?duration 2)
:condition (and

(at start (at ?c1 ?l)) ...
(over all (listening-to-enquiry ?c1 ?c2 ?l))
(at end (listening-to-enquiry ?c1 ?c2 ?l)))

:effect (and
(at start (listening-to-enquiry ?c1 ?c2 ?l)) ...
(at end (not (listening-to-enquiry ?c1 ?c2 ?l)))))

which captures the ongoing nature of the listening process
with the condition (listening-to-enquiry ?c1 ?c2 ?l) that is
activated at the start of the action and is maintained over
the duration. However, in a non-durative version of this ac-
tion, time would be compressed3 and this condition would
not be made true. This is problematic since the action of

3A compressed version of a durative action can be formed by
setting the effects of the action to be the result of applying
the start effects followed by the end effects and then setting

453



Figure 3: Example Merchant of Venice Narrative with overlapping durative actions: multiple possibilities for
staging are introduced by temporal reasoning before the start of the scene in the original play (red line).

Bassanio enquiring about a loan requires Shylock to be lis-
tening (even in a compressed version this would remain as
a pre-condition). The only way to handle scenarios such as
this would be somewhat clumsy and would involve coercing
the conversational exchange to take place at a given stage.

This example demonstrates the increased generative power
of a temporal approach: narratives can be generated that
require interactions over the duration of actions and these
cannot be generated by compressed versions of the same ac-
tions. This is discussed further in the next section.

6. RESULTS
As demonstrated in the previous section, there are nar-

ratives which can only be properly generated and staged
using narrative actions which have duration. Here we as-
sess how this could affect real-world IS narrative generation
problems, by examining the capacity these representations
have for generating narratives for the different sub-problems
that result from applying our decomposition approach in
our experimental Merchant of Venice domain. These exper-
iments focussed on narrative generation and consequently
were performed off-line, without visualisation. The inclu-
sion of staging would not significantly alter these results,
and if anything, temporal planning would be less adversely
affected given that the resolution of temporal factors is han-
dled prior to visualisation.

In the course of one run of the IS system, user interaction
could force the story to enter a broad range of unforesee-
able world states. To simulate this, we generated a set of 20

the action pre-conditions to be the start conditions of the
durative action along with all end conditions and invariants
that are not achieved by the start effects [7].

potential initial states of the narrative domain by sampling
randomly from the set of facts that are relevant to the dif-
ferent story sub-problems (where a fact is relevant if it can
appear in a causal chain for achieving the sub-problem).
A typical example of one of the randomly generated initial
states contains the following facts:

(at bassanio venice-rialto)
(at antonio venice-street )
(decided bassanio lead-casket)
(enquired-about-loan bassanio shylock antonio)

In addition to facts specifying virtual agents’ initial loca-
tions, in this state Bassanio has decided to choose the cor-
rect casket prior to travelling to Belmont, and has already
discussed potential loans with Shylock. It should be noted
that spurious facts, such as (decided antonio gold-casket) are
never included in the generated initial states, as they are not
deemed to be relevant facts (i.e. in this case, Antonio is not
a suitor, and therefore has no reason for selecting caskets).

For each of the initial states, two narrative plans were
generated, built up from 10 decomposed sub-problems. The
first of these narratives was constructed using non-durative
agent actions, and the second with durative ones. A cu-
mulative count of the number of sub-problems successfully
achieved was kept for each run. If one approach failed to
achieve a sub-problem its state was changed to that reached
by the other approach, and the system was then permit-
ted to continue narrative generation from that point. This
strategy was adopted in order to avoid unfairly penalising
an approach for failing to achieve a sub-problem especially
early in the narrative. Figure 4 shows the mean rate of
sub-problem achievement for durative and non-durative ac-
tions. The solid lines indicate the mean number of sub-
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Figure 4: Count of the number of successfully gener-
ated narratives for decomposed sub-problems (with
and without durative actions). Corridors show one
standard deviation. (See text for further details.)

problems achieved at each point in a narrative, and the cor-
ridor around each shows one standard deviation.

It is immediately clear that in this real-world example of
an IS problem, generativity issues can have a significant ef-
fect on its execution. The graph shows results on output
narratives of more than 10 actions, since narratives shorter
than this are deemed too brief to be meaningful. For nar-
ratives of increasing length there is a clear difference in the
number of sub-problems that can be achieved with the use
of a temporal approach. Each failed sub-problem represents
a point at which a real-world IS system must either sacrifice
logical consistency of the narrative, or apply hand-crafted
repair rules that jeopardise its scalability and reliability.

In addition to quantifying the expected rate of failure to
achieve constraints after arbitrary user interaction, we also
want to quantify the increase in generative power that tem-
poral representations provide. As a measure of generative
power, we consider the potential for non-trivial interactions
between narrative actions of a domain. The simplest exam-
ples of these interactions can be seen in producer-consumer
relationships between agent actions, such as when a con-
dition that is added by one action is then deleted by an-
other; or when a fact that is deleted by an action is then
replaced by another. In IS, these sorts of interaction appear,
for example, in conversations between characters, or when
movement between locations is performed. An illustration
is provided by the agent action (board-ship bassanio venice-
port) that covers the movement of Bassanio from the port
and interacts with actions that move Bassanio to the port
(the “producers” in the relationship). Similar interactions
occur between conversational actions, which feature agents
entering and exiting the conversation through different ac-
tions. Most importantly, actions that do not interact in this
way provide no scope for the generation of novel interesting
narrative situations (similar to the idioms described in [5]).

The identification of these macros is performed in a phase
of static domain analysis [9]. For the macros considered
here the macro action sequence must be valid (i.e. the pre-
conditions for each action are not violated by prior actions)
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Figure 5: Increase in generative power resulting
from the use of durative action representation. Lines
show the increase in potential macros depending on
domain size and percentage of durative actions.

and the post-conditions of the macro as a whole must differ
from the union of its parts.

As a measure of these interesting narrative situations or
idioms we counted the number of additional macro actions
(i.e. all sets of actions with non-trivial interactions) that
result as a consequence of using an explicit temporal repre-
sentation. We created a set of test domains to measure the
presence of macro actions with varying numbers of durative
actions. The domain objects and facts were the same as
those in our Merchant of Venice domain. The number of ac-
tions in each domain was similar to that used in the previous
evaluation – between 100 and 500. These actions were ran-
domly generated from the domain facts, and had the same
number of pre- and post- conditions as those found in the
Merchant of Venice IS domain. Figure 5 shows the number
of additional macro operators present when 25%, 50%, 75%
or 100% of the agent actions in the domain were defined as
durative actions, and the remainder were compressed, non-
durative versions of them (as described in section 5.3).

The results show that the fundamental nature of the du-
rative representation of actions gives rise to a significant
increase in the number of possible interesting interactions.
For a 500 action domain, almost 100 additional macro ac-
tions were seen to appear from the switch to a pure temporal
representation – each of which is a new, potential situation
or idiom. When moving to domains with larger sets of ac-
tions (e.g. planning for the entire Merchant of Venice rather
than the sub-plot used to illustrate this paper), the number
of additional macros relative to the number of actions can
be seen to grow at a super-linear rate. As seen in figure 5,
applying the durative representation to only a subset of a
domain can still realise this increase in generative power.

7. CONCLUSIONS
In this paper we presented the case for the use of an ex-

plicit approach to controlling narrative time in IS. This ap-
proach involves extensions to the representation of agent ac-
tions to include their staged execution time. It also includes
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a shift to planning architectures that can schedule agent ac-
tions with required concurrency. The approach is applicable
to a wide variety of different genres: those where timing or
pace play a role, those where staging needs to be explored
and those where story and discourse may have complex re-
lationships. Overall the approach provides a uniform, con-
sistent, principled and rigorous approach to the problem of
time in agent-based storytelling

Our evaluation clearly demonstrated the advantages of a
temporal IS approach: at the level of staging, it has been
shown to overcome problems of timing of agent actions and
provides a mechanism to exploit information about the stag-
ing of agent actions; and at the level of narrative generation,
it has been shown to increase the generative power of the
system. In addition the principled nature of the approach
will be advantageous in system production since it removes
the time consuming search for empirical solutions.
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ABSTRACT
In creating an evacuation simulation for training and planning, real-
istic agents that reproduce known phenomenon are required. Evac-
uation simulation in the airport domain requires additional features
beyond most simulations, including the unique behaviors of first-
time visitors who have incomplete knowledge of the area and fam-
ilies that do not necessarily adhere to often-assumed pedestrian
behaviors. Evacuation simulations not customized for the airport
domain do not incorporate the factors important to it, leading to
inaccuracies when applied to it.

In this paper, we describe ESCAPES, a multiagent evacuation
simulation tool that incorporates four key features: (i) different
agent types; (ii) emotional interactions; (iii) informational interac-
tions; (iv) behavioral interactions. Our simulator reproduces phe-
nomena observed in existing studies on evacuation scenarios and
the features we incorporate substantially impact escape time. We
use ESCAPES to model the International Terminal at Los Angeles
International Airport (LAX) and receive high praise from security
officials.

Categories and Subject Descriptors
I.6.3 [SIMULATION AND MODELING]: Applications

General Terms
Security

Keywords
Innovative Applications, Evacuation, Crowd Simulation

1. INTRODUCTION
From large-scale citywide evacuations to small-scale evacuations

of buildings, emergency evacuations are unfortunately a perpetual
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fixture in society. Fire drills and other ‘mock evacuations’ generally
used today fail to accurately prepare us for evacuations in which
life-threatening danger is immediate and, in fact, are very often
ignored altogether [5]. Thus, designing security policies based on
them do not accurately account for actual human behavior. Simula-
tions can provide an additional method of evaluating security poli-
cies that gauge the impact of different environmental, emotional,
and informational conditions. In any evacuation, the layout of the
area, the population composition, level of urgency, and the behav-
ior of authority figures all play a role in the safety and speed of an
evacuation. The ESCAPES system is a multiagent evacuation sim-
ulation tailored to the needs of airport security officials based on
existing psychological and evacuation research.

Office buildings and railway stations, which are often the subject
of evacuation studies, possess largely homogenous crowds of busi-
ness people that are very familiar with the environment. Airports,
however, have a large presence of families and first-time visitors
which are major considerations for security officials [3]. Families
present a completely different model of human behavior, as they no
longer follow the often-assumed ‘self-preservation first’ edict and
often seek to ensure the safety of family members first [19]. Travel-
ers’ uncertainties about the environment logically lead to increased
reliance on authority figures for directions and necessitates a real-
istic model of information-spread about events and exits as well as
a model of behavior when no exit locations are known.

These features that officials have identified as especially impor-
tant to airport evacuations have not been specifically addressed by
existing commercial and academic simulators. Legion Software1,
for example, is used by security forces in many areas to evaluate
the expected speed of traffic flow through an area. However, it does
not model agent types such as families and authority figures or re-
alistic knowledge spread about the environment and events. Other
evacuation simulators in academia explore more detail and even
base their agents on psychological models, such as Pelechano et al.
[18]. However, their work does not model the behaviorial dynamics
unique to family units, nor the emotional contagion of the crowd as
fear levels rise during the evacuations.

In our meetings with security experts affiliated with Los Angeles
International Airport, they discussed the importance of agent types,
the presence of fear, and realistic knowledge spread. In addition, a

1www.legion.com
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Phenomenon Ref. Feature
People forget their entrance [2] Misc.
First-time Visitors [3] SoK / SCT
Heightened emotions -> chaos [21] Emotions / EC
Herding behavior [10] SCT / Families
Pre-evacuation delay [4, 14] SoK / Families
Families gather before exiting [19] Families
Authorities calm people [21] Auth / Emotions

Table 1: Phenomena modeled in ESCAPES

strong 3D visualization was emphasized for the purpose of visual
conditioning during security personnel training. Thus far, airport
security officials have been forced to use general simulations to
answer questions about authority figure placement, number, and
policy. Our work aims to fill this gap by tailoring a system to the
particular needs of an airport evacuation and other similar scenarios
with a solid grounding in psychological and evacuation research.

We discuss our multiagent evacuation simulation system, ES-
CAPES, in two parts: individual agent types and agent interac-
tions. ESCAPES includes regular travelers, authority/security fig-
ures, and families, as these have been documented as having the
most impact in an airport evacuation [3]. Another major aspect
of evacuations is fear. Although there is substantial debate on the
existence of ‘panic’ in evacuations, the presence of fear is undis-
puted [20]. For the purposes of our work, we focus on a baseline
implementation of fear and its impacts. Finally, in discussions with
airport security officials, incomplete knowledge of the environment
was cited as a major concern. Thus, we also give agents incomplete
knowledge of the world by restricting their knowledge of the exits
and the event causing the evacuation.

ESCAPES agent interactions include three separate phenomena:
spread of knowledge, emotional contagion, and social comparison.
Evacuation literature shows that the crucial seconds people spend
before actively moving towards an exit greatly impact their sur-
vivability and is largely due to uncertainty about the nature of the
evacuation [4]. Thus, we include a ‘Spread of Knowledge’ (SoK)
component, which realistically models the spread of information
about an event and that an evacuation is truly necessary. Emotional
Contagion (EC) is the well-documented phenomena that causes one
person’s emotional state to be impacted by neighboring people’s
emotional state [9]. We incorporate EC in our system as a logi-
cal byproduct of our inclusion of fear in the presence of crowds.
Finally, in a situation where people don’t have all the information,
following others is a commonly seen phenomenon. Social Compar-
ison Theory (SCT) is a theory of how one person impacts another
at a broad level, positing that people perceived to be similar to each
other will mimic each other [6]. We use SCT to direct people’s
actions when they have no knowledge of the environment.

Existing evacuation simulations fail to take these factors into ac-
count in a cohesive fashion, resulting in visually appealing but ulti-
mately inaccurate simulations of airport evacuations. In ESCAPES,
we model agents based on key features identified by LAX officials
and attributes from evacuation literature and explore the impacts of
these factors on the speed and smoothness of evacuation. In partic-
ular, we include emotions that impact behavior, authorities, family
units, realistic spreading of knowledge about an emergency, emo-
tional contagion, and social comparison. We describe each of these
components in more detail in Sections 3 and 4 and explore their
impacts on evacuations in great depth in Section 5. We show that
inclusion of these factors leads to a number of emergent behaviors
documented in literature, as summarized in Table 1. Finally, we
conduct tests on a model of a terminal at Los Angeles International

Airport and begin to provide answers to security officials’ questions
about authority figure policies.

2. RELATED WORK
Early work in pedestrian dynamics noted the similarity between

crowd behavior and well-understood phenomena observed in physics.
These observations led to the development of models based on
fluid-dynamics [12]. Another approach to force-based crowd sim-
ulation is built off the idea of social forces [11]. Instead of being
based on the physical properties of water or gas, social forces rep-
resent the attractive and repulsive forces felt by a pedestrian toward
various aspects of its environment. Yet another approach involves
the use of cellular automata (CA). In CA-based models [1], the en-
vironment is divided into a grid consisting of cells. At each time
step, a cell transitions to a new state based upon its current state
and the states of the neighboring cells. However, in both forced-
based and CA-based models, it is difficult to simulate goal-driven
and heterogeneous behavior. Thus, the specific crowd phenomenon
we are looking at are not typically modeled with these approaches.

Agent-based models allow for each pedestrian to be modeled as
an autonomous entity. Under this model, pedestrians are repre-
sented as agents capable of perceiving and interacting with their
environment as well as other agents. While being the most compu-
tationally expensive modeling technique, agent-based models are
capable of a higher degree of expressivity and fidelity. The ability
to represent cognitive information and model complex and hetero-
geneous behaviors has opened the possibility for new avenues of
research that had not been attempted with previous methods.

As a result, there has been a shift toward the use of agent-based
models for evacuation simulations. However, much of this research
has been focus solely on modeling the physical interactions be-
tween agents[16]. The EXODUS2 system represents the state-of-
the-art for these systems with versions specifically for various types
of large-scale scenarios and additional modules that can model phe-
nomena such as toxic gas and fire spread. The system does move
slightly beyond physical interactions to include informational as-
pects such as signage and exit familiarity, but still does not attempt
to use psychologically-based decision-making in their agents.

Despite this trend, there has been some interest in incorporating
emotional as well as the informational interactions into agent-based
models. The complex relationship between the spread of infor-
mation and the spread of emotion was explored from a theoretical
modeling perspective in [13]. [17] focuses on creating agents with
sophisticated psychological models. Our research is less concen-
trated on individual agents and more concerned with the interac-
tions between agents and the resulting group dynamics. Addition-
ally, ESCAPES is focused on a different set of domains including
airports, malls, and museums. To accurately represent these types
of environments, we believe it is particularly important to model
the influence of families, emotional contagion, social comparison,
and spread of knowledge, which past work has not cohesively ad-
dressed.

3. AGENT DESIGN
The ESCAPES system is a two-part system comprised of a 2D,

OpenGL environment based in the open-source project OpenSteer3

and a 3D visualization component using Massive Software4. The
2D module consists of agents as described below, outputting their

2http://fseg.gre.ac.uk/exodus
3http://opensteer.sourceforge.net
4http://www.massivesoftware.com
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physical and behaviorial information into files that are then im-
ported into customized Massive extensions to generate 3D movies
of the scenarios. The 2D module can be used for efficient statis-
tical analysis of different security policies. As mentioned previ-
ously, the 3D visualization is a key component for airport security
officials, as it provides a superior training medium to their current
tools. Screenshots in Figure 3 show the children models as well as
some people running in different directions (denoted in the white
circle) when an evacuation begins. Here we describe the archi-
tecture of the 2D module, first introducing the individual traveler
agent, then detailing two special agent categories (families, author-
ities), and finally discussing interaction level dynamics (spread of
knowledge, emotional contagion, social comparison).

Figure 1: ESCAPES 3D visualization

3.1 Individual Travelers
All agents share a common architecture based in a BDI frame-

work, possessing varying degrees of knowledge about the world
and their neighbors. Each agent has access to a subset of the 14
available behaviors, any one of which may be active at a given
time, where the behavior is selected via a probabilistic weighting
scheme. The weighting scheme is a combination of 6 ‘Cognitive
Mechanisms,’ each of which prioritize some of the agent’s desires.
For example, there is a Cognitive Mechanism that prioritizes the
basic desire of an agent to ‘Wander’ through his environment or
‘Shop’ in the stores. On the other hand, we have another Cog-
nitive Mechanism that prioritizes an agent’s desire to survive by
evacuating through an exit once an event has occurred via one of
the escape behaviors (‘Run to Nearest Exit’, ‘Run to My Exit’, and
‘Search for Exit’). During execution of these behaviors, individual
travelers may move at integer speeds from 0 to 3.

Each agent also has specific levels of emotions and information
about the environment. Studies have shown that emotional stress
causes changes in decision-making and may even cause someone
to forget where he/she entered a building from [2]. Combined with
the incomplete knowledge of a person that is in a place for the first
time, which occurs extremely frequently in the airport scenario that
we model, an evacuation suddenly becomes much more difficult to
manage. Thus every agent has a fear level, an event certainty level,
as well as a list of known exits. A more extended discussion of
these attributes will take place in Section 4, but we briefly mention
their implementation here first.

Fear is modeled as an integer value between 0 and 2 (FearFac-
tor), 0 indicating that the agent has no fear. Higher levels of fear

lead to higher movement speeds to get out of the area as soon as
possible. Each agent’s fear is a result of a number of factors such
as their proximity to the event, the presence of authority figures
nearby (as a result of documented impact of authority figures on
evacuees [3, 21]) and the level of fear in neighbors and family mem-
bers (as a result of Contagion [9]).

Event certainty is modeled as an integer value between 0 and 2
(EventCertainty), designating how aware the agent is that an event
has occurred and that, therefore, an evacuation is necessary. An
event certainty level of 2 is generated only by people close to the
event, who immediately run directly away from the event before
beginning active exiting behavior. Further away agents may have
1, which immediately triggers exiting behavior. Agents furthest
away have an EventCertainty of 0 and continue their normal be-
havior, as they are unaware of any need to evacuate. Each agent’s
EventCertainty level is dictated by their proximity to the event, the
presence of authority figures nearby that would inform them of the
event, and the event certainty of neighbors via the Spread of Knowl-
edge mechanism discussed in Section 4.1. The importance of un-
certainty about an event has been noted in evacuation literature as
a major cause of delay and, therefore, casualties [4].

Exit knowledge is modeled as a binary value indicating whether
or not an agent knows about a given exit. Given a list of known
exits, if an agent decides to evacuate, he will choose the nearest
one. Exit knowledge is dictated by where they entered from, a ran-
dom chance to forget that exit, and the presence of authority figures
nearby that would inform them of exits. A person’s knowledge of
exits are clearly of paramount importance in any evacuation situ-
ation, especially in airport scenarios where many people are first-
time visitors and are unaware of the environment layout.

3.2 Family Agents
Evacuations in some environments pose additional challenges as

a result of the population present. In the airport scenario that we
focus on, families have been identified as an important facet of the
environment that must be modeled to more realistically portray the
situation [3]. One can see how this might differ from the evacuation
of an office building where only knowledgeable adults are present.
For instance, children often rely on their parents to lead them and
parents will undoubtedly seek out each other and their children be-
fore exiting, oftentimes disobeying authority instructions [19].

We model the presence of family units composed of 2 parents
and 2 children with behaviors and cognitive mechanisms not ap-
plicable to general agents. Prior to an evacuation, children usually
execute the ‘Follow Parent’ behavior, except occasionally execut-
ing the ‘Drag into Shop’ behavior which leads their parents into
nearby stores that they find interesting. To enhance realism, we
also restrict children to slower movement speeds (maximum of 2),
which parents leading them will inevitably match. Parents that are
not with their children heavily prioritize finding them via the ‘Find
Child’ behavior, and put some emphasis on the ‘Find Other Parent’
behavior (they may also Wander or Shop). When an evacuation oc-
curs, however, parents immediately seek each other out to gather
the family together before proceeding to an exit, as has been shown
to occur in real evacuations [19]. After an evacuation is underway,
children will no longer execute the ‘Drag into Shop’ behavior, re-
sorting exclusively to ‘Follow Parent’.

3.3 Authority and Security Agents
Studies have shown that some authority figures have a very strong

calming effect on people in an evacuation situation [21]. This can
come through implicit calm at the sight of other people that appear
calm via emotional contagion and may be enhanced due to the uni-
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formed authorities having a stronger contagion effect due to their
leadership role [9]. Also, by simply being there everyday, authori-
ties know the environment and are trained to properly direct people
to the nearest exits in the event of an emergency.

In our simulator, under normal conditions, authority agents ‘Wan-
der’ or ‘Patrol’ the environment. After an event occurs that neces-
sitates an evacuation, all authority figures switch to ‘Patrol’ in an
attempt to inform everyone of the event and where nearby exits are
located. We also set the FearFactor of authority figures very low
and keep it constant to mimic well-trained security personnel that
can maintain a level head in volatile situations. The calming effect
they have on other agents is modeled by overriding nearby agents’
FearFactor with the authority figure’s FearFactor. The practical ef-
fect of this is to slow agents down (since FearFactor directly im-
pacts travel speed), which may increase the total evacuation time,
but also reduces the severity of colliding and the level of chaos.
Also, authorities know all exit and event locations and pass this
information to agents that are nearby.

4. AGENT INTERACTIONS
With the existence of crowds, agent interactions are a fundamen-

tal aspect of our evacuation simulation. Thus, we base our agent
interactions on existing evacuation and social psychology research.
We incorporate a realistic ‘Spread of Knowledge’ of events and ex-
its, an Emotional Contagion module to model the infectious nature
of emotions, as well as a social comparison component to capture
people’s mimicry of others.

4.1 Spread of Knowledge
As mentioned, while unimportant for office building or railway

station simulations, realistic knowledge spread to model the be-
havior of first-time visitors is a necessary component in an airport
simulation. Thus, we model the spread of two types of knowledge
in our system: Exit Knowledge and Event Knowledge.

4.1.1 Exit Knowledge
People entering an environment for the first time will possess in-

complete knowledge of exit locations. Thus, they must rely on au-
thorities, signs, and following the crowd to make their way towards
the nearest exit if there is one closer than the one they entered from.
It has been shown that in times of high emotional stress, people
even forget where they entered [2].

Our simulator includes this level of realism, giving agents knowl-
edge of their entry location and a random chance that they forget
this knowledge. In contrast, authority figures begin with and main-
tain full knowledge of all exit locations and pass a limited subset
of this to nearby agents to simulate their redirection of passersby
to the nearest exits. Also, family members will inform each other
of exits they find out about, but otherwise, agents do not communi-
cate exit knowledge to each other. Agents are also able to use the
‘Search for Exit’ behavior to find a way out on their own or some
may choose to simply follow nearby, similar agents via the SCT
module’s ‘Follow Most Similar Agent’ behavior.

4.1.2 Event Knowledge
In real emergency situations, pre-evacuation delay has been cited

as a major cause of slower evacuations and, therefore, deaths [4,
14]. This delay is largely due to a lack of knowledge about the
emergency, both in disbelief of the severity of the situation as well
as a desire to find out more about what has occurred. Pre-evacuation
delay has been noted to persist despite verbal warnings and physi-
cal cues in the environment [14].

In our simulation, agents that are near the event as it occurs will
have full knowledge of what has occurred, whereas agents far away
have no idea are unaware that anything is wrong. As civilians pass
each other, they communicate their level of certainty to each other,
raising awareness of the situation. As civilians become more aware,
they are more likely to run towards the exit as their self-preservation
desires take precedent over all other desires.

Authority figures are assumed to instantly know when something
has occurred, simulating an immediate radio notification from cen-
tral security personnel. This does not necessarily translate into an
immediate announcement to the general public, since oftentimes
the appropriate response is not immediately obvious. Authority fig-
ures also communicate their certainty of the event to nearby agents,
mimicking an actual authority figure telling people to evacuate.

4.2 Emotional Contagion
Emotional contagion is the effect of one person’s emotional state

on the emotional state of people around him/her both explicitly and
implicitly [9]. It has been observed in families, small-scale inter-
actions as well as large crowds [7, 9]. Researchers continue to
develop theories on the phenomenon and are still exploring the var-
ious factors that are believed to influence the level of contagion as
well as its effect on decision-making.

In an evacuation scenario, fear abounds, due both to uncertainty
of the situation as well as concern for one’s own safety [21]. As a
result of emotional contagion, bystanders that are unaware of the
event may develop otherwise inexplicably high levels of fear as
well. Their subsequent decisions and behaviors as a result of this
‘inherited’ fear have not been explored in the context of a crowd or
evacuation simulation. We therefore propose a baseline implemen-
tation and analysis of a model of emotional contagion.

Specifically, we have two components that spread emotions amongst
agents. First, as agents pass by each other, they inherit the highest
level of fear of neighboring agents. This is the baseline emotional
contagion model that conforms with a theory of emotional conta-
gion in which the highest level of emotion is transferred to all sur-
rounding agents and inherited at full effect [9]. Second, as agents
pass by authority figures, their level of fear is reduced to the au-
thority figure’s fear level. This simulates the implicit and explicit
calming effect of authorities and conforms with a theory of emo-
tional contagion that allows for specific agent types to reduce the
level of emotion of surrounding agents (e.g., an agent that is greatly
respected by all surrounding agents [9]).

4.3 Social Comparison (SCT)
Social Comparison Theory [6] is a social psychology theory, ini-

tially presented by Festinger. It states that humans, when facing
uncertainty, compare themselves to others that are similar to them,
and act towards reducing the differences found. Social compari-
son is considered a general cognitive process, which underlies hu-
man social behavior. During emergencies, individuals face greater
uncertainty, and thus the weight of social comparison in human
decision-making is increased [15].

We find the utilization of the computational model of social com-
parison [8] helpful in developing agents with the social skills that
are crucial to the accurate simulation of different crowd behaviors.
The SCT computational model can be used, for instance, by agents
who wish to urgently exit an area. If they do not know the location
of a close exit, they may turn to mimicking others hoping that they
will lead them to safety.

For the simulation, SCT was implemented as follows. First, the
agent compares itself to others around it by measuring the similar-
ity in a set of features, including speed, emotional state, distance,
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etc.. The similarity values are combined, and the agent that is most
similar (within bounds) is selected. The agent executing SCT takes
actions to reduce dissimilarities to the selected agent. In this simu-
lation, SCT increases the tendency to mimic someone else’s behav-
ior, whereas emotional contagion transfers emotions regardless of
what different behavior will be chosen based on it.

5. EVALUATION
We conducted extensive testing using a generic scenario to evalu-

ate the impact of the emotional and informational phenomena mod-
eled in ESCAPES. The scenario takes place in a generic airport
setting consisting of 2 gates, 3 hallways, and 14 shops. There is an
exit in each gate as well as the end of one of the hallways. Unless
otherwise noted, the experiments for the generic scenario feature
the following: 100 travelers which includes 10 families, 10 author-
ity figures, emotional contagion, spread of knowledge, and social
comparison. Simulated evacuations are typically evaluated by ex-
amining the rate at which people evacuate. While, evacuation rate
is obviously important there are other metrics which can also pro-
vide insight as to how an evacuation proceeded. In Sections 5.1-6,
we analyze the results from these experiments using the metrics
which best highlight the effect of the various phenomena. Addi-
tionally, we modeled Tom Bradley International Terminal at Los
Angeles International Airport and ran proof-of-concept tests on this
to evaluate our performance on a real domain. A description of the
scenario and accompanying results is provided in Section 5.7

In all of our experiments, an event occurs during the 14th time
step and travelers have until the 300th time step to evacuate. It is
assumed that by this time, airport officials will have managed to co-
ordinate in response and issue a general order to evacuate through
their emergency broadcast system. All the results in this section
have been averaged over 30 independent simulations.

5.1 General Testing
As mentioned in previous sections, current evacuation simula-

tors tend to focus on the physical interactions of agents. The agents
in these simulations are typically homogeneous, rational, and omni-
scient. In contrast, ESCAPES agents are heterogeneous, emotional,
and limited in both knowledge and perception. In Figure 2, we
compare the evacuation rates from simulations in which the popu-
lation of travelers is modeled as homogeneous, omniscient agents
to those in which the population is modeled as ESCAPES agents
including authority figures and families. The y-axis represents the
percentage of travelers who have yet to evacuate. This percentage
will decrease over time and the slope of the line signifies the cur-
rent rate at which travelers reached safety. For example, after 85
time steps we can see all travelers have evacuated in the physical
interaction model whereas 25% of travelers have yet to evacuate in
the physical, emotional, and informational model.

When modeling omniscient agents, simulations consist of travel-
ers with complete knowledge who are not influenced by their emo-
tions. The only relevant interaction between travelers occurs when
there is congestion due to an area becoming overcrowded. When
the event occurs, all travelers are able to perceive it instantaneously
and begin to head for an exit. We see a steep decline in the number
of unevacuated travelers, as those close to an exit evacuate rapidly.
There is then a temporary decrease in the rate of evacuation as those
travelers who were far away from an exit rush towards it. Once
those travelers start reaching the exits, the rate of evacuation picks
up again until everyone has evacuated. While these models can
provide a good first order approximation, they fail to capture much
of the underlying complexity present in evacuations.

Figure 2: Effect of Modeling Physical, Emotional, and Infor-
mational Interactions on Evacuation Rate

Figure 3: Effect of Families on Evacuation Rate

With travelers who are more realistic, the evacuation rate is slower.
This is due to a multitude of factors such as families taking time
to find their loved ones, travelers never learning about the event,
or travelers having limited knowledge about exits. Unlike when
travelers are modeled as omniscient agents, situations arise with
ESCAPES agents where there are travelers who are unable to evac-
uate in time. However, it is important to examine these situations
because it is exactly these scenarios where the potential for danger
is greatest were they to occur in real life. Models using omniscient
agents provide best-case scenarios and a lower bound on evacuation
times. While this information is useful, a system that is capable of
modeling unforeseen worst-case scenarios, such as ESCAPES, will
be more effective as a training and policy-making tool.

5.2 Families
Studies have shown that the presence of the families results in

slower evacuation times [19]. We tested the effect of families on
evacuation rate by comparing the results from simulations with
varying numbers of families. Figure 3 shows that increasing the
number of families slows the overall rate of evacuation. After 85
time steps, simulations starting with 10 families had 30% of travel-
ers remaining, whereas the simulations with 5 families had 15% re-
maining, and simulations with no families had only 5%. This slow
down is a consequence of two main factors. First, instead of head-
ing towards a known exit immediately upon learning of the event,
parents first seek out the other members of their family. As a result,
parents will often ignore known information and perform actions
which are suboptimal from an individual perspective. Second, once
family members have found each other, they stay grouped together.
Due to children moving more slowly, as mentioned in Section 3.2,
family units move slower than typical travelers.
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5.3 Emotional Contagion
The spread of emotions through crowds as a result of emotional

contagion has been well-documented [9]. In the simulations, emo-
tional contagion is used to propagate fear. Travelers with high lev-
els of fear pass on their FearFactor to travelers with lower levels
of fear. Higher values of FearFactor activate a flight response in
travelers. At the crowd level, this phenomenon causes travelers to
collide into each other. The overall number of collisions can then
be view be as a measure of the level of chaos in an evacuation.
By modeling emotional contagion, we would expect to see an in-
creased levels of fear which in turn will produce a higher number
of collisions between travelers.

To isolate the impact of emotional contagion we ran experiments
without authority figures. Without the calming influence of author-
ity figures, there is nothing to impede the dissemination of fear
through emotional contagion. Specifically, we compared the num-
ber of high-speed collisions that occurred over the course of an
evacuation both with and without emotional contagion. High-speed
collisions are defined as collisions that occur while a traveler has a
speed of 2 or greater. Focus is placed on these collisions as they are
more likely to cause injury or falls in real evacuations. When emo-
tional contagion is modeled, evacuations average 6932 high-speed
collisions, whereas evacuations without emotional contagion aver-
age 2701 high-speed collisions. From these results, we can see that
modeling emotional contagion results in more chaotic evacuations
with an increased number of high-speed collisions.

5.4 Spread of Knowledge
Agent-based evacuation simulations often start after an incident

has occurred and assume that all agents are instantaneously aware
of the need to evacuate. ESCAPES is geared towards domains
where this is likely not the case. It is then important to model
how knowledge of an event would spread throughout a crowd. In
the simulations, EventCertainty represents the level of a traveler’s
knowledge of the event. Higher values of EventCertainty reflect
greater knowledge about the event. The average EventCertainty
over all unevacuated travelers is a good way to measure the level of
knowledge of those who are still in danger.

In Figure 4, we contrast our model for the spread of knowledge
against a model in which instantaneous knowledge is assumed. The
y-axis represents the average EventCertainty for all unevacuated
travelers, while the x-axis represents the time step. With instanta-
neous knowledge, travelers are able to fully perceive the event im-
mediately after it occurs regardless of where they are situated in the
environment. Accordingly, the average EventCertainty jumps from
0 (no knowledge) to 2 (full knowledge) and remains at this level
for the duration of the simulation. When knowledge is spread, the
situation is much different. Immediately after the event, EventCer-
tainty is low as only the travelers close by know that is has occurred.
As time passes, knowledge of the event propagates through the
crowd as travelers with information disseminate it to their neigh-
bors. As a result, EventCertainty rises until it reaches a point where
almost all travelers are fully aware of the event. From this point,
EventCertainty decreases as travelers with knowledge of the event
are able to evacuate leaving an increasingly higher proportion of
travelers who are unaware of the event.

Throughout the evacuation, authority figures are patrolling for
travelers to inform. However, if a traveler is particularly isolated
they may never come into contact with an authority figure. Instan-
taneous knowledge is a common assumption in agent-based evac-
uation models, but humans are not omniscient. In comparison, our
model for the spreading of knowledge provides a more realistic ap-
proximation of knowledge diffusion through crowds.

Figure 4: Effect of Knowledge Tranfer on EventCertainty

5.5 Authorities
Authority figures have been shown to exhibit a calming effect

over crowds [21]. In the simulations, authority figures always have
a low level of fear (FearFactor=1) and the highest level of knowl-
edge about the event (EventCertainty=2). They then help to calm
the crowd by passing these values onto all travelers they come into
contact with. Thus, the presence of authority figures in the simu-
lations should result in a lower level of fear among travelers. We
can use the percentage of unevacuated travelers with the highest
level of fear (FearFactor=2) as an inverse measure on the ability of
authority figures to calm the crowd.

Figure 5 shows the effect of varying the number of authority fig-
ures on the FearFactor of travelers over the course of the evacua-
tion. The y-axis represents the percentage of unevacuated travelers
with FearFactor=2. Initially, there are no travelers with FearFac-
tor=2. At the 15th time step, the percentage increases to include
all travelers close to the event. This percentage continues to climb
as a result of the contagion effect until it reaches a maximum be-
tween the 35th and 50th time steps. As time progresses, the effect
of emotional contagion is balanced out by the influence of author-
ity figures and the successful evacuation of travelers with FearFac-
tor=2. From the results, we can see that increasing the number of
the authority figures results in a lower percentage of travelers with
FearFactor=2. With 6 authority figures, the percentage of travel-
ers with FearFactor=2 reaches a maximum of 47%, whereas sim-
ulations with 8 and 10 authority figures reach maximums of 36%
and 27%, respectively. Given that authority figures are distributed
evenly, this is a logical result, as more authority figures provide
for better spacial coverage. This in turn, increases both the like-
lihood and speed in which authority figures will inform travelers
about the event. Thus, we have shown that authority figures in the
simulations display a calming effect on travelers and increasing the
number of authority figures only strengthens this effect.

5.6 SCT
It has been observed that Social Comparison leads people in

close proximity to mimic the actions of the those around them [6].
In a crowd setting this would logically result in a grouping effect.
The phenomenon of grouping within crowds has been well docu-
mented in research on pedestrian dynamics [10]. To measure the
prevalence of localized grouping in the simulations, we introduce
the notion of connectivity. A traveler’s connectivity is equal to the
number of neighboring travelers plus one. Travelers are considered
to be neighbors if they are within a specified distance of each other.
Thus, a traveler with a connectivity of 1 is considered to be isolated.
As connectivity is a measure of grouping, we would expect to see
an increase in the overall level of traveler connectivity by modeling
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Figure 5: Effect of Authority Figures on FearFactor

Figure 6: Effect of SCT on Connectivity

Social Comparison. The impact of Social Comparison on the aver-
age connectivity of all unevacuated travelers can be seen in Figure
6. Connectivity, both with and without Social Comparison, rises in
the moments leading up to and following the event. Without Social
Comparison, the level of connectivity then steadily drops as travel-
ers begin to disperse and exit the terminal. This continues until the
average level of connectivity reaches 1, which represents travelers
being isolated. With Social Comparison, the level of connectivity
declines at a much slower rate before also reaching 1. These results
indicate that Social Comparison increases the level of connectivity
and thus the amount of grouping displayed by travelers.

5.7 Los Angeles International Airport
Finally, we modeled the Tom Bradley International Terminal (TBIT)

at Los Angeles International Airport as a realistic test scenario
for our simulation environment. The scenario is approximately 55
times larger than the test case used in Section 5. Ideally, we would
have liked to experiment on the full scenario and compare results
with data from LAX, however, such data is not available. While
lack of data is a major issue for most simulations in academia, the
security domain presents an added level of difficulty due to con-
fidentiality and national security concerns surrounding such data.
Thus, for the tests in this section, we focused on one end of the ter-
minal (the hallway and two gates, with one exit in each gate) and
examined the impact of various authority policies with the aim of
generating policy recommendations. We used 200 pedestrians, in-
cluding 20 families of four, variable number of authorities, and two
exits as the default case.

As a baseline test, we first ran experiments to examine the im-
pact of increasing the number of authority figures as well as re-
moving one exit from the scenario. We would expect that increas-
ing the number of authority figures creates a calmer evacuation and
removing an exit creates a more chaotic evacuation as more peo-

Figure 7: Effect of adding exits and authorities

Figure 8: Effect of more authorities

ple squeeze towards fewer exits. Figure 7 shows the number of
collisions (in thousands) under different parameter settings, where
the number indicates the number of authorities in the setup and
More/Less indicates whether an exit was added or removed from
the base scenario. Higher bars indicate a more chaotic evacuation.
All differences within a single authority setting, with the exception
of 2-authority More vs 2-authority Normal, were statistically sig-
nificant. As can be seen by the fact that the results are higher as
we move to the right within a single authority setting, fewer exits
lead to more chaotic evacuations. Comparing across authority set-
tings, all differences within a single exit setting were statistically
significant, with the exception of 4-authority vs 6-authority Less.
As can be seen, fewer authorities leads to more chaotic evacuations
as well. Both of these results are in line with expectation.

Next, as per security officials’ interest, we examined the impact
of having more authority figures to aid in recommending how many
are needed to safely evacuate this space. Figure 8 shows the num-
ber of collisions over the course of the evacuation (in thousands),
with the number of authorities listed on the x-axis. T-Tests revealed
that settings of more than 8 authority figures did not produce sta-
tistically significantly different results from the 8-authority case.
This result implies that for this particular space, using more than 8
authorities would not produce better results.

We also ran tests with an alternate patrolling strategy. The de-
fault strategy is to proceed to a randomly chosen ‘patrol point’, the
list of which is predefined to be the corners of each area in the sce-
nario. The alternate strategy we tested was to have authority figures
patrol the perimeters of the waiting areas and hallways. Results
pertaining to the number of collisions were not statistically signif-
icantly different, implying no benefit to either strategy. However,
further analysis revealed another trend.

Specifically, we looked at what percentage of the population
would be reached by patrolling authorities on average within the
first 300 time steps of the simulation. Figure 9 shows the per-
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Figure 9: Effect of alternate patrol

centage of people that were reached by authorities within 300 time
steps. We show only the case of 6 authority figures, but all like
comparisons showed the same results (although varying in degree
of the difference). Namely, the alternate strategy lines were always
steeper at the beginning of the evacuation, but flattened out, imply-
ing that initially the alternate strategy was superior, but as fewer
and fewer people remained, the point-to-point strategy was supe-
rior. Patrolling the edge of the room is effective to reach agents on
the outskirts and more evenly distributes authority figures, but due
to the large size of the waiting areas, crossing the room to reach
different corners ultimately covers more ground. These results im-
ply that a coordinated authority policy that intelligently covers the
ground would be superior to both.

6. CONCLUSION
In this paper, we describe ESCAPES, a multiagent evacuation

simulation tool that incorporates four key features: (i) different
agent types; (ii) emotional interactions; (iii) informational inter-
actions; (iv) behavioral interactions. These features are grounded
in social psychology and evacuation research and tailored towards
the needs of an airport security official (as well as other situations
with similar features such as a mall, where homogenous agents are
a poor approximation). Furthermore, as shown in Table 1, the fea-
tures result in a breadth of emergent behaviors that have been ob-
served in the literature, implying increased fidelity of our simula-
tion as a result of their inclusion. We also show results based on
a model of Los Angeles International Airport’s Tom Bradley In-
ternational Terminal with concrete recommendations that can be
produced with our simulation.

In discussions with security officials affiliated with LAX, ES-
CAPES received high praise. Officials mentioned that the 3D vi-
sualization we provide is far superior for training and planning to
other systems they have tried in the past. The inclusion of families
and authorities as well as realistic knowledge spread about event
and exits were specifically mentioned by them as being important
and something they have not yet seen. The ability to adjust the
number of families, pedestrians, and authorities in each zone was
crucial. Overall, ESCAPES was very well received by security of-
ficials affiliated with LAX.

7. REFERENCES
[1] C. Burstedde, A. Kirchner, K. Klauck, A. Schadschneider,

and J. Zittartz. Cellular automaton approach to pedestrian
dynamics-application. In Pedestrian and Evacuation
Dynamics, pages 87–97. Springer Berlin Heidelberg, 2002.

[2] J. M. Chertkoff and R. H. Kushigian. Don’t Panic: The

Psychology of Emergency Egress and Ingress. Praeger
Publishers, 1999.

[3] J. Diamond, M. McVay, and M. W. Zavala. Quick, Safe,
Secure: Addressing Human Behavior During Evacuations at
LAX. Master’s thesis, UCLA Department of Public Policy,
June 2010.

[4] D.S.Mileti and J.L.Sorensen. Communication of emergency
public warnings: A social science perspective and
state-of-the-art assessment. 1990.

[5] R. F. Fahy and G. Proulx. Human behavior in the world trade
center evacuation. In International Association for Fire
Safety Science, Fifth International Symposium, pages
713–724, 1997.

[6] L. Festinger. A theory of social comparison processes.
Human Relations, pages 117–140, 1954.

[7] J. P. Forgas. Affective influences on individual and group
judgments. European Journal of Social Psychology,
(20):441–453, 1990.

[8] N. Fridman and G. A. Kaminka. Comparing human and
synthetic group behaviors: A model based on social
psychology. In ICCM-09, 2009.

[9] E. Hatfield, J. T. Cacioppo, and R. L. Rapson. Cambridge
University Press, 1994.

[10] D. Helbing, I. J. Farkas, and T. Vicsek. Simulating dynamical
features of escape panic. Nature, 407:487–490, 2000.

[11] D. Helbing and P. Molnar. Social force model for pedestrian
dynamics. Physical review E, 51(5):4282–4286, 1995.

[12] L. Henderson. On the fluid mechanics of human crowd
motion. Transportation research, 8(6):509–515, 1974.

[13] M. Hoogendoorn, J. Treur, C. v. d. Wal, and A. v. Wissen. An
Agent-Based Model for the Interplay of Information and
Emotion in Social Diffusion. In In IAT-10, pages 439–444,
New York, USA, 2010.

[14] J.L.Bryan. Behavioral response to fire and smoke. In SFPE
Handbook of Fire Protection Engineering, pages 3315–3341.
National Fire Protection Association, third edition, 2002.

[15] J. A. Kulik and H. I. M. Mahler. Social comparison,
affiliation, and emotional contagion under threat. In
Handbook of social comparison: Theory and research. New
York: Plenum, 2000.

[16] Y. Lin, I. Fedchenia, B. LaBarre, and R. Tomastik.
Agent-based simulation of evacuation: An office building
case study. In Pedestrian and Evacuation Dynamics 2008,
pages 347–357. Springer Berlin Heidelberg, 2010.

[17] N. Pelechano. Crowd simulation incorporating agent
psychological models, roles and communication. In First
International Workshop on Crowd Simulation, pages 21–30,
2005.

[18] N. Pelechano, J. Allbeck, and N. Badler. Virtual Crowds:
Methods, Simulation, and Control. Morgan & Claypool
Publishers, 2008.

[19] G. Proulx and R. F. Fahy. Human behavior and evacuation
movement in smoke. ASHRAE Transactions, July 2008.

[20] H. E. Russell and A. Beigel. Understanding Human
Behavior for Effective Police Work. Basic Books, 1976.

[21] C. A. Smith and P. C. Ellsworth. Patterns of cognitive
appraisal in emotion. Journal of Personality and Social
Psychology, 4(48):813–838, 1985.

464



Agent Communication





Commitments with Regulations:
Reasoning about Safety and Control in REGULA

Elisa Marengo
Università degli Studi di Torino

emarengo@di.unito.it

Matteo Baldoni
Università degli Studi di Torino

baldoni@di.unito.it

Cristina Baroglio
Università degli Studi di Torino

baroglio@di.unito.it
Amit K. Chopra

Università degli Studi di Trento
chopra@disi.unitn.it

Viviana Patti
Università degli Studi di Torino

patti@di.unito.it

Munindar P. Singh
North Carolina State Univ.

singh@ncsu.edu

ABSTRACT
Commitments provide a flexible means for specifying the busi-
ness relationships among autonomous and heterogeneous agents,
and lead to a natural way of enacting such relationships. However,
current formalizations of commitments incorporate conditions ex-
pressed as propositions, but disregard (1) temporal regulations and
(2) an agent’s control over such regulations. Thus, they cannot han-
dle realistic application scenarios where time and control are often
central because of domain conventions or other requirements.

We propose a new formalization of commitments that builds on
an existing representation of events in which we can naturally ex-
press temporal regulations as well as what an agent can control, in-
cluding indirectly as based on the commitments and capabilities of
other agents. Our formalization supports a notion of commitment
safety. A benefit of our consolidated approach is that by incorpo-
rating these considerations into commitments we enable agents to
reason about and flexibly enact the regulations.

The main contributions of this paper include (1) a formal seman-
tics of commitments that accommodates temporal regulations; (2)
a formal semantics of the notions of innate and social control; and
(3) a formalization of when a temporal commitment is safe for its
debtor. We evaluate our contributions using an extensive case study.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems; H.1.0 [Information Systems]: Models and
Principles—General

General Terms
Theory

Keywords
Business process modeling, business protocols

1. INTRODUCTION
Previously, commitments have been studied over propositional

languages [6, 7, 11, 19]. But in a number of practical settings, com-
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mitments involve rich temporal structure. Consider the following
examples taken from a healthcare setting.

EXAMPLE 1. An insurance company commits to reimbursing a
covered patient for a health procedure provided the patient obtains
approval from the company prior to the health procedure. Presum-
ably, the patient would delay going in for the procedure until after
having obtained an approval.

EXAMPLE 2. An insurance company commits to paying an in-
network surgeon for a procedure only after a covered patient has
undergone the procedure. Presumably, the surgeon would bill the
insurance company after performing the procedure.

As the following examples illustrate, temporal commitments can
also involve more than two parties.

EXAMPLE 3. A physician commits to a patient that if the pa-
tient has any sign of heart trouble after signing up with him, then
the patient will be immediately referred to a laboratory for tests,
the results of which will be evaluated by a specialist.

EXAMPLE 4. A pharmacy commits to provide medicine only if
the patient obtains a prescription for that medicine.

EXAMPLE 5. For an out-of-network surgeon, an insurance com-
pany commits to paying the patient (instead of the surgeon) but only
after the surgeon performs the procedure, the patient pays the sur-
geon, and the patient submits receipts to the insurance company.

Temporal constraints such as those alluded to in Examples 1–5
are traditionally captured as procedural workflows. Instead, follow-
ing recent approaches [8, 16], we think of such constraints more
broadly as regulations and express them more flexibly in a logi-
cal notation. The commitments among autonomous parties capture
their business relationships naturally. In contrast with existing ap-
proaches [3, 8, 10], we incorporate regulations as contents of com-
mitments. By thus reifying regulations into business relationships,
we bring normative force to the specification, thereby providing a
clear basis for the participants to guide their actions locally and to
judge the compliance of their counterparties. For example, if a reg-
ulation says that a physician’s referral should precede a surgeon’s
procedure, it is not clear whether the physician is responsible for
moving first or the surgeon is responsible for moving second. By
placing the regulations in commitments, we make it explicit that it
is the debtor of the commitment who needs to ensure its satisfac-
tion. Further, in doing so, we can capture the business relationships
(and concomitant regulations) in a flexible manner that avoids un-
necessarily coupling or constraining the participants.
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The expression C(debtor , creditor , antecedent , consequent)
means that the debtor commits to the creditor that if the antecedent
holds, the consequent will hold. The antecedent and the conse-
quent, i.e., the contents of a commitment, are typically logical ex-
pressions over states of the world [19], although some have added
an explicit temporal component for expressing deadlines [5, 13].

In the present development, the content is specified over events.
We use ‘·’ (center dot) as before, our main temporal operator on
events, where a ·bmeans that event a occurs before event b (though
both occur eventually). Then we may express the commitments in
Example 1 and 2 as C(ins, pat , approve · perform, reimburse)
and C(ins, sur , perform · bill, pay), respectively. The commit-
ment in Example 3 would be C(phy , pat , signup · heartTrouble,
test · evaluate).

1.1 Challenges: Progression, Control, Safety
Placing temporal regulations within commitments enables us to

identify precisely the responsibilities of the agents individually, and
offer flexibility in terms of how the agents enact their commit-
ments. By contrast, a purely temporal approach, such as Singh’s
[16], curtails the autonomy of the participants once the desired
computations are specified. However, placing regulations inside
commitments, as we did in the above examples, leads to new chal-
lenges. One, we must formalize the progression that is, the life cy-
cle, of commitments, bearing in mind the events that have occurred.
For example, we say that an active commitment C(x, y, r, u) pro-
gresses to discharged when u occurs. Analogously, we would like
to say that C(x, y, r, e · f) progresses to C(x, y, r, f) when e oc-
curs. The challenge is to formalize general progression rules for
an expressive event language. Two, a regulation expresses a con-
straint over the occurrence of events in a distributed system. The
capability for bringing about the events, that is, the control of the
events, would also generally be distributed among the agents. In
Example 3, the physician commits to the patient for both testing
and evaluation, but has control of neither—he must rely on a labo-
ratory and a specialist for these tasks. Further, the physician com-
mits to the coordination constraint that the testing will occur before
the evaluation. Clearly, the physician is committing to activities
over whose performance he apparently has no control. What would
make the physician’s commitment reasonable?

In general, an agent would want to commit only to temporal con-
ditions over which it exercises adequate control. We distinguish
between two kinds of control: innate and social. In the above ex-
ample, the laboratory and the specialist have innate control over
testing and evaluation, respectively. Social control ties in with com-
mitments: for regulations specified over events that the debtor does
not have control over, the debtor would need the appropriate com-
mitments from those who have control. The physician would have
control over testing and evaluation if he could get the appropri-
ate commitments from the laboratory and the specialist. For ex-
ample, C(lab, phy ,>, test) and C(specialist , phy ,>, evaluate)
would give the physician social control over the two events; how-
ever, the physician really needs C(specialist , phy ,>, test ·evaluate)
from the specialist in order to ensure the appropriate event order.

Control in turn motivates the notion of the safety of a commit-
ment. A commitment is safe if its debtor has established sufficient
control to guarantee being able to discharge it (assuming others dis-
charge commitments of which they are the debtors). For example,
without the above commitments from the laboratory and the spe-
cialist, the physician’s commitment to the patient would be unsafe.
As our examples illustrate, the notions of control and safety are es-
pecially relevant for understanding engagements among more than
two parties. How can we determine whether the debtor of a com-

mitment is able to apply the requisite control so as to ensure that its
commitments have the support of the other agents so that together
they satisfy a given regulation, thereby accomplishing the coordi-
nation envisaged by the regulation?

1.2 Contributions
Our contributions may be summarized as follows. First, we for-

malize commitments with regulations in a simple but expressive
event-based model. We formalize rules that capture the progression
of a commitment over runs (sequences of events), using a previous
sound and complete residuation reasoner. Second, we formalize
control and safety in the same event-based model. In particular, we
formalize a notion of social control via commitments, which natu-
rally matches multiagent settings. Third, we declaratively formal-
ize the life cycle of commitments, captured by Theorem 1. More-
over, we connect the notion of commitment progression with the
notions of control and of safety (Theorems 2 and 3). Specifically,
as long as the agents cause events that are expected by the applica-
tion of the definition of safety itself, safety is preserved. We eval-
uate the proposed notions by formalizing Robert’s Rules of Order
[14] (RONR), one of the best known set of laws for managing the
proceedings of democratic parliamentary assemblies.

Organization
The paper is organized as follows: Section 2 presents the theoreti-
cal background necessary for our formalization; Section 3 contains
the main theoretical results, concerning the notions of progression,
control and safety; Section 4 reports our case study; Section 5 con-
cludes with a discussion and a review of the relevant literature.

2. TECHNICAL FRAMEWORK
Previous works on events and on commitments are relevant here.

However, the approaches of interest are not mutually compatible at
a technical level. On the one hand, to reason incrementally about
control and progression, we need a powerful notion of events and
residuation whose semantics is given with respect to an event run
[16]. On the other hand, to represent conditional, active commit-
ments, we need an approach based on a state-based semantics given
with respect to a state and an index on it [17]. Thus one of the
challenges our framework addresses is reconciling the above. As a
result, although our approach borrows ideas from Singh [17], our
formal model and its details are novel to this paper.

2.1 Precedence logic
Precedence logic is an event-based logic [16]. It has three pri-

mary operators for specifying requirements about the occurrence
of events: ‘∨’ (choice), ‘∧’ (concurrence), and ‘·’ (before). The be-
fore operator enables one to express specifications such as approve·
perform: both approve and perform must occur and in the speci-
fied order. The specifications are interpreted over runs. Each run is
a sequence of events. Figure 1 shows a schematic of our model.
The transitions correspond to event occurrences (the • symbols
merely identify place holders between consecutive events: on each
run, each • corresponds to an index). The model shows several
runs, of which it identifies τ0, τ1, and τ2, which all begin with ab.
Additional runs include all the suffixes of τ0, τ1, and τ2—for ex-
ample, bef and bcdx (an event subscript indicates which agent has
the capability to perform the event; thus, dx means that x has the
capability to perform d). The same point may be identified with dif-
ferent indices on different runs. For example, the point after b has
index 2 on τ0 = abcdx . . . and index 0 on gh . . . (the top branch).

Let e be an event. Then e, the complement of e, is also an event.
Initially, neither e nor e hold. On any run, either e or e may oc-
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• h // • . . . τ1

• a // • b // • c //

e $$IIIII

g ::uuuuu • dx // • . . . τ0

• f // • . . . τ2

Figure 1: A schematic of runs with common prefixes.

cur, not both. We assume that events are nonrepeating. In practice,
transaction IDs or timestamps differentiate multiple instances of the
same event. This yields the following advantages. First, since we
want to talk about precedence, it helps avoid the confusion where a
preceding bwould be consistent with b preceding a. Second, it sup-
ports negative events as occurring, and distinct from (and stronger
than) a positive event not having occurred yet. Third, it facilitates
a simpler language and logic that is nevertheless adequate for cap-
turing several regulations of practical interest.

2.2 Language
We distinguish between physical and social (or institutional) eve-

nts. Our specifications are limited to the physical events (those that
are publicly performed by an agent). For example, the events in
Figure 1 are physical events: think of a as a waiter pushing a menu
card to a customer over a counter in a diner and b as the customer
pushing $5 back to the waiter. However, we supplement physical
events with a set of means axioms, which capture the notion of
counts as [2, 15]. We take the social events corresponding to a
physical event to occur concurrently with the physical event. In this
manner, we respect Goldman’s notion of (conventional) generation
[12]. For example, a in Figure 1 may mean the creation of an offer
to sell a coffee for $5, which thus happens simultaneously with a.
Likewise, b may mean accepting the offer created by a.

We propose a language, REGULA, in which the antecedents and
consequents of commitments are event expressions. In intuitive
terms, a commitment itself remains a state expression and we do
not express it directly in our language of events. Instead, we think
of the operations of commitments as first-class entities, i.e., as eve-
nts, and let the resulting commitments stay in the background. In
other words, we can think of an operation such as Create(x, y, r, u)
as a social event that brings about the corresponding commitment.

Below, X yields agent names, E yields event types, and param
yields domain values using which an event instance is specified
from an event type. In conceptual terms, an event type may be
either (1) of sort physical, in which case we optionally specify the
agent who has the capability to perform it (an unspecified agent
indicates we do not care about the agent) or (2) of sort social, in
which case it is an operation on commitments. For brevity, “event”
means “event instance” throughout. The syntax of REGULA is:

REGULA −→ axiom{ , axiom }
axiom −→ 〈〈physical means social〉〉
physical −→ E〈[X , ]param∗〉
social −→ op(X ,X , regulations, regulations)
op −→ Create | Cancel | Release | Assign | Delegate
regulations −→ regulation { ∧ regulation }
regulation −→ sequence { ∨ sequence }
sequence −→ 0 | > | physical | physical · physical

That is, a REGULA specification is a set of axioms asserting
which physical events count as which social events. In well-formed
axioms, we require that the performing agent of the physical and
corresponding social event be the same.

We use the following conventions: x, etc. are agents, e, etc. are
physical events, r, s, u, etc. are regulations, τ , etc. are runs, and
i, etc. are indices into runs. We drop agent names when they are
understood. The above grammar limits sequences to two events
each to simplify our formalization. However, in practice we write
longer sequences because e1 · · · en ≡ (e1 · e2)∧ . . .∧ (en−1 · en).

2.3 Model and Semantics
We now describe the semantics of REGULA in terms of a model,

M = 〈E,T,C,D,X,V〉. Here E and T describe the physical layer,
C describes the social (commitment) layer.

• E is a denumerable set of possible event instances closed un-
der complementation. That is, e ∈ E if and only if e ∈ E.
For simplicity in our notation, we identify e and e; thus wher-
ever we write e in the semantics, it applies both to e and e.
The set E can itself be generated from event types and their
parameters, as described above. Further, we introduce a spe-
cial symbol ε for a null event.

• T = {τ |τ : N 7→ E ∪ {ε}, τ is (1) injective, and (2) (∀i, j :

τi 6= τj)} is the set of possible event runs (we write the ith

event in τ as τi). N is the set of natural numbers. Thus each
member of T is a sequence of events. The above constraints
restrict T to legal runs [16] wherein (1) no event repeats and
(2) no event and its complement both occur.

We use the null event ε to indicate the termination of a run.
If ε ever occurs on a run, all subsequent events are ε. That
is, (∀i, j : j ≥ i and τi = ε ⇒ τj = ε). Below |τ | is the
length of τ , and equals the smallest index i for which τi = ε
if i exists and is ω otherwise (indicating an infinite run).

Notice that T is suffix-closed, meaning that if a run belongs
to T, then so does each suffix of it. Formally, using s as
the successor function for N and � as functional composi-
tion, we have {τ � s|τ ∈ T} ⊆ T. Below, [i, j] refers to
the subrun between the ith and the jth events, both inclusive.
Likewise, T is prefix-closed. That is, (using the fact that all
natural numbers are less than ω), we have {τ[0,j]|τ ∈ T and
j ≤ |τ |} ⊆ T.

• C : T × N × X × X × ℘(T) 7→ ℘(℘(T)) is the standard
for (active) commitments. That is, at each index on each run,
for each debtor-creditor (ordered) pair of agents, C assigns
to a set of runs a set of set of runs. The intuition is that
C determines which conditional commitment is active from
a debtor to a creditor at an index in a run. Given a potential
antecedent, each of the consequents is placed in the set that is
the output of this function. If the output set is empty at a run
and an index that means no commitments are active there.
We lack the space to include additional semantic (closure)
constraints on C along the lines of Singh [17].

(For readability, we place the agents as subscripts.) If two
runs are equal until i then C yields the same result for each
of them at index i. Formally, (∀τ, τ ′, i, R ⊆ T : τ[0,i] =
τ ′[0,i] ⇒ Cx,y(τ, i, R) = Cx,y(τ ′, i, R)).

• D,X,V with the same signature as C are respectively the
standards for discharged, expired, and violated commitments.

The following constraints on our model capture some of the essen-
tial intuitions about commitments. Let cone(τ, i) = {τ ′|τ[0,i] =
τ ′[0,i]}. In intuitive terms, the cone of a run at an index includes all
possible future branches given the history (the part of the run up to
the index). Because T contains all possible legal runs, the intuition
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is that when a regulation is true (respectively, false) on all runs on
a cone, then it is definitely true (respectively, definitely false). For
example, e is false at index i of a run τ if it has not occurred yet;
it is definitely false if e would occur on no runs in τ ’s cone at i,
meaning that e must already have occurred.

• U ∈ Dx,y(τ, i, R) only if τ[0,i] ∈ U
The consequent of a discharged commitment must be true.

• U ∈ Xx,y(τ, i, R) only if cone(τ, i) ⊆ (T \R)

An expired commitment must have its antecedent definitely
false. In other words, we do not just want that the antecedent
is not yet true, we want it to never become true given the run
so far.

• U ∈ Vx,y(τ, i, R) only if cone(τ, i) ⊆ (T \ U) and τ[0,i] ∈
R

A commitment is violated if its antecedent holds but its con-
sequent is false.

• U ∈ Cx,y(τ, i, R) only ifU 6∈ (Dx,y(τ, i, R)∪Xx,y(τ, i, R)
∪Vx,y(τ, i, R))

An active commitment is one that is not discharged, expired,
or violated.

Semantic postulates M1–M5, loosely based on Singh [16], ad-
dress the temporal aspects of our language.

M1. τ |=i >
M2. τ |=i e iff (∃j ≥ i : τj = e), where e is a physical event

M3. τ |=i r ∨ u iff τ |=i r or τ |=i u

M4. τ |=i r ∧ u iff τ |=i r and τ |=i u

M5. τ |=i r · u iff (∃j ≥ i : τ |=[i,j] r and τ |=[j+1,|τ |] u)

It is helpful to expand the notion of complementation to apply
to regulations, not just to physical events. To this end, we de-
fine complementation via a set of inference rules as follows: (1)
r ∧ u = r∨u; (2) r ∨ u = r∧u; (3) r · u = r∨u∨u · r; and (4)
e = e. The interesting rule is the one for r · u, which captures that
r ·umay fail to occur exactly when one of its components does not
occur or they both occur but in the reverse order.

2.4 Residuation
In simple terms, residuation is a way for us to track progress

in the real world. The residual of a regulation with respect to an
event is the “remainder” regulation that would be left over from the
original after the event, and whose satisfaction would guarantee the
satisfaction of the original regulation.

For example, let r = a ∨ b · a be a regulation under consider-
ation; r means that either a cannot occur, because a occurred, or
b and a both occur with b preceding a. If we residuate r by an
event g, which does not occur in r, the result is the same as r, indi-
cating that the desired regulation is unaffected by irrelevant events.
Residuating r by b yields a, meaning that going forward a remains
the only possibility. A subsequent occurrence of a would residuate
this to >, meaning that the regulation is satisfied on this execution.
Residuating r directly by a yields 0, meaning that the occurrence
of a has caused a violation of the regulation.

Following Singh [16], we can define the residual of a regulation
r with respect to a physical event e as the maximal (most flexible)
regulation such that an occurrence of e followed by an occurrence

of the residual guarantees the original regulation. A benefit of using
the event-based semantics is that it supports a set of simple equa-
tions or rewrite rules through which we can symbolically calculate
the residual of a regulation given an event. The following equations
are due to Singh [16]. Here, r is a sequence expression, and e is
a physical event or >. Below, Γu is simple the set of literals and
their complements mentioned in u. Thus Γe = {e, e} = Γe and
Γe·f = {e, e, f, f}.

0/e
.
= 0

>/e .
= >

(r ∧ u)/e
.
= ((r/e) ∧ (u/e))

(r ∨ u)/e
.
= ((r/e) ∨ (u/e))

(e · r)/e .
= r, if e 6∈ Γr

r/e
.
= r, if e 6∈ Γr

(e′ · r)/e .
= 0, if e ∈ Γr

(e · r)/e .
= 0

The above equations characterize the progression of regulations
under physical events. They have some important properties, in-
cluding that (1) regulations not mentioning an event are indepen-
dent of that event; (2) conjoined or disjointed regulations can be
treated modularly; and (3) regulations can be incrementally pro-
gressed: hence a residuated regulation embodies the relevant his-
tory and no additional history need be represented.

We define the intension of r as the set of runs where it is true on
index 0: [[r]] = {τ |τ |=0 r}. As an auxiliary definition, for a set of
runs R, let R ↓ e = {ν ∈ T|(∀υ : υ ∈ [[e]] ⇒ υν ∈ R)}. Then,
following Singh [16], we can capture residuation semantically as
[[r/e]] = [[r]] ↓ e.

2.5 Commitments
When the antecedent is > (true), we refer to the commitment as

being unconditional. An unconditional commitment usually arises
because a conditional commitment was detached. For example,
C(merchant , customer , paid , goods) gives rise to C(merchant ,
customer ,>, goods) when paid holds. We briefly mention some
important stages in the life cycle of a commitment, that is, its pro-
gression. A commitment holds either because of an explicit Create
operation by the debtor or because an existing commitment was
detached. It is considered expired if the antecedent has expired (it
cannot be satisfied anymore), meaning that the creditor did not take
up the offer entailed by the commitment. A commitment is consid-
ered violated if it is unconditional and its consequent has expired,
meaning that the debtor did not fulfill the offer. Alternatively, if the
consequent holds, it is considered discharged.

Although we adopt many of the intuitions of the previous works,
our technical development is significantly different in that we model
commitments in an event-based framework. Doing so is nontrivial
but yields rewards in an improved characterization of the progres-
sion of commitments than previously available.

Now we enhance the above development to accommodate com-
mitments. The commitment operator C is not included in our lan-
guage but provides a useful basis for the social operations.

M6. τ |=i C(x, y, r, u) iff [[u]] ∈ Cx,y(τ, i, [[r]])

The meaning of the physical events in terms of social events is
defined as follows. This simply states that whenever a physical
event occurs the corresponding social event occurs as well. We
leave open the possibility that a social even could occur implicitly
without the matching physical event.

M7. τ |=i ex means Op(x, y, r, u) iff (∀j ≥ i : τ |=j ex ⇒
τ |=j Op(x, y, r, u))
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Now we can state the meanings of the operations in terms of
how they change the social state by manipulating commitments.
We describe Create for concreteness and omit the rest for brevity.

M8. τ |=i Create(x, y, r, u) iff τ 6|=i C(x, y, r, u) and τ |=i+1

C(x, y, r, u)

We impose a restriction on our model capturing that commit-
ments persist until they are discharged, expired, or violated. For-
mally, ∀τ, τ ′, i, R, U ⊆ T if U ∈ Cx,y(τ, i, R) and τi = e, then:

1. U ↓ e ∈ Xx,y(τ, i, R ↓ e) if R ↓ e = ∅;
2. U ↓ e ∈ Vx,y(τ, i, R ↓ e) if R ↓ e = T and U ↓ e = ∅;
3. U ↓ e ∈ Dx,y(τ, i, R ↓ e) if U ↓ e = T;

4. U ↓ e ∈ Cx,y(τ, i, R ↓ e) otherwise.

3. THEORETICAL RESULTS
We now present the main theoretical results on REGULA.

3.1 Residuation for Commitment Progression
Although commitment expressions are not event expressions in

REGULA, we can use residuation to compute the progression of a
commitment. For example, consider a commitment c1 = C(x, y, b,
d·c·a) and assume that events d, c, a occur in this order. In intuitive
terms, after d, the antecedent of c1 would be unaffected whereas
its consequent would progress to c · a. If c were to occur then,
the antecedent would still be unaffected, but the consequent would
reduce to a; then when a occurs, the consequent would reduce to>,
indicating that c1 is discharged. Alternatively, assume that events
d, a, b, c occur in this order. Now after d and a, the antecedent
would still be unaffected, but the consequent would reduce to 0,
indicating that commitment c1 is violated.

In essence, the idea is that a commitment progresses as its an-
tecedent and consequent are residuated by the events as they occur.
The foregoing intuition can be thought of as distributing residuation
into the antecedent and consequent of a commitment. This leads us
to Theorem 1 on commitment progression. This theorem is tech-
nically trivial but important because it shows how a commitment
progresses. Here, we assume that operators exp, vio, and dis are
defined analogously to C though based on X, V, D, respectively.

THEOREM 1. If τ |=i C(x, y, r, u) and τi = e, then

τ |=i+1exp(x, y, r/e, u/e) if r/e .
= 0

vio(x, y, r/e, u/e) if r/e .
= >, u/e .

= 0

dis(x, y, r/e, u/e) if u/e .
= >

C(x, y, r/e, u/e) otherwise

Proof sketch: Trivial by construction of C, X, V, and D.

3.2 Control
Consider C(x, y,>, ax · by)/ax, yielding C(x, y,>,by). Now x

is committed to by , for which it depends on y. The key challenge
here is one of control, whether an agent can bring about an event or
complex action so as to detach or discharge a given commitment.
Our intuition is that control is a combination of capability and op-
portunity. An agent may control an event innately, i.e., based on
which events it can perform, or socially, i.e., based on the com-
mitments of others and what they control. We define the intuitive
notion of control ξ(., .) (our primary definition) in two mutually
recursive parts. First, we capture the base cases of control through
ζ(., .), which captures the notion of innate control.

M9. τ |=i ζ(x,>)

M10. τ |=i ζ(x, ex) iff (∃τ ′ ∈ cone(τ, i) : τ ′ |=i ex)

Notice we refer to cone(τ, i) above because it serves as a
surrogate for notion of state, which is otherwise not present
in our framework. Thus, merely finding a τ ′ on which event
ex occurs at index i would not be enough.

M11. τ |=i ζ(x, ey), where x 6= y, iff (∃r : τ |=i ξ(x, r) and
τ |=i C(y, x, r, ey) and τ |=i ξ(y, ey))

Second, we formulate control recursively using the above.

M12. τ |=i ξ(x, r ∨ u) iff τ |=i ξ(x, r) or τ |=i ξ(x, u)

M13. τ |=i ξ(x, r ∧ u) iff τ |=i ξ(x, r) and τ |=i ξ(x, u)

M14. τ |=i ξ(x, r · u) iff τ |=i ξ(x, r) and (∀τ ′ ∈ cone(τ, i) :
τ ′ |=i r ⇒ τ ′ |=i (r · ξ(x, u)))

M15. τ |=i ξ(x, r) iff τ |=i ζ(x, r), when r is not of the form
r ∨ u, r ∧ u, or r · u

Given that an agent controls a regulation, the question is whether
it is possible that such control be propagated along the execution,
as the regulation is residuated based on the occurred events.

THEOREM 2. If τ |=i ξ(x, r) then (∃τ ′, e : τ ′ ∈ cone(τ, i)
and τ ′i = e, and τ ′ |=i+1 ξ(x, r/e)).

Proof sketch: Follows directly from the definition of control.
Notice that the preservation of control requires some coopera-

tion of the involved agents. For instance, ξ(x, ey) requires that y
continues to support x. In other words, either y causes ey at some
point or y does not cancel its commitment to x to execute ey when
some condition becomes true.

Informally, by a Create, the debtor provides social control to
the creditor; by performing a Cancel the debtor takes back social
control; by performing a Release the creditor relinquishes social
control. Likewise, Assign and Delegate transfer control suitably.

3.3 Safety
Safety is a property of commitments. Since the regulations em-

bedded in commitments involve many actors, it is important for
the potential debtor to understand when it is “reasonable” for it
to commit. Intuitively, this is reasonable when the agent controls
the events that are part of the regulation. In other words, a commit-
ment is safe for its debtor when the coordination necessary to fulfill
the regulation is supported by commitments by the other agents in-
volved. We can thus define the safety of a commitment C(x, y, r, u)
for the debtor agent x as σ(x,C(x, y, r, u)) as follows:

M16. τ |=i σ(x,C(x, y, r, u)) iff (∀τ ′ ∈ cone(τ, i) and (τ ′ |=i

ξ(x, r) or (µj ≥ i : τ ′ |=[i,j] r⇒ τ ′ |=j ξ(x, u/τ
′
[i,j]))))

Residuation by subrun τ ′[i,j] is a shorthand notation standing for the
residuations, in sequence, by all the events in the subrun. By µj we
refer to a generalized quantifier that selects the least such j index.
So, a commitment is safe for its debtor if either the debtor controls
the negation of the antecedent or whenever the antecedent holds,
the debtor controls the residuation of the consequent. In the for-
mer case, the debtor can act so as to avoid letting the commitment
become active. In the latter case, instead, when the commitment
becomes active, there is a way to satisfy it. Residuation is neces-
sary because at j some event that is in the consequent might have
occurred already.
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Notice that the definition of safety does not depend directly on
the given run but consider all runs of the same history. The intuition
here is to capture the fact that safety is essentially a state property,
even though we express it in an event-based model. The definition
is symmetric between all the runs that have the same history as τ .

Moreover, safety does not mean that no matter how bad a deci-
sion an agent takes, success is guaranteed; just that the agent is not
subject to the whims of another agent. In other words, the agent
can prevent a bad situation, not that a bad situation is impossible.

THEOREM 3. If τ |=i σ(x,C(x, y, r, u)) then (∃τ ′ ∈ cone(τ, i),
e and τ ′ |=i r or (τ ′ |=i r and τ ′i = e and τ ′ |=i+1 σ(x,C(x, y,
r/e, u/e)))).

In words, Theorem 3 states that if at some point on a run a com-
mitment is safe for an agent, then there is a possible continuation
such that the residuation of the commitment remains safe.

Proof: Follows from Theorem 2 and the definition of safety.
Suppose that τ |=i σ(x,C(x, y, r, u)) holds. Therefore, (∀τ ′ ∈
cone(τ, i) and τ ′ |=i ξ(x, r) or (µj ≥ i : τ ′ |=[i,j] r ⇒ τ ′ |=j

ξ(x, u/τ ′[i,j]))) by M16. We have two cases. First case. Let us
suppose that τ ′ |=i ξ(x, r). By Theorem 2, (∃τ ′′ ∈ cone(τ ′, i), e
and τ ′′i = e, and τ ′′ |=i+1 ξ(x, r/e)) and this proves the case.
Second case. Let us suppose that (µj ≥ i : τ ′ |=[i,j] r ⇒
τ ′ |=j ξ(x, u/τ

′
[i,j])). Thus, whenever τ ′ |=[i,j] r we have τ ′ |=j

ξ(x, u/τ ′[i,j]). By Theorem 2, (∃τ ′′ ∈ cone(τ ′, j + 1), e and
τ ′′i = e, and τ ′′ |=j+1 ξ(x, (u/τ ′[i,j])/e)). Let us consider the
previous τ ′′ and e and assume that τ ′′ |=[i,j+1] r/e holds. Then,
we have that τ ′′ |=i ξ(x, (u/τ

′
[i,j])/e). This proves the theorem.

4. CASE STUDY
We apply our approach on Robert’s New Rules of Order (RONR)

[14], a system of parliamentary laws. RONR posits two roles:
chair and participants. The activity of the assembly consists of dis-
cussing a motion at a time, and then voting. The rules are aimed at
guaranteeing that the assembly works in a democratic way. Among
other rules, in particular, it specifies that voting will not take place
until all the participants who raised their hand for expressing their
opinion have spoken. Different members are not allowed to speak
at the same time and, in particular, in order to speak one must have
the floor. As long as everybody behaves according to the rules,
the assembly works in a democratic way. In other terms, RONR
not only specifies the actions but also governs the behavior of the
participants and the chair (specifying the contexts in which the exe-
cution of actions makes sense) so as to guarantee the success of the
assembly if all the agents behave according to RONR. Each par-
ticipant autonomously decides whether to conform to the rules, but
doing so confers some rights on the participant.

The first column of Table 1 lists physical events that can oc-
cur during an enactment of RONR (the subscript indicates which
agent directly controls the event: c stands for chair and pi gener-
ically stands for participant). Recall that given two agents p1 and
p2, the event instance ep1 is different from ep2 . So, for instance,
askFloorp1 is different from askFloorp2 . A possible specifica-
tion of the semantics of events is given in terms of their effects on
the social state. The second column of Table 1 reports event ef-
fects in terms of commitments that are created by their occurrence.
Antecedents and consequents are written in REGULA. The social
effects are operations on commitments. Besides Create, in the ex-
ample, we also use Assign and Delegate: a participant can delegate
its vote or assign its time slot for speaking to another participant.

Notice that if the meaning were given using propositional com-
mitments, one could not express temporal regulations. For instance,

Physical event Means these social events

openAssemblyc

∀pi ∈ P , Create(C(c, pi,>,
exposeMotionc〈m〉 · openDebatec〈m〉)) ∧
∀pi, pj 6= pi ∈ P , Create(C(c, pi,

discusspj ∧ giveFloorc〈pj〉
∨discusspj · giveFloorc〈pj〉,
punishc〈pj〉))

openDebatec〈m〉

∀pi ∈ P, Create(C(c, pi, askFloorpi ,
askFloorpi · giveFloorc〈pi〉)) ∧
∀pi ∈ P, Create(C(c, pi,
askFloorpi · giveFloorc〈pi〉 · discusspi
∨askFloorpi ,
askFloorpi · giveFloorc〈pi〉·
discusspi · cfvc
∨askFloorpi · cfvc))

cfvc none
enterAssemblyp Create(C(p, c, cfvc, cfvc · votep))
askFloorp Create(C(p, c,>, discussp))
exposeMotionc〈m〉 none
discussp none
giveFloorc〈p〉 none
passFloorpi 〈pj〉 Assign(pj ,C(c, pi,>, giveFloorc〈pi〉))
votep none
delegateVotepi 〈pj〉 Delegate(pj ,C(pi, c,>, votepi ))
close_cfvc none
closeAssemblyc none
punishc〈p〉 none

Table 1: RONR physical events mapped to their social effects.
Here pi are participants, c the chair, and m a motion.

to express that the floor is given after it is asked for, the commit-
ment C(c, pi, askFloorpi , giveFloorc〈pi〉) would be inadequate
since it does not ensure that the two events occur in the expected
order. Potentially, the chair could give the floor to pi before pi
asked for it and the commitment would be discharged. Such ap-
parent flexibility may be desirable in some settings but not where it
violates a regulation.

The following is an example commitment whose antecedent or
consequent use all the allowed operators of REGULA. In this case,
c commits to each pi that c would punish any other pj if pj starts
speaking when the chair refused to give it the floor or speaks before
having the floor.

C1 = ∀pi, pj 6= pi ∈ P,C(c, pi, discusspj ∧ giveFloorc〈pj〉
∨ discusspj · giveFloorc〈pj〉, punishc〈pj〉)

4.1 Simulation of a Possible Enactment
In order to explain the notions of safety and of control, let us

suppose that, instead of the commitments in Table 1, the physical
event openDebate creates the following commitments:

∀pi ∈ P, C2(pi) = C(c, pi,>, askFloorpi · giveFloorc〈pi〉·
discusspi · cfvc ∨ askFloorpi · cfvc)

Given that P denotes the set of all participants to the assembly,
the formula specifies the set of unconditional commitments of c
to all the participants to the assembly to call for votes (cfvc) after
each participant has either (1) asked for the floor, obtained it, and
discussed or (2) declined the possibility to speak.

Figure 2 shows a tree corresponding to some of the possible runs
that can be obtained by RONR. Since the RONR events have no
preconditions, all interleavings where each event instance occurs at
most once are possible. The chair, by executing openDebate com-
mits unconditionally to the regulation u = askFloorpi · giveFloorc
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•
openAssemblyc // •

enterAssemblyp1// •
enterAssemblyp2

ttjjjjjjjjjjjjjjjjjjjjjjjj • · · · // • . . . τ0

•
askFloorp1 // •

giveFloorc〈p1〉
//

giveFloorc〈p2〉
44jjjjjjjjjjj • · · · // • . . . τ1

•
exposeMotionc〈m〉

// •
openDebatec〈m〉 // •

askFloorp1 **TTTTTTTTTTT

askFloorp2
44jjjjjjjjjjj • · · · // • . . . τ2

•
askFloorp2 // •

giveFloorc〈p1〉
//

giveFloorc〈p2〉
44jjjjjjjjjjj •

discussp1 // •
discussp2 // • . . . τ3

Figure 2: A schematic of some runs with common prefixes for RONR.

〈pi〉 ·discusspi · cfvc∨askFloorpi · cfvc. Let us consider the bot-
tom run, which involves the chair and two participants (p1 and p2):
participant p1 asks for the floor, receives it and speaks; instead, p2

asks for the floor but starts speaking before the chair gives it the
floor. This causes a violation of the commitment of the chair. This
violation is due to p2, who, however, did not have any commit-
ment to wait for the floor before speaking. Therefore, the chair has
no right to expect this behavior by p2. Indeed, it was not safe for
the chair to adopt the above commitment by opening the debate.
More formally, we can show that τ ′ 6|=5 σ(c, C2(p2)). Safety
holds iff (∀τ ′′ ∈ cone(τ ′, 5) : (∃j ≥ 5 : τ ′′ |=[5,j] > ⇒
τ ′′ |=j ξ(c, u/τ

′′
[5,j]))). With j = 5 this simplifies to (∀τ ′′ ∈

cone(τ ′, 5) : τ ′′ |=5 ξ(c, u)), which does not hold. The partici-
pant has not adopted any commitment toward the chair to execute
any of the actions under its control. In particular, by repeatedly ap-
plying the definition of control, it is easy to see that, in order for the
commitment to be safe, it is necessary that after a certain step, for
all τ , τ |=i askFloorp2 ·giveFloorc〈p2〉·ξ(c, discussp2 ·cfvc). In
other words, after askFloorp2 ·giveFloorc〈p2〉 occurs, cmust have
control over discussp2 · cfvc. If there were a commitment of kind
C(p2, c, >, askF loorp2 · giveFloorc〈p2〉 · discussp2) at Step 5,
C2(p2) would be safe because after askFloorp2 · giveFloorc〈p2〉
it would have residuated to C(p2, c,>, discussp2). The fact that
no similar commitment is adopted by all agents can lead to the vi-
olation described above.

Let us suppose that the commitment adopted after openDebate
were instead: C(c, pi, askFloorpi · giveFloorc〈pi〉 · discusspi ,
askFloorpi ·giveFloorc〈pi〉·discusspi ·cfvc). Can the chair cause
the event openDebate without worrying about the above commit-
ment? Again, the answer depends on whether the commitment is
safe for c. From the definition, it is easy to see that when the
antecedent is satisfied and, thus, askFloorpi · giveFloorc〈pi〉 ·
discusspi occurs, safety depends on the fact that ξ(c, cfvc) which
is trivially true. The effect of openDebate in Table 1 is safe.

The notion of control enables other kinds of reasoning. Let us
consider the antecedent of the second commitment that is created as
an effect of the action openAssembly: discusspi ∧ giveFloorc〈pi〉
∨discusspi ·giveFloorc〈pi〉 The effect of the action will be a pun-
ishment applied to pi. Does pi have control over the set of runs
respecting these dependencies, so as to avoid activating the com-
mitment of the chair to punish it? The application of the M12

rule allows for destructuring the expression into (a) discusspi ∧
giveFloorc〈pi〉 and (b) discusspi · giveFloorc〈pi〉. Condition (a)
is a conjunction where discusspi is a physical action which is con-
trolled by pi. The conjunction can be made false by avoiding con-
tributing to a discussion when giveFloorc〈pi〉. Condition (b) is a
sequence that is started by a physical action, which is controlled by
pi: this agent can avoid that the condition becomes true by avoiding
to contribute to the discussion until c gives it the floor.

5. DISCUSSION
The RONR case study validates some important claims about

REGULA. First, it shows that commitments with regulations better
help a group of agents coordinate their interactions than traditional
propositional commitments would.

In general, because of the autonomy of the agents, no agent x
may legitimately expect that another agent y would satisfy a par-
ticular regulation. However, the existence of a commitment whose
debtor is y and creditor x, and whose consequent is the given regu-
lation precisely specifies and legitimizes such an expectation. The
placement of regulations within the antecedents and consequents of
commitments helps make the regulations explicit within the system
of interacting agents and thereby facilitates their coordination. In
particular, autonomous agents can potentially trade off the regula-
tions that they respectively prefer with such trade offs expressed in
the commitments they make to one another. Lastly, using events
makes regulations, control, safety computationally precise while
preserving flexibility of commitments: no event trace is explicitly
dictated.

Safety is a means for deciding whether it is reasonable for an
agent to adopt a commitment in a given state. We showed that
when safety holds for the current state, then there is a possible evo-
lution to another safe state. Further, it is possible to exploit the
notion of control in other kinds of reasoning. For instance, as the
above example shows, if an agent wants to prevent another agent’s
commitment from being activated, it can check whether it controls
the antecedent of such a commitment.

5.1 Relevant Literature
We now review some previous efforts at enriching commitments

with time. Following Searle [15], we can classify norms as either
constitutive or regulative. Clearly openAssembly, openDebate, and
so on are constitutive: their meaning is defined in terms of commit-
ments using the means construct, which amounts to a counts-as re-
lation. However, the commitments also have a naturally regulative
flavor, which we enhance thanks to the coordination requirements
arising from the temporal nature of their content. Thus, in effect,
both kinds of norms are grounded in communication in our frame-
work. By contrast, Boella and van der Torre [4] define both kinds
of norms in terms of agents’ mental states.

Aldewereld et al. [2] use the counts-as relation to operationalize
norms. By contrast, we use the counts-as relation to understand
physical events in terms of the normative relations they create. Our
framework includes significant operational elements. The notion of
commitment progression is an operational one. Further, the notion
of control may be also viewed as an operational tool for reasoning
about norm compliance.

Alberti et al. [1] use events and expectations to model interac-
tion protocols. Expectations help define a temporal relation be-
tween events. For example, one can state that if an event occurs at
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a certain point in time, another event must occur afterward. Expec-
tations, however, are not scoped by a debtor or creditor nor they are
used inside commitments. By contrast, we include temporal regula-
tions inside commitments. This enables precisely identifying who
is responsible for each regulation and potentially liable for a viola-
tion. Moreover, we define control and safety properties both over
regulations and commitments. Using these, an agent can determine
whether it would be able to satisfy a (temporal) engagement and to
reason about the opportunity of adopting specific commitments.

Baldoni et al. [3] define commitment-based protocols wherein
the constitutive and the regulative specifications are decoupled. In
particular, they assert regulations as temporal constraints but place
them separate from commitments, not within the antecedents and
consequents of commitments, as we have done here. By contrast,
by including regulations inside commitment, we identify a debtor
and a creditor with duties and rights, and propose a notion of con-
trol and of safety.

Commitment life cycles, that is progressions, have been vari-
ously formalized, especially by Fornara and Colombetti [10], Mallya
et al. [13], and El-Menshawy et al. [9]. However, in general, these
works neither provide a symbolic characterization of progression
as we did above nor do they consider the interplay between con-
trol and commitment progression. And, the previous semantic ap-
proach work on commitments [17] considers only whether a com-
mitment is active or not, and does not discuss the full life cycle.

Cranefield and Winikoff [7] formalize expectation progression in
a linear temporal logic. However, unlike commitments, the expec-
tation modality is not a relation between agents. Such a modality
would not be able to support the notions of control and safety as we
have formalized here.

Verification of protocols is an important theme. Giordano and
Martelli [11] perform two kinds of verification: one, whether an
agent’s execution is compliant with the protocol, and two, whether
the protocol specification itself satisfies some temporal property.
Our notion of safety is a third category in that it helps an agent
determine whether it has adequate control in order to be able to ful-
fill its commitments. Safety suggests that the protocol in question
is well-designed and the agent’s behavior complies with the proto-
col. We establish compliance at runtime through the notion of the
progression of a commitment (Theorem 1).

van der Hoek and Wooldridge [18] reason about the abilities of
a coalition of agents given each agent’s control over certain vari-
ables. Moreover, control may be transferred via what they term a
“delegate” operation. Our work embodies similar intuitions: com-
mitments allow control to be passed among agents. Additionally,
through the use of commitments, we can support cancel and re-
lease as ways to return control and delegate and assign as ways to
propagate control.

5.2 Future Directions
The notions of control and of safety that we proposed concern

single agents. Along the lines of van der Hoek and Wooldridge
[18], a key future direction is to explore notions of teamwork and
to extend the definitions of control and safety accordingly. It would
be worth investigating a richer formal model and language in which
we include both states and events as transitions between states. An-
other interesting question is: given a specification in terms of a
set of temporal regulations, and knowledge of what events are per-
formed by what agent, can we determine the safe commitments that
the agents should adopt so that the resulting computation satisfies
the original specification? Such set of commitments could be used
to implement agents, interacting by means of commitment-based
protocols [3, 19].
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ABSTRACT
Recent work in communications and business modeling em-
phasizes a commitment-based view of interaction. By ab-
stracting away from implementation-level details, commit-
ments can potentially enhance perspicuity during modeling
and flexibility during enactment.

We address the problem of creating commitment-based
specifications that directly capture business requirements,
yet apply in distributed settings. We encode important busi-
ness patterns in terms of commitments and group them into
methods to better capture business requirements.

Our approach yields significant advantages over existing
approaches: our patterns (1) respect agent autonomy; (2)
capture business intuitions faithfully; and (3) can be enacted
in real-life, distributed settings. We evaluate our contribu-
tions using the Extended Contract Net Protocol.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms
Design, Theory

Keywords
Protocols, Software engineering, Method engineering

1. INTRODUCTION
Commitment-based approaches to agent communication

are finding broad traction in specifying interaction proto-
cols. What makes commitments an appealing abstraction is
that they naturally capture the business relationships that
arise in our everyday life and business interactions, and offer
flexibility in realizing them.

The expression C(debtor, creditor, antecedent, consequent)
represents a commitment: it means that the debtor is com-
mitted to the creditor for ensuring the consequent if the
antecedent holds. For example, C(buyer, seller, goods, paid)
means that the buyer commits to the seller that if the seller
provides the goods the buyer will ensure he is paid. Whereas

Cite as: Specifying and Applying Commitment-Based Business Pat-
terns, Amit K. Chopra and Munindar P. Singh, Proc. of 10th Int.
Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011,
Taipei, Taiwan, pp. 475-482.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

it is easy enough to come up with commitments, it is not
easy to specify the right commitments for particular appli-
cations. For instance, Desai et al. [4] show how a scenario
dealing with foreign exchange transactions may be formal-
ized in multiple ways using commitments, each with differ-
ent ramifications on the outcomes. This leads us to the main
question we address: How can we guide software engineers
in creating appropriate commitment-based specifications?

Such guidance is often available for operational approaches
such as state machines and Petri nets that describe interac-
tions in terms of message order and occurrence. For in-
stance, Figure 1 shows two common patterns expressed as
(partial) state machines, which can aid software engineers in
specifying operational interactions. Here, b and s are buyer
and seller, respectively. (A) says that the seller may accept
or reject an order; (B) says the buyer may confirm an order
after the seller accepts it.

Figure 1: Example operational patterns.

By contrast, commitment protocols abstract away from
operational details, focusing on the meanings of messages,
not their flow. Clearly, operational patterns such as the
above would not apply to the design of commitment pro-
tocols. What kinds of patterns would help in the design
of commitment protocols? By and large, they would need
to be business patterns—characterizing requirements, not
operations—that emphasize meanings in terms of commit-
ments. In contrast with Figure 1, business patterns—as we
formalize them—describe what it means to make, accept,
reject, or update an offer, not when to send messages.

We apply our patterns towards creating commitment-based
specifications in a manner inspired by situational method en-
gineering (SME) [10]. In SME, a method corresponds to a
particular software engineering lifecycle and is composed of
reusable fragments selected based on application and orga-
nizational requirements. For example, based on its require-
ments, a development organization may adopt goal-based
or scenario-based requirements engineering or omit require-
ments engineering altogether. Analogously, for us, those de-
veloping commitment-based specifications would choose a
commitment-based method that composes specific business
patterns and that suits their requirements, including those
relating to the organizational context [12] in which the sys-
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tem to be will be enacted. In this sense, a method describes
a second-order business pattern.

Contributions. Our contributions are as follows. First, we
identify business patterns as distinct from semantic and en-
actment patterns. Whereas semantic patterns encapsulate
general commitment reasoning [2] and enactment patterns
guide a commitment-based agent design, business patterns
support specifying business protocols in cross-organizational
settings. Second, we identify semantic antipatterns, which
generally reflect a closed system way of thinking and are
not suitable for open settings. Third, we identify several
business patterns that accommodate common business sit-
uations. Fourth, we formulate engineering methods as sets
of selected patterns and outline a simple approach based on
organizational requirements for selecting among methods.

Like any set of patterns, the patterns in this paper reflect
intuitions rooted in experience. Our patterns, however, are
also motivated by the following requirements.
Autonomy-compatibility Autonomy broadly refers to the

lack of control: no agent has control over another
agent. To get things done, agents set up the appro-
priate commitments by interacting. Any expectation
from an agent beyond what the agent has explicitly
committed to is unreasonable.

Explicit meanings Our patterns make public the aspects
of meaning that ought to have been public in the first
place, but are often hidden within agent implementa-
tions. For example, updating a standing offer would
mean replacing an existing commitment with a new
one. An operational approach would simply allow for
multiple UpdateOffer messages. If agents differently
assume whether the latest message prevails, misalign-
ment would ensue.

Distributed enactment Our business patterns build up
systematically from a core set of communication prim-
itives reflecting established ways to manipulate com-
mitments in distributed settings.

Result. We evaluate our approach via a case study. The
main result we obtain is that our approach highlights the
critical design decisions and places them at a business level.
First, a designer can see what is at stake in those decisions
and can choose according to the needs of the business part-
ners and the contextual setting in which they will interact.
Second, through its focus on formalizing business meaning,
our approach captures exactly what the business needs. In
contrast, traditional approaches are guilty of over-specifying
on some aspects (leading to rigid enactments) and under-
specifying others (leading to potential ambiguity in realistic
environments). Their only recourse against the former is
to enumerate additional enactments and their only recourse
against the latter is to insert additional ad hoc constraints,
thus leaning toward over-specification. The overall outcome
is excessive complexity.

Organization. The rest of the paper is organized as follows.
Section 2 describes the necessary background for comput-
ing commitments in distributed settings. It also discusses
semantic patterns. Section 3 introduces some business pat-
terns, enactment patterns, and semantic antipatterns. Sec-
tion 4 applies the patterns toward protocol specification via
methods. Section 5 applies our approach to the Extended

Contract Net Protocol [15]. Section 6 sums up our approach
along with a discussion of the relevant literature.

2. BACKGROUND
We adopt Chopra and Singh’s formal framework [2], in-

cluding their language and reasoning postulates. Table 1
repeats their grammar for commitments and for messages
that manipulate commitments. A sender can inform a re-
ceiver using a Declare. A commitment is detached when its
antecedent becomes true (>), meaning its debtor is uncon-
ditionally committed. A commitment is discharged when
its consequent becomes true. Table 2 lists some important
kinds of commitments that may arise in a fan-selling sce-
nario.

Table 1: Syntax for commitments and messages.

Commitment −→ C(Agent, Agent, DNF, CNF)
Content −→ Atom | ¬ Atom | Stative(Agent, Agent,
DNF, CNF)
Stative −→ created | released | canceled | violated
DNF −→ And | And ∨ DNF
CNF −→ Or | Or ∧ CNF
And −→ Content | Content ∧ And
Or −→ Content | Content ∨ Or
Message −→ Declare(Agent, Agent, News)
Message −→ Op(Agent, Agent, DNF, CNF)
News −→ Atom | Stative(Agent, Agent, DNF, CNF)
| Atom ∧ News | Stative(Agent, Agent, DNF, CNF) ∧
News
Op −→ Create | Cancel | Release | Delegate

Table 2: Commitments in the syntax of Table 1.

Name Commitment (S is seller; B is buyer)

cA C(S,B, paid, fan): S commits to B that if pay-
ment is made, the fan will be delivered.

cUA C(S,B,>, fan): The unconditional version of
cA. S commits to B that the fan will be deliv-
ered.

cB C(S,B, released(S,B,>, fan), created(S,B,>,
discount)): S commits to B that if B releases
S from the commitment to deliver the fan, S
will give B a discount on its next purchase.

cC C(S,B,¬fan∧released(S,B,>, fan), created(S,B,
>, discount)): Similar to cB except that it
accounts for the case when S’s delivery of the
fan and B’s release cross in transit—in such a
case, S need not give the discount anymore.

The statives (except violated) record the history of com-
mitment operations. For example, created(x, y, r, u) is added
to an agent’s KB when an agent has observed the message
Create(x, y, r, u), and so on. We introduce violated to cap-
ture that an unconditional commitment has been violated,
e.g., because the deadline for bringing about its consequent
has passed. Table 3 lists each message along with its sender
and receiver, and the effects of the messages (we omit the
assignment operation for brevity).

Chopra and Singh’s framework uses two kinds of postu-
lates: update postulates (appropriately constrained by the
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Table 3: Core messages pertaining to commitments.

Message Sender Receiver Effect

Create(x, y, r, u) x y C(x, y, r, u)
Cancel(x, y, r, u) x y ¬C(x, y, r, u)
Release(x, y, r, u) y x ¬C(x, y, r, u)
Delegate(x, y, z, r, u) x z C(z, y, r, u)
Declare(x, y, p) x y p

conditions listed below) that capture the computation of an
agent’s state following its observation of a message, and com-
mitment reasoning postulates such as (assuming the same
debtor-creditor pair throughout a postulate) u → ¬C(r, u)
(captures discharge) and C(r ∧ s, u) ∧ s→ C(r, u) (captures
detach), and so on. These postulates encode semantic pat-
terns, that is, the domain-independent rules of computing
commitments. In Table 3, the effects are nominal because
they hold only under the following conditions. (A commit-
ment C(r, u) is stronger than C(r′, u′) iff u ` u′ and v′ ` v.)
Novel Creation Create(r, u) is a noop if a stronger com-

mitment C(s, v) holds or has held before (that is, if
created(s, v) holds).

Complete Erasure Release(r, u) or Cancel(r, u) removes all
commitments weaker than C(r, u) provided no C(s, v)
strictly stronger than C(r, u) holds; otherwise it is a
noop.

Accommodation From Release(r, u) and Cancel(r, u), in-
fer that each weaker C(s, v) has held before.

Notification Whenever a creditor learns of a condition that
features in the antecedent, it notifies the debtor, and
whenever a debtor learns of a condition that features
in the consequent, it notifies the creditor.

Priority If two agents may take conflicting actions, the pro-
tocol specifies ahead of time whose action has priority.

The principal result that follows from the above conditions
is that even when agents communicate asynchronously, they
would remain aligned with respect to their commitments
(assuming reliable in-order message delivery for every pair
of agents—easily supported by common infrastructure such
as reliable message queues).

3. COMMITMENT PATTERNS
We discuss three kinds of patterns. Business patterns

capture the meanings of business communications in terms
of commitments, enactment patterns specify when an agent
may enact a particular business communication, and seman-
tic antipatterns capture inappropriate patterns. All of our
examples are from the fan-selling domain (Table 2).

3.1 Business Patterns
Business patterns encode the common ways in which busi-

nesses engage each other. By representing business pat-
terns using Chopra and Singh’s framework, we can guarantee
alignment even for asynchronous enactments.

The messages of Table 3 correspond to elementary busi-
ness patterns. Here, Offer(x, y, r, u) means Create(x, y, r, u)
(the Generic Offer or GO pattern); CancelOffer(x, y, r, u)
means Cancel(x, y, r, u) (the Cancel Offer or CO pattern);
and RejectOffer(x, y, r, u) means Release(x, y, r, u) (the Re-
lease Offer or RO pattern). However, we can build upon
the basic primitives to build more complex business patterns

such as for updating, compensation, mutual commitment,
and so on. Below, we list some recurring business patterns.

• Basic Offer (BO)
Intent To set up a basic business transaction.
Motivation Captures a basic way of doing business.
Implementation BasicOffer(x, y, r, u) means Create(x, y, r, u)

where r and u are formulas over atoms (they contain
no statives).

Example BasicOffer(S,B, paid, fan)
Consequences For progress, the creditor should be ready

to bring about the antecedent.

• Nested Offer (NO)
Intent The debtor wants a commitment from the creditor

for something in return for something else.
Motivation To set up a richer (both parties are commit-

ted) and more flexible engagement.
Implementation NestedOffer(x, y, r, u) means

Create(x, y, created(y, x,>, r), u).
Example NestedOffer(S,B, paid, fan)
Consequences When the antecedent holds, both x and y

are unconditionally committed to u and r, respectively.
When that happens, each would gain some measure of
safety in acting first and discharging its commitment,
thus improving flexibility in enactment.

• Mutual Commitment Offer (MCO)
Intent Debtor should have the exact “reciprocal” commit-

ment from the creditor: if the creditor commits to u
for r, the debtor commits to r for u.

Motivation To set up a richer and more flexible engage-
ment, wherein both parties are committed.

Implementation MutualCommitmentOffer(x, y, r, u) means
Create(x, y, created(y, x, u, r), created(x, y, r, u))

Example MutualCommitmentOffer(S,B, paid, fan)
Consequences This pattern is less prone to violations than

Nested Offer, as only one party could possibly vio-
late its commitment.

• Business Transaction Identifiers (BTI)
Intent To enable an agent to distinguish distinct offers and

to relate commitments that coherently fall into the
same business transaction.

Motivation It is important (1) not to conflate distinct busi-
ness transactions, so that commitments from different
transactions do not interfere with each other, and (2)
preserve logical structure so the reasoning is sound.

Implementation Introduce identifiers in the antecedent,
propagating them as needed to the consequent.

Example Writing the identifier as the first parameter of a
proposition, C(S,B, paid(0), fan(0)) occurs in a differ-
ent transaction from C(S,B, paid(1), fan(1)).

Consequences We need a clear information model to make
sure the commitments pertaining to one transaction do
not involve the identifiers of another.

• Compensation (COM)
Intent To compensate the creditor in case of commitment

cancellation or violation by the debtor.
Motivation It is not known in advance whether a party will

fulfill its commitments; compensation commitments
provides some assurance to the creditor in case of vio-
lations.

Implementation Compensate(x, y, r, u, p) means
Create(x, y, violated(x, y, r, u), p).
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Example Compensate(S,B, paid, fan, discount)
Consequences A commitment (even a compensation com-

mitment) should ideally be supported by compensa-
tion; however, at some level, the only recourse is esca-
lation to the surrounding business context—for exam-
ple, the local jurisdiction [12].

• Update (UP)
Intent To update a previously made offer.
Motivation Changing business environments may require

debtors to update their commitments.
Implementation Update(x, y, r, u, s, v) means

Cancel(x, y, r, u) and Create(x, y, s, v).
Example Update(S,B, paid$12, fan, paid$15, fan)
Consequences One must be careful in applying updates

since the creditor may not find the new commitment
an acceptable substitute for the old commitment.

• Release Incentive (RI)
Intent To enable the debtor to offer an incentive to the

creditor for releasing it from a commitment.
Motivation Due to changing business environments, it may

be more profitable for the debtor to offer an incentive
to the creditor for releasing it from an existing com-
mitment.

Implementation ReleaseIncentive(x, y, r, u, p) means
Create(x, y,¬u ∧ released(x, y, r, u), p) where p represents
the incentive. The conjunction in the antecedent is
necessary to handle the case where Declare(x, y, u) may
cross with Release(x, y, r, u): once u occurs, the debtor
is off the hook.

Example ReleaseIncentive(S,B,>, fan, discount)
Consequences The creditor may not take up the incen-

tive offer; the debtor may then consider canceling the
commitment unilaterally.

• Delegation Acceptance (DA)
Intent To set up the proper relationship between a delega-

tor and delegatee for effective delegations.
Motivation The debtor may delegate (viewed as a request)

a commitment to another party if it sees value in it;
however, the delegatee is not bound to accept the del-
egation.

Implementation DelegationAcceptance(x, y, z, r, u) means
Create(z, x, delegated(x, y, z, r, u), created(z, y, r, u));
delegated(x, y, z, r, u) captures the performance of the
delegation request.

Example DelegationAcceptance(S,B, S2, paid, fan)
Consequences The parties should set up additional no-

tifications, for example, when the delegatee has dis-
charged the commitment, for greater confidence.

• Redundancy (RED)
Intent To mitigate risk by assuring the creditor of service

by a backup agent in case things go awry.
Motivation A debtor can reduce the risk of violating its

commitments by introducing a backup.
Implementation Redundancy(x, y, z, r, u) means

Create(x, y, risk(x, y, r, u), created(z, y, r, u)) (x is promis-
ing backup service by z to y). Her, risk(x, y, r, u) is a
domain-specific predicate that holds when a commit-
ment is at risk of being violated.

Consequences This pattern presumes the backup agent
commits to accepting delegations from the debtor, for
example via Delegate Acceptance.

In the end, all of the above patterns are specializations
of the Generic Offer pattern, except Update which is a
composite pattern, and yet we are able to capture a rich set
of business patterns by appropriately changing the content
of the commitments.

3.2 Enactment Patterns
Whereas a business pattern describes the meaning of com-

munication, an enactment patterns describe the conditions
under which an agent should enact a business pattern, that
is, when to undertake the corresponding communication. In
general, enactment is agent-specific. Nonetheless, some be-
haviors are commonly observed in practice, for example, in
negotiation. A locus of such enactments may serve as the
basic agent skeleton. We highlight two enactment patterns
that are built upon the offer business patterns presented
earlier.

• Improved Offer
Intent To make improved offers via stronger commitments.
Motivation The creditor has not taken up an earlier offer.
When x makes the offer C(x, y, r, u); y has not taken up the

offer, that is, r does not hold. Then, xmakes a stronger
offer C(x, y, r′, u′) (recall strength from Section 2) in
order to entice y into the deal.

Consequences The debtor is committed more strongly;
ideally, it must make sure the stronger commitment
has at least some positive utility, even if diminished.
This pattern represents a concession.

• Counter Offer
Intent One party makes an offer to another, who responds

with a modified offer of its own.
Motivation Essential for negotiation.
When Let C(x, y, r, u) be the commitment corresponding

to the original offer. Making a counteroffer would
amount to creating the commitment C(y, x, u′, r′) such
that u′ ` u and r ` r′, in other words, if the con-
sequent is strengthened and the antecedent is weak-
ened. An alternative implementation includes doing
Release(x, y, r, u) in addition.

Consequences When u ≡ u′ and r ≡ r′, the counter offer
amounts to a mutual commitment.

3.3 Semantic Antipatterns
Below, we enhance Chopra and Singh’s framework with

semantic antipatterns—forms of representation and reason-
ing to be avoided because they conflict with the autonomy
of the participants or with a logical basis for commitments.

• Commit Another as Debtor
Intent An agent creates a commitment in which the debtor

is another agent.
Motivation To capture delegation, especially in situations

where the delegator is in a position of power of over
the delegatee.

Implementation The sender of Create(y, z, p, q) is x, thus
contravening Table 3.

Example Consider two sellers S and S2. S sends
Create(S2,B, paid, fan) to B.

Consequences A commitment represents a public under-
taking by the debtor. A special case is when x = z.
That is, x unilaterally makes itself the creditor.

Criteria Failed S2’s autonomy is not respected.
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Alternative Apply delegation to achieve the desired busi-
ness relationship, based on prior commitments. In the
above example, S2 could have a standing commitment
with S to accept delegations. S can then send a del-
egate instruction to S2 upon which S2 commits to B.
See the Delegation Acceptance and Redundancy
business patterns in Section 3.1.

• Acked Commit
Intent A commitment may hold only when the creditor has

acknowledged its creation to the debtor. That is, the
creditor should accept the commitment [9].

Motivation A commitment should be set up only upon
the agreement of both parties. This is often based on
a misunderstanding of commitments: that the creditor
is committed to the antecedent.

Implementation Creditor acknowledges a create message.
Example The seller S enacts BasicOffer(S,B, paid, fan); how-

ever, the offer does not hold until the buyer B acknowl-
edges the offer.

Consequences It rules out unilateral commitment by the
debtor such as in a business offer or advertisement for
services.

Criteria Failed Autonomy (a debtor shouldn’t need a cred-
itor’s approval to create a commitment) and generality
(as it is unable to capture common scenarios).

Alternative Mutual Commitment Offer.

• Commitment Identifiers
Intent Gives a unique identifier to every commitment.
Motivation To distinguish transactions and to simplify rea-

soning about commitments in concurrent settings, e.g.,
in [5, 11].

Implementation Every commitment has an ID, as in
C(id, debtor, creditor, antecedent, consequent).

Example C(id0, S,B, paid, fan) and C(id1, S,B, paid, fan)
Consequences Reasoning about commitments breaks down.

For example, from C(x, y, r, u)∧C(x, y, r, v), one infers
C(x, y, r, u∧v). However, one cannot apply such an in-
ference to C(id0, x, y, r, u) ∧ C(id1, x, y, r, v). Further,
commitment operations must now explicitly refer to
the identifiers in addition to the logical content.

Criteria failed Generality, since general reasoning about
commitments breaks down.

Alternative Business Transaction Identifier.

4. PROTOCOL SPECIFICATION
We explain how the business patterns specified above may

be used by protocol designers.
Business protocols are often specified around a central ex-

change of goods, services, or monies. Although a simple
pattern such as Basic Offer is usually enough to capture
the exchange, typically participants want the protocols to
be robust in the following ways. Table 4 summarizes how
our business patterns support the robustness requirements.
Creditor Confidence (CC) Inspire confidence in the cred-

itor about the outcome of the interaction: e.g., Com-
pensation and Redundancy.

Debtor Confidence (DC) Inspire confidence in the debtor
by requiring commitments from other parties: e.g.,
Nested Offer, Mutual Commitment Offer, and
Delegation Acceptance.

Progress (P) Ensure liveness by requiring the involved par-
ties to act or risk being out of compliance, e.g., Nested

Offer and Compensation (once a violation happens).
Mitigation (M) Mitigate risk for the debtor of a commit-

ment by helping it avoid noncompliance, e.g., Release
Incentive and Delegation Acceptance.

Table 4: Business patterns and robustness.

CC DC P M

NO – Yes Yes –
MCO – Yes Yes –
COM Yes – Yes –
UP – – – Yes
RI Yes – – Yes
DA Yes Yes – –
RED Yes – – Yes

A bundle of business patterns is a reusable method for
addressing certain requirements. For example, the method
〈MCO,COM〉 addresses the requirements of creditor and
debtor confidence; 〈MCO,COM,DA〉 does the same job
better; 〈MCO,COM,DA,RED〉 fares even better. Alterna-
tively, a protocol designer could choose the method 〈NO,RI〉
in order to support progress as well as mitigation. In essence,
the patterns can be grouped according to the required level
of robustness.

However, in selecting a method, a protocol designer would
take into account not only the robustness requirements, but
also the intended organizational setting. The resources of
the organization and its policies would affect the method se-
lected. For example, a fan seller ModernFans might not want
to use delegation as a mitigation strategy for competitive
reasons. It might also want to makes offers which its cus-
tomers may take advantage of directly by making payments;
in such a case, ModernFans would select a method that in-
cludes BO instead of NO or MCO. Further, the more ro-
bust a method the more computational resources the agents
would need to devote during enactments—another reason a
less robust method may be selected. In general, a proto-
col designer must make judgments about robustness versus
organizational policies and resource usage.

5. CASE STUDY
We now apply the patterns to the Extended Contract Net

Protocol (xCNP) formalized by Vokř́ınek et al. [15]. xCNP
involves two roles: contractor and contractee. Vokř́ınek et
al.’s extensions enable the negotiation of penalties in case
one of the parties is unable to fulfill its end of the bargain.
The xCNP protocol has three distinct phases: contract for-
mation (similar to the traditional CNP), contract decom-
mitment (negotiation of penalties in case one of the parties
wants out, that is, before the actual violation of the con-
tract), and contract resolution (negotiation of penalties in
case of an actual violation).

Vokř́ınek et al. formalize xCNP in a procedural manner via
a state machine (Figure 2). Many enactments are possible.
For example, a contract may be reached or a penalty may
be successfully negotiated; the parties could negotiate back
and forth many times before reaching an agreement; they
could fail to arrive at an initial contract; one of them could
propose decommitment and then take back the proposal,
and so on.
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Table 5: Commitments used to model an xCNP-like setting.

Label D C Antecedent Consequent

pr cte ctr created(ctr, cte, built(0), paid(0)) created(cte, ctr, paid(0), built(0))
co ctr cte created(cte, ctr, paid(0), built(0) ∧furnished(0)) created(ctr, cte, built(0) ∧ furnished(0), paid(0))
cv cte ctr created(ctr, cte, built(0) ∧ furnished(0),

paid(0)) ∧ created(ctr, cte,
violated(ctr, cte,>, paid(0)), penalty(0))

created(cte, ctr, paid(0), built(0) ∧ furnished(0))

cvs cte ctr created(ctr, cte, built(0) ∧ furnished(0)
∧driveway(0), paid(0)) ∧ created(ctr, cte,
violated(ctr, cte,>, paid(0)), penalty(0))

created(cte, ctr, paid(0), built(0) ∧ furnished(0)∧
driveway(0))

py ctr cte built(0) ∧ furnished(0) ∧ driveway(0) paid(0)
vio ctr cte violated(ctr, cte,>, paid(0)) penalty(0)
ta cte ctr paid(0) built(0) ∧ furnished(0) ∧ driveway(0)
in ctr cte ¬paid(0) ∧ released(ctr, cte,>, paid(0)) released(cte, ctr,>, built(0) ∧ furnished(0)∧

driveway(0)) ∧ expensesPlusTen(0)
inR ctr cte > expensesPlusTen(0)

Figure 2: The xCNP protocol [15]. I and R refer to the contractor (ctr) and the contractee (cte), respectively.

5.1 Applying our Approach
We replace the operational model of xCNP with a model

based on the appropriate business patterns.
• xCNP emphasizes the synchronizing agree-confirm op-

erational pattern for arriving at any outcome: in con-
tract formation (after one party agrees to a proposal,
the other must confirm it), in penalty negotiation, and
so on. We instead use Mutual Commitment Offer
(MCO) or Nested Offer (NO).
• In order to enable parties to get out of their commit-

ment, xCNP supports decommitment. In our frame-
work, Release Incentive (RI) captures decommit-
ment: the commitment is not yet violated, and the
debtor is asking to be released by the creditor in return

for a penalty (incentive from the creditor’s point of
view). An alternative set of patterns for implementing
decommitment consists of Cancel Offer (CO) and
Compensation (COM, as proposing a penalty for the
cancellation).
• xCNP supports penalties for violation to capture con-

tract resolution. We can instead use Compensation.
Thus, to capture a contract protocol, one can choose from

the following business pattern methods.
Method 1. 〈NO,RI,COM〉
Method 2. 〈MCO,RI,COM〉
Method 3. 〈NO,CO,COM〉
Method 4. 〈MCO,CO,COM〉

As stated earlier, the choice of the method depends not
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only upon the robustness criteria but also upon organiza-
tional requirements. For example, Method 2 is more robust
than Method 4 because cancellation is in effect a violation.
However, a business partner could still choose Method 4 if
it did not care about violations as much as it cared about
immediacy (in the sense that it does not have to wait to be
released by the other party).

The four methods above are just samples; in general, de-
signers could come up with more patterns and methods that
meet various requirements.

5.2 Enactment
Table 5 lists the commitments used in xCNP; nameU is the

unconditional commitment resulting from name. Figure 3
shows an enactment of the contract formation stage using
Method 2. The scenario is one where a contractor issues a
CFP for an office block construction. Let’s consider Figure 3
step by step.

Figure 3: Method 2: Contract formation enactment.

1. Contractor ctr applies the Declare pattern in sending
the CFP.

2. Contractee cte enacts the MCO pattern in response
(to create pr): essentially the contractee will do built
in return for paid.

3. ctr does a Counter Offer in response (to create co):
in addition to built, the contractor also wants furnished.

4. cte does a Counter Offer in response (to create cv):
the contractee is ready to do built and furnished for
paid, but wants contractor ctr to commit to paying a
penalty in case ctr cannot pay for the services rendered.

5. ctr applies Reject Offer in response.
6. cte then applies Improved Offer: it sweetens the

offer by throwing in driveway.
7. ctr then creates the necessary commitments using the

Basic Offer pattern; presumably the contractor is
happy with the improved offer.

8. cte also creates the necessary commitments.
Figure 4 shows an enactment of the contract decommit-

ment stage using Method 2. The figure begins from where
the interaction has progressed so the commitments py and

ta hold. Let’s look at Figure 4 step by step.

Figure 4: Method 2: Decommitment enactment.

• ctr applies the Release Incentive pattern (to create
in): if cte releases it from pyU and payment has not
yet happened, ctr will release cte from taU and reim-
burse cte to the extent of 110% of the expenses cte has
already incurred.
• In response, cte releases it from pyU .
• In response, ctr releases cte from taU . At this point,

inR holds: ctr must still pay cte 110% of the expenses.

5.3 Observations and Conclusions
xCNP, as formalized by Vokř́ınek et al., does not con-

sider the meanings of interactions. For example, it does
not formalize what it means to decommit. By contrast, we
formalized decommitment via two alternative patterns that
have different ramifications for meeting organizational re-
quirements. In addition, one of the alternatives turned out
to be a composite pattern (Cancel Offer and Compensa-
tion). Operational formalizations miss out on such nuances.

We showed four alternative methods that model the en-
hancements xCNP claims over the traditional CNP. We gave
an example requirement of what might drive a protocol de-
signer to choose one method over another. Since our meth-
ods are meaning-based, it is natural for a designer to select
among them than from among the same number of alterna-
tive operational formalizations of xCNP.

All our methods draw from the patterns we introduced
earlier, which themselves draw from the basic framework in
[2]. Thus business-level interoperability is guaranteed even
when agents enact the patterns asynchronously. By con-
trast, Vokř́ınek et al.’s xCNP formalization is both over-
specified and under-specified. It is over-specified because it
is highly synchronous and enforces rigid enactments, such
as via the agree-confirm pattern for arriving at any out-
come. It is under-specified in net effect because it cannot
capture enactments that would be natural. For example,
both the contractor and contractee (I and R, respectively
in Figure 2) may act concurrently by sending CFP and
IMPOSE PROPOSAL, respectively. Although these tran-
sitions are allowed, the resulting state is not captured in the
formalization. A similar situation ensues when, after seal-
ing the contract, both parties act concurrently in order to
decommit. In general, it is difficult to capture all possible
executions paths via operational methods because of their
lower level of abstraction.

One could try to repair Vokř́ınek et al.’s formalization by
inserting additional enactment paths to address its rigid-
ity and insert additional synchronizations to address mes-
sages crossing in transit (the latter would increase rigidity).
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However, such a formalization would be overly complex, un-
wieldy to maintain, and difficult both for designers and end
users to understand.

In conclusion, when the business meanings of interactions
are made explicit, (1) designers gain in flexibility in selecting
from a range of possible specifications, that is, the methods,
and (2) agents gain in flexibility in enacting the specified
system because they can reason about meanings and select
among alternative courses of action.

6. DISCUSSION
Method engineering is an expanding area of SE. Tradi-

tionally, method engineering considers how to engineer and
choose among methods in the large, such as Agile or Scrum
[10], with selection based on the structure of the given soft-
ware development organization. In contrast with existing
work, we observe that a (modeling) method could be under-
stood in terms of the families of interactions that we wish
to support among agents, such as the partners in business
processes. We too are concerned with organizations, but
emphasize the organization of the business partners during
enactment as well as the contextual organization in which
the business process takes place. We envisage that suitable
methods would be engineered based on features of such orga-
nizations as well as the flexibility supported by the business
partners’ agents. And designers who apply selected meth-
ods would create models of interaction that naturally meet
those criteria.

Our approach to patterns is layered: method over busi-
ness over semantic patterns. Lind and Goldkuhl [7] propose
a layered approach to business modeling starting with busi-
ness actions and building up to transactions; however, they
overlook the meanings of the business actions themselves.

Conceptually any protocol, no matter how specified, is a
reusable pattern of interaction. Existing approaches for pro-
tocol composition, e.g., [8, 14], focus on procedural aspects,
which though valuable cannot substitute for business mean-
ings. Singh et al. [12] motivate some commitment-based con-
nector patterns, including multiparty ones. However, they
do not consider the challenges of distributed enactment.

Traditionally, researchers have used action logics for com-
mitment protocol specification, for example, as in [6]. Chopra
and Singh [1] support the application of business patterns,
such as for Return and Refund, to protocols specified in
an action logic. However, these approaches assume syn-
chronous communication and, further, freely mix meaning
axioms along with operational constraints such as for mes-
sage ordering. By contrast, our patterns are purely meaning-
based, and they can be enacted asynchronously.

Wang et al. [16] annotate each commitment with types
depending on the relative order in which its antecedent and
consequent ought to be satisfied. For example, they anno-
tate C(merchant, customer, payment, refund) strictly-ordered :
payment must be made before the refund can be made. How-
ever, payment-before-refund can be an enactment policy—a
choice—on the part of the merchant; the ordering is not nec-
essarily an issue of commitment specification. Annotating
commitments as Wang et al. do unduly limits flexibility dur-
ing enactment. In general, it is important to sort out the
issues of agent specification from those of protocol specifica-
tion [3].

Future directions include coming up a rich taxonomy of re-
quirements that pertain to interactions, and providing tool-

based support to designers for picking from among the meth-
ods in a repository.

Telang and Singh [13] propose a metamodel in which to
express cross-organizational business models that includes
a set of modeling patterns. They formalize commitments
in a simplified temporal semantics assuming synchrony and
show how to verify low-level protocols expressed in sequence
diagrams with respect to the business models. It would be
interesting to reconcile our approach with theirs.
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ABSTRACT
Social commitments have been widely studied to represent
business contracts among agents with different competing
objectives in communicating multi-agent systems. However,
their formal verification is still an open issue. This paper
proposes a novel model-checking algorithm to address this
problem. We define a new temporal logic, CTLC, which
extends CTL with modalities for social commitments and
their fulfillment and violation. The verification technique is
based on symbolic model checking that uses ordered binary
decision diagrams to give a compact representation of the
system. We also prove that the problem of model checking
CTLC is polynomial-time reducible to the problem of model
checking CTLK, the combination of CTL with modalities
for knowledge. We finally present the full implementation
of the proposed algorithm by extending the MCMAS sym-
bolic model checker and report on the experimental results
obtained when verifying the NetBill protocol.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Model Check-
ing

General Terms
Algorithms, Verification

Keywords
Social Commitments, Fulfillment, Violation

1. INTRODUCTION
Over the last two decades, a significant number of social

approaches that aim to define a semantics for Agent Com-
munication Languages (ACLs) have been proposed [1, 2, 9,
16, 19, 23]. These approaches particularly aim to overcome
the shortcomings of ACLs semantics defined using mental
(or cognitive) approaches where the mental semantics is ex-
pressed in terms of the agents’ internal mental states such
as believes, desires and intensions. Social commitments are
employed in some of these social approaches that success-
fully provide a powerful basis to represent business contracts
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among autonomous and possibly heterogeneous agents with
different competing objectives within multi-agent systems
(MASs) [3, 7, 9, 19, 21]. Formally, social commitments are
denoted by C(i, j, ϕ) meaning that i, the debtor, commits to
j, the creditor, that ϕ holds [7, 8, 19].

Conventionally, the semantics of ACL messages in terms
of social commitments satisfies some crucial criteria intro-
duced in [19]: 1) formal (based on some temporal logics);
2) declarative (which focuses on what the message means
not how the message is exchanged); 3) verifiable (we can
check if the agents are acting according to the semantics);
and 4) meaningful (the focus is on the content of messages,
not on their representation as tokens). Recent research in
agent communication using social commitments has high-
lighted their use in a variety of areas ranging from modeling
business processes [8], developing artificial or virtual institu-
tions [12], defining programming languages [22], developing
web-based applications [21] to specifying multi-agent inter-
action protocols, called commitment protocols [2, 5, 7, 9,
16, 23]. In particular, these commitment protocols are more
suitable for regulating and coordinating agent interactions
than computer protocols formalized using Finite State Ma-
chines or Petri Nets, which only capture legal orderings of
the exchanged messages without considering the meanings
of those messages. Missing such meanings limits the abil-
ity to verify the compliance of agent behaviors with a given
protocol.

Related Work. The motivation behind verifying that agents
are acting according to a given commitment protocol was
first investigated by Venkatraman and Singh [21]. They de-
veloped an approach for locally verifying whether the behav-
ior of an agent complies with a given commitment protocol
specified in Computational Tree Logic (CTL) [6]. Their veri-
fication method concentrates on the conditions under which
an individual agent may check others’ commitments toward
itself. The ideas presented by Venkatraman and Singh were
further complemented in two research works by Desai et al.
[7] and Cheng [5]. They developed the idea of supporting
the verification of properties geared toward the composition
of commitment protocols. These properties are specified in
Linear Temporal Logic (LTL) [6] and their approach depends
on translating the protocol into PROMELA (the input lan-
guage of the SPIN automata-based model checker) where
commitments are represented as data structures [5] or pro-
cesses [7]. Bentahar et al. [3] presented ACTL∗ logic (an ex-
tension of CTL∗) to define semantics of social commitments
and associated actions and specify multi-agent interaction
protocols and some desirable properties. Their verification
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technique is based on the translation of ACTL∗ formulae
and protocol into a variant of alternating tree automata
called alternating Büchi tableau automata (ABTA) in or-
der to directly use the CWB−NC automata-based model
checker where commitments are represented as variables and
actions as atomic action propositions using CCS (the input
language of CWB-NC). El-Menshawy et al. [9, 10] intro-
duced CTL∗sc logic extending CTL∗ with commitments and
associated commitment actions to drive a new specification
language of multi-agent interaction protocols having social
semantics. Their symbolic verification technique is based on
reducing CTL∗sc logic into LTLsc and CTLsc sub-logics and
then defining the participating agents in protocol as SMV
modules using SMV and agent sections using ISPL (the in-
put languages of the NuSMV and MCMAS symbolic model
checkers respectively) where commitment states and com-
mitment actions are defined as local state variables. Gerard
and Singh [13] used CTL and MCMAS to verify the re-
finement of multi-agent interaction protocols having social
semantics by developing a preprocessor tool that first reads
protocols and specifications from files and then translates
them into ISPL model in order to directly use MCMAS.
However, the above frameworks are translation-based ap-
proaches, which have the following shortcomings: 1) they
prevent verifying the real and concert semantics of commit-
ments and related concepts as defined in the underlying log-
ics and provide partial solution to the problem; 2) they may
not be straightforward and prone to errors, particularly in
the context of complex systems; and 3) they lack a full and
dedicated model-checking algorithm.

The motivation of this paper is to address the above chal-
lenges by: 1) presenting a new semantics for social commit-
ments and their fulfillment and violation using a new logic,
CTLC, which extends CTL [6] with modalities for reason-
ing about social commitments and their fulfillment and vi-
olation (Section 2); 2) introducing a new model-checking
algorithm to directly verify commitments and their fulfill-
ment and violation (Section 3); and 3) presenting the full
implementation of the proposed algorithm by extending the
MCMAS symbolic model checker [15] (Section 4).

The introduction of a new logic is motivated by the fact
that the needed modal connectives for social commitments
and their fulfillment/violation cannot be expressed using
only existing temporal logics, e.g. CTL. A dedicated logic
and model checking for commitments play the same role
as CTLK [17] and MCMAS do for knowledge. Furthermore,
the election of CTL is motivated by our objective to balance
between expressiveness and verification efficiency. Using
more expressive languages such as First Order Logic (FOL)
needs very complex and maybe intractable model checking.
In fact, we prove that the problem of model checking CTLC
is polynomial-time reducible to the problem of model check-
ing CTLK (the combination of CTL with modalities for
knowledge). For checking the effectiveness of our approach,
we report on the experimental results obtained when verify-
ing the NetBill protocol [20] taken from e-business domain.
Our approach can complement the static verification method
introduced in [23] to check the agent behaviors with given
protocol specifications via an event calculus planner.

2. CTLC LOGIC
In this section, we briefly present the interpreted systems

introduced in [11] to formalism MASs. The reason for us-

ing this formalism is the usefulness of ascribing autonomous
and social behavior to the components of a system of agents.
It also allows us to abstract from the details of the compo-
nents and focus only on the interactions among the various
agents. However, modeling complex and open systems such
as MASs using the formalism of interpreted systems is typ-
ically conducted by using logic-based formalisms. Thus, we
below present a new temporal logic called CTLC logic.

2.1 Interpreted Systems
An interpreted system as introduced by Fagin et al. [11] is

a formalism that models the temporal evolution of a system
of agents to reason about knowledge and temporal proper-
ties. In this formalism, the interpreted system is composed
of a set of n agents A = {1, . . . , n} and an environment e.
This environment can be seen as a special agent that can
capture any information, which may not pertain to a spe-
cific agent. For each agent i ∈ A, we associate a set of local
states Li and a set of local states Le is associated to the
environment agent.

As in [11], we represent the instantaneous configuration
of all agents in the MAS at a given time via the notion of
global state. The set of all global states is denoted by S and
a global state s ∈ S is a tuple s = (l1, . . . , ln, le) where each
component li ∈ Li represents a local state of agent i and
le is an environment local state. Thus, the set of all global
states S ⊆ L1 × . . . × Ln × Le is a subset of the Cartesian
product of all local states of n agents and local states of
the environment in the system. We use the notation li(s)
to represent the local state of agent i in the global state
s. I ⊆ S is a set of initial global states for the system.
To account for the temporal evolution of the system, the
formalism of interpreted systems associates with each agent
i the set Acti of actions, and with environment the set Acte
of actions. It is assumed that null ∈ Acti for each agent i,
where null refers to the fact of doing nothing. Each agent
i ∈ A has a local protocol Pi : Li → 2Acti to identify the
set of the enabled actions that may be performed in a given
local state. With the same meaning we can define Pe.

As in [11], the interpreted system formalism is a syn-
chronous model. So, we can define the global transition
function as follows: τ : S × ACT → S, where ACT =
Act1× . . .×Actn×Acte and each component a ∈ ACT is a
joint action, which is a tuple of actions (one for each agent).
An evolution function ti that determines the transitions for
an individual agent i between its local states is defined as
follows: ti : Li ×ACT → Li, where ti(li(s), null)= li(s). In
a similar way, we have an evolution function for the environ-
ment’s local states: te : Le × ACT → Le. Finally, given a
set Φp = {p, p1, p2, . . .} of atomic propositions and the val-
uation function V for those propositions V : Φp → 2S , an
interpreted system is a tuple:
IS = 〈(Li, Acti,Pi, ti)i∈A, (Le, Acte,Pe, te), I, V 〉.

2.2 Syntax of CTLC
The proposed language CTLC is a multi-modal logic in-

cluding branching time CTL [6] and modalities for social
commitments and their fulfillment and violation.

Definition 1 (syntax). The syntax of CTLC logic is
given by the following BNF grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | E(ϕUϕ) | EGϕ | C(i, j, ϕ)

| Fu(C(i, j, ϕ)) | Vi(C(i, j, ϕ))
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In this definition, p ∈ Φp is an atomic proposition and E

(“there exits a path”) is the existential quantifier on paths.
The formula EXϕ stands for “ϕ holds in the next state in
at least one path”; E(ϕUψ) stands for “there exists at least
one path where ψ holds at some point in the future and
ϕ holds in all states until then”; and EGϕ stands for “there
exists a path in which ϕ holds globally”, i.e., ϕ holds in every
future state in at least one path. Other temporal modalities,
e.g., F, and the universal path quantifier A (“for all paths”)
can be defined in terms of the above as usual, for examples,
AXϕ , ¬EX¬ϕ and AGϕ , ¬EF¬ϕ where EFϕ , E(trueUϕ).
A(ϕUψ) has the obvious semantics. The modal connective
C(i, j, ϕ) is read as“agent i commits towards agent j to bring
about ϕ” or equivalently as “ϕ is committed to by i towards
j”. The modal connective Fu(C(i, j, ϕ)) is read as“C(i, j, ϕ) is
fulfilled (discharged)”and the modal connective Vi(C(i, j, ϕ))
is read as “C(i, j, ϕ) is violated”.

2.3 Semantics of CTLC
In order to define the semantics of CTLC formulae, a

Kripke model M = 〈W, I,Rt, Rc, V 〉 is associated to a given
interpreted system IS as follows: the set of reachable1 worlds
W is the set S of global states for the system; I ⊆W is the
set of initial states as defined in IS; the temporal transition
relation Rt ⊆ W ×W for the system is defined using the
local protocols and evolution functions and the two worlds
w and w′ are related by Rt (i.e., (w,w′) ∈ Rt) iff there ex-
ists a joint action (a1, . . . , an, ae) ∈ ACT such that for all
i ∈ A, ai and ae are enabled by the protocols Pi and Pe

respectively and ti(li(s), a1, . . . , an, ae) = li(s
′); the relation

Rc : W × A × A → 2W is the social accessibility relation
for social commitments. It is defined by w′ ∈ Rc(w, i, j)
iff ∃w′′ 6= w such that: 1) li(w) = li(w

′′) = li(w
′); and 2)

lj(w′′) = lj(w′); and V is an interpretation over the set of
atomic propositions as defined in IS.

The social accessibility relation Rc is transitive, symmet-
ric, and Euclidean. Thus, the resulting logic of social com-
mitments is K4B5 ≡KB5. In this relation: 1) li(w) =
li(w

′′)=li(w′) means that the local states of i in the global
states w, w′, and w′′ are indistinguishable; and 2) lj(w′′) =
lj(w′) means that the local states of j in global states w′′

and w′ are indistinguishable where w′′ 6= w. Intuitively,
w′ ∈ Rc(w, i, j) means there is an intermediate state w′′

so that there is no difference for the debtor i among be-
ing in w, w′′ and w′; however, for the creditor j there is
no difference between being in the intermediate state w′′

and accessible state w′. This accessibility relation captures
three fundamental issues: 1) the debtor’s uncertainty about
the current state (w′′ 6=w); 2) the unchangeability of the
debtor (li(w)=li(w

′)); and 3) the possible changeability of
the creditor because of the intermediate state.

A path (or computation) π = 〈wi, wi+1, wi+2, . . .〉 such
that for all i ≥ 0, (wi, wi+1) ∈ Rt is an infinite sequence of
reachable global states in the system. π(k) is the kth global
state of the path π. The set of all paths is denoted by Π,
whilst Πwi is the set of all paths starting at the given state
(wi ∈ W ). We define the set of states that are in the past
of w (Pas(w)) as follows:

Pas(w) = {w′ ∈W | (w′, w) ∈ Rt or ∃π ∈ Π such that

π = 〈w′, . . . , w, . . .〉} ∪ {w}

1W contains states in S that are reachable from I using Rt.

We also define the set of states that are in the future of w
(Fut(w)) as follows:

Fut(w) = {w′ ∈W | (w,w′) ∈ Rt or ∃π ∈ Π such that

π = 〈w, . . . , w′, . . .〉} ∪ {w}

Definition 2 (Satisfaction). Satisfaction for a CTLC
formula ϕ in the model M at a global state w, denoted as
〈M,w〉 |= ϕ, is recursively defined as follows:

• 〈M,w〉 |= p iff w ∈ V (p);

• 〈M,w〉 |= ¬ϕ iff M, 〈w〉 2 ϕ;

• 〈M,w〉 |= ϕ ∨ ψ iff 〈M,w〉 |= ϕ or 〈M,w〉 |= ψ;

• 〈M,w〉 |= EXϕ iff there exists a path π starting at w
such that 〈M,π(1)〉 |= ϕ;

• 〈M,w〉 |= E(ϕUψ) iff there exists a path π starting
at w such that for some k ≥ 0, 〈M,π(k)〉 |= ψ and
〈M,π(j)〉 |= ϕ for all 0 ≤ j < k;

• 〈M,w〉 |= EGϕ iff there exists a path π starting at w
such that 〈M,π(k)〉 |= ϕ for all k ≥ 0;

• 〈M,w〉 |= C(i, j, ϕ) iff Rc(w, i, j) 6= ∅ and for all global
states w′ ∈ W such that w′ ∈ Rc(w, i, j) we have
〈M,w′〉 |= ϕ;

• 〈M,w〉 |= Fu(C(i, j, ϕ)) iff there exists w′ such that:

1) 〈M,w′〉 |= C(i, j, ϕ); and 2) w ∈ Fut(w′); and
3) w ∈ Rc(w′, i, j);

• 〈M,w〉 |= Vi(C(i, j, ϕ)) iff there exists w′ such that:

1) 〈M,w′〉 |= C(i, j, ϕ); and 2) w ∈ Fut(w′); and
3) for all w′′ ∈ Pas(w) ∪ Fut(w) we have
w′′ /∈ Rc(w′, i, j).

Excluding the commitment and its fulfillment (discharge)
and violation, the semantics of CTLC state formulae is de-
fined in the model M as usual (semantics of CTL)—see for
example [6, 11]. The state formula C(i, j, ϕ) is satisfied in
the model M at w iff the set of accessible states obtained
by the social accessibility relation Rc(w, i, j) is not empty
and the content ϕ is true in every global state in this set.
Note that this semantics requires checking whether or not
Rc(w, i, j) 6= ∅ because the social accessibility relation is
not necessarily reflexive2 like for the epistemic accessibility
relation ∼i for agent i in the logic of knowledge [11]. In
this logic, the epistemic accessibility relation ∼i⊆ W ×W
represents that two global states are “indistinguishable” for
this agent. Formally, w ∼i w

′ iff li(w) = li(w
′) [11]. In

fact, the emptiness checking is compatible with the uncer-
tainty of agent i about the current state. The state formula
Fu(C(i, j, ϕ)) is satisfied in the model M at w iff there exists
a state w′ satisfying the commitment (condition 1) and the
current state (i.e., w) is both in the future of w′ and acces-
sible via the accessability relation Rc(w′, i, j) (conditions 2
and 3). The intuition behind Fu’s semantics is to ensure that
the current state w is reachable in terms of transitions and
accessible in terms of the social accessibility relation from
the state w′ where the commitment holds, because to be
fulfilled, the commitment should prior exist.

2This means that reflexivity is not always satisfied.
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Conversely, the state formula Vi(C(i, j, ϕ)) is satisfied in
the model M at w iff there exists a state w′ satisfying the
commitment and the current state (i.e., w) is in the fu-
ture of w′ such that every state both in the past and future
of w is not accessible in terms of the accessability relation
Rc(w′, i, j). The main motivation behind including Fu and
Vi modal connectives is to ensure that an agent can detect
if there exists a conflict among its commitment states. For
example, from the semantics, we can easily check that when
the commitment is violated, then there is no way to fulfill
it in the future and it has not been fulfilled in the past and
vice versa.

3. MODEL CHECKING CTLC FORMULAE
In a nutshell, given the model M representing a MAS w.r.t

the formalism of interpreted system IS and a formula ϕ in
CTLC describing a property, the problem of model check-
ing can be defined as establishing whether or not M |= ϕ,
i.e., ∀w ∈ I : 〈M,w〉 |= ϕ. Symbolic approaches have been
recently proven as an efficient technique to automatically
verify MASs [15, 18]. This is because these approaches use
less memory than automata-based approaches as their algo-
rithms are applied to Boolean Functions (BFs) not to Kripke
structures. In practice, space requirements for BFs that can
be represented using ordered binary decision diagrams (OB-
DDs) [4] are exponentially smaller than for explicit repre-
sentation. As a result, these approaches alleviate the “state
explosion” problem, but cannot eliminate it totally as the
space still increases when the model is getting larger.

In general, symbolic model checking techniques address
the state explosion problem by computing the set of states
satisfying ϕ in the model M (denoted by JϕK), which is rep-
resented in OBDDs and then comparing it against the set
of initial states I in M that is also represented in OBDD.
If I ⊆ JϕK, then the model M satisfies the formula; oth-
erwise a counter example can be generated showing why
the model does not satisfy the formula. This paper is only
concerned with developing a new symbolic model-checking
algorithm SMC(ϕ,M) to compute the set JϕK of states sat-
isfying a CTLC formula ϕ. This algorithm also provides a
methodology to build the OBDD corresponding to JϕK. For
example, when the sets of states are encoded using BFs,
all operations (e.g., intersection) on sets are translated into
operations (e.g., conjunction) on BFs.

3.1 Symbolic Model-Checking Algorithm
The basic idea of our main SMC(ϕ,M) algorithm is in-

spired by the standard symbolic procedure introduced in
[14] for computing the set of states in M satisfying the for-
mula ϕ in CTL (see Algorithm 1). In particular, we extend
this algorithm by adding the procedures that deal with the
new modalities of our logic. It starts by checking atomic
formulae (line 1) and Boolean operators: negation and dis-
junction (lines 2 and 3). In lines 4 to 6, the algorithm calls
the standard procedures SMCEX(ϕ1,M), SMCEU(ϕ1, ϕ2,M)
and SMCEG(ϕ1,M) introduced in [14] to check the formulae
having the forms EXϕ1, E(ϕ1Uϕ2) and EGϕ1 respectively. It
then checks the commitment modality (line 7) by calling the
procedure SMCc(i, j, ϕ1,M) (see Algorithms 2 and 3). The
algorithm proceeds to check the satisfiability of Fu(C(i, j,
ϕ1)) and Vi(C(i, j, ϕ1)) by calling respectively the proce-
dures SMCFu( i, j, ϕ1,M) (see Algorithm 4) and SMCVi(i, j,
ϕ1,M) (see Algorithm 5) (lines 8 and 9).

Algorithm 1 SMC(ϕ,M): the set JϕK satisfying the CTLC
formula ϕ

1: ϕ is an atomic formula: return V (ϕ)
2: ϕ is ¬ϕ1: return W\SMC(ϕ1,M)
3: ϕ is ϕ1 ∨ ϕ2: return SMC(ϕ1,M) ∪ SMC(ϕ2,M)
4: ϕ is EXϕ1: return SMCEX(ϕ1,M)
5: ϕ is E(ϕ1Uϕ2): return SMCEU(ϕ1, ϕ2,M)
6: ϕ is EGϕ1: return SMCEG(ϕ1,M)
7: ϕ is C(i, j, ϕ1): return SMCc(i, j, ϕ1,M)
8: ϕ is Fu(C(i, j, ϕ1)): return SMCFu(i, j, ϕ1,M)
9: ϕ is Vi(C(i, j, ϕ1)): return SMCVi(i, j, ϕ1,M)

3.1.1 BDD-based Algorithm for Commitments
We use the social accessibility relation Rc to compute the

set JC(i, j, ϕ)K of states in which the formula C(i, j, ϕ) holds,
as reported in the procedure of Algorithm 2. This procedure
firstly computes the set X1 of states in which the formula
ϕ holds where ϕ is the commitment content. It then builds
X2, the set of states that have at least one accessible state
via Rc and all the accessible states from each state in this
set (i.e., X2) are in X1, which means they satisfy ϕ. The setJC(i, j, ϕ)K is finally computed by returning the set X2.

Algorithm 2 SMCc(i, j, ϕ,M): the set JC(i, j, ϕ)K
1: X1 ← SMC(ϕ,M)
2: X2 ← {w ∈ W | Rc(w, i, j) 6= ∅ and ∀w′ ∈ Rc(w, i, j) we

have w′ ∈ X1}
3: return X2

Example 1. To clarify the computation of each set of
states in each proposed BDD-based algorithm, we consider
the following example. It consists of eight global states and
the transitions between them along with the social accessi-
bility relation Rc and the epistemic accessibility relations ∼i

and ∼j such that w1, w2, w3, w4, w5 and w8 hold the formula
ϕ and w7 does not satisfy ϕ (see Figure 1).
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Figure 1: An example of Rc along with ∼i and ∼j

Note that, w′ ∈ Rc(w, i, j) iff ∃w′′ 6= w such that w ∼i

w′′ ∼i w
′ and w′′ ∼j w

′. The reason behind using ∼i and
∼j in Figure 1 will be motivated later on. From example 1,
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the computation of SMCc algorithm (see Algorithm 2) is as
follows: X1 = {w1, w2, w3, w4, w5, w8}, X2 = {w1, w2, w3,
w4, w5}. Finally, the algorithm returns X2 (see Figure 1).

The procedure reported in Algorithm 2 represents a direct
implementation of the proposed semantics of the social com-
mitment modality. We can use an alternative procedure to
implement it, which is more efficient by using the negation
of the formula ϕ and the existential quantifier “∃” instead of
the universal one “∀” in computing the sets X1 and X2 (see
Algorithm 3). Note that, X3 ensures that Rc is not empty
and X2, in line 4, is the complement of X2. From example 1,
X1 = {w7} contains the states satisfying ¬ϕ, X2 = ∅, X3 =
{w1, w2, w3, w4, w5}, X2 = {w1, w2, w3, w4, w5, w6, w7, w8}
and X2 ∩ X3 = {w1, w2, w3, w4, w5}, which is the same re-
sult obtained by Algorithm 2 (see Figure 1).

Algorithm 3 SMCc(i, j, ϕ,M): the set JC(i, j, ϕ)K
1: X1 ← SMC(¬ϕ,M)
2: X2 ← {w ∈W | ∃w′ ∈ X1 such that w′ ∈ Rc(w, i, j)}
3: X3 ← {w ∈W | Rc(w, i, j) 6= ∅}
4: return X2 ∩X3

3.1.2 BDD-based Algorithm for Fulfillment
The procedure SMCFu(i, j, ϕ,M) starts with computing

the set X1 of states satisfying the commitment C(i, j, ϕ)
(see Algorithm 4). It then constructs the set X2 of ac-
cessible states that can “see” by means of the social ac-
cessibility relation Rc a state in X1. It then proceeds to
compute the set X3 of those states (i.e., X2), which are
reachable using transitions from the states in X1 by calling
the procedure Future(X1) (see Algorithm 7). From exam-
ple 1, X1 ={w1, w2, w3, w4, w5}, X2 = {w1, w2, w3, w4, w5},
Future(X1) = {w1, w2, w3, w4, w5, w6, w7, w8} and X3 =
Future(X1) ∩ X2 = {w1, w2, w3, w4, w5}. The algorithm
finally returns X3 (see Figure 1). It is clear that the main
motivation of computing X3 is to eliminate the states that
are reachable but never accessible from the states of X1 (e.g.,
w8).

Algorithm 4 SMCFu(i, j, ϕ,M): the set JFu(C(i, j, ϕ))K
1: X1 ← SMCc(i, j, ϕ,M)
2: X2 ← {w ∈W | ∃w′ ∈ X1 and w ∈ Rc(w′, i, j)}
3: X3 ← Future(X1) ∩X2

4: return X3

3.1.3 BDD-based Algorithm for Violation
The procedure SMCVi(i, j, ϕ,M) starts with computing

the set X1 of states satisfying the commitment C(i, j, ϕ). It
then computes the set X2 of those states, which are accessi-
ble and reachable from each state w′ in X1 via the social ac-
cessibility relation and transitions. The procedure proceeds
to compute the set X4 of all global states in the system that
are not reachable from and cannot reach the accessible states
in X2. Finally, the procedure returns those states (i.e., in
X4), which are in the future of states where the commit-
ment holds (i.e., X3∩X4) (see Algorithm 5). From example
1, X1 = {w1, w2, w3, w4, w5}, X2 = {w1, w2, w3, w4, w5},
X3 = Future(X1) = {w1, w2, w3, w4, w5, w6, w7, w8} and
X4 = W−Past(X2) ∪ Future(X)2 = {w6, w7}. Finally,
the algorithm returns X3 ∩X4 = {w6, w7}. From Figure 1,

Algorithm 5 SMCVi(i, j, ϕ,M): the set JVi(C(i, j, ϕ))K
1: X1 ← SMCc(i, j, ϕ,M)
2: X2 ← {w ∈ W | ∃w′ ∈ X1 and w ∈ Rc(w′, i, j) ∩
Future({w′})}

3: X3 ← Future(X1)
4: X4 ←W − (Past(X2) ∪ Future(X2))}
5: return X3 ∩X4

it is obvious that w6 and w7 are the two states where the
commitment C(i, j, ϕ) holding at w1 is violated as they are
reachable but not accessible from w1.

The above Algorithm 5 calls two procedures Past(X) and
Future(X) that compute the set of past (resp. future) states
of X (see Algorithms 6 and 7). Algorithm 6 reports the pro-
cedure Past(X) by calling the standard procedure pre∃(X)

Algorithm 6 Past(X): the set of past states of X

1: Y ← pre∃(X) ∪X
2: Z ← ∅
3: While Z 6= Y do

4: Z′ ← Z
5: Z ← Y
6: Y ← Y ∪ pre∃(Y − Z′)
7: end While

8: return Y

introduced in [14]. The main idea of Past(X) procedure is to
iterate using while...do construct over the set of past states
captured by pre∃(X) until reaching the fix-point. Note that,
line 1 reflects the idea that each state is the past of itself.
The procedure pre∃(X) takes a set X ⊆ W as input and
computes the set of states Y ⊆ W such that a transition is
enabled to a state in X. Formally:

Y=pre∃(X)← {w ∈W | ∃w′ s.t. w′ ∈ X and (w,w′) ∈ Rt}
Similarly, the procedure Future(X) depends on the pro-

cedure next∃(X), which is computationally the dual of the
procedure pre∃(X) (i.e., it computes the next states enabled
by the transition from the current state). The next∃(X)
procedure is formally defined as follows:

Y=next∃(X)← {w ∈W | ∃w′ s.t. w′ ∈ X and (w′, w) ∈ Rt}

Algorithm 7 Future(X): the set of future states of X

1: Y ← next∃(X) ∪X
2: Z ← ∅
3: While Z 6= Y do

4: Z′ ← Z
5: Z ← Y
6: Y ← Y ∪ next∃(Y − Z′)
7: end While

8: return Y

This section is concluded by the following theorem:

Theorem 1. Model checking CTLC is polynomial-time
reducible to the problem of model checking CTLK, the com-
bination of CTL with the logic of knowledge (i.e., CTLC ≤p

CTLK).

Proof. In order to prove this theorem, we present the
semantics of the epistemic modality Kiϕ, which means“agent
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i knows ϕ” [17]. Given a formula ϕ of CTLK, 〈M,w〉 |= Kiϕ
iff for all w′ ∈W such that w ∼i w

′ we have 〈M,w′〉 |= ϕ.
Let ψ be a formula in CTLC, based on the structure of

the formula ψ, three cases should be analyzed:
Case 1: ψ = C(i, j, ϕ).

From Section 2.3, w′ ∈ Rc(w, i, j) iff ∃w′′ 6= w such that
w ∼i w

′′ ∼i w
′ and w′′ ∼j w

′. Therefore:
1) if w 6= w′ then w′ ∈ Rc(w, i, j) iff w ∼i w

′ as ∼i and ∼j

are reflexive. Because the comparison of w and w′ can be
done in a polynomial time, the reduction in this case can be
done in a polynomial amount of time.
2) if w=w′, to check if w′∈Rc(w, i, j), we use the algorithm:

for all w′′ such that w ∼i w
′′

if w′′ ∼j w return true
return false

Since this algorithm is linear with the size of the model, the
reduction of Case 1 can be done in a polynomial amount of
time.

Case 2: ψ = Fu(C(i, j, ϕ)).
In this case, three steps are needed: 1) 〈M,w′〉 |= C(i, j, ϕ);

2) w ∈ Fut(w′); and 3) w ∈ Rc(w′, i, j). Step 1 is reducible
in a polynomial time (Case 1). Step 2 is reducible to the
future in CTLK in a polynomial time. Step 3 can be done
in a polynomial time (see Case 1). Thus, the reduction of
Case 2 can be also done in a polynomial amount of time.

Case 3: ψ = Vi(C(i, j, ϕ)).
In this case, three steps are also needed: 1) 〈M,w′〉 |=

C(i, j, ϕ); 2) w ∈ Fut(w′); and 3) for all w′′ ∈ Pas(w) ∪
Fut(w) we have w′′ /∈ Rc(w′, i, j). Steps 1 and 2 are likewise
steps 1 and 2 in Case 2. In step 3, checking the membership
is linear with the size of the model and since the union of 2
sets can be done in a polynomial time, then the reduction
of Case 3 can also be done in a polynomial amount of time,
which completes the proof.

It is obvious that model checking CTL is also polynomial-
time reducible to the problem of model checking CTLC. We
can conclude that CTL ≤p CTLC ≤p CTLK).

4. IMPLEMENTATION
This section includes a description of the extensions made

on top of MCMAS to implement our BDD-based algorithms
presented in Section 3.1. MCMAS [15] is developed par-
ticularly to verify MASs formalized using the interpreted
systems. It also implements BDD-based algorithms to ver-
ify CTL modal connectives, epistemic logic, alternating time
logic and deontic operators. MCMAS is developed in C++
and uses the efficient CUDD library that provides BDD data
structure and performs OBDD operations and asynchronous
variable reordering. It also provides fairness, counter-examples,
witness generation and interactive execution.

4.1 BDD-based Algorithm of Commitments
As we mentioned, the needed BDD-based algorithms of

CTL modal connectives are implemented in MCMAS. In or-
der to fully implement the BDD-based algorithm SMCc of
social commitments on top of MCMAS, we need to perform
the following two steps: 1) extend the method check formulae

in the modal formulae class in the parser directory to han-
del the new commitment modality C; and 2) add the new
BDD-based algorithm of commitment modality C along with
other related methods into utilities.cc in the utilities

directory. The motivation behind step 1 is to enforce the

MCMAS’s syntax [15] to accept the proposed new grammar
specified in Definition 2.2. To achieve step 2, the BDD-based
algorithm of social commitments (see Algorithm 3) is rewrit-
ten using the epistemic accessibility relations (i.e., ∼i and
∼j) that define our social accessibility relation Rc. The set

Algorithm 8 SMCc(i, j, ϕ,M): the set JC(i, j, ϕ)K
1: X1 ← SMC(¬ϕ,M)
2: X ′2 ← {w∈W | ∃w′∈X1 such that w ∼i w

′ and w ∼j w
′}

3: X ′′2 ← {w∈W | ∃w′∈X ′2 such that w ∼i w
′ and w 6= w′}

4: X3 ← {w∈W | ∃w′∈W such that w ∼i w
′ and w 6= w′}

5: return (W−X ′′2 ) ∩X3

X2 in the original BDD-based algorithm of social commit-
ments is refined into two sets X ′2 and X ′′2 w.r.t. ∼i,∼j and
∼i respectively. Also, the set X3 that checks the emptiness
of Rc, in Algorithm 3, is rewritten w.r.t. ∼i (see Algorithm
8). The set JC(i, j, ϕ)K is finally computed by returning the
set of all global states W , which differs from the states ac-
cessible from states satisfying ¬ϕ (i.e., X ′′2 ) and accessible
from all states in W w.r.t ∼i (i.e., in X3)

In a similar way, we can easily perform the above two
steps to implement the BDD-based algorithms SMCFu and
SMCVi of Fu and Vi modal connectives respectively.

4.2 A Motivating Case Study
In this section, we provide a description of our motivating

case study, called the NetBill protocol [20], which we used
to evaluate the effectiveness of the proposed model-checking
algorithm. The NetBill protocol is a security and transaction
protocol optimized for the selling and delivery of low-priced
information goods over the Internet. The original wording
from [20] is as follows:

“The NetBill payment protocol is eight steps (see Figure
2). The first message requests a quote based on the cus-
tomer’s identity, to allow for customized per-user pricing,
such volume discounts or support for subscriptions. If the
quote (step two) is accepted (step three), the merchant sends

Account 

Funding

Customer Merchant

1: Request Quote 

2: Present Quote

3: Accept Quote

NetBill Server

6: Send EPO and Key

NetBill's BankCustomer's Bank Merchant's Bank

Batch

Payment

4: Deliver Goods

5: Send EPO

8: Send Receipt

7: Send Receipt

Figure 2: The NetBill payment protocol

the digital information to the customer (step four) but en-
crypts and withholds the key. The customer software con-
structs an electronic payment order (EPO) describing the
transaction and including cryptographic checksum of the goods
received. The order is signed with the customer’s private
key and sent to the merchant, who verifies its contents, ap-
pends the key for decrypting the goods, endorses the EPO
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with a digital signature and sends it on to the NetBill server.
The NetBill server verifies funds in the customer’s NetBill
account, debiting the customer and crediting the merchant,
and digitally signed receipt, including the key to decrypt the
goods, is sent first to the merchant and then on to the cus-
tomer. The customer software can now decrypt the pur-
chased information and present it to the customer”.

Modeling NetBill Protocol
We used our formal model M = 〈W, I,Rt, Rc, V 〉 associated
to the interpreted system IS to model the NetBill Protocol.
As in [9, 23], we omit the banking procedures by assum-
ing that if a merchant gets an EPO, he can take care of
it successfully. In this setting, the protocol rules interac-
tions among two agents: the merchant (Mer) and customer
(Cus). Each agent has a set of local states, a set of local
actions, local protocol, local evolution function and local ini-
tial state. Because of space limit, we omit the details of the
modeling process. As in [9, 23], the following abbreviations
capture the commitments that exist in this protocol:
• acceptQuote abbreviates goods → C(Cus,Mer, pay),

which means that the customer commits to pay the
agreed amount if he receives the goods.

• promiseGoods abbreviates acceptQuote→ C(Mer, Cus,
goods), which means that the merchant commits to
sending the requested goods if the customer commits
to paying the agreed amount.

• promiseReceipt abbreviates pay → C(Mer,Cus, receipt),
which means that the merchant commits to sending
the receipt if the customer pays the agreed amount.

• offer abbreviates promiseGoods ∧ promiseReceipt.

The above commitments are established by exchanging mes-
sages among agents. These messages can also bring about
certain propositions. For example, by exchanging “send
Goods” message, we can realize the proposition “goods”.

Specifications
To verify the NetBill protocol, various protocol properties
are formalized using CTLC logic w.r.t the model M .

Reachability property. Given a particular state, is there
a valid computation sequences to reach that state from an
initial state. The following lists the formulae that can be
used to check the reachable states in the NetBill protocol:

ϕ1 =E(¬goods U (goods ∧ C(Cus,Mer, pay)))

ϕ2 =E(¬acceptQuote U (acceptQuote ∧ C(Mer,Cus, goods)))

ϕ3 =E(¬pay U (pay ∧ C(Mer,Cus, receipt)))

For example, the formula ϕ1 means that there exists a path
where the customer will not commit to send payment to the
merchant until he receives the requested goods.

Safety property. This property means “something bad
never happens”. For example, a bad situation is: the cus-
tomer sends payment, but the merchant never commits to
send the receipt to him:

ϕ4 =AG ¬(pay ∧ ¬C(Mer,Cus, receipt))

Liveness property. This property means “something good
will eventually happen”. For example, in all paths globally
if the customer requests a price quote, then in all paths in
the future the merchant will commit to deliver the goods:

ϕ5 =AG(reqQuote→ AF (C(Mer,Cus, goods))

Fulfillment Commitment. While verifying the behavior of
agents for commitment fulfillment, it is crucial to verify some
conditions under which the commitment fulfillment can oc-
cur. For example, when the customer sends the payment to
the merchant, the commitment is successfully fulfilled:

ϕ6 =EF Fu(C(Cus,Mer, pay))

Violation Commitment. In a similar way, when the customer
fails to send the agreed amount of payment to the merchant,
the commitment is violated as the customer violates the pro-
tocol specification:

ϕ7 =EF Vi(C(Cus,Mer, pay))

4.3 Experimental Results
We encoded the NetBill protocol and the above proper-

ties in the ISPL model and verified them using the proposed
algorithm implemented on top of MCMAS. In order to pro-
vide a thorough assessment, we tested our implementation
on 10 experiments (see Table 1). These experiments are
ranged from 1 customer requests goods from 1 merchant to
10 customers request goods from 10 merchants. The ex-
periments were meant to check the effectiveness of the pro-
posed algorithm in terms of execution time and memory in
use. They are performed on an AMD Phenom(tm) 9600B
Quad-Core Processor with 8GB memory running Fedora 12
x86 64 Linux. In fact, from experiment 2 we rewrite the
defined properties in a parameterized form, for example in
experiment 10:

ϕ′1 = E(

10∧
i=1

¬goodsi U

10∧
i=1

goodsi

10∧
i=1

C(Cusi,Meri, payi))

which means that there exists a path where the ten cus-
tomers will not commit to send payment to the ten mer-
chants until they receive the requested goods.

Table 1 reports the number of reachable states, the execu-
tion time (in seconds) and BDD memory in use (in MBs) ob-
tained in the verification of the NetBill protocol against the
above properties, as a function of the number of customer
and merchant agents (first and second columns). We found

Table 1: Verification Results
#Cus #Mer #States Memory Time

1 1 10 8.6 MB < 0.01s
2 2 43 8.971 MB < 0.01s
3 3 239 9.958 MB < 0.01s
4 4 1597 12.056 MB < 0.01s
5 5 11545 16.856 MB 1s
6 6 88055 36.134 MB 2s
7 7 708461 45.592 MB 8s
8 8 6.01734e+06 56.28 MB 29s
9 9 5.25729e+07 94.36 MB 426s
10 10 4.59517e+08 153.008 MB 1128s

that: 1) all the defined properties hold in the 10 experiments;
and 2) the execution time and number of reachable states
increase exponentially when the number of agents increases
because the number of Boolean variables required to encode
agents increases. However, the memory consumption does
not increase exponentially because OBDDs encoding may
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change from one model to another based on some internal
optimization techniques. Furthermore, we did not compare
our approach with others because unlike our proposal, they
are based upon the translation process and do not use a
dedicated model checker.

5. CONCLUSION AND FUTURE WORK
To have a full and dedicated model checking for social

commitments and related concepts such as fulfillment and
violation, a new temporal logic, called CTLC, is presented
in this paper. Without such a logic, these concepts can only
be encoded and abstracted as simple variables, processes or
data structures in existing model checkers. Our CTLC logic
extends CTL with modalities for social commitments and
their fulfilment and violation. We developed a new model-
checking algorithm that extended MCMAS to be able to
verify commitments. We proved that the problem of model
checking CTLC is polynomial-time reducible to the problem
of model checking CTLK. In our implementation, we con-
ducted 10 experiments, which demonstrate the effectiveness
of our algorithm in terms of execution time and memory con-
sumption. As future work, we plan to extend the proposed
logic and its model checking to consider conditional com-
mitments and commitment actions such as cancel, release,
assign and delegate.
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ABSTRACT
We present a novel approach to interaction-oriented pro-
gramming based on declaratively representing communica-
tion protocols. Our approach exhibits the following distin-
guishing features. First, it treats a protocol as an engi-
neering abstraction in its own right. Second, it models a
protocol in terms of the information that the protocol needs
to proceed (so agents enact it properly) and the information
the protocol would produce (when it is enacted). Third, it
naturally maps traditional operational constraints to the in-
formation needs of protocols, thereby obtaining the desired
interactions without additional effort or reasoning. Fourth,
our approach naturally supports shared nothing enactments:
everything of relevance is included in the communications
and no separate global state need be maintained. Fifth, our
approach accommodates, but does not require, formal rep-
resentations of the meanings of the protocols. We evaluate
this approach via examples from the literature.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent systems; D.2.1 [Software Engineer-
ing]: Requirements Specifications—Methodologies; H.1.0 [In-
formation Systems]: Models and Principles—General

General Terms
Theory, Design

Keywords
Business process modeling, business protocols

1. INTRODUCTION
Interaction-oriented programming or IOP is concerned with

the engineering of systems comprising two or more autonomous
and heterogeneous components or agents. Such systems
arise commonly in IT applications such as cross-organizational
business processes and scientific collaboration. The key idea
of IOP is that treating interactions as first-class concepts
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the Blindingly Simple Protocol Language, Munindar P. Singh, Proc. of
10th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.),
May, 2–6, 2011, Taipei, Taiwan, pp. 491-498.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

helps create systems whose participating agents can be in-
dependently designed and operated, with correctness judged
largely based on their effective participation in the speci-
fied interactions. We model interactions as communications
(messages sent by one agent to another), even though in
some cases they may involve physical actions such as deliv-
ering a package or controlling an ocean glider. We specify
interactions abstractly as arising between roles, each role a
discrete conceptual party instantiated by one or more agents.

A protocol is a specification of (presumably, conceptually
cohesive and suitably structured) communications among
two or more agents that neglects the internal reasoning of the
agents involved [3]. Two aspects of a protocol are relevant:
(i) operations, to do with message occurrence and order; and,
(ii) meaning, to do with the (business) import of the mes-
sages. Traditional approaches capture the operations proce-
durally but disregard the meaning. Procedural approaches
are generally over-specified, rigid, and difficult to maintain,
but yield obvious directives for agents and, hence, can be
easy to realize. The declarative operational approaches sup-
port asserting operational constraints in logic, and offer in-
creased clarity and flexibility. However, neither kind of ap-
proach handles the challenges of distributed computing well,
especially to determine correct local enactments.

In contrast, a business protocol is one where we primarily
or exclusively state the meanings of its messages and only
indirectly any operational constraints on them [12]. Em-
phasizing meaning improves flexibility and maintainability.
However, the meaning-based approaches rely upon a suitable
characterization of the operations to unambiguously assign
meanings to communications. Thus, existing approaches,
whether procedural or declarative, end up specifying inter-
actions in terms of the allowed orderings of messages.

Contributions. Our main motivation is to provide a simple
declarative foundation for the operational underpinnings of
IOP. We propose a novel declarative approach that (i) sim-
plifies the operational details and (ii) cleanly separates op-
erations from meanings, yet supports specifying meanings
overlaid on operations. We claim that our approach is ex-
tremely simple: it has only two main constructs: (i) defining
a message schema and (ii) composing existing protocols. Ac-
cordingly, we have dubbed it BSPL, the Blindingly Simple
Protocol Language. BSPL states no constraints on the order-
ing or occurrence of messages, deriving any such constraints
from the information specifications of message schemas. It
treats interaction as first class and supports protocol compo-
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sition at its core. BSPL forces specifiers to be clear about the
essential constraints, thereby helping them exclude spurious
constraints that plague traditional approaches. It supports
clear well-formedness conditions under which the specified
protocols can be shown to be enactable. We show how BSPL
captures a variety of common and subtle protocols.

Organization. Section 2 identifies some of the key princi-
ples that guide our approach. Section 3 introduces BSPL, in-
cluding its motivation, syntax, intended semantics and sev-
eral examples illustrating specification and composition of
protocols. Section 4 suggests how a suitable semantics of
BSPL may be formalized. Section 5 compares BSPL with
two existing approaches based on protocols from the finan-
cial domain, demonstrating its advantages. Section 6 dis-
cusses related work and some directions for future research.

2. PRINCIPLES OF BSPL
The following principles distinguish our approach to IOP.

Information orientation. In information systems, agents
interact with each other because they wish to obtain
or convey information. Thus we specify each proto-
col as involving not only two or more roles but also
one or more parameters, which stand in for the actual
information items to be exchanged among the agents
playing the roles during enactment.

Explicit causality. The flow of causality is reflected in the
flow of information: there are no hidden flows of causal-
ity because there are no hidden flows of information.
Indeed, if there were any hidden flows, then the very
idea of protocols as a basis for IOP would be called
into question.

No state. We need no global repository of state. All the
relevant information affecting the notional social state
of an interaction is explicit within the protocol—in the
values of the parameters of the messages exchanged.
No agent’s private business logic is relevant, which is
a key motivation for IOP.

Separating structure from meaning. The structure of
a protocol is completely characterized by the names
of the entities in its specification; the meaning relies
upon the values exchanged during enactment. A pro-
tocol ought not to constrain the values directly since
realizing such constraints would depend upon the im-
plementations of agents. Instead, we would place any
relevant constraints in the meaning layer, usually in
terms of the commitments of the participants [12].

Putting the above observations together leads us to an
extensive treatment of parameters. Parameters on messages
are obvious, but we expand them to apply on protocols gen-
erally. Crucially, we adorn each parameter of a protocol
with a specification of whether the parameter must be an
input or an output of the protocol. Importantly, the adorn-
ments of the parameters are interpreted with respect to the
protocol itself, not with respect to any role of the protocol.
Thus, the adornment pinq means that the associated param-
eter must be instantiated so as to enact the protocol, i.e.,
“exogenously” or “externally” to the protocol. And, poutq
means that the associated parameter must be instantiated

in the course of enacting the protocol—i.e., it is instantiated
“endogenously” or “internally” to the protocol. Consider a
quote message as part of a price discovery protocol that in-
cludes an item description and a price, and may be sent
in response to a request for quotes for a particular item.
Clearly, for the quote message to be sent, its sender must
instantiate all of its parameters. However, from the stand-
point of the protocol, the item description is provided from
outside the protocol and the price is provided by the proto-
col to the outside. Thus we would adorn the item description
with pinq and the price with poutq.

As indicated above, parameters and their adornments ap-
ply not only to individual messages but to entire protocols.
For example, we might model Shipping as involving a pa-
rameter address with adornment pinq. This indicates that
Shipping does not determine the address, but must be“told”
it. Conversely, the Window Shopping protocol (involving
roles shopper and storefront) would have parameters
what and howmuch, each with an adornment poutq. This
indicates that Window Shopping would yield information
about what the storefront is selling for how much.

Sometimes, the interaction explicitly demands a flow of
information. For example, it is not possible for a bank
to transfer funds without knowing how much and to what
account. Therefore, a transfer message must follow a re-
quest that specifies the amount and the account. At other
times, we may impose an ordering for “conventional” rea-
sons. For example, although payment and delivery may oc-
cur concurrently once the item and price are determined, we
may impose an ordering arbitrarily. For example, in a fast-
food restaurant the customer pays first and in a traditional
restaurant the customer pays at the end. We capture such
conventions in our causal ordering by explicitly introducing
suitable parameters, e.g., we may model the payment mes-
sage as having a token adorned poutq that is adorned pinq on
delivery. Another example of a convention is where a buyer
must show a proof of age before buying an alcoholic drink.
We can introduce a parameter ageProof to handle this case.

Our information orientation leads us to make three crucial
assumptions, all based on treating a protocol as a concep-
tual entity or relation [5] whose instances or tuples are its
enactments. Protocols are meant to be instantiated multiple
times. For example, many agents would use Purchase to buy
and sell many items, yielding a distinct instance (tuple) for
each enactment. (In passing, we note that although we talk
of relations here, practical BSPL settings would often use
XML and parameters might be bound to XML documents.)

Uniqueness. We introduce the notion that some or all of a
protocol’s parameters define a key, which characterizes
the expected uniqueness of the enactment: at most one
enactment instance may occur one per key binding.

Integrity. Analogous to NOT NULL constraints on rela-
tions, each required public parameter in a complete
protocol enactment must be bound. Otherwise, that
means the enactment viewed as a tuple is incomplete.

Immutability. Each enactment viewed as an entity instance
is immutable. That is, the parameters can be bound
multiply often, but the different bindings arise in dif-
ferent enactments. Immutability provides robustness
against asynchrony, because it ensures bindings are
never ambiguous or out of date.
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Together, the above assumptions delimit an enactment: it
must proceed sufficiently to generate at least one tuple of
parameter bindings; any additional duplication of parame-
ter values is superfluous. This provides a general, princi-
pled basis for termination that contrasts both with proce-
dural approaches (explicit enumeration of terminal states)
and meaning-based approaches (termination as achieving a
requisite meaning state, such as having no pending uncon-
ditional commitments). The latter treats termination the
same as never beginning, which is operationally false. Fur-
ther, it rejects protocols whose main purpose is to create
unconditional commitments: thus it would formulate a ne-
gotiation protocol as producing conditional commitments,
but then all or nearly all of its states would be terminal.

Protocols may be composed [3]. For example, we may
define Purchase as a composition of Order, Payment, and
Shipping. A fundamental tenet of our approach is that we
make no distinction between individual or composite proto-
cols. A composite protocol is expressed, assigned a formal
semantics, and enacted the same way as any other protocol.
The only difference might be that the constituent protocols
generally exist before the design episode and the composite
protocols are created during the design episode. As we re-
marked above, a message is the unit of interaction. Thus a
single message is an atomic protocol.

The main benefit of composing protocols is to facilitate the
reuse of designs and implementations by supporting multi-
ple ways to compose the same protocols. Further, proto-
col composition offers a principled basis for adapting cross-
organizational process models to capture evolving require-
ments, as in Desai et al.’s [2] approach.

Each protocol name is unique within our universe of dis-
course. Each protocol defines a scope (a unique namespace)
within which its roles, parameters, and messages are also
uniquely named. The roles and parameters of a protocol
identify its public interface. In logical terms, a role acts as
a kind of parameter, but semantically, they are quite dif-
ferent: a role corresponds to an executing agent whereas a
parameter corresponds to a data item.

3. BSPL: LANGUAGE AND PATTERNS
Based on the foregoing, we define a protocol as consisting

of exactly one message schema (template) or of the compo-
sition of two or more protocols. Although this is mathemat-
ically satisfactory, for practical convenience, we define the
syntax of BSPL in a somewhat more conventional manner.
The following is the syntax along with brief explanations.
Superscripts of + and ∗ indicate one or more and zero or
more repetitions, respectively. Below, b and c delimit ex-
pressions, considered optional if without a superscript. For
simplicity, we state cardinality restrictions informally.

For readability, we include some syntactic sugar tokens.
In listings, we write reserved keywords in small sans serif,
capitalize role names, and write parameters in camel case.
In the text, we write message and protocol names Slanted,
roles in small caps, and parameters in sans serif. We insert
p and q as delimiters, as in pSelf 7→ Other: hello[ID, name]q.

L1. A protocol declaration consists of exactly one name,
two or more roles, one or more parameters, and one or
more references to constituent protocols or messages. A
nilable parameter, ignored here for brevity, can remain
unbound. All the parameters marked key (cannot be

nilable) together form the key of this declaration.

Protocol −→ Name { role Role+

parameter bParameterbkey|bnilablecc+ Reference∗ }
L2. A reference consists of the name of a protocol ap-

pended by the same number of roles and parameters
as in its declaration. At least one of the parameters of
the reference must be a key parameter of the declara-
tion in which it occurs: this ensures the enactments of
the reference relate to those of the current declaration.

Reference −→ Name ( Role+ Parameter+ )

L3. Alternatively, a reference is a message schema, and
consists of exactly one name along with exactly two
roles, one or more parameters (at least one a key pa-
rameter of the declaration), and optionally a meaning.

Reference −→ Role 7→ Role : Name [ Parameter+ ]
bmeans Expressionc

L4. Each parameter consists of a name and an optional
adornment.

Parameter −→ bAdornmentc Name

L5. An adornment is generally either pinq or poutq. It may
be pnilq in a reference to indicate that the adorned pa-
rameter is unknown, which can be crucial in some cases.

Adornment −→ in | out | nil

Now, we introduce a series of examples of BSPL as a way
to informally describe its semantics. We omit the means
clauses in our development but revisit them in Section 6.

3.1 Simple Protocol Declarations
Listing 1 demonstrates BSPL to define the simple Pay

protocol. Pay consists of two roles and one message con-
sisting of two parameters, ID and amount. We adorn both
parameters pinq to indicate that they must be known (sup-
plied) to enact Pay. In other words, a multiagent system
must enact Pay in combination with some one or more other
protocols that determine ID and amount. Because ID is the
key, at most one payment may be made for a given ID value.

Listing 1: The Pay protocol.
Pay {
role Payer , Payee
parameter in ID key , in amount

Payer 7→ Payee : payM[ in ID , in amount ]
}

Listing 2 shows Offer, which serves as a way to generate
a price offer. Notice that both item and price are adorned
poutq, indicating that Offer would compute these parame-
ters endogenously. Here, the buyer generates item and the
seller generates price, since these parameters are adorned
poutq in messages to be sent by these roles. Thus, Offer can
generate the amount (if identified with price) needed to enact
Pay. Conversely, ID is adorned pinq, meaning that Offer can
only be used in combination with another protocol in which
ID (suitably renamed if necessary) is adorned poutq.

Listing 2: The Offer protocol.
Of fe r {
role Buyer , S e l l e r
parameter in ID key , out item , out p r i c e
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Buyer 7→ S e l l e r : r f q [ in ID , out item ]
S e l l e r 7→ Buyer : quote [ in ID , in item , out

p r i c e ]
}

Listing 3 shows Order, which as formalized here repeats
the entire Offer. Section 3.2 shows how to avoid such redun-
dancy through composition. Notice that Listing 3 includes
a parameter rID, which is adorned poutq in the protocol’s
interface as well as in the accept and reject messages. Each
of these placements has an important ramification. First, if
we were to omit rID from Order’s interface, its enactments
would complete as soon as quote was sent, because all its
parameters would then be bound. In other words, the enact-
ment would complete prematurely. BSPL does not support
separately requiring accept or reject, because doing so would
violate the principle of explicit causality. Second, the pres-
ence of rID in both accept and reject indicates mutual ex-
clusion of those two messages: simply because a parameter
cannot be bound more than once in any enactment.

Listing 3: The Order protocol.
Order {
role B, S
parameter in ID key , out item , out pr i ce , out rID

B 7→ S : r f q [ in ID , out item ]
S 7→ B: quote [ in ID , in item , out p r i c e ]

B 7→ S : accept [ in ID , in item , in pr i ce , out rID ]
B 7→ S : r e j e c t [ in ID , in item , in pr i ce , out rID ]
}

3.2 Composing a Protocol
The power of protocols in modeling arises from the fact

that they can be readily composed [3]. BSPL makes no
distinction between a protocol that happens to be composed
and one that is not. Indeed, each message can be viewed as
a protocol in its own right. Listing 4 expresses the message
pFrom 7→ To: aMessage[in one, out two]q as a protocol.

Listing 4: A message viewed as a protocol.
Message−as−Protoco l {
role From , To
parameter in one key , out two key

From 7→ To : aMessage [ in one , out two ]
}

Taking the same idea further, Listing 5 expresses Order as
a composition of Offer and two protocols corresponding to
the other messages defined in Listing 3. Even if we changed
the role and parameter names, Listings 3 and 5 would remain
semantically identical.

Listing 5: Order expressed as a composition.
Order {
role B, S
parameter in ID key , out item , out pr i ce , out rID

Of f e r (S , B, in ID , out item out p r i c e )
acceptProt (B, S , in ID , in item , in pr i ce , out

rID )
r e j e c tP r o t (B, S , in ID , in item , in pr i ce , out

rID )
}

3.3 More on Parameters in Protocols
Parameters are crucial to BSPL. We adorn the parameters

not only in a declaration but also in each reference, including
the individual messages. In general, such adornments are
essential for capturing any constraints on what parameter
bindings to propagate in what direction.

Listing 2 demonstrates two important well-formedness re-
quirements on protocols. One, a parameter that is adorned
pinq in a declaration must be pinq throughout its body. For
brevity, we may sometimes omit such pinq adornments, but
such parameters can take no adornment other than pinq.
Two, a parameter that is adorned poutq in the declaration
must be poutq in at least one reference. At run time, at most
one reference with an poutq adornment for a parameter may
be enacted: thus such references are mutually exclusive.

If a parameter is adorned in a protocol declaration P, then
any reference to P must apply the same adornment to that
parameter. Otherwise, it would not be clear what propaga-
tion was appropriate. But we can leave some or all of P’s
parameters unadorned in a declaration or reference, thus
signifying that propagation in both directions is permissible
for that declaration or reference. We can think of this as the
in–out adornment. When we refer to P from another proto-
col declaration, we may choose adornments for any of such
unadorned parameters of P as a simple way to disambiguate
the direction of information propagation.

Importantly, a top-level protocol declaration—one that
stands alone and is ready to be enacted—must adorn all
its parameters poutq. Another way to think of this is as
follows. For enactment, every parameter adorned pinq must
have its value supplied through some other protocol, such as
a message to one of the enacting agents, which would indi-
cate that the given protocol omits relevant communications
and therefore is not enactable in itself.

3.4 Common Specification Patterns
We now present some examples demonstrating the main

concepts and typical usage of BSPL.

3.4.1 Duplicating a Parameter
Sometimes a role that needs to obtain a parameter binding

might not be receiving it. Listing 6 shows how the originator
of the binding can send a duplicate copy to another role. Be-
cause Duplicating has an pinq parameter, it is not enactable
by itself. Here, we presume the originator produces a prior
message in which aParameter is adorned poutq.

Listing 6: Duplicating a parameter.
Dupl icate−Parameter {
role Orig inator , Consumer
parameter in aParameter key

Or ig ina to r 7→ Consumer : share [ in aParameter ]
}

3.4.2 Generating an Identifier
A consequence of the information basis of BSPL is that

the correctness of a protocol depends upon its keys. To
facilitate composition in multiple contexts, it is convenient
to define protocols that adorn an identifying parameter as
pinq, which means that such protocols cannot be enacted
standalone. Listing 7 shows a simple protocol that generates
an identifier, which can thus drive other protocols.
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Listing 7: Generating an identifier.
Generate−I d e n t i f i e r {
role Authority , Subject
parameter out ID key

Authority 7→ Subject : announce [ out ID ]
}

3.4.3 Local Parameters
A local parameter occurs within a protocol declaration

but is not exposed in its public interface. Often, such a pa-
rameter may be essential for carrying out the desired inter-
action and thus would be included in underlying messages,
but may not feature as an essential public interface of a pro-
tocol. Listing 8 shows a variant of Purchase in which the
destination address is computed and used, but not deemed
relevant for exposing from the overall interaction. Hence,
if we were to refer to this Purchase variant from another
declaration, we would not be able to refer to address.

Listing 8: Variant of Purchase with hidden address.
Purchase {
role B, S , Shipper
parameter in ID key , out what , out howmuch

Order (B, S , in ID , out what , out howmuch)
Decide−Address (B, S , in ID , out address )
Ship (S , Shipper , in ID , in what , in address )
}

A local parameter must be adorned poutq in exactly one
reference and pinq in all the rest. Hiding a parameter has
consequences on the semantics. Because only the public pa-
rameters become part of the public interface, uniqueness ap-
plies only to tuples constructed from the public parameters.
Thus, although the local parameters may take on multiple
values, they would have no direct effect on the outcome as
defined by the protocol. Consequently, a designer should
hide only the parameters that are irrelevant to the intended
outcome of the interaction, and should expose all the others.

3.4.4 Standing Offer
This is a common business situation where we need to

generate multiple messages tied to the same standing offer.
Desai et al. [2] describe such a situation in the insurance do-
main but, lacking a proper treatment of parameters, cannot
formalize it. Once an insurance policy is created, it forms
a standing offer: the insurance vendor would process how-
soever many claims the subscriber makes. Listing 9 shows
how BSPL can naturally accommodate such a protocol.

Listing 9: The Insurance Claims protocol (from [2]).
Insurance−Claims {
role Vendor , Subsc r ibe r
parameter out policyNO key , out reqForClaim key ,

out claimResponse

Vendor 7→ Subsc r ibe r : c r e a t ePo l i c y [ out
policyNO , out d e t a i l s ]

Subsc r ibe r 7→ Vendor : s e rv i ceReq [ in policyNO ,
out reqForClaim ]

Vendor 7→ Subsc r ibe r : c l a imSe rv i c e [ in
policyNO , in reqForClaim , out
claimResponse ]

}
Each claim refers to a unique policy and has a unique

response; one policy may lead to multiple claims. Hence, we

make policyNO and reqForClaim jointly the key. If necessary,
we can include additional parameters to describe the policy,
including its termination, in greater detail. The remaining
protocols given by Desai et al. [2] involve simpler structures,
such those demonstrated in the preceding sections.

3.5 Subtle Specification Patterns
The following patterns demonstrate the power of BSPL.

3.5.1 Flexible Sourcing of out Parameters
Listing 10 shows Buyer or Seller Offer, in which either

the buyer or the seller may generate the price. This pro-
tocol illustrates the distinction between a parameter being
endogenous to a protocol versus being generated by one or
another of the agents playing its roles. Buyer or Seller Offer
involves two variants of rfq and quote, with differences in
adornments of their parameters. We overload the message
names since informally the names relate to meaning: the
same commitment would be associated with a quote whether
the price was pinq or poutq in it. We could equally well use
different names. Notice that the interface of Buyer or Seller
Offer is the same as that of Offer (Listing 2) since it has the
same roles and parameters (with the same adornments).

Listing 10: The Buyer or Seller Offer protocol.
Buyer−or−S e l l e r−Of fe r {
role Buyer , S e l l e r
parameter in ID key , out item , out p r i c e

Buyer 7→ S e l l e r : r f q [ in ID , out item , nil p r i c e ]
Buyer 7→ S e l l e r : r f q [ in ID , out item , out p r i c e ]

S e l l e r 7→ Buyer : quote [ in ID , in item , out
p r i c e ]

S e l l e r 7→ Buyer : quote [ in ID , in item , in p r i c e ]
}

In Listing 10, both quote variants rely upon the buyer
having provided item. As a result, the buyer speaks first.
The buyer may announce the price or not, by choosing the
appropriate variant of rfq. The two variants of rfq are mu-
tually exclusive because they have incompatible adornments
for price: thus at most one of them can be sent. Likewise,
the two variants of quote are mutually exclusive. In essence,
the choice is the buyer’s and the seller follows along. This
is the reason we introduce the pnilq adornment on price in
rfq. Upon receiving a pnilq price, the seller would not be
able to send quote without generating the price locally.

3.5.2 in-out Polymorphism
Let us consider Flexible Offer, which can apply both where

the price is exogenous (supplied) and where it is endoge-
nous (computed by the protocol). We do so by omitting the
adornment on price. Then, as Listing 11 shows, we need to
provide alternatives so that each of the possible adornments
of price is enactable.

If a reference to Flexible Offer adorns price pinq, the only
possible enactment is when b sends an rfq specifying the
price to s, who responds with a quote. Alternatively, if a
reference adorns price poutq, b must send an rfq without
specifying the price to s, who responds with a quote that
specifies the price. That is, price is determined either from
the reference (when it is referenced as pinq) or by s (when
it is referenced as poutq). And, qID helps ensure that the
enactment remains incomplete until quote occurs.
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Listing 11: Flexible Offer: price as in or out.
Flex ib l e−Of fe r {
role B, S
parameter in ID key , out item , pr i ce , out qID

B 7→ S : r f q [ ID , out item , nil p r i c e ]
B 7→ S : r f q [ ID , out item , in p r i c e ]

S 7→ B: quote [ ID , in item , out pr i ce , out qID ]
S 7→ B: quote [ ID , in item , in pr i ce , out qID ]
}

Listing 12 defines Offer as a simple variant of Flexible
Offer. It illustrates a way to restrict the adornments of pa-
rameters without changing the logical structure of protocols.
Even if we do not adorn the parameters of Flexible Offer as
referenced from within Offer, there is no ambiguity, because
those parameters are adorned in the declaration of Offer.
Thus, when Flexible Offer is enacted, the parameters would
be treated as in the declaration of Offer (qID is not used).

Listing 12: Offer as a restriction on Flexible Offer.
Of fe r {
role Buyer , S e l l e r
parameter in ID key , out what , out howmuch

F l ex ib l e−Of fe r (Buyer , S e l l e r , in ID , out what ,
out howmuch , out qID)

}

3.6 Specification Patterns Hinting at Meaning
These patterns demonstrate connections with meaning.

3.6.1 Forwarding a Copy
Listing 13 shows a simple protocol that can be used to for-

ward a parameter from one role to another. This protocol
is often needed to help make a protocol enactable where a
necessary parameter binding would not otherwise be known
to a specified role. Notice that the functioning of this pro-
tocol relies upon meaning, namely, to ensure that the value
of copy equals the value of original.

Listing 13: Forwarding a parameter value.
Forward {
role From , To
parameter in o r i g i n a l key , out copy

From 7→ To : forward [ in o r i g i n a l , out copy ]
}

3.6.2 Mixed Initiative
Listing 14 shows a protocol that supports either role tak-

ing the initiative. This protocol is inspired by the formal-
ization of the Enhanced NetBill by Yolum and Singh [12].
In this protocol, the buyer and the seller can exchange
as many messages as they like with the seller repeatedly
sending quote messages and the buyer accept messages.
Each of them has the initiative and can work independently
of the other. If necessary, we can combine mixed initiative
with polymorphism, as introduced in Section 3.5.2.

Listing 14: The Mixed Initiative Offer protocol.
Mixed−I n i t i a t i v e −Of fe r {
role B, S
parameter in ID key , out qID key , out aID key

out qItem , out qPrice , out aItem , out aPr ice

S 7→ B: quote [ in ID , out qID , out qItem , out
qPr ice ]

B 7→ S : accept [ in ID , out aID , out aItem , out
aPr ice ]

}
The meaning layer would capture that the quoted and

accepted items and prices are equal. Each message would
correspond to the creation of a suitable commitment to pro-
vide a specified item if paid a specified amount and to pay
a specified amount if provided a specified item. Assuming
each party needs a commitment from the other in order to
proceed, progress will occur only when they produce their
respective commitments for the same item and price. This
example shows that though BSPL captures the operational
aspects in a declarative manner, it seeks neither to obstruct
appropriate meaning nor to substitute for meaning.

3.6.3 Digressions
Yolum and Singh [12] introduced the idea of a digression

where an agent may interact differently from a protocol for
some steps but later resynchronize with it. Digression ap-
plies primarily to enactments rather than to protocols, al-
though it facilitates the refinement of protocols. BSPL nat-
urally supports digression. As long as the parameter adorn-
ments are satisfied, a digression has no impact on the enact-
ment of a protocol. Digressions in the sense of Yolum and
Singh depend upon a notion of meaning.

4. SKETCH OF A SEMANTICS FOR BSPL
We give an account of how BSPL protocols may be en-

acted and how to determine their distributed enactability
using some mathematical concepts but, for brevity, without
any mathematical notation.

A protocol describes an interaction by specifying messages
to be exchanged between specific roles, and by imposing a
partial order on the messages. An enactment of a protocol
involves each of its roles being adopted by an agent, and
the agents exchanging messages that the protocol specifies.
Therefore, we capture the semantics of a protocol in terms
of the enactments it allows. A message instantiates a mes-
sage schema and is precisely described by its name, sender,
receiver, and bindings for each of its parameters.

We define a history of a role as a sequence of messages,
in each of which the role is either the sender or the receiver.
Thus the history captures the local view of an agent who
might adopt the role during the enactment of a protocol.

We define a history vector for a protocol as a vector each of
whose elements is the history of a role mentioned in the pro-
tocol. A history vector is quiescent provided every message
present in a sender’s history is also present in its receiver’s
history. The fundamental causality constraint of distributed
computing applies: a (receiving) role’s history may contain
a message reception only if the (sending) role’s history con-
tains the corresponding message emission [8]. However, we
need a more sophisticated treatment of causality that cap-
tures the nature of parameters in BSPL.

The history of a role maps naturally to its local state.
Notice we are interested in the local view of the public in-
teractions, not in the internal state of an agent playing this
role. Each message sent or received progresses the local state
of the role, expressed in terms of the bindings of the param-
eters that the role knows. Specifically, a message emission
is viable for a role if the role knows the bindings of all pinq
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parameters in that message and does not know the bindings
of the poutq and pnilq parameters. In essence, it must pro-
duce the bindings for the poutq parameters, which it then
knows (for future messages). A message reception is always
viable and changes the state of the knowledge of the role,
affecting the viability of future messages. A history vector is
viable provided it arises from viable message emissions and
receptions by the roles, i.e., by growing their local histories.

Informally, the intension of a protocol is given by the set of
quiescent viable history vectors that enact it. The intension
for a message is the set of quiescent viable history vectors
in which it occurs. The intension of a composite protocol is
the set of all viable interleavings of the history vectors in the
intensions of its references. Only a protocol with an empty
set of public pinq parameters may be enacted.

To understand when an enactment is correct, consider two
references that occur within the same declaration and in-
volve one or more common parameters, and consider their
respective adornments of such a common parameter.

out–in indicates an ordering conflict: a message with poutq
(even if nested in a reference) must precede, and the
binding must propagate, to a message with pinq.

nil–in or nil-out indicate a knowledge conflict and as such
only apply to the same role: once a role sends or re-
ceives a message with poutq or pinq, it cannot send a
message with pnilq.

out–out indicates an occurrence conflict: at most one of the
references may occur anywhere in the system.

Our semantics addresses ordering conflicts through causal-
ity and knowledge conflicts through each role’s view. For
occurrence conflicts, there is no general solution, but we can
analyze a BSPL specification to make sure that the same
role controls which of the conflicting references occurs.

5. EVALUATION: CASE STUDY
We consider foreign exchange transactions, as formalized

by Desai et al. [1]. Bilateral Price Discovery or BPD involves
a taker sending a priceRequest to a maker, who responds
with a priceResponse. Each message specifies a number of
parameters, which for clarity we reduce to two parameters:
query and result. Listing 15 shows the strikingly simple BSPL
formalization of BPD.

Listing 15: The Bilateral Price Discovery protocol.
BPD {

role Taker , Maker
parameter out reqID key , out query , out r e s u l t

Taker 7→ Maker : pr i ceRequest [ out reqID , out
query ]

Maker 7→ Taker : pr iceResponse [ in reqID , in
query , out r e s u l t ]

}
Desai et al. identify constraints under which a priceRes-

ponse message may not occur. These complicate Desai et
al.’s specification, but Listing 15 captures them naturally:
(1) “No priceRequest with a matching reqID has happened”
(BSPL: adorn reqID (and query) as pinq on priceResponse
and as poutq on priceRequest); (2) “A priceResponse with
identical parameters has happened” (BSPL: automatic since
repetitions are superfluous); (3) “A priceResponse with the

same ID but a different result . . . is happening simultane-
ously” (BSPL: mark reqID as a key); and (4) like #3 above
but for other messages (BSPL: handle as above).

Consider Desai et al.’s [1] discussion of multilateral price
discovery (MPD), in which a taker interacts with a maker
via an intermediary exchange. Intuitively, it makes sense
that MPD is a composition of BPD with itself. Odell et
al. [10] informally discuss the concept of nesting in AUML,
wherein an agent playing a role in one protocol may par-
ticipate in additional protocols in the middle. In Odell et
al.’s terms, the exchange would be a maker in one copy of
BPD and nest the second copy of BPD. There are two short-
comings with Odell et al.’s nesting. First, it draws a false
hierarchy between two protocols, placing one as subservient
to the other, whereas the interactions are conceptually peers.
Two, and more fundamentally, nesting is a matter of how
an agent is implemented. For all that anyone knows, even
in the plain BPD, a maker might be shopping for deals in
the background, possibly acting as a taker in another copy
of BPD. But such internally driven behaviors are not public
interactions and thus are not part of the given protocol.

Desai et al. [1] offer a better solution than nesting by ex-
plicitly composing BPD with itself to produce MPD. They
assert data flow axioms whereby a query parameter in one
copy of priceRequest is passed to the second copy, and like-
wise in the reverse direction for the result from priceRes-
ponse. However, Desai et al.’s approach violates encapsula-
tion: it opens up each copy of BPD so as to enable stating
constraints on the constituent messages of each copy in order
to compose them as desired.

In BSPL, MPD can be expressed in a remarkably simple
manner. Listing 16 uses in-out polymorphism (Section 3.5.2)
to define a Generalized BPD or GBPD, in which query and
res are not adorned. We can produce a specification of BPD
equivalent to Listing 15 exactly as Listing 12 defines Offer.

Listing 16: Generalized Bilateral Price Discovery.
GBPD {

role T, M
parameter reqID key , query , r e s

T 7→ M: pr iceRequest [ out reqID , out query ]
T 7→ M: pr iceRequest [ in reqID , in query ]

M 7→ T: pr iceResponse [ in reqID , in query , out
r e s ]

M 7→ T: pr iceResponse [ in reqID , in query , in
r e s ]

}
Next, Listing 17 specifies MPD as an almost trivial com-

position of GBPD with itself. The adornments of the param-
eters in the two references to GBPD are different, and ensure
that the composition is correct. Notice that the encapsula-
tion is not broken (the GBPD declaration is not revealed
here) and we are not specifying the internals of any role.

Listing 17: Multilateral Price Discovery.
MPD {

role Taker , Exchange , Maker
parameter out reqID key , out query , out r e s

GBPD(Taker , Exchange , out reqID , out query , in
r e s )

GBPD(Exchange , Maker , in reqID , in query , out
r e s )

}
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6. DISCUSSION
What do we gain from an interaction-oriented approach

wherein protocols are first-class entities? Although an agent-
oriented approach, which focuses on the roles, is more fa-
miliar, it limits the modeling unnecessarily. By focusing on
interactions, we can capture constraints from a public, as
opposed to a role, perspective. In particular, when roles are
introduced during composition, such new roles would auto-
matically view any relevant constraint as satisfied.

Although we suppress the means clauses above, BSPL is
geared toward providing the undergirding for any effective
treatment of meanings. Listing 18 shows an example based
on Listing 9 to give the reader a flavor of a means clause.
Here C indicates a commitment [2, 12], and the expression
states that the vendor commits to providing claim service
to the subscriber whenever the subscriber sends a request
under the specified claim. The benefit of BSPL here is that
the operational basis for the meanings in terms of causality
and information is taken care of automatically.

Listing 18: Meaning for Insurance Claims.
Insurance−Claims { . . .

Vendor 7→ Subsc r ibe r : c r e a t ePo l i c y [ out
policyNO ] means C(Vendor , Subscr iber ,
s e rv i ceReq [ policyNO , reqForClaim ] ,
c l a imSe rv i c e [ policyNO , reqForClaim ,
claimResponse ] )

}

6.1 Literature
Increasing recognition of the importance of interaction has

led to work on choreographies [11], which too capture the
operational aspects of protocols as studied here. However, a
choreography is typically specified procedurally, usually in a
language such as message-sequence charts (MSCs) [6] or an
analogous notation, such as WS-CDL [11].

AUML [10] is an important notation for protocols (many
of its features were assimilated into UML 2.0). AUML’s
sequence diagram notation takes a strong procedural stance
for describing interactions. Thus, it emphasizes explicit con-
straints on how messages are ordered. In contrast, our pa-
rameter adornments force clarification of the arrow of causal-
ity, making it correspond to the flow of information.

Recently, Miller and McGinnis [9] proposedRASA, a lan-
guage for protocols based on the proposition dynamic logic.
Some of this language refers to agent reasoning and some to
interaction. BSPL can capture the latter parts of it. In par-
ticular, in BSPL, iteration arises from the possible bindings
of a protocol’s parameters, and is limited only by the size
of the cross-product of the domains of the key parameters.
And, our semantics limits choice to guarded choice. RASA
describes first-class protocols, i.e., those that an agent can
inspect and reason about. BSPL, in addition, treats proto-
cols as a first-class modeling concept for ready composition.

Desai and Singh [4] identify several challenges to the en-
actability of a protocol. BSPL avoids all the ordering prob-
lems they identify as varieties of blindness, because the only
way to capture an ordering constraint in BSPL is to do so in
a causally sound way: from a reference with an poutq adorn-
ment of a parameter to a reference with an pinq adornment
of the same parameter. The problematic enactments can-
not arise. The well-known problem of nonlocal choice [7]
arises when correct behavior by a role depends on actions of

another role. BSPL does not automatically avoid nonlocal
choice. However, we can analyze a BSPL specification to
determine that it is not at risk of nonlocal choice.

Traditional work on service composition primarily consid-
ers orchestrations where a conceptually central party con-
trols two or more services. A strength of this work lies
in its formalization of service behaviors and in its use of
planning and constraint reasoning to construct appropriate
service compositions. Although our present setting is quite
different, we imagine that many of the techniques of service
composition may be expanded and applied in our setting.

6.2 Future Work
A useful direction would be enhancing the treatment of

the information model. For instance, it might be appro-
priate to entertain multiple keys for a protocol. Further,
it would be useful to understand how important proper-
ties such as enactability may be verified in a compositional
manner. Some natural extensions to BSPL that we will be
considering include (1) a principled treatment of multicast,
where multiple agents playing the same role receive a mes-
sage and (2) accommodating discovery protocols, where the
roles are bound late during enactment.
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ABSTRACT
Communication is a key capability of autonomous agents in a multi-
agent system to exchange information about their environment. It
requires a naming convention that typically involves a set of prede-
fined names for all objects in the environment, which the agents
share and understand. However, when the agents are heteroge-
neous, highly distributed, and situated in an unknown environment,
it is very unrealistic to assume that all the objects can be foreseen in
advance, and therefore their names cannot be defined beforehand.
In such a case, each individual agent needs to be able to introduce
new names for the objects it encounters and align them with the
naming convention used by the other agents. A language game is a
prospective mechanism for the agents to learn and align the naming
conventions between them. In this paper we extend the language
game model by proposing novel strategies for selecting topics, i.e.
attracting agent’s attention to different objects during the learning
process. Using a simulated multi-agent system we evaluate the pro-
cess of name alignment in the case of the least restrictive type of
language game, the naming game without feedback. Utilising pro-
posed strategies we study the dynamic character of formation of
coherent naming conventions and compare it with the behaviour
of commonly used random selection strategy. The experimental
results demonstrate that the new strategies improve the overall con-
vergence of the alignment process, limit agent’s overall demand on
memory, and scale with the increasing number of the interacting
agents.
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1. INTRODUCTION
Language is an extensively used everyday tool, as it allows in-

dividuals to gain, share and utilise information in a social setting.
It is also a key capability of autonomous agents that facilitates the
exchange of information and enables collaboration in a multi-agent
system. As such, language constitutes the collective adaptation to
the changing circumstances of the environment and advances the
performance of certain social tasks.

Conveying information about the state of the environment, i.e.
communication, requires that agents share a set of predefined names
for all of the perceivable objects. However, it is very unrealistic to
assume that all of the objects can be foreseen in advance, and that
all of the required names can be defined and shared beforehand.
Therefore, all agents need to develop from scratch, and further sus-
tain, their individual names for all of the perceived objects.

In principle, word learning is a rather simple task of mapping
linguistic labels onto a set of pre-established concepts [2]. How-
ever, the problem is far more complex in a multi-agent setting, as
any differences in individual mappings, i.e. naming conventions,
result in miscommunication between interacting agents. As such,
agents not only need to develop and sustain their individual names,
but most importantly need to align them to form a coherent shared
naming convention. In particular, each autonomous agent, through
a series of consecutive interactions with other agents, needs to align
its private linguistic mappings. As such, a multi-agent system com-
prised of communicating individuals can be considered as a ‘com-
plex adaptive system’ [17] that collectively solves the problem of
developing a shared communication system.

Despite several studies [4, 14, 18, 21, 22] the problem of lan-
guage alignment is still an active area of research [13, 18, 20].
Moreover, language game model [7, 8, 18, 19] defines a prospective
mechanism for agents to learn and align their naming conventions.
In this paper we introduce a novel approach of agent’s attention
orienting, i.e. topic selection strategies (see section 4) in language
game, and evaluate its impact on the process of name alignment.
Using a simulated multi-agent system, formalised in section 3, we
study the dynamics of the language alignment process in the case
of no feedback naming game1. Incorporating the adaptive cross-
situational learning scheme [8], in section 5 we study the dynamics
of the emergent process against different topic selection strategies
that are utilised by the speakers. We show how a proper modifica-
tion of the topic selection strategy may improve the overall con-
vergence of the alignment process, limit the overall demand on
memory, and scale properly with the increasing number of agents.
1No feedback naming game [19] is a type of language game [18]
(see section 2)
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Finally, in section 6, we analyse the mechanism underlining the
observed behaviour and conclude the paper in section 7.

2. BACKGROUND AND RELATED WORK
The general problem of language alignment is fundamental to

the field of multi-agent systems, especially embodied multi-agent
systems. For instance, incorporating a flexible semantic communi-
cation system into a smart sensors network [5, 10, 23] may lower
system’s energy utilisation and extend its operation time. However,
the most significant, and most appealing is the incorporation of lan-
guage alignment mechanism in robotic systems [13, 16, 18].

To focus the attention, let us assume a group of spatially dis-
tributed mobile agents operating in an unknown, highly dynamic,
spacious and possibly adversarial territory, similarity to settings
proposed in [12] or [6]. All autonomous agents are embodied, sit-
uated (physically bounded) and distributed, all are capable of ba-
sic manoeuvring and all share a common task of monitoring the
environment. Each individual is wandering around the environ-
ment collecting valuable information and occasionally engaging in
interaction with the nearby agents. Depending on it’s current in-
tentions the character of such interaction may differ, from basic
mutual identification, through information exchange, to a complex
coordinated action. Nevertheless, vast majority of these interac-
tions involve linguistic communication, where language facilitates
the interplay between cognitive agents [3]. In order to convey in-
formation about objects from agent’s sight, for instance to align the
attention of interacting agents and focus on a particular object from
the surroundings, agents must exchange meaningful symbols.

Obviously, in order to focus attention on the exact same object
the population must share and utilise a certain naming convention,
i.e. shared form of language2. A simple solution would involve an
arbitrary label-object mappings that are predefined in the agents.
However when the environment is unknown at the design time, a
coherent naming convention cannot be build-in and shared by all
the agents beforehand. Moreover, due to natural restrictions fol-
lowing from the embodiment, i.e. limited range, interface errors
and costly long range communication, neither any explicit central
coordination approach, nor any global communication scheme are
suitable. Additionally, as each individual is an equally valuable
source of information, a single ‘leader’ agent cannot be directly
imposed on the system. Thus, agents are required to develop their
naming convention from scratch, and are restricted to a local ad-
hoc communication, i.e. linguistic interaction involving only the
nearby members of the population and concerning only a relatively
local set of encountered objects.

As the coherent naming convention cannot be build-in at the de-
sign time, each agent needs to be equipped with an internal mecha-
nism of name acquisition. In principle, allowing the agent to intro-
duce new names for unknown objects. However, due to distributed
character of the population, there is a high chance that a certain
object is labelled differently by multiple agents. As such, intro-
ducing competing labels and increasing the miscommunication be-
tween agents. In order to reduce the number of conflicting words,
the agents should be capable of altering their label-object mappings
and form coherent associations within the entire population. Unfor-
tunately due to local ad-hoc communication restriction, each agent
has only limited knowledge about the naming conventions utilised
by others. In principle, only the occasional interactions between
agents provide valuable insights on the general population naming
stance. Nevertheless, as the available information is very narrow
and highly limited, a simple approach towards alignment cannot

2Throughout this paper, language is perceived as a complex adap-
tive system [17] that can be represented as a weighted complete
bipartite graph (See section 3)

guarantee that multiple agents will eventually agree on a shared
object-label mappings. For instance, as an individual hearing a new
word may presumably assign it to an infinite number of objects in
its sight, leading to indeterminacy of meaning [15].

In fact, developing a mechanism that would lead to a coherent
formulation of names among interacting individuals is not a trivial
task [11]. Several approaches have been proposed and investigated
in the literature [4, 22, 21, 18, 14], ranging from associative types
of memory [18], through genetic algorithm models [21], to neural
network adaptation [14]. The most promising approach addressing
the aforementioned problem is the language game model (LGM)
[18], where a population of agents thrives to develop a shared set
of associations between signs and meanings, using communicative
acts. LGM offers a general framework for modelling the possible
emergence of language and formulates basic settings for linguistic
interaction between agents. It assumes that each agent has its own,
strictly private and individually emerged, word-object associations
(names) that are stored in an associative type of internal memory
- lexicon. In particular, as the lexicons are private, they may dif-
fer between agents resulting in naming conflicts that occur during
interaction.

The idea behind the language game is that through a series of
routine pair-wise interactions, the agents can align their lexicons
reaching a coherent state of the entire population. In naming game,
type of language game specified by LGM, a single interaction is
described as a simple interplay between two agents, one acting as a
speaker, and the other as a hearer. The speaker agent selects a single
object from its sight and names it, according to its internal naming
convention. Whilst the hearer uses the heard utterance as a clue to
identify which of the objects was intended by the speaker. Depend-
ing on the feedback the agents receive after the game, and assuming
that agents are equipped with a pre-developed pointing mechanism,
three basic types of naming games can be identified [19]. In the
simplest case, both agents receive feedback, as the hearer points to
the intended interpretation, and as the speaker points to the intended
topic. In the case of limited feedback, only the speaker receives
feedback, as only the hearer points to the intended interpretation. In
the no-feedback case, neither the speaker nor the hearer receive ad-
ditional feedback after the game leaving both agents clueless about
the results of their interaction. It should be noted that in the sim-
plest case, the hearer is able to precisely deduct speaker’s intended
mapping between the name and the object. Whereas, the absence of
pointing procedure significantly increases the hearers uncertainty,
as all objects in its sight are equally probable topics, resulting in
indeterminacy of meaning.

Basic properties of the alignment process were studied in most
favourable types of environments and population settings, focussing
mainly on the simplest (feedback based) case of Naming Game
[18]. Using a straightforward cross-situational learning (CSL) mech-
anism embodied agents were able to learn the naming conventions
based solely on co-variances that occur across different situations.
In [19] it is shown that in a multiple objects setting the CSL is hard
to properly scale-up with the increasing number of agents, and it
is hard to reach proper coherence among the agents. As such, the
early procedures were extended to incorporate additional mecha-
nism of synonymy reduction [7] and homonymy damping [8] lead-
ing to a substantial improvement in their performance. The former,
introduced additional notion of word utilisation, as a word score
resembling the frequency of its successful usages, whilst the lat-
ter approach, introduced an adaptive alignment mechanisms, i.e.
intelligent cross-situational learning (ICSL). In addition to regular
enforcement and inhibition rules that steer the population of in-
teracting agents to coherent word-meaning mappings, ICSL pre-
serves the relative differences between concurring words that allow
it to outperform other existing approaches in zero feedback naming
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game settings [8].
The extensive literature studies,including most recent summaries

in [18, 20], show that despite its popularity the LGM has been in-
vestigated only in a limited set of basic settings3, where uniform
world structures, random attention orienting strategies, one-step
pair-wise interaction pattern are assumed. As such in this paper
we investigate the effect of introducing non classical attention ori-
enting strategies, i.e. topic selection strategies in the LGM. We
argue that a rational strategy should reflect agent’s internal char-
acter and it’s individual intentions, and not just uniformly sample
agent’s current sight, as in the existing formulations.

3. GENERAL MODEL
We introduce the formal model of the investigated case, and be-

gin by formalising the state of the multi-agent system as a 4-tuple
S(t), as follows

Definition 1. For each time point t ∈ T = (t1, ..., tKT ) a sys-
tem state is a tuple:

S̄(t) = 〈O(t), XO(t), P (t), XP (t)〉
• set of identifiable objects O(t) = (o1, ..., oKO(t))
• context random process XO(t)
• population P (t) = (a1, ..., aKP (t)) of agents
• interaction random process XP (t).

The system state resembles a general state of the entire multi-agent
system in a given point of time. It depicts currently identifiable
objects O, currently operational agents P , and defines the exter-
nally imposed processes, i.e. the model of dynamic environment
XO (available through context) and the model of agent interaction
XP . As such, at each discrete time point t the random process XO
models the current state of the environment that is available to the
system. Each agent a ∈ P (t) perceives a certain part of its lo-
cal environment - context Xa

O(t) - as a set of objects in it’s sight
∀a∈P (t) X

a
O(t) ⊂ O. Analogous, the random process XP for ev-

ery time point t models the set of currently interacting agents, i.e.
XP (t) ⊂ PKI (t), whereKI(t) is the number of interacting agents.

In the assumed settings the context size is fixed ∀t∈T,a∈P (t)

‖Xa
O(t)‖ = c, and the interaction is limited to a single pair-wise

∀t∈TXP (t) ∈ P (t) × P (t) pattern. In the most general case, the
set of identifiable objects and the set of all agents in the popula-
tion can change during the system lifetime, however we assume a
simpler case where both the set O and P are finite and static, i.e.
∀t∈TO(t) = O ∧ P (t) = P .

3.1 Agent
An agent is the most fine-grained autonomous entity present in

the system. It is embodied in the environment and is a part of the
interacting population. In order to communicate, the agent needs to
be equipped with an appropriate semantic infrastructure, that can be
defined as the agent’s state, as follows:

Definition 2. Agent’s a ∈ P (t) state in a given system state
S̄(t) = 〈O(t), XO(t), P (t), XP (t)〉 is a tuple:

Ā(t) = 〈Oba(t),W a(t),La(t), φaP , φ
a
I , θ

a, ψa〉
• set of identified objects Oba(t) = (oa1 , ..., o

a
Ka,Ob(t)) ⊆ O,

• set of words W a(t) = {(wa1 , sa1), ..., (waKa,W (t), s
a
Ka,W (t))},

• lexicon mapping La(t) : W a(t)×Oba(t)→ [0, 1]
• interpretation function φaI (t) : W a(t)× La(t)→ Oba(t),
• production function φaP (t) : Oba(t)× La(t)→W a(t),

3For the sake of completeness, we note the research in [1], where
different population structures were investigated in a minimal nam-
ing game (single object environment).

• topic selection function θa(t) : 2Ob
a(t) → Oba(t),

• update function ψa(t) : W a(t)× 2Ob
a(t) × La(t)→ La(t).

Each object represents a self contained invariant in the external en-
vironment that is available to agent’s perception and that encap-
sulates the smallest indivisible entity available to its higher pro-
cesses. As the precise formulation of agent’s perception is outside
of the scope of this paper we assume that for each agent an object
is explicitly identified by a unique and strictly internal identifier
(i ∼ oai ). Research in [8] assumed a static and fixed set of objects,
we extend their settings allowing the agent to gradually build up the
set of known objectsOba as it encounters them in the environment.

Words, on the other hand, are external representations identified
by the population as dedicated communication signs. Each signal
waj ∈ W a is associated with agent’s subjective notion of usability
saj ∈ [0, 1] denoting its individual estimate of strength of a word
spread in the population. The set of words that the individual uses
is iteratively build up by the agent, as new words are invented by
the speaker whenever it lacks a proper word for a given topic, and
are incorporated by the hearer whenever it hears an unknown word.

In terms of linguistic capabilities the most important part of the
agent is its lexicon, i.e. the mapping La that represents actual cor-
relation σa(o, w) ∈ [0, 1] between objects o ∈ Oba and words
w = (wai , s

a
i ) ∈ W a. The higher it is the more definite the agent

is that a certain word is an adequate name for an object. As such,
the lexicon encapsulates the current state of agent’s language, that
for convenience can be viewed as a weighted complete bipartite
graph La = (V a, Ea, σa), where V a = W a ∪ Oba is the set
of vertices, Ea = W a × Oba is the set of edges, and σa(w, o)
is the weight of an edge (w, o). Each agent is then able to inter-
pret external utterance wai , i.e. select the most adequate object o
based on its current state La(t), and produce the external utterance
wai , i.e. the most adequate name for a given object o based on its
current lexicon state (see section 3.2). As such, the actual graph
structure modulates agent’s interpretation and production scheme.
In particular, agent’s two φaP and φaI schemes reflect certain method
of traversing the lexicon graph, i.e. proper selection of the edges
according to the current distribution of weights.

We further assume the well established mechanism of interpreta-
tion and production [8]. The interpretation scheme is rather straight
forward, as for a given word w = (wa(t), sa(t)) ∈ W a(t) the
interpretation function φaI selects the edge (w, o) ∈ Ea with the
maximum weight (φaI (w,La(t)) = argmaxoiσ

a(oi, w)), and thus
interprets w as referring to o. On the other hand, the production
scheme assumes that the speaker before uttering a name evaluates
its subjective reflection of the population, by considering the us-
ability s of each possible word w. As such, for a given object o the
production function φaP selects the edge (w, o) ∈ Ea with word
w having the highest usability from all the words that the agent
is able to interpret as referring to the object o (φaP (o, La(t)) =
argmaxwi{wi : o = φaI (wi, L

a(t))}), and thus names o.

3.2 Interaction
Interaction between agents is the only opportunity for an indi-

vidual to verify the appropriateness of its language, and it is the
only way to gain additional information about the naming con-
ventions utilised by others. In the assumed settings, the interac-
tion is governed by the means of no feedback naming game rou-
tine, where at each time point t ∈ T a random pair of agents
Xa
P (t) = (aS(t), aH(t)) where aS(t) 6= aH(t) (aS - speaker, aH

- hearer) advances in a simple communication. The speaker selects
a single object oT (t) as the topic of conversation, according to its
topic selection strategy oT (t) = θaS (XaS

O (t)) and current context
oT (t) ∈ XaS

O (t). Further, the speaker names the intended topic
wT (t) = φaS

P (oT (t), LaS (t)), based on its current lexicon state
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and utilising its production function φaS
P . Next, the uttered word

is transmitted to the hearer, that receives it along with the current
context of perception XaH

O (t). It is assumed that the topic of the
utterance is shared among both contexts, i.e. oT (t) ∈ XaS

O (t) ∩
XaH
O (t). Based on this information, i.e. the context and the as-

sociated uttered word, the hearer updates its lexicon LaH (t) =
ψaH (wT (t), XaH

O (t), LaH (t − 1)), and interprets the utterance
oI(t) = φaH (wT (t), LaH (t))4. As agents do not receive feedback
concerning the outcomes of the game, the interpreted meaning and
the heard word pair (wT (t), oI(t)) is regarded as the most prob-
able one. As such agent’s subjective notion of usability sT (t) of
the heard word wT (t) should be increased, whilst the usability of
all concurring names {wi : oI(t) = φaH

I (wi, L
aH (t))}, i.e. all

other names that can be interpreted as the identified object oI(t),
should be decreased. Moreover, learning from co-occurrence be-
tween words and objects (cross-situational learning) implies that
after each interaction the hearer updates its lexicon La(t) by modi-
fying the correlations σaH (o, wi).The update function ψaH damp-
ens the correlation σaH (o, wi) between the received word wi and
currently not perceived objects o 6∈ XaH

O (t), and enforces the cor-
relation between the received word wi and currently perceived ob-
jects o ∈ XaH

O (t), while the correlations with other words remain
unchanged. In settings involving context with multiple objects, a
single interaction is typically insufficient to determine the utilised
naming convention, as presumably all objects from the context are
equally probable intended meanings. We note, that an object can
dominate the correlation between a certain word only if it occurred,
with this word, more times then with any other object.

3.3 Measures
In order to formulate differences in the dynamics of the align-

ment process, we identify two major axes of comparison, i.e. co-
herence and word statistics, and focus on the evolution of language
in the assumed multi-agent system. We study the behaviour of the
system based on four measures: success rate, language coherence
rate, average number of used and overall number of words.

The most obvious measure is the frequency of successful com-
munications between agents. It resembles the observed ability of
the system to transfer information from one agent to another, and
as such it allows to reason about the utility of the communication
system itself. In order to keep track of the effectiveness of the com-
munication we calculate the success rate µSR, as follows:5

µSR(N) =
∑
t∈T |N

I{oT (t)=φ
aH
I

(φ
aS
P

(oT (t),LaS (t)),LaH (t))} (1)

In general, the success rate µSR(N) of order N is the frequency
of successful communications in the lastN interactions (T |N ), i.e.
successful in terms of that both agents focus on the same object (1).
In isolation, despite its simplicity, this measure is not very useful,
as it does not take into account all objects from the environment,
and can be easily deformed. For instance, agents communicating
only about a single object are able to reach highest possible success
rates, as they might share a common name for the preferred object,
despite having poor coherence between other names.

Due to the above restrictions, we need to formulate additional
measure resembling the naming convention spread among the en-
tire population and reflecting the coherence of names among all ex-
isting objects. As such, we introduce language coherence µLC , as
the probability that two randomly selected agents assign the same
name for a randomly selected object from the environment, as fol-

4If the intended meaning oT is the same as the interpretation oI
then the game is considered successful, otherwise it is a failure.
5I is the identity function, i.e. Ix=x = 1 and ∀x 6=yIx=y = 0

lows:

µLC = Ea,a‘∈P,a 6=a‘,o∈O[φaI (φa‘P (o, La‘), La) = o] (2)

The lowest possible coherence, i.e. µLC = 0, reflects a state of no
language coherence in the system, as there are no two agents that
use the same name for any of the objects. The highest possible co-
herence, i.e. µLC = 1, represents the state of full coherence, where
all agents share the same naming conventions. It should be noted
that in the assumed settings a system is absorbed by the coherent
state, as from this point all of the utterances are consistent with the
observed context, and without any external disturbance all of the
strongest associations remain strongest.

In order to analyse the characteristics of the emergent language
we keep track of the number of used words µUW , and keep track
of the total number of all invented words µTW , defined as follows:

µUW = Ea∈P [‖{w ∈W a : ∃o∈Obaσa(w, o) > 0}‖] (3)
µTW = Ea∈P [‖W a‖] (4)

The former, is calculated as the average, over all agents, number of
positively associated words, and it resembles the stability of cur-
rent associations. As the optimal communication system has one-
to-one mappings between words and objects, i.e. the same number
of used words as the number of existing objects, and any devia-
tion from this proportion reflects a potentially unstable situation, as
miscommunication might occur. In the latter case, we calculate the
overall number of existing words in the system, resembling again
the stability of the communication system during its development.
It should be stressed that new words may enter the lexicon, i.e.
as agents are inventing new words, on regular basis. However, as
it is not possible for a word wj to leave the lexicon, the opposite
mechanisms is a bit different, and a word can become disassoci-
ated through the dampening procedure, i.e. weight of associations∑
o σ(wj , o) shared with wj and/or usability sj of wj is close to

0. Nevertheless, the higher the number of different words in the
system, the significantly higher is the number of all possible as-
sociations and possibly lower coherence. Moreover the higher the
number of words, both used and invented, the more technically de-
manding the system is, as it needs more memory to store all asso-
ciations and more processing power to cope with all possible asso-
ciation.

4. TOPIC SELECTION STRATEGIES
The most common strategy investigated in the literature is the

purely random selection of topic, where a speaker uniformly sam-
ples its current context in order to select the intended meaning of its
utterance. It is a rational approach in the presence of direct feed-
back, as the context degenerates into single object and different
selection strategies do not affect the evolution of the system. How-
ever, in case of limited feedback and significant context sizes the
topic selection strategy can significantly affect the overall evolu-
tion of the system (See section 5). We must underline the fact that,
all of the following extensions relate only to the speaker. Moreover,
as the hearer has no a priori knowledge about the strategy utilised
by the speaker, we assume that it treats all utterances as a result of
random sampling, and follows the behaviour described in section
3.

Different topic selection strategies can be analysed twofold, from
the theoretical point of view and from a more pragmatic stance. The
former approach assumes that selection is just a basic procedure of
choosing a single object oT (t) from a set of objects XO(t). As
such, the speaker agent a perceives current state of the environ-
ment as the context Xa

O(t) of ongoing interaction, and in a pre-
defined manner selects a single object oT (t) as the topic. From
the more practical point of view, the topic selection strategy resem-
bles the speaker’s reaction to the recent state of the environment.
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As such, the context Xa
O(t) is a form of short term memory that

stores the most recent and most important objects, and depending
on its internal perception the speaker agent a selects a single ob-
ject oT (t) that it found valuable, interesting or significant. In this
case topic selection strategy resembles the internal force that drives
agent’s attention, and orients its sensory receptors towards a partic-
ular object and away from other available stimuli [9]. Having this
interpretation in mind, we formulate and introduce three basic topic
selection strategies, and justify them as different points of attention
that affect individual perception and cognition.

4.1 Random
As noted, the original model proposed in [8] assumes a purely

random selection of topic, where at each time point the speaker is
uniformly sampling its current context in order to select the topic
of its utterance. In this case the topic selection function θorig (See
equation 5) is a random variable with a uniform distribution over
all objects in the context and can be defined as follows:

∀t ∈ T Pr(θrandom(XO(t) = o)) = 1/‖XO(t)‖ (5)

This situation resembles the case where the attention of the agent
is randomly focusing on different objects in the environment. As
such all objects are equally valuable to the agent, and uttering the
name of each one of them is of an equal importance to the speaker.

4.2 Min / Max
It is obvious that perception is usually not passive, and it is the

individual that is actively looking or listening in order to see or
hear [9]. Previous strategy assumes no direct force that is applied
on agent’s perception, i.e. the agent perceives the environment in
purely passive manner. However, agent’s focus should depend on
both, agents past observations and the current state of the environ-
ment. As such, attention of a curious agent should be attracted by
a new, or relatively unknown objects from the environment. Re-
sulting in agent’s significant tendency to speak about the least oc-
curring, in past interactions, object. On the other hand, attention of
a more stagnant agent should be attracted by already familiar ob-
jects, or relatively known, objects from the environment. Resulting
in agent’s tendency to select the most occurring, in its past inter-
actions, object. In principle, both, i.e. min and max, approaches
represent two similar forces that drive the attention of an individ-
ual. One is focusing on the least known elements of the environ-
ment (min), whilst the other on the most known elements of the
environment (max).

We further assume that each agent a ∈ P is able to store the
frequencies F a(t) = {fa1 (t), ..., faKa,Ob

(t)} of the observed oc-
currences of the encountered objects in its past interactions. This
basic statistics is further stored as agent’s private knowledge about
the environment, and is utilised in its future interactions to drive
agents attention towards certain aspects of the environment. In this
case the topic selection functions θmin and θmax are determinis-
tic functions that for a given state of the environment select the
most and least frequent object, respectively. In order to maintain
the probabilistic notation we denote this deterministic functions as
a random variable with a Dirac delta distribution as follows:

∀t ∈ T Pr(θmax(XO(t) = oi) =

{
1, fi = maxj fj
0, otherwise

∀t ∈ T Pr(θmin(XO(t) = oi) =

{
1, fi = minj fj
0, otherwise

4.3 Preference
The point of attention of the system can also depend entirely on

the internal structure of the agent, i.e. as the agent may have certain

preferences over the objects, or as simply its perception may be at-
tracted by certain objects. As such it is the embodied, i.e. physical
properties of the perception apparatus, and the internal structure,
i.e. pre-build preferences and biases, that has significant impact on
agents orientation. For instance, being equipped with very sensi-
tive microwave sensor the agent might have tendency to focus on
objects that emit such wavelengths, and as such naturally tend to
select them as the intended topics.

In this paper we assume that each agent has a predefined set of
preferences Ra(t) = {rai (t) : oi ∈ Oba(t)} over the objects.
These preference values r can be understood as affordances, i.e. in-
dividual utility of an object as perceived by the agent. Without any
loss of generality preferences can be treated as probabilities, where
for every agent a ∈ P following conditions hold

∑
r∈R r = 1 and

∀r∈Rr ≥ 0. In such a case we can model the topic selection func-
tions θpref (See equation 6) as a random variable with a discrete
distribution over the objects defined by the preferences structure
Ra(t) as follows:

∀t ∈ T Pr(θpref (XO(t) = oi)) = ri(t) (6)

5. EVALUATION
In order to evaluate different topic selection strategies we per-

form numerous simulations. All experiments share a common frame-
work, and assume finite, static set of objects O and agents P , all
incorporate a uniform interaction process6 with a pair-wise commu-
nication model (aS(t) 6= aH(t)), and all are restricted to a shared
context setting (oT (t) ∈ XaS

O (t) ∩ XaH
O (t)). Moreover, it is as-

sumed that agent’s behaviour is governed by a set of standard in-
terpretation φI , production φP , and update ψ rules, as described
in section 3. We investigate a number of simulation settings, in-
cluding various population sizes, various object sizes and different
context sizes using versatile measures, from basic success rate, to
more complex synonymy and homonymy spread in the population.
However, due to the space limitations we only focus on the gen-
eral properties of the system, and present the obtained results as an
exemplification of the observed system’s behaviour.

Baseline parameters assume: ten agents, ten objects, fixed con-
text size limited to two objects, and random selection strategy. All
of the presented graphs are an average over fifty consecutive runs
and as such are a good representation of the observed dynamic
behaviour of the system. In order to compare the topic selection
strategies it is important to guarantee the same experimental set-
tings for each selection procedure by fixing the context path (se-
quence of randomly generated consecutive context) and interaction
path (sequence of randomly generated consecutive agent pairs) be-
fore each run, and sharing it with all of the strategies.

5.1 Success rate and language coherence
Figure 1 depicts the typical character of language coherence dy-

namics. On the right column graphs, we can observe the slow phase
shift dynamics of the coherence rate (See equation 2), reflecting
three fundamental stages of system’s evolution. Whilst, on the left
column, we can observe the typical dynamics of the success rate
(see equation 1).

Initial iterations form and maintain a plateau of low coherence,
where the early invented words shape hooks that gradually begin to
fill up agent’s lexicons with words and cast fresh possible conven-
tions (see section 5.2). Despite, the initial burst of new conventions
and sudden increase of the overall usability of words si, the aver-
age strength of correlation σ is still relatively low. In the second
phase the system undergoes a sudden increase of coherence. Due
to a particular realisation of random processes XO and XP , some

6where each pair of agents is equally probable to interact
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Figure 1: Success rate and language coherence in different topic se-
lection strategies and four different context sizes.

Figure 2: Language coherence in different topic selection strategies
and three different population sizes (context size set to 4).

of the initial hooks are dampened, as such some of the words are
no longer used (see figure 3), whilst the other ones are enforced, as
such the overall strength of correlation of the used words increases.
Resultant, the strongest words start to dominate the convention and
can be easier shared among the individuals. The last stage resem-
bles the significant slow down in alignment process. As most of the
language is already shared by the agents, i.e. the coherence level is
above µLC = 0.8 (80% of the maximum coherence), and due to
the random character of participant and context selection, the less
probable, and still unaligned, cases must occur, i.e. the minority
must adopt the dominant naming convention.

Three basic observations can be made from the obtained results
(see section 6). At first higher levels of coherence are reached by
the min(max) strategy, i.e. at each iteration it is higher compared
to random strategy. Secondly, the more significant the context size
is, the more significant is the observed disproportion. As observed
in figure 2 analogous tendency is maintained with the increase of
population size. Third, the min/max strategies seem to resemble
very similar characteristics under the influence of changing context
size.

5.2 Words statistics
Figure 3 depicts the typical dynamic character of the average

number of words used by an individual (see equation 3) and the
overall number of words present in the system (see equation 4). As
already noted the system undergoes three distinguishable phases.
Initially, as agents lexicons begun to fill up with words, and as
agents still lack of precise information, a sudden increase in the
number of used words is observed. Reaching its maximum at about
the level of 20% of the maximum coherence (see section 5.1). Fur-
ther, as some of the initial formed names, due to random character
of the process, are more ‘popular’ they tend to dominate the pop-

Figure 3: Number of words and used words in different topic selection
strategies and four different context sizes.

ulation, and begin to systematically eliminate all other competing
words from their usage. This early alignment results in the ob-
served sudden decrease in the number of used words, and is corre-
lated with the increase of language coherence (see section 5.1). In
short, as agents begin to share more and more conventions, all of
the most obviously incorrect ones, least ‘popular’, can be quickly
dampen. Obviously, this decrease is less sudden then the initial
burst, and it steadily diminishes with time. Again, the last stage
resembles the significant slow down in the alignment process, as
the minority must aligned to the dominant convention. Finally, the
number of used words stabilises at the number of objects present
in the environment, reaching as such the ideal one-to-one naming
convention (see section 3.3).

Again three basic observations can be made from the obtained
results. At first, the maximum number of words directly depends
on the number of objects in the context and on the selection strat-
egy. In case of random selection the increase of needed number
of words, with the increase of context size, is significant, whereas
the min/max strategies are more or less stable. Importantly, the
min (max) strategy in all context sizes requires significantly less
words, also less used words, then the random strategy. Secondly
the more significant the context size is the less words are needed for
the min/max strategies, and the more significant is the dispropor-
tion between min (max) strategy and the ‘other’ strategies. Third,
the min/max strategies seem to resemble very consistent character-
istics without any significant influence from the changing context
size. The number of invented words is stable at around the same
level (40) for both strategies, and for both strategies the maximum
number of used words undergoes similar change, i.e. decreases
with the increase of context size.

5.3 Dynamic context size
In all of the previous simulations a fixed context size settings

were assumed, where ∀t∈T ‖XO(t)‖ = c. However, despite its
analytical simplification it is still a significant limitation imposed
on the system, as it requires that all interactions between agents
involve a strictly predefined number of objects from the environ-
ment - c ≤ KO . Therefore, it is reasonable to ask how general is
the observed behaviour, and whether it is not only restricted to a
fixed context settings. In order to verify this notion, we introduce a
modification to the previous settings and before interaction alter the
number of objects present in the context. Introduced change is gov-
erned by a predefined probability distribution, i.e. Pr(XO(t) = c).
In particular, as all objects are equally probable to appear in the
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Figure 4: Varying context size settings.

context it seems rational to investigate an analogous type of distri-
bution, where Pr(XO(t) = c) = 1

KO
. We should note that on

average, as the number of interaction increases, each agent inter-
acts equally often in each possible context size setting, e.g. equally
often perceives a single object (c = 1), and equally often perceive
the entire set of objects (c = KO).

Figure 4 represents a typical behaviour of the alignment proce-
dure in dynamic context settings. As in fixed context settings the
min/max strategies result in higher coherence rates, however due
to the aforementioned independent cases and the dynamic charac-
ter of their change the increase is less significant. Nevertheless,
still the min/max selection strategies require less words to reach a
coherent naming convention, as such limit the required memory of
the system and limit the number of used words in the system. Addi-
tionally, dynamic context sizes still maintain the scaling property,
as with the increasing number of objects the difference between
language coherence of random and modified selection is increas-
ing. In short, it should be noted that the behaviour pattern of the
alignment process in case of dynamic context sizes remains consis-
tent with the observations for the case of fixed context structures.

6. ANALYSIS
We can recall that the considered learning mechanism is based

solely on learning from co-occurrences between words and ob-
jects (cross-situational learning), and the more agents ‘talk’ about
a certain object the more names are invented and more conventions
tested. Moreover, the more different agents start to talk about the
same set of objects the more possible naming conflicts might occur,
i.e. more conflicts must be resolved and the names must concur
with other numerous competitors.

At first, the noticeable differences between the random and min
(max) strategy may be falsely attributed to the specificity of the
assumed experimental settings. Seemingly, the limited number of
agents increases the probability that multiple agents share similar
statistics of the environment, i.e. similar private frequencies F (t).
As such, whenever speaker selects the least (or the most) occurring
object the shared frequencies increases the chance that the hearer
also perceives the topic as rare, and resultantly both agents tend to
select similar objects. In particular, being in line with hypothetical
specificity of the assumed settings requires that with the increasing
number of agents the disproportion between min/max and random
strategy should diminish. As this behaviour is not observed, i.e.
the results presented in figure 2, it supports our justification that
the presupposed similarity of perceptions between communicating

individuals does not influence the tendency to dominate correla-
tions.

The key to understand the significant difference between the ran-
dom strategy and min/max strategies lies in the characteristics of
the random process that each selection strategy represents. The fun-
damental probability that a given object o is present in the context is
given as po = Pr(o ∈ XO(t)) = 1

KO
, and therefore the probabil-

ity that a certain frequency increases is Pr(fi(t2) > fi(t1)) = poi

(t1 and t2 indicate two consecutive time points when the agent in-
teracted). Fixing a strategy, results in speaker’s linguistic behaviour
being governed by its selection θ process, that in case of min/max
strategy is additionally modulated by the perceived statistics of the
environment.

Let us consider an isolated (single speaker agent) process of
random topic selection, at each time point a given number of ob-
jects c is drawn (without replacement) from a set containing KO

identifiable objects and put into a shared bin B, i.e. Pr(oi ∈
B) =

(
KO−1
c−1

) · (KO
c

)−1
= c

KO
. Further, a random object i∗

is selected from the bin, i.e. Pr(oi∗ = θorig|oi∗ ∈ B) = 1
c

.
The resultant probability of object oi∗ being selected is equal to
Pr(oi∗ = θorig) = Pr(oi∗ = θorig|oi∗ ∈ B) · Pr(oi∗ ∈ B) =
c
KO
· 1
c

= 1
KO

. If the latter selection procedure is uniform, rep-
resenting the random strategy, the initial distribution of objects is
maintained, i.e. each object is equally probable to be selected as
the topic. Based on this observation the expected number of times
an object o was selected by the speaker XaS

o (N) after N iterations
is equal to E[XaS

o ] = N ·Pr(o = θorig), as the process XaS fol-
lows the multinomial distribution. As such, all objects are evenly
selected by all agents, and significant number of naming conflicts
occurs. This is in line with simulation results (See figure 2), where
in early stage the number of concurring words increases drastically
and the number of invented words is significant.

On the other hand in the case of min/max selection strategy the
presented procedure must be extended to a case where for every
drawn object oi an identical one is added to a shared bin, whilst
the original one is returned to the set. As such the number ni of
objects of type i in the shared bin constitutes the frequency of a
certain object fi = ni/

∑
j nj . Now if at each iteration the agent

selects the bin with lowest / highest number of balls, then this pro-
cess represents min / max strategy appropriately. Let us assume a
simple case, where there are only two objects o1 and o2 present
in the environment. At each iteration a single agent a ∈ P along
with one object oi is randomly selected, increasing agent’s a fre-
quency of oi occurrence fai . Afterwards agent a selects a single
object (o1 or o2) based on its current frequencies (fa1 , fa2 ) and
(min/max) strategy. After N iterations the probability that the fre-
quency of occurrences is equal for both objects is Pr(fa1 (N) =

fa2 (N)) = 1
2

N , and it significantly decreases with the number of
iterations. As θmin = argminojf

a
j the probability that afterN it-

erations the selection process is going to switch objects is equal to
Pr(fa1 (N) = fa2 (N))Pr(θmin(N−1) 6= θmin(N+1)) = 1

2

N 1
2

.
Obviously, with the increasing number of iterations the probability
that the agent a used to select o1(o2) will switch to o2(o1) is de-
creasing exponentially, e.g. for N = 10 the probability of switch-
ing is .05‰, and is highly defined by the early realisation of the
random selection. Resultantly, the agent has a strong preference
over one of the objects (opposite to random selection). It should
be noted that as agents do not share their private perceptions the
frequencies differ between the individuals, and result in even dis-
tribution of preferences between agents, i.e. most likely the same
number of agents will prefer o1 as o2. As such in case of min/max
strategy, the population of interacting agents randomly transforms
themselves into a population of individuals that tend to speak about
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different parts of the environment, i.e. individuals that tend to have
unique selection preferences. Whilst in the case of random strategy,
the population of interacting agents resembles an opposite transfor-
mation into a group of individuals that tend to equally (in terms of
frequency) speak about all parts of the environment. As such in
case of min/max approach the agents need to invent less words (see
section 5.2 ), i.e. on average less conflicts occur, and due to limited
possibilities the higher coherence is easier to achieve (see section
5.1). Interestingly, as the context size increases the agent’s prefer-
ences, selection strategy, tends to be more specialised and focusing
on a single object. Therefore the observed decrease in number of
needed words in increasing context sizes (see figure 3).

7. CONCLUSIONS
In principle, developing a mechanism that would lead to a coher-

ent formulation of names among multiple interacting individuals is
not a trivial task. Several approaches have been proposed and inves-
tigated in the literature, however, the language game model seems
to be still the most significant framework for language emergence.
Presented approach is in line with the ongoing research, as it ex-
tends the ‘classical’ LGM approach of random topic selection, and
studies the dynamic character of the formation of coherent nam-
ing conventions. Using a simulated multi-agent system we give
insights on the effects of different attention attracting procedures,
i.e. topic selection strategies, in the case of the least restrictive type
of naming game (without feedback).

The attention orienting strategies are an important aspect in the
research on language emergence based on the language game model.
In this paper we have introduced three general meta-models of dif-
ferent topic selection mechanisms, and studied their effects on the
behaviour of no feedback naming game with significant contexts
sizes. We justify that incorporation of different topic selection
strategies influences the behaviour of the system, resulting in higher
levels of language coherence and maintaining a the minimal mem-
ory requirements. Moreover, we show that the more significant the
context size is the more significant is the observed disproportion
between different strategies. In particular, we have shown that the
‘classical’ settings of random selection do not guarantee the best
performance, and can be easily enriched through a more determin-
istic strategy. Higher levels of coherence can be reached by agents
tending to select the best known objects (max strategy) or tending
to select the least known objects (min strategy). Additionally, the
more the agents in the population then again more significant is
the observed disproportion between different strategies. As such,
we show that min/max topic selection strategies scale significantly
better then the extensively used random selection.

Our future research focuses on extending the proposed mecha-
nism to a more flexible population structures and less restrictive
environments. We further intend to introduce adaptation proce-
dures that would allow to dynamically modulate agent’s selection
strategy, allowing to study more advanced and complex models of
attention orienting.

8. REFERENCES
[1] A. Baronchelli, V. Loreto, L. DallAsta, and A. Barrat.

Bootstrapping communication in language games: Strategy,
topology and all that. In Proceedings of the 6th International
Conference on the Evolution of Language, p. 11-18, 2006.

[2] P. Bloom. How children learn the meanings of words,
volume 24. The MIT Press, 2002.

[3] A. Cangelosi. The grounding and sharing of symbols.
Cognition Distributed: How Cognitive Technology Extends
Our Minds, p. 83, 2008.

[4] A. Cangelosi and D. Parisi. Simulating the evolution of
language. Springer-Verlag, NY, USA, 2002.

[5] D. Cook and S. Das. How smart are our environments? An
updated look at the state of the art. Pervasive and Mobile
Computing, 3(2):53-73, 2007.

[6] P. Corke, R. Peterson, and D. Rus. Localization and
Navigation Assisted by Networked Cooperating Sensors and
Robots. The International Journal of Robotics Research,
24(9):771-786, 2005.

[7] B. DeVylder and K. Tuyls. Towards a common lexicon in the
naming game: The dynamics of synonymy reduction.
Workshop on Semiotic Dynamics of Language Games, 2005.

[8] J. DeBeule, B. DeVylder, and T. Belpaeme. A
cross-situational learning algorithm for damping homonymy
in the guessing game. In In proceedings of ALIFE X, MIT
Press., 2006.

[9] W. J. Freeman. The physiology of perception. 264:78-85,
1991.

[10] X. Hong, C. Nugent, M. Mulvenna, S. McClean, B. Scotney,
and S. Devlin. Evidential fusion of sensor data for activity
recognition in smart homes. Pervasive and Mobile
Computing, 5(3):236-252, 2009.

[11] W. Lorkiewicz and R. Katarzyniak. Issues on Aligning the
Meaning of Symbols in Multiagent Systems. New
Challenges in Computational Collective Intelligence, 217,
Springer, 2009

[12] K. H. Low, J. M. Dolan, and P. Khosla. Adaptive multi-robot
wide-area exploration and mapping. In Proc. of 7th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2008), p. 23-30, 2008.

[13] M. Mirolli and S. Nolfi. Evolving communication in
embodied agents: Theory, Methods, and Evaluation.
Evolution of Communication and Language in Embodied
Agents, p. 105-121, 2010.

[14] S. Nolfi. Emergence of communication in embodied agents:
Co-adapting communicative and non-communicative
behaviours. Connection Science, 17(3):231-248, 2005.

[15] W. Quine. Word and object. The MIT Press, 1960.
[16] I. Rekleitis. Distributed coverage with multi-robot system. In

Proceedings ICRA’06, p. 2423-2429, 2006.
[17] L. Steels. Language as a complex adaptive system. In

Parallel Problem Solving from Nature PPSN VI, page 17-26.
Springer, 2000.

[18] L. Steels. Modeling The Formation of Language in
Embodied Agents: Methods and Open Challenges. Evolution
of Communication and Language in Embodied Agents, page
223-233, 2010.

[19] P. Vogt and H. Coumans. Investigating social interaction
strategies for bootstrapping lexicon development. Journal of
Artificial Societies and Social Simulation, 6(1):1, 2003.

[20] P. Vogt and B. De Boer. Editorial: Language Evolution:
Computer Models for Empirical Data. Adaptive Behavior,
18(1):5, 2010.

[21] K. Wagner, J. a. Reggia, J. Uriagereka, and G. S. Wilkinson.
Progress in the Simulation of Emergent Communication and
Language. Adaptive Behavior, 11(1):37-69, 2003.

[22] AAMAS’02, p. 362-369, 2002. J. Wang and L. Gasser.
Mutual online concept learning for multiple agents.

[23] T. Wark, D. Swain, C. Crossman, P. Valencia,
G. Bishop-Hurley, and R. Handcock. Sensor and Actuator
Networks: Protecting Environmentally Sensitive Areas.
IEEE Pervasive Computing, 8(1):30-36, 2009.

506



Game Theory and Learning





Reaching Correlated Equilibria Through
Multi-agent Learning

Ludek Cigler
Ecole Polytechnique Fédérale de Lausanne

Artificial Intelligence Laboratory
CH-1015 Lausanne, Switzerland

ludek.cigler@epfl.ch

Boi Faltings
Ecole Polytechnique Fédérale de Lausanne

Artificial Intelligence Laboratory
CH-1015 Lausanne, Switzerland

boi.faltings@epfl.ch

ABSTRACT
Many games have undesirable Nash equilibria. For exam-
ple consider a resource allocation game in which two players
compete for an exclusive access to a single resource. It has
three Nash equilibria. The two pure-strategy NE are effi-
cient, but not fair. The one mixed-strategy NE is fair, but
not efficient. Aumann’s notion of correlated equilibrium
fixes this problem: It assumes a correlation device which
suggests each agent an action to take.

However, such a“smart” coordination device might not be
available. We propose using a randomly chosen, “stupid” in-
teger coordination signal. “Smart”agents learn which action
they should use for each value of the coordination signal.

We present a multi-agent learning algorithm which con-
verges in polynomial number of steps to a correlated equilib-
rium of a wireless channel allocation game, a variant of the
resource allocation game. We show that the agents learn to
play for each coordination signal value a randomly chosen
pure-strategy Nash equilibrium of the game. Therefore, the
outcome is an efficient correlated equilibrium. This CE be-
comes more fair as the number of the available coordination
signal values increases.

We believe that a similar approach can be used to reach
efficient and fair correlated equilibria in a wider set of games,
such as potential games.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms, Economics

Keywords
Multiagent Learning, Coordination, Game Theory

1. INTRODUCTION
The concept of Nash equilibrium forms the basis of game

theory. It allows us to predict the outcome of an interaction
between rational agents playing a given game.
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However, many games have undesirable equilibrium struc-
ture. Consider the following resource allocation game: Two
agents are trying to access a single resource. Agents can
choose between two actions: yielding (Y ) or accessing (A).
The resource may be accessed only by one agent at a time. If
an agent accesses the resource alone, she receives a positive
payoff. If an agent does not access the channel, her payoff is
0. If both agents try to access the channel at the same time,
their attempts fail and they incur a cost c.

The payoff matrix of the game looks as follows:

Y A

Y 0, 0 0, 1
A 1, 0 −c, −c

Such a game has two pure-strategy Nash equilibria (NE),
in which one player yields and the other one goes straight.
It has also one mixed-strategy NE, where each player yields
with probability 1

c+1
. The two pure-strategy NE are effi-

cient, in that they maximize the social welfare, but they are
not fair: Only one player gets the full payoff, even though
the game is symmetric. The mixed-strategy NE is fair, but
not efficient: The expected payoff of both players is 0.

In his seminal paper, Aumann ([1]) proposed the notion of
correlated equilibrium which fixes this problem. A correlated
equilibrium (CE) is a probability distribution over the joint
strategy profiles in the game. A correlation device samples
this distribution and recommends an action for each agent
to play. The probability distribution is a CE if agents do not
have an incentive to deviate from the recommended action.

In the simple game described above, there exists a CE
which is both fair and socially efficient: just play the two
pure-strategy NE with probability 1

2
. This corresponds to an

authority which tells each player whether to yield or access
the resource.

Correlated equilibria have several nice properties: They
are easier to find (for a succinct representation of a game, in
polynomial time, [11]) and every Nash equilibrium is a cor-
related equilibrium. Also, any convex combination of two
correlated equilibria is a correlated equilibrium. However, a
“smart”correlation device which randomizes over joint strat-
egy profiles might not always be available.

It is possible to achieve a correlated equilibrium with-
out the actual correlation device. Assume that the game is
played repeatedly, and that agents can observe the history
of actions taken by their opponents. They can learn to pre-
dict the future action (or a distribution of future actions) of
the opponents. These predictions need to be calibrated, that
is, the predicted probability that an agent i will play a cer-
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tain action aj should converge to the actual frequency with
which agent i plays action aj . Agents always play an action
which is the best response to their predictions of opponents’
actions. Forster and Vohra in [5] showed that in such a case,
the play converges to a set of correlated equilibria.

However, in their paper, Foster and Vohra did not provide
a specific learning rule to achieve a certain CE. Furthermore,
their approach requires that every agent were able to observe
actions of every other opponent. If this requirement is not
met, convergence to a correlated equilibrium is not guaran-
teed anymore.

In this paper, we focus on a variant of the resource al-
location game, a game of wireless channel allocation. In
this game, there are N agents who always have some data
to transmit, and there are C channels over which they can
transmit. We assume that N ≥ C. Access to a channel is
slotted, that is, all agents are synchronized so that they start
transmissions at the same time. Also, all transmissions must
have the same length. If more than one agent attempts to
transmit over a single channel, a collision occurs and none
of the transmissions are successful. An unsuccessful trans-
mission has a cost for the agent, since it has to consume
some of its (possibly constrained) power for no benefit. Not
transmitting does not cost anything.

We assume that agents only receive binary feedback. If
they transmitted some data, they find out whether their
transmission was successful. If they did not transmit, they
can choose some channel to observe. They receive informa-
tion whether the observed channel was free or not.

The game has several efficient (but unfair) pure-strategy
Nash equilibria, in which a group of C agents gets assigned
all the channels. The remaining N −C agents get stranded.
It has also a fair but inefficient mixed-strategy NE, in which
agents choose the transmission channels at random. As in
the resource allocation game, there exists a correlated equi-
librium which is efficient and fair.

In this scenario, a global coordination device that would
tell each agent which channel to transmit on is not available.
Imagine that the agents are wireless devices belonging to dif-
ferent organizations. Setting up such a coordination device
would require additional communication before the trans-
missions. Moreover, agents cannot observe all the actions
of their opponents, since the feedback they receive is very
limited. Therefore, they cannot learn the fair and efficient
correlated equilibrium from the history of the play.

We propose a different approach to achieve an efficient
and fair correlated equilibrium in such a game. We do not
want to rely on a complex correlation device which needs to
know everything about the game. Also, we do not want to
rely on the history which may not be observable. Instead,
we assume that agents can observe, before each round of the
game, a randomly chosen integer from a set {0, 1, . . . , K−1}.
For each possible signal value, agents learn which action to
take.

Our correlation signal does not need to know anything
about the game. It does not have to tell agents which action
to take. For example, the agents may just observe noise on
some frequency. This is the principal difference from using
the “smart” coordination device, which is assumed in the
original definition of correlated equilibrium.

The main contributions of this work are the following:

• We propose a learning strategy for agents in the wire-
less channel allocation game which, using minimal in-

formation, converges in polynomial time to a randomly
chosen efficient pure-strategy Nash equilibrium of the
game.

• We show that when the agents observe a common in-
teger correlation signal, they learn to play such an ef-
ficient pure-strategy NE for each signal value. The
result is a correlated equilibrium which is increasingly
fair as the number of available signals K increases.

The rest of the paper is organized as follows: In Section 2,
we present the algorithm agents use to learn an action for
each possible correlation signal value. In Section 3 we prove
that such an algorithm converges to an efficient correlated
equilibrium in polynomial time in the number of agents and
channels. We show that the fairness of the resulting equi-
libria increases as the number of signals K increases in Sec-
tion 4. Section 5 highlights experiments which show the ac-
tual convergence rate and fairness. In Section 6 we present
some related work from game theory and cognitive radio
literature, and Section 7 concludes.

2. LEARNING ALGORITHM
In this section, we describe the algorithm which the agents

will use to learn a correlated equilibrium of the wireless chan-
nel allocation game.

Let us denote the space of available correlation signals
K := {0, 1, . . . , K − 1}, and the space of available channels
C := {1, 2, . . . , C}. Assume that C ≤ N , that is there are
more agents than channels (the opposite case is easier). An
agent i has a strategy fi : K → {0} ∩ C which it uses to
decide which channel it will access at time t when it receives
a correlation signal kt. When fi(kt) = 0, the agent does not
transmit at all for signal kt. The agent stores its strategy
simply as a table.

It adapts the strategy as follows:

1. In the beginning, for each s ∈ K, fi(s) is initialized
uniformly at random from C.

2. At time t, if fi(kt) > 0, the agent tries to transmit
over channel fi(kt). If otherwise fi(kt) = 0, the agent
chooses a random channel mi(t) ∈ C which it will mon-
itor for activity.

3. Subsequently, the agent observes the outcome of its
choice: if the agent transmitted over some channel,
she observes whether the transmission was successful.
If it was, the agent will keep her strategy unchanged.
If a collision occurred, the agent sets fi(kt) := 0 with
probability p.

4. If the agent did not transmit, it observes whether there
was a transmission on the channel mi(t) it monitored.
If that channel was free, the agent sets fi(kt) := mi(t).

3. CONVERGENCE
An important property of the learning algorithm is if, and

how fast it can converge to a pure-strategy Nash equilibrium
of the channel allocation game for every signal value. The
algorithm is randomized. Therefore, instead of analyzing its
worst-case behavior (which may be arbitrarily bad), we will
analyze its expected number of steps before convergence.
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3.1 Convergence for C = 1, K = 1

We prove the following theorem:

Theorem 1. For N agents and C = 1, K = 1, 0 < p < 1,
the expected number of steps before the allocation algorithm
converges to a pure-strategy Nash equilibrium of the channel

allocation game is O
“

1
p(1−p)

log N
”
.

To prove the convergence of the algorithm, it is useful to
describe its execution as a Markov chain.

When N agents compete for a single signal value (a“slot”),
a state of the Markov chain is a vector from {0, 1}N which
denotes which agents are attempting to transmit. For the
purpose of the convergence proof, it is only important how
many agents are trying to transmit, not which agents. This
is because the probability with which the agents back-off
is the same for everyone. Therefore, we can describe the
algorithm execution using the following chain:

Definition 1. A Markov chain describing the execution of
the allocation algorithm for C = 1, K = 1, 0 < p < 1 is
a chain whose state at time t is Xt ∈ {0, 1, . . . , N}, where
Xt = j means that j agents are trying to transmit at time t.

The transition probabilities of this chain look as follows:

P (Xt+1 = N |Xt = 0) = 1 (restart)

P (Xt+1 = 1|Xt = 1) = 1 (absorbing)

P (Xt+1 = j|Xt = i) =

 
i

j

!
pi−j(1− p)j i > 1, j ≤ i

All the other transition probabilities are 0.

We are interested in the number of steps it will take this
Markov chain to first arrive at state Xt = 1 given that it
started in state X0 = N . This would mean that the agents
converged to a setting where only one of them is transmit-
ting, and the others are not. This quantity is known as the
hitting time.

Definition 2. [10] Let (Xt)t≥0 be a Markov chain with
state space I. The hitting time of a subset A ⊂ I is a
random variable HA : Ω → {0, 1, . . .} ∪ {∞} given by

HA(ω) = inf{t ≥ 0 : Xt(ω) ∈ A}
Specifically, we are interested in the expected hitting time

of a set of states A, given that the Markov chain starts in
an initial state X0 = i. We will denote this quantity

kA
i = Ei(H

A).

In general, the expected hitting time of a set of states A
can be found by solving a system of linear equations. Solving
them analytically for our Markov chain is however difficult.
Fortunately, when the Markov chain has only one absorbing
state i = 0, and it can only move from state i to j if i ≥ j,
we can use the following theorem to derive an upper bound
on the hitting time (proved in [12]):

Theorem 2. Let A = {0}. If

∀i ≥ 1 : E(Xt+1|Xt = i) <
i

β

for some β > 1, then

kA
i <

˚
logβ i

ˇ
+

β

β − 1

The Markov chain of our algorithm does not have the
property required by this theorem. The problem is that the
absorbing state is state 1, and from state 0 the chain goes
back to N .

Nevertheless, we can use Theorem 2 to prove the following
lemma:

Lemma 1. Let A = {0, 1}. The expected hitting time of
the set of states A in the Markov chain described in Defini-

tion 1 is O
“

1
p

log N
”
.

Proof. We will first prove that the expected hitting time
of a set A′ = {0} in a slightly modified Markov chain is

O
“

1
p

log N
”
.

Let us define a new Markov chain (Yt)t≥0 with the follow-
ing transition probabilities:

P (Yt+1 = 0|Yt = 0) = 1 (absorbing)

P (Yt+1 = j|Yt = i) =

 
i

j

!
pi−j(1− p)j j ≥ 0, i ≥ 1

Note that the transition probabilities are the same as in
the chain (Xt)t≥0, except for states 0 and 1. From state 1
there is a positive probability of going into state 0, and
state 0 is now absorbing. Clearly, the expected hitting time
of the set A′ = {0} in the new chain is an upper bound on
the expected hitting time of set A = {0, 1} in the old chain.
This is because any path that leads into state 0 in the new
chain either does not go through state 1 (so it happened
with the same probability in the old chain), or goes through
state 1, so in the old chain it would stop in state 1 (but it
would be one step shorter).

If the chain is in state Yt = i, the next state Yt+1 is drawn
from a binomial distribution with parameters (i, 1−p). The
expected next state is therefore

E(Yt+1|Yt = i) = i(1− p)

We can therefore use the Theorem 2 with β := 1
1−p

to

derive that for A′ = {0}, the hitting time is:

kA′
i <

l
log 1

1−p
i
m

+
1

p
≈ O(

1

p
log i)

which is also an upper bound on kA
i for A = {0, 1} in the

old chain.

Lemma 2. The probability hi that the Markov chain de-
fined in Definition 1 enters state 1 before entering state 0,
when started in any state i > 1, is greater than 1− p.

Proof. Calculating the probability that the chain X en-
ters state 1 before state 0 is equal to calculating the hitting
probability , i.e. the probability that the chain ever enters a
given state, for a modified Markov chain where the proba-
bility of staying in state 0 is P (Xt+1 = 0|Xt = 0) = 1. For
a set of states A, let us denote hA

i the probability that the
Markov chain starting in state i ever enters some state in
A. To calculate this probability, we can use the following
theorem (proved in [10]):

Theorem 3. Let A be a set of states. The vector of hit-
ting probabilities hA = (hA

i : i ∈ {0, 1, . . . , N}) is the mini-
mal non-negative solution to the system of linear equations

hA
i =


1 for i ∈ AP

j∈{0,1,...,N} pijh
A
j for i /∈ A
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For the modified Markov chain which cannot leave neither
state 0 nor state 1, computing hA

i for A = 1 is easy, since the
matrix of the system of linear equations is lower triangular.

We’ll show that hi ≥ γ = 1− p for i > 1 using induction.
The first step is calculating hi for i ∈ {0, 1, 2}.

h0 = 0

h1 = 1

h2 = (1− p)2h2 + 2p(1− p)h1 + p2h0

=
2p(1− p)

1− (1− p)2
=

2(1− p)

2− p
≥ 1− p.

Now, in the induction step, derive a bound on hi by as-
suming hj ≥ γ = 1− p for all j < i, j ≥ 2.

hi =
iX

j=0

 
i

j

!
pi−j(1− p)jhj

≥
iX

j=0

 
i

j

!
pi−j(1− p)jγ − ipi−1(1− p)(γ − h1)− pih0

= γ − ipi−1(1− p)(γ − 1) ≥ γ = 1− p.

This means that no matter which state i ≥ 2 the Markov
chain starts in, it will enter into state 1 earlier than into
state 0 with probability at least 1− p.

From Lemma 2, we derive that in the original Markov
chain (where stepping into state 0 meant going into state N),
the chain takes on average 1

1−p
passes through all its states

before it converges into state 1. We know from Lemma 1

that one pass takes in expectation O
“

1
p

log N
”

steps, so

the expected number of steps before reaching state 1 is

O
“

1
p(1−p)

log N
”
. This concludes the proof of Theorem 1.

3.2 Convergence for C ≥ 1, K = 1

Theorem 4. For N agents and C ≥ 1, K = 1, the ex-
pected number of steps before the learning algorithm con-
verges to a pure-strategy Nash equilibrium of the channel

allocation game is O
“
C 1

1−p

h
1
p

log N + C
i”

.

Proof. In the beginning, in at least one channel, there
can be at most N agents who want to transmit. It will take

on average O
“

1
p

log N
”

steps to get to a state when either

1 or 0 agents transmit (Lemma 1). We will call this period
a round.

If all the agents backed off, it will take them on average
at most C steps before some of them find an empty channel.
We call this period a break.

The channels might oscillate between the “round” and
“break” periods in parallel, but in the worst case, the whole
system will oscillate between these two periods.

For a single channel, it takes on average O
“

1
1−p

”
oscil-

lations between these two periods before there is only one
agent who transmits in that channel. For C ≥ 1, it takes on

average O
“
C 1

1−p

”
steps between“round”and“break”before

all channels have only one agent transmitting. Therefore, it

will take on average O
“
C 1

1−p

h
1
p

log N + C
i”

steps before

the system converges.

3.3 Convergence for C ≥ 1, K ≥ 1

To show what is the convergence time when K > 1, we
will use a more general problem. Imagine that there are K
identical instances of the same Markov chain. We know that
the original Markov chain converges from any initial state to
an absorbing state in expected time T . Now imagine a more
complex Markov chain: In every step, it selects uniformly
at random one of the K instances of the original Markov
chain, and executes one step of that instance. What is the
time Tall before all K instances converge to their absorbing
states?

This is an extension of the well-known Coupon collec-
tor’s problem ([4]). We will prove the following rough upper
bound:

Lemma 3. Let there be K instances of the same Markov
chain which is known to converge to an absorbing state in
expectation in T steps. If we select randomly one Markov
chain instance at a time and allow it to perform one step of
the chain, it will take on average E[Tall] = O(K2T ) steps
before all K instances converge to their absorbing states.

Proof. Let Ri be the number of steps of the joint Markov
chain after which the instance i converges (by joint Markov
chain we mean the chain that selects randomly an instance
to perform one step). We are interested in

E [Tall] = E

»
max

i∈{1,...,K}
Ri

–
For this, it holds that

E

»
max

i∈{1,...,K}
Ri

–
≤ E

"
KX

i=1

Ri

#
=

KX
i=1

E [Ri]

For ∀i, E[Ri] = KT , because an instance i is selected in
every step with probability 1

K
, and it takes it in expectation

T steps to converge. Therefore, E[Tall] ≤ K2T .

For arbitrary C ≥ 1, K ≥ 1, the following theorem follows
from Theorem 4 and Lemma 3:

Theorem 5. For N agents and C ≥ 1, K ≥ 1, 0 < p < 1,
the expected number of steps before the learning algorithm
converges to a pure-strategy Nash equilibrium of the channel
allocation game for every k ∈ K is

O

„
K2C

1

1− p

»
C +

1

p
log N

–«
.

From [1] we know that any Nash equilibrium is a corre-
lated equilibrium, and any convex combination of correlated
equilibria is a correlated equilibrium. We also know that all
the pure-strategy Nash equilibria that the algorithm con-
verges to are efficient: there are no collisions, and in every
channel for every signal value, some agent transmits. There-
fore, we conclude the following:

Theorem 6. The learning algorithm defined in Section 2
converges in expected polynomial time (with respect to K, C,
1
p
, 1

1−p
and log N) to an efficient correlated equilibrium of

the wireless channel allocation game.
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Figure 1: Average number of steps to convergence
for N = 64, K = N and C ∈ {1, 2, . . . , N}.

4. FAIRNESS
Agents decide independently for each value of the coordi-

nation signal (a “slot”). Therefore, every agent has an equal
chance that the game converges to an equilibrium which is
favorable to her. If the agent can transmit in the resulting
equilibrium for a given signal value, we say that the agent
wins the slot. For C available channels and N agents, an
agent wins a given slot with probability C

N
(since no agent

can transmit in two channels at the same time).
We can describe the number of slots won by an agent i as

a random variable Xi. This variable is distributed according
to a binomial distribution with parameters

`
K, C

N

´
.

As a measure of fairness, we use the Jain index ([7]). For
a random variable X, the Jain index is the following:

J(X) =
(E[X])2

E[X2]

When X is distributed according to a binomial distribu-
tion with parameters (K, C

N
), its first and second moments

are

E[X] = K · C

N

E
ˆ
X2˜ =

„
K · C

N

«2

+ K · C

N
· N − C

N
,

so the Jain index is

J(X) =
C ·K

C ·K + (N − C)
.

For the Jain index it holds that 0 < J(X) ≤ 1. An allo-
cation is considered fair if J(X) = 1.

Theorem 7. For any C, if K = ω
`

N
C

´
, that is the limit

limN→∞ N
C·K = 0, then

lim
N→∞

J(X) = 1,

so the allocation becomes fair as N goes to ∞.

Proof. The theorem follows from the fact that

lim
N→∞

J(X) = lim
N→∞

C ·K
C ·K + (N − C)
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Figure 2: Average number of steps to convergence
for C = N

2
and varying K.

For this limit to be equal to 1, we need

lim
N→∞

N − C

C ·K = 0

which holds exactly when K = ω
`

N
C

´
(note that we assume

that C ≤ N).

5. EXPERIMENTAL RESULTS

5.1 Convergence
First, we are interested in the convergence of our alloca-

tion algorithm. From Section 3 we know that it is polyno-
mial. How many steps does the algorithm need to converge
in practice?

Figure 1 presents the average number of convergence steps
for N = 64, S = N and increasing number of available
channels C ∈ {1, 2, . . . , N}. Interestingly, the convergence
takes the longest time when C = N . The lowest convergence
time is for C = N

2
, and for C = 1 it increases again.

What happens when we change the size of the signal space K?
Figure 2 shows the number of convergence steps in that case,
for increasing number of agents in the system. Note that
this graph uses a double logarithmic scale, so a straight line
denotes polynomial, rather than linear dependence of the
number of convergence steps on N .

5.2 Fairness
From Section 4, we know that when K = ω

`
N
C

´
, the Jain

fairness index converges to 1 as N goes to infinity. But how
fast is this convergence? How big do we need to choose K,
depending on N and C, to achieve a reasonable bound on
fairness?

Figure 3 shows the Jain index as N increases, for C = 1
and C = N

2
respectively, for various settings of K. Even

though every time when K = ω
`

N
C

´
the Jain index in-

creases, there is a marked difference between the various
settings of K.

5.3 Optimizing Fairness
We saw how fair the outcome of the allocation algorithm is

when agents consider the game for each slot independently.
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Figure 3: Jain fairness index for different settings of C and K, for increasing N .

However, is it the best we can do? Can we further improve
the fairness, when each agent correlates her decisions for
different signal values?

In a perfectly fair solution, every agent wins (and conse-
quently can transmit) for the same number of slots. How-
ever, we assume that agents do not know how many other
agents there are in the system. Therefore, the agents do not
know what is their fair share of slots to transmit in. Nev-
ertheless, they can still use the information in how many
slots they already transmitted to decide whether they should
back-off and stop transmitting when a collision occurs.

Definition 3. For a strategy fi of an agent i, we define its
cardinality as the number of signals for which this strategy
tells the agent to transmit:

|fi| = |{k ∈ K|fi(k) > 0}|

Intuitively, agents whose strategies have higher cardinality
should back-off more often than those with a strategy with
low cardinality.

We compare the following variations of the channel allo-
cation scheme, which differ from the original one only in the
probability with which agents back off on collisions:

Constant Our scheme; Every agent backs off with the same
constant probability p.

Linear The back-off probability is p = |fi|
K

.

Exponential The back-off probability is p = γ

“
1− |fi|

K

”
for

some parameter 0 < γ < 1.

Worst-agent-last In case of a collision, the agent who has
the lowest |fi| does not back off. The others who col-
lided, do back off. This is a greedy algorithm which
requires more information than what we assume that
the agents have.

To compare the fairness of the allocations in experiments,
we need to define the Jain index of an actual allocation. For

an allocation X = (X1, X2, . . . , XN ), its Jain index is:

J(X) =

“PN
i=1 Xi

”2

N ·PN
i=1 X2

i

Figure 4 shows the average Jain fairness index of an allo-
cation for the back-off probability variations. The fairness
is approaching 1 for the worst-agent-last algorithm. It is
the worst if everyone is using the same back-off probabil-
ity. As the ratio between the back-off probability of the
lowest-cardinality agent and the highest-cardinality agent
decreases, the fairness increases.

This shows that we can improve fairness by using different
back-off probabilities. Nevertheless, the shape of the fairness
curve is the same for all of them. Furthermore, the exponen-
tial back off probabilities lead to much longer convergence,
as shown on Figure 5.

6. RELATED WORK
Broadly speaking, in this paper we are interested in games

where the payoff an agent receives from a certain action is
inversely proportional to the number of other agents who
chose the same action. How can we achieve efficient and fair
outcome in such games? Variants of this problem have been
studied in several previous works.

The simplest such variant is the Minority game ([3]). In
this game, N agents have to simultaneously choose between
two actions. Agents who chose an action which was cho-
sen by a minority of agents receive a payoff of 1, whereas
agents whose action choice was in majority receive a payoff
of 0. This game has many pure-strategy Nash equilibria, in
which some group of

¨
N−1

2

˝
agents chooses one action and

the rest choose the other action. Such equilibria are efficient,
since the largest possible number of agents achieve the max-
imum payoff. However, they are not fair: the payoff to the
losing group of agents is always 0. This game has also one
mixed-strategy NE which is fair: every agent chooses its ac-
tion randomly. This equilibrium, on the other hand, is not
efficient: the expected size of the minority group is lower
than

¨
N−1

2

˝
due to variance of the action selection.
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location scheme for various back-off probabilities,
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2
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Savit et al. ([13]) show that if the agents receive feed-
back on which action was in the minority, they can learn to
coordinate better to achieve a more efficient outcome in a
repeated minority game. They do this by basing the agents’
decisions on the history of past iterations. Cavagna [2] shows
that the same result can be achieved when agents base their
decisions on the value of some random coordination signal
instead of using the history. This is a direct inspiration for
our work.

The ideas from the literature on Minority games have re-
cently found their way into the cognitive radio literature.
Mahonen and Petrova [8] present a channel allocation prob-
lem much like ours. The agents learn which channel they
should use using a strategy similar to the strategies for mi-
nority games. The difference is that instead of preferring
the action chosen by the minority, in the channel allocation
problem, an agent prefers channels which were not chosen by
anyone else. Using this approach, Mahonen and Petrova are
able to achieve a stable throughput of about 50% even when
the number of agents who try to transmit over a channel
increases. However, each agent is essentially choosing one
out of a fixed set of strategies, which they cannot adapt.
Therefore, it is very difficult to achieve a perfectly efficient
channel allocation.

Another, more general variant of our problem, called dis-
persion game was described by Grenager et al. in [6]. In a
dispersion game, agents can choose from several actions, and
they prefer the one which was chosen by the smallest number
of agents. The authors define a maximal dispersion outcome
as an outcome where no agent can move to an action with
fewer agents. The set of maximal dispersion outcomes cor-
responds to the set of pure-strategy Nash equilibria of the
game. They propose various strategies to converge to a max-
imal dispersion outcome, with different assumptions on the
information available to the agents. On the contrary with
our work, the individual agents in the dispersion games do
not have any particular preference for the actions chosen or
the equilibria which are achieved. Therefore, there are no
issues with achieving a fair outcome.

Verbeeck et al. [14] use reinforcement learning, namely
linear reward-inaction automata, to learn Nash equilibria
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Figure 5: Convergence steps for various back-off
probabilities.

in common and conflicting interest games. For the class
of conflicting interest games (to which our wireless channel
allocation game belongs), they propose an algorithm that
allows the agents to circulate between various pure-strategy
Nash equilibria, so that the outcome of the game is fair. In
contrast with our work, their solution requires more commu-
nication between agents, and it requires the agents to know
when the strategies converged. In addition, linear reward-
inaction automata are not guaranteed to converge to a PSNE
in conflicting interest games; they may only converge to pure
strategies.

All the games discussed above, including the wireless chan-
nel allocation game, form part of the family of potential
games introduced by Monderer and Shapley ([9]). A game
is called a potential game if it admits a potential function.
A potential function is defined for every strategy profile,
and quantifies the difference in payoffs when an agent uni-
laterally deviates from a given strategy profile. There are
different kinds of potential functions: exact (where the dif-
ference in payoffs to the deviating agent corresponds directly
to the difference in potential function), ordinal (where just
the sign of the potential difference is the same as the sign of
the payoff difference) etc.

Potential games have several nice properties. The most
important is that any pure-strategy Nash equilibrium is just
a local maximum of the potential function. For finite poten-
tial games, players can reach these equilibria by unilaterally
playing the best-response, no matter what initial strategy
profile they start from.

The existence of a natural learning algorithm to reach
Nash equilibria makes potential games an interesting candi-
date for our future research. We would like to see to which
kind of correlated equilibria can the agents converge there,
if they can use a simple correlation signal to coordinate.

7. CONCLUSIONS
In this paper, we proposed a new approach to reach de-

sirable correlated equilibria in games. Instead of using a
“smart” coordination device, as the original definition of CE
assumes, we use “stupid” signal, a random integer k taken
from a set K = {0, 1, . . . , K − 1}, which has no a priori re-
lation to the game. Agents then are “smart”: they learn,
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for each value of the coordination signal, which action they
should take.

We showed a learning strategy which, for a variant of
a wireless channel allocation game, converges in expected
polynomial number of steps to an efficient correlated equi-
librium. We also proved that this equilibrium becomes in-
creasingly fair as K, the number of available synchroniza-
tion signals, increases. We have confirmed both the fast
convergence as well as increasing fairness with increasing K
experimentally.

In the future work, we would like to see whether this ap-
proach (“stupid” coordination signal and “smart” learning
agents) can help to reach desirable correlated equilibria of
other games, such as potential games.
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ABSTRACT
In infinitely repeated games, the act of teaching an outcome
to our adversaries can be beneficial to reach coordination,
as well as allowing us to ‘steer’ adversaries to outcomes that
are more beneficial to us. Teaching works well against fol-
lowers, agents that are willing to go along with the proposal,
but can lead to miscoordination otherwise. In the context
of infinitely repeated games there is, as of yet, no clear for-
malism that tries to capture and combine these behaviours
into a unified view in order to reach a solution of a game.
In this paper, we propose such a formalism in the form of
an algorithmic criterion, which uses the concept of targeted
learning. As we will argue, this criterion can be a beneficial
criterion to adopt in order to reach coordination. Afterwards
we propose an algorithm that adheres to our criterion that is
able to teach pure strategy Nash Equilibria to a broad class
of opponents in a broad class of games and is able to follow
otherwise, as well as able to perform well in self-play.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent system

General Terms
Algorithms, Theory

Keywords
Game Theory, Implicit Cooperation, Coordination, Teach-
ing

1. INTRODUCTION
In the area of multiagent learning, game theory is an im-

portant tool to model the interaction between agents that
arises. In order to establish and sustain coordination in a
repeated game, the agents need to achieve a mutual bene-
ficial outcome. In a setting where the agents are not pre-
coordinated and have no explicit way of communication (only
by observing actions/outcomes) this quickly becomes a com-
plex scenario. From this perspective, the act of proposing (or
forcing) an outcome to our adversaries makes sense, which

Cite as: Sequential targeted optimality as a new criterion for teach-
ing and following in repeated games, Max Knobbout and Gerard A.W.
Vreeswijk, Proc. of 10th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonen-
berg and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 517-524.Copyright c© 2011, International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

we will informally describe as ‘teaching’ behaviour. On the
other hand we have ‘following’ behaviour, which can be un-
derstood as the act of going along with such a proposal.
Teaching behaviour does not only make sense in order to
reach coordination, but often adopting the role of a teacher
allows us to ‘steer’ followers to outcomes that are more ben-
eficial to us. However, it can lead to miscoordination if mul-
tiple agents try to teach different outcomes of the game.
Without an external designation of these roles, it can be
hard to decide whether to take on the role of a teacher or
a follower. In the context of infinitely repeated games there
is, as of yet, no clear formalism that tries to capture and
combine these behaviours into a unified view in order to
reach a solution of a game. A reason for this could be the
fact that the distinction between teaching behaviour on one
hand, and following behaviour on the other, is often not so
clear-cut as one might presume. In order for the reader to
place this observation into perspective, the next section dis-
cusses different lines of previous work related to this work
in which either (1) intuitively (a combination of) teaching
and following behaviour occurs, but the authors do not ex-
plicitly mention this or in which (2) the authors mention the
existence of (one of) these behaviours but do not provide a
formalism or a unified view.

2. PREVIOUS WORK
In order to make the distinction between teaching and

following behaviour, one can try and identify the nature of
teaching behaviour. In [5], the authors mention the con-
cept of teaching (or leading) in repeated games, which is
introduced in the form of two strategies. These strategies,
named Godfather and Bully, can be used to induce good per-
formance from ‘followers’. Bully assumes it has first mover
advantage, and optimizes its payoff assuming that the other
player is a follower. Godfather (a generalization of Tit for
Tat) uses the threat of security level to maintain a mutually
beneficial outcome. Intuitively, these strategies can indeed
be understood as teacher strategies, but the authors do not
explicitly mention why this is the case. In [3], the authors
argue that the main difference between teaching strategies
as opposed to following strategies is the fact that teacher
strategies also take into account the payoff of the opponent.
We believe that this notion is insufficient, since arbitrary
mixed strategies can also be considered teaching strategies:
they force the opponent into a way of play by reducing the
setting to a Markov problem.

Another approach can be to try to identify follower strate-
gies in order to make the distinction between the two. Fol-
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lower strategies can be intuitively understood as strategies
that condition on the way of play of the opponent. Typical
examples are model-based learners, such as Fictitious Play
and Rational Learning. However, Godfather also conditions
on the way of play of the opponent, so it is a natural question
to ask why it is not a following strategy. In [5], the authors
argue that reinforcement learning algorithms like Q-learners
can be considered followers. However, we believe that Q-
learners capture a bit of both: with a high learning rate
they are able to quickly adapt (follow), while a low learn-
ing rate ensures that the agent stays committed to a way of
play (teach). Even more so, the difference between teaching
and following quickly becomes a grey area when we consider
strategies that use a multitude of strategies, like no-regret
learners.

We also have related research in which intuitively the com-
bination of teaching and following behaviour occurs, but of-
ten the authors never seem to mention it. One example
in which the authors do mention this can be found in [3],
in which the authors use a variant of godfather that uses
both teacher and follower utility together with the notion
of guilt to determine the length of the punishment phase.
Here guilt is the extra reward the opponent has accumu-
lated by deviating from the target solution. The problem
with this approach is that guilt has little scientific basis and
it is often very unclear if the opponent should remain guilty
in particular cases. Moreover, the algorithm can lead to very
unpredictable and complex behaviour, which is hard for the
opponent to predict this.

In other research we have that authors never mention the
existence of teaching and following behaviour, even though
their approach does intuitively seem to exhibit it to some
degree. In [1], the authors use the WoLF principle (Win
or Learn Fast) to extend the basic gradient ascent IGA al-
gorithm. The WoLF principle states that if the player is
winning, the algorithm should use a lower learning rate in
the case if it is losing. Adopting a low learning rate can be
seen as unwillingness to change your strategy, hence teach-
ing behaviour, while adopting a high learning rate can be
seen as follower behaviour. Another example of such re-
search can be found in [2], where the authors propose the
AWESOME (adapt when everybody is stationary, otherwise
move to equilibrium) algorithm which is able to play a best
response against stationary opponents in n-action n-player
games, and is also able to converge to a Nash equilibrium
in self-play. This algorithm does exactly what the name
implies, except the other way around: It starts out with
the assumption that the opponents are equilibrium players,
and thus plays their part of the pre-computed equilibrium
strategy (teaching). If this hypothesis later on is refuted,
it then proceeds to assume the opponent is stationary and
adapts accordingly by playing a best-response to the empiri-
cal frequency of play (following). But again, the point about
teaching and following behaviour is not explicitly made, the
algorithm merely works this way to ensure the above men-
tioned properties. In a multitude of papers found in [6], [7]
and [8], the authors propose a criterion that states that an
algorithm should achieve a close to optimal payoff against
certain classes of opponents with high probability. It is then
possible to use this criterion to demand a best response value
against a multitude of opponents, which can lead to interest-
ing step-wise teaching and following behaviour. For example

Figure 1: Non-teaching game
Left Right

Top 1,0 0,0
Bottom 0,0 1,0

in [6], the algorithm (1) first considers that the opponent is
stationary (and plays a best response), (2) afterwards con-
siders that the opponent is a follower (and plays a mixed
strategy variant of Bully) and (3) if no considerations can
be made, concludes that the best we can do is follow (and
plays Fictitious Play). But again, the point about teaching
and following is not explicitly made. As we will motivate
later, we believe that this approach, using beliefs about our
opponent to decide whether to teach or to follow, is a suit-
able approach for our problem.

Lastly, there is economic research about the subject which,
for the purpose of this section, should not be omitted. In this
approach (market) leaders and followers make up the com-
plex dynamics of a system that arises. The point of depar-
ture is the model, such as the Stackelberg leadership model,
where leader and follower are defined by the game itself
and distinguished by the first-mover advantage. An impor-
tant question here is whether or not the notion of teaching
and following can completely exist outside the model(game)-
level. This is actually questionable, as we will demonstrate
by the following example. Consider the game shown in Fig-
ure 1, which we have chosen to name the “non-teaching
game”. Now consider that we are the row player, and our
opponent is the column player, and we are playing an in-
finitely repeated game where we want to maximize our av-
erage returned payoff. In this game, the opponent is in-
different about all possible outcomes of the game. Forcing
outcomes by leading (Bully) or retaliating (Godfather) is
impossible in this game, since the opponent does not prefer
any outcome over another. The security value for this game
is 0.5 by adopting the mixed strategy (0.5,0.5) (the security
value is the value the agent can guarantee regardless of the
opponent by playing purely defensively). Arguably, the best
strategy to adopt in this game is to start out with this de-
fensive strategy and afterwards play a best response based
on the frequency of play of the opponent (for example in
the case he plays Left more than Right), or in other words
following behaviour. These types of games are evidence that
teaching might not be feasible in all games.

3. BASIC CONCEPTS
In the previous section, we saw that the distinction be-

tween teaching and following behaviour is not so clear cut
as one might suspect. In this section we will provide the
reader with a criterion that tries to capture the essence of
teaching and following. In our setting we consider infinitely
repeated, complete, perfect information normal-form games
(complete and perfect information implies that all agents
have knowledge about the payoffs of the game and the ac-
tions that have taken place), with 2 players and n actions.
These games are defined in the normal game-theoretic sense,
that is to say they consist of a finite set of players, a finite
set of actions for each player and a real valued payoff func-
tion that maps for each player an action profile to a real
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number. The goal is to maximize the average reward the
player receives. The n player extension might be interesting
for possible future research, but for now we do not want to
complicate matters too much.

During our approach we will sometimes stop and delib-
erate on two important aspects of teaching and following,
which is the what (“what to teach?”) and the when (“when
to teach and when to follow?”). Here we can already partly
state the “what”, namely we should teach something that is
within the capabilities of our opponent. This idea to get a
best response value against strategies that belong to a cer-
tain class of strategies is discussed by Shoham and Brown in
[9, pp. 222–223], where they discuss the concept of targeted
learning and use a criterion named (efficient) targeted opti-
mality. The following definition is similar, except that we
replaced the somewhat vague notion of ‘class of opponents’
to a set of strategies, which can be any subset of the full
strategy set available.

Definition 1. Given a (finite or infinite) strategy set S, a
strategy is said to be targeted optimal if it holds that for any
choice of ǫ > 0 and δ > 0 there should exist a number of
rounds τ , polynomial in 1

ǫ
and 1

δ
, such that for every number

of rounds t ≥ τ the strategy against an arbitrary strategy
σ ∈ S achieves average payoff of at least VBR(σ) − ǫ with
probability 1 − δ, where VBR(σ) is the value of the best
response given that the opponent plays σ. If, during run-
time, for a choice of ǫ and δ the average payoff when playing
our strategy remains ǫ-close to the best response value for
every number of rounds t ≥ τ , where τ is defined as previous,
we say that the property of optimality is maintained.

Notice that (ǫ, δ)-optimality is quite a weak notion of op-
timality. To explain this choice in the context of teaching
and following, the choice of ǫ can be explained by the fact
that sometimes we need room to identify whether or not the
opponent can be taught. The latter choice can be explained
by the fact that we can never be certain whether or not the
opponent actually belongs to the target class. Here, δ can
be seen as a ‘measure of stubbornness’ to determine when
to abandon our hopes to achieve an average payoff ǫ-close to
the best response value (namely when we are certain enough
that the opponent does not belong to the target class). We
believe that this measure is something which we need when
it comes to teaching. In the next part of this section, def-
inition 1 will be used to define a novel criterion that tries
to capture teaching and following behaviour into a unified
view.

3.1 A new criterion for teaching and following
The first step in the construction of our criterion is to

use the notion of targeted optimality and create a new no-
tion in which it is applied sequentially. We propose this new
criterion as sequentially targeted optimality (we drop the ‘ef-
ficient’ adjective to keep the criterion name more compact).

Definition 2. A strategy σ is said to be sequentially tar-
geted optimal given strategy sets Sp and Ss if it holds that
this strategy first deploys a strategy, referred to as σp, and
σp should be targeted optimal given strategy set Sp. If for a
choice of ǫ and δ during run-time the property of optimality
is not maintained (either because (1) the strategy of the op-
ponent indeed belongs to Sp but with probability δ we have
not achieved an average payoff ǫ-close to the best response
value or (2) the strategy of the opponent does not belong to

Sp), then our strategy should deploy another strategy, re-
ferred to as σs, and σs should be targeted optimal given Ss.
If a strategy is sequentially targeted optimal with respect
to Sp and Ss, we refer to the first deployed strategy σp as
the primary strategy, and the second deployed strategy σs

as the secondary strategy.

The reason that we also applied the weaker notion of (ǫ, δ)-
optimality to the secondary strategy is simply because we
want to have room for an algorithm to also adhere to other
criteria (and not just one criterion which overrules any other
possible criterion). Notice that this criterion already states
some of the aspects of teaching and following. It states the
“what”: we try to achieve the best possible payoff (or at least
arbitrary close to) given that we condition on the opponent.
It also (partly) states the “when”: first we could have a
period in which we try to ‘teach’ the opponent, and if that
fails, we could have a period in which we try to ‘follow’.
However, if we just use an arbitrary primary strategy set
and secondary strategy set to create a sequential targeted
optimal strategy, this resulting strategy can definitely not
be labelled a teaching- and following strategy in all cases.
This is because we have not laid any restrictions on these
strategy sets and because we have to show that teaching
can indeed be beneficial. However, formalizing a notion of
teaching and following strategies is problematic, since it is
often a grey area as we saw in section 2. To overcome this
problem, we will try to define when a sequential targeted
optimal strategy is a sequentially teaching-following strategy
as a whole, without defining its specific parts Sp and Ss. To
do this, we will first introduce the notion of self-teachability.

Definition 3. A strategy σ is self-teachable if it is sequen-
tially targeted optimal given Sp and Ss, using primary strat-
egy σp and secondary strategy σs, if it holds that σp ∈ Ss

and σs ∈ Sp.

Loosely speaking, a strategy is self-teachable if we are able
to ‘follow’ (and get our desired best response value) on the
strategy which we use to ‘teach’ and we are able to ‘teach’
(and get our desired best response value) on the strategy
which we use to ‘follow’. Thus, if a strategy is self-teachable
it contains some sort of symmetry within the different strate-
gies that are deployed. Using this notion of ‘symmetry’, we
propose a novel criterion that tries to capture both teaching
and following behaviour, which is given by the sequential
teaching-following criterion in the next definition.

Definition 4. A strategy is said to be a sequential teaching-
following strategy if it is self-teachable in a set of games G
(that is, it achieves the property of self-teachability in all
these games) using strategy sets Sp and Ss and if it holds
that in all games belonging to G, the guaranteed best re-
sponse value of playing against a strategy from Sp is at least
as high as the guaranteed best response value of playing
against a strategy from Ss:

min
σ∈Sp

VBR(σ) ≥ min
σ′∈Ss

VBR(σ′)

If a strategy is a sequential teaching-following strategy, we
refer to the primary strategy as the teacher strategy and the
secondary strategy as the follower strategy.

This criterion states when a sequential targeted optimal
strategy is a sequential teaching-following strategy without
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Figure 2: Matching pennies
Left Right

Top -1,1 1,-1
Bottom 1,-1 -1,1

explicitly specifying its parts Sp and Ss and it states a cer-
tain beneficialness which is restricted to a set of games. The
beneficialness is stated in terms of payoff guarantees (and
not for example in terms of maximum payoff or expected
payoff), because minimum payoff is an important concept
in repeated games to identify enforceable outcomes. The re-
striction to a set of games is because we already talked about
the feasibility of teaching: not all games are suited for teach-
ing. It also allows us to play around more with the concept,
since we can form sequential teaching-following strategies
that use non-mixed strategies like Bully and Godfather as
teaching strategies for example, without necessarily consort-
ing to mixed variants. This is because in some games, the
only equilibrium strategies are mixed. One such well known
example is the matching pennies game shown in Figure 2.
Moreover, there is nothing restricting anyone to drop the re-
quirement by creating a sequential teaching-following strat-
egy that conditions over every game. We believe that this
notion captures the essence of teaching and following: here
teaching and following are defined as behaviours that are
able to coordinate together (both players are able to get a
best response) and they can be separated by the fact that
teacher behaviour has a certain beneficialness to it.

The symmetry we demanded in our previous definition
of teaching-following strategies may seem overly restrictive,
since we demanded a 2-way interaction: teaching should be
good against following and vice versa. However, this demand
not only serves as a way to distinguish teaching from follow-
ing strategy, but also to ensure certain beneficial properties
in self-play.

Proposition 1. When using a sequential teaching-following
strategy in self-play, if it is the case that one player main-
tains its teacher strategy σp ∈ Ss while the other maintains
his follower strategy σs ∈ Sp, then both players converge to
a Nash equilibrium.

Proof. Since the strategy σp is targeted optimal given
strategy set Sp for any arbitrary choice of ǫ > 0, and strategy
σs is targeted optimal given strategy set Ss for any arbitrary
choice of ǫ′ > 0, we know that the first player will achieve
for any ǫ an average payoff ǫ-close to VBR(σs) while the sec-
ond player will achieve for any ǫ′ a pay ǫ′-close to VBR(σp).
This means that, given an arbitrary ǫ and ǫ′, it holds that
for the first player there are no strategies available such that
more than ǫ expected payoff can be gained and for the sec-
ond player there are no strategies available such that more
than ǫ′ expected payoff can be gained. Thus both players
can not gain more than max(ǫ, ǫ′) by deviating unilaterally,
which implies a max(ǫ, ǫ′)-Nash equilibrium. Since the play-
ers maintain their strategies, we can let ǫ → 0 and ǫ′ → 0,
and thus max(ǫ, ǫ′) → 0, which means that in the limit the
players converge to a Nash equilibrium.

This proposition is important when we want to show when
a specific teaching-following strategy converges to a Nash
equilibrium in self-play. As we will see later, in order to
guarantee convergence to a Nash equilibrium in self-play we

also need to consider the case in which both the players
maintain their teaching strategy (if possible) and the case
in which both players maintain their following strategy.

The teaching-following criterion we supplied tried to in-
corporate intuitive aspects of teaching and following, such
as the “what” and the “when”. Based on the criterion, it can
be argued that in infinitely repeated games, it can be benefi-
cial to first try to teach an outcome that allows us to receive
a greater guaranteed outcome. This is especially the case
for conservative agents that care more about payoff guaran-
tees than payoff maximization. Many known strategies can
be extended to have a teaching phase, so there is not really
anything to lose given that the game is not finite. If the rate
of convergence plays a role, the criterion also states that the
properties should be achieved in efficient time. Moreover,
as we will see later on with our algorithm, combining two
strategies with the use of the criterion will cause the re-
sulting strategy to maintain many of the properties of the
original strategies. In other words, the criterion not only
tries to capture the essence of teaching and following, but
it is also a beneficial criterion for algorithms to adhere to.
Moreover, it allows authors to create strategies in terms of
‘weaknesses’: what works good against what in which situ-
ations? In the next section we will create an algorithm that
adheres to our proposed criterion.

4. IMPLEMENTATION
In this section, we will first look at the teaching and follow-

ing component of our algorithm individually and afterwards
we will combine them to create an algorithm that is both
able to teach and follow in repeated games by adhering to
our teaching-following criterion.

4.1 Teaching strategy
For the teaching part of our strategy, we will use a variant

of Bully. We already saw that intuitively this strategy is in-
deed a teaching strategy, since it assumes it has Stackelberg
leader advantage. On the other hand, Bully does not work
well in all games, in particular games that require mixed
equilibria. In the long run this will imply that our strategy
is not able to teach beneficial outcomes in all games.

The idea is that Bully, in some games, works specifically
well against opponents that are willing ‘to go along with the
proposal’, such as learning rules that play a best response
to the distribution of play. As it turns out, the class of
strategies that are ‘susceptible’ to Bully is very broad and
covers many examples found in literature. We refer to these
strategies as pure consistent strategies, which is a superclass
of the consistent strategies defined in [4]. The difference
is that pure consistent strategies should achieve a best re-
sponse against pure strategies, in stead of arbitrary mixed
strategies in the case of consistent strategies. We also ex-
tend the definition with the notion of a polynomial rate of
convergence, which will play a role in the next proposition.

Definition 5. A strategy is said to be ǫ-pure consistent if
there exists a T such that against any pure strategy σ−i

and for any t > T the strategy achieves a payoff ǫ-close to
VBR(σ−i) with probability 1− ǫ. A strategy is pure consis-
tent if it is ǫ-pure consistent for every positive ǫ and is said
to have a polynomial rate of convergence if T is polynomial
in 1

ǫ
.
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It can easily be shown that any consistent strategy (like
Fictitious play), universal consistent strategy (like no-regret
learners) and rational strategy (mentioned in [1], not to be
confused with the economical definition of rationality) are
pure consistent, as well as countless more strategies. The
reason for this is because a pure strategy is very easy to
learn for the opponent. This is again one of the beautiful
aspects of teaching and following: if the message we are
trying to teach is simple, the class we can target is much
larger than in the case in which we are trying to teach a
more complex message.

As our teacher strategy, we use a modified version of Bully.
This is because Bully is not well defined in cases in which
our opponent is indifferent about several outcomes. To cope
with this, we define our teacher value and action in the fol-
lowing way:

Definition 6. The teacher value, Vteacher, is defined as:

Vteacher = max
i

Vi(i, j
∗
i )

where

j∗i = argmin
j∈Ji

Vi(i, j)

and

Ji = { a | V−i(i, a) = max
j

V−i(i, j) }

In short, Vteacher is defined as the best possible payoff the
agent can guarantee by assuming it has first-mover advan-
tage and by assuming that the opponent plays a best re-
sponse to this pure strategy which is least beneficial to us.
The action belonging to Vteacher is defined as ateacher.

Observe that Vteacher is indeed a best response value against
an arbitrary pure consistent opponent (notice that it can
still be considered a best response value in repeated games
if the opponent is (universally) consistent, as long as we are
teaching a feasible and enforceable outcome; more on this
observation later). However, if it is the case that Vteacher <
VMaximin (recall for example the matching pennies game in
Figure 2), it is arguably better to play our (possibly mixed)
Maximin strategy. As we will see later, this will not pose a
problem since the notion of teaching-following can be re-
stricted to a set of games. The proof that we will use
is unique in the sense that it does not rely on probability
bounds to show a probability dependent payoff guarantee.
This is because our opponent is using a learning/adaptive
strategy (which cannot be simply captured by a Random
variable). However, observe that if we play a pure strategy
against a pure consistent strategy, the strategy we play also
seems to show ‘consistent behaviour’. This idea will be the
basis of the upcoming proof, in which we will show targeted
optimality against the set of pure consistent strategies by
adopting the strategy in which we repeatedly play ateacher.

Proposition 2. For any choice of ǫ > 0 and δ > 0
against an opponent that uses a pure consistent strategy σ−i

with a polynomial convergence rate, there exists a finite T ,
polynomial in 1

ǫ
and 1

δ
, such that playing ateacher repeatedly

will for any t > T result in an average payoff of at least
Vteacher − ǫ with probability 1− δ against this opponent.

Proof. We will first show that for any given value of
ǫ, there exists an ǫ′ > 0, such that if it is the case that

our opponent with probability equal or greater than 1 −
ǫ′ receives an average payoff ǫ′-close to his optimal pay-
off, we receive an average payoff ǫ-close to Vteacher. Since
our opponent has a polynomial rate of convergence, we use
a polynomial function T−i(

1
ǫ′ ) to denote the actual time

steps needed to achieve the property of pure consistency.
Let pi and p−i be the payoff belonging to the action pro-
file (ateacher, BR(ateacher)). Without loss of generality, we
consider that there is another action profile in the vector,
(ai, a−i) with payoff p′i and p′−i respectively such that p′i
is the worst payoff in the vector for our agent and p′−i the
(second) best for the other agent. Let’s also consider that
pi > p′i + ǫ, since otherwise any combination of actions by
the opponent would guarantee that the average payoff we
receive is larger or equal than Vteacher − ǫ. Similarly we
have that p−i > p′−i, since by definition of ateacher we have
that any action with payoff equal to p−i will net our agent
a payoff of at least Vteacher. For every possible ǫ, the worst-
case candidate h to violate the property is playing k propor-
tion (ateacher, BR(ateacher)) and (1−k) proportion (ai, a−i)
such that it holds that our opponent still receives an aver-
age payoff ǫ′-close to his optimal payoff. Since in this case
Vteacher = pi and VBR(ateacher) = p−i, we have to find an
ǫ′ such that the proportion k is high enough such that:

k ∗ p−i + (1− k) ∗ p′−i + ǫ′ ≥ p−i

implies that the following also holds:

k ∗ pi + (1− k) ∗ p′i + ǫ ≥ pi

Solving for ǫ′, we see that

ǫ′ ≤ ǫ ∗ κ

where

κ =

(

p−i − p′−i

pi − p′i

)

Since we know that pi > p′i, p−i > p′−i and ǫ > 0, this out-
come is strictly positive. Thus for ǫ′ any value in the interval
(0...b], where b = ǫ∗κ guarantees that if our opponent (with
probability 1 − ǫ′) receives a payoff ǫ′-close to his optimal
payoff then our agent receives a payoff ǫ-close to Vteacher.
Notice that this happens after T−i(

1
ǫ′ ) iterations.

The second step in our proof is to observe that this result
is general enough to apply to any game, since we can just
drop the assumption that p′i and p′−i belong to the same pay-
off profile. It is not hard to see that fixating the proportion
that (ateacher, BR(ateacher)) is played in combination with
an arbitrary action profile allows us to find a larger value for
ǫ′ than in the case of repeatedly getting the worst possible
payoff for our agent and the second best for the other agent.
In other words, this is the largest possible range we can find
for ǫ′ that is small enough to ensure the property. Moreover,
we can make the observation that it also holds that for ev-
ery later iteration than T−i(

1
ǫ′ ), the average payoff will not

decrease. For a small enough value of ǫ′ for the opponent
(namely small enough such that there exists no other payoff
in the payoff vector that is smaller than max

a∈A2
V−i(ateacher, a)

and larger or equal than max
a∈A2

V−i(ateacher, a)−ǫ′) the oppo-

nent can do no better to maintain or increase the proportion
k in which BR(ateacher) is played. Thus, for a small enough
value of ǫ for our agent, the proportion in which we receive
Vteacher is also maintained or increased. Since in the above
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proof the calculation for ǫ′ was based on achieving the worst
possible payoff in the remaining proportion of rounds, it is
impossible that our average payoff also drops lower; it is
enough that the proportion in which Vteacher is achieved re-
mains constant or increases.

The final step is to prove the proposition. Using the ear-
lier defined function T−i and our found value for κ, we see
that after T−i

(

max( 1
δ
, 1

κ∗ǫ
)
)

time steps, we receive for any
later time step an average payoff ǫ-close to Vteacher with
probability 1 − δ. Since T−i is a polynomial function, we
also achieve this polynomial in 1

ǫ
and 1

δ
(notice that κ is

just a game-constant).

This proof concludes the teaching part of our strategy and
enables us to move on to the following strategy.

4.2 Following strategy
For our following strategy, we have a number of possi-

bilities, since many strategies achieve a best response value
against pure strategies within polynomial time (for exam-
ple Fictitious Play). However, we have chosen to select the
AWESOME strategy to fill in this role, which is discussed in
[2]. We stress that for the sake of understanding the message
we are trying to convey in this paper no thorough under-
standing of AWESOME is required. The most important as-
pect of AWESOME is the fact that it has two key properties,
namely AWESOME (1) converges to a Nash equilibrium in
self-play, which, as we will prove later, cause our sequential
teaching-following strategy to converge as well; and (2) con-
verges to a best-response against arbitrary stationary oppo-
nents. The resulting teaching-following strategy will (more
or less) also have this property. Unfortunately, proving tar-
geted optimality against pure strategies when using AWE-
SOME is not so easy as it may seem, and requires knowledge
of valid schedules and the specific steps taken in the algo-
rithm. Moreover, the exact amount of rounds needed in
which we acquire targeted optimality is not relevant in the
case of our algorithm, since we will play AWESOME for the
rest of the game once we adopt it. Thus instead of giving
the full proof, we give a brief proof outline.

Proposition 3. When using the AWESOME algorithm,
for any δ > 0 and ǫ > 0, there exists a number of rounds
τ , polynomial in 1

ǫ
and 1

δ
, such that for any number of

rounds t ≥ τ the strategy against an arbitrary pure strategy
σ achieves average payoff of at least VBR(σ)− ǫ with proba-
bility 1 − δ, where VBR(σ) is the value of the best response
against σ.

The proof is heavily based on the fact that the observed
distribution of play of the opponent is identical to the true
distribution of play (contrary to mixed strategies). After ev-
ery restart, AWESOME will first consider that the opponent
is an equilibrium player. This hypothesis is refuted after a
fixed amount of rounds, based on the monotonically decreas-
ing closeness parameter (belonging to the schedule) that de-
notes the maximum allowed distance between distributions
in the equilibrium playing phase, and it is based on the dis-
tance between the pure strategy distribution and the equi-
librium strategy distribution. Afterwards AWESOME will
consider that the opponents are stationary, which we will
refer to as the stationary playing phase. First AWESOME
will play a random action that either is a best response or
not. In the first case, AWESOME will play this action for

the rest of the game since it will never switch actions and
thus the algorithm will never restart on behalf of itself nor
the opponent. If this is not a best response, we will eventu-
ally switch actions after a fixed amount of rounds based on
the number of players, the maximum number of actions, the
payoff difference between our best and worst outcome in the
game and our monotonically decreasing closeness parameter
(belonging to the schedule) that denotes the maximum al-
lowed distance between distributions in the stationary play-
ing phase. If this function decreases fast enough, we will
restart the algorithm. Using this information, we can find
the number of restarts (and thus eventually the number of
iterations) needed to ensure targeted optimality against pure
strategies.

Using this proof we can immediately see that AWESOME
is not only targeted optimality given the class of pure strate-
gies, but also pure consistent. This property implies that by
Definition 3 our eventual algorithm will be self-teachable.

4.3 Algorithm
The combination of the teacher and follower strategy gives

us a new strategy that is able to teach pure strategy out-
comes to adversaries that are willing to go along with this
(pure consistent strategies) and is able to follow otherwise
with a strategy we targeted in the teaching phase (in this
case AWESOME). Observe that, as we will show later, the
games in which this resulting strategy may work does not
include games in which a mixed equilibrium strategy is re-
quired. The resulting algorithm is shown in ‘Algorithm 1’.
The input parameter 〈(ǫp, δp), (ǫs, δs)〉 should always be the

Algorithm 1 Sequential teaching-following strategy

Require: 〈(ǫp, δp), (ǫs, δs)〉
Ensure: ǫp > 0, δp > 0, ǫs > 0, δs > 0
1: t← 0
2: while (t < T−i

(

max( 1
δp , 1

κ∗ǫp )
) ∨ (AvgPayoff ≥

Vteacher − ǫp) do
3: playaction(ateacher)
4: t← t + 1
5: end while
6: playstrategy(AWESOME)

same for any sequential targeted optimal algorithm: it con-
tains a pair of ǫ and δ values for both the primary and sec-
ondary strategy. These parameters, as previously discussed,
depict the closeness of the average payoff required and the
probability that this will be reached. As we have seen, the
lower the values, the longer the teaching/following process
will take. The meaning of the κ variable can be found in
Proposition 2 and the function T−i is a polynomial function
that estimates the rate of convergence of the opponent, and
can effectively limit the target class to slow or fast learners
(notice that we cannot make the teaching phase too short,
since we also have to retain the self-teachability criterion).
We again see a beautiful aspect of teaching arise: if the
opponent is a slow learner, we might stop on teaching our
opponent prematurely. Since the best response value against
an arbitrary pure strategy is VMinimax′ , where VMinimax′ is
the pure strategy Minimax value, we know that this strat-
egy is a teaching-following for all games in which Vteacher ≥
VMinimax′ (observe that VMinimax′ ≥ VMaximin, which set-
tles our earlier conncern that repeatedly playing ateacher is
not a best response in games in which Vteacher < VMaximin
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Figure 3: Battle of the sexes
Left Right

Top 3,1 0,0
Bottom 0,0 1,3

such as the matching pennies game shown in Figure 2).
From a game-theoretic viewpoint, this result also makes per-
fect sense, since in this case we are indeed teaching a feasible
and enforceable outcome, which then in turn can constitute
a repeated Nash equilibrium as justified by the Folk theo-
rem (for readers unfamiliar with this observation, we refer
to [9, pp. 151-153] where this is very well explained). This
observation can be used to prove convergence to a Nash
equilibrium in self-play.

Proposition 4. In infinitely repeated games, our teaching-
following algorithm, restricted to its set of games, will neces-
sarily converge to a Nash equilibrium in self-play if it holds
that ǫp

i and ǫp
−i are sufficiently small.

Proof. First let us define what ‘sufficiently small’ means:
the values for ǫp

i and ǫp
−i are sufficiently small if for both

players it holds that there exists no other payoff-profile in
the payoff matrix for which both players receive a payoff of
at least Vteacher−ǫp. Notice that this is not a big restriction,
since we can just compute this and pick such a small value
for ǫp accordingly.
We distinguish the following 3 cases in self-play:

1. Both players maintain their primary strategy σp. This
happens when both agents coincidently achieve an ǫp-
close best response value while making false assumptions
about their opponent. However, our demand for the val-
ues of ǫp ensure that we are indeed teaching Vteacher and
not settling on another payoff profile. Since we know that
this outcome is both feasible and enforceable in our set
of games, we know that we are playing a repeated Nash
equilibrium.

2. Both players achieve their best response value when one
player uses primary strategy σp while the other uses sec-
ondary strategy σs. Since both players are playing a best
response to each other in these games, we know that σp is
targeted optimal given σs and vice versa, which implies
by Proposition 1 a Nash equilibrium.

3. Both players maintain their secondary strategy σs for the
rest of the game. Convergence to a Nash equilibrium in
this specific case is proven in [2].

Moreover, our algorithm more or less retains all the prop-
erties of AWESOME. For example, it can be easily shown
that if the strategy of the opponent converges to a station-
ary strategy, our algorithm will converge to a best-response
given this stationary strategy or we will achieve an average
payoff ǫp-close to Vteacher.

Our teaching-following strategy enables us to teach a re-
peated Nash equilibrium which provably can be learned by
a very broad class of opponents (contrary to just playing
AWESOME) in efficient time and allows us to switch if the
former fails. On top of the beneficial theoretical properties
of our algorithm, we believe we can make our discussion

Figure 4: Stackelberg game
Left Right

Top 1,0 3,2
Bottom 2,1 4,0

of our algorithm even more convincing by looking at some
specific games.

The following games are examples in which our algorithm
is able to perform particularly well.

1. In the battle of the sexes game, shown in Figure 3, our
algorithm is able to teach (‘force’) the (most) beneficial
outcome of 3 to follower strategies that are willing to go
along, while other strategies that are able to coordinate
might reach a point on the Pareto boundary which is less
beneficial (such as 1).

2. Our algorithm is able to signal repeated Nash equilibrium
outcomes that are easy to learn by the opponent and can
ensure greater payoff than the equilibrium of the stage
game. This is the case with the Stackelberg game shown
in 4 (with ‘Stackelberg game’ we do not mean the for-
mal definition, but rather we refer to [9, p. 200] where
they use this name to distinguish a particular simultane-
ous action Cournot game). In this particular game, our
sequential teaching-following strategy is able to teach the
outcome that will give our agent a payoff of 3, where
as the equilibrium strategy of the stage game gives us a
lower payoff of 2.

This section was mainly concerned with presenting an algo-
rithm that is able to teach and follow with the use of our
proposed criterion. In the next section we will take a step
back to take a look at our criterion again, which will open
the way for some general discussion.

5. GENERAL DISCUSSION
In this paper we used the notion of sequential targeted

optimality to create a teaching-following criterion as a way
of capturing both teaching and following behaviour in re-
peated games. However, some choices we made during the
construction of our criterion could be made differently. An
important choice we made was when we defined the notion of
self-teachability. The only demand we had is that teaching
and following behaviour are able to coordinate together, and
that the teacher strategy sets itself apart from the follower
strategy in terms of payoff guarantee in certain games. This
definition can potentially imply that in some games what we
understand as a ‘teaching’ strategy can conversely function
as a ‘following’ strategy in other games. Since this definition
still fully captures the coordination aspect of teaching and
following this is not really a problem, but admittedly there
might be something more to the broad meaning of a teach-
ing strategy and the broad meaning of a following strategy.
Another choice immediately becomes apparent when we de-
fine the beneficialness of the teaching part over the following
part. We used payoff guarantees to define this beneficial-
ness, which makes sense from the viewpoint of a conserva-
tive agent. On the other hand, expected payoff or maximal
payoff guarantees also make sense when we consider for ex-
ample greedy agents or risk-taking agents. We made this
choice mainly because a minimal payoff guarantee allows us
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to identify cases in which playing a strategy will necessarily
lead to an enforceable outcome. But again we stress that
this was nothing more than a choice.

Another important point of discussion is the fact that the
notion is restricted to a set of games. By showing that in
some games teaching strategies (other than our Maximin
strategy) are not really feasible, we tried to make the point
more clear that we really need this restriction. However,
this restriction also has its problems. For example: what
does it mean that a strategy is restricted to a set of games?
Does it mean that the strategy is useless in other games?
We have not really give an interpretation to this restriction.
It becomes even more troublesome when the payoff matrices
are not known. When do we know which strategy to use?
We stress that this was never our intention to define; we are
merely interested in defining the set of games in which ‘it
makes sense’ to use such a strategy. The exact interpretation
of this restriction is up to the creator of the strategy.

We also made a choice with the switching criterion in our
definition of sequentially targeted optimality. As shown in
[6], by smart use of the probability factors δ we can devise
an algorithm that is targeted optimal simultaneously given
different classes of opponents, instead of sequentially in our
algorithm. If we would allow simultaneous optimization, it
could lead to a potentially different definition of teaching
and following.

As a final point of discussion, we note that our definition
of sequentially teaching-following was not concerned with
safety and convergence to Nash equilibria in self-play (al-
though we have given conditions in which this can happen).
We note that the latter is the least of our worries, since in
a teacher and follower setting one might be less concerned
about self-play. It is questionable why we even need to per-
form well given that we face ourselves, given that we are
only concerned whether or not our opponent is a follower.
The first point, a safety condition, is arguably more impor-
tant. Any strategy should be safe to use, else we can just
play our security strategy instead. However, we did not feel
the need to include this in our criterion; this can simply
be a separate criterion instead when devising a sequential
teaching-following strategy.

6. FUTURE RESEARCH
There are many possibilities for future research. First of

all, we would really like to see a sequential teaching-following
strategy that uses Bully extended to the set of mixed strate-
gies as its teaching strategy and for example AWESOME as
its following strategy. This strategy targets in its teaching
phase the set of consistent opponents (and not necessarily
the pure consistent opponents) and its following phase the
set of stationary opponents (and not necessarily pure strate-
gies). However, we note that proving targeted optimality for
AWESOME against stationary opponents can be tricky as
it requires manipulation of many probability factors.

Another possible point of departure is to extend the no-
tion of teaching-following to n-player games. In this par-
ticular case, we have to take into account the fact that our
opponents might belong to different classes. The notion of
targeted optimality has to be extended to cope with this
fact. As shown in [8], checking if multiple opponents belong
to a single class also becomes quite tricky, but is definitely
an interesting direction to go in.

In this paper, our focus was on teaching and following in

a sequential way. But it might be perfectly possible to teach
and follow in different ways (such as periodic). This could
be a direction for possible future research. For example,
dropping sequentially optimality in favour of simultaneous
optimality might cause interesting behaviour. In this case,
if a solution of the game is reached, the agent still needs
to worry about the fact whether or not the opponent might
belong to a different target class. This might open up the
way to new insights concerning the subject.

Another quite different point of departure is to investi-
gate the exact nature of teaching and following. We used
the self-teachability criterion, but we also mentioned in the
introduction that teacher and follower strategies also have
‘certain properties’ that allow us to identify them as such
(for example Bully and Godfather can be reasonably un-
derstood as teacher strategies). The challenge becomes to
devise a formal notion of when a strategy is a teaching strat-
egy and when a strategy is a following strategy.

A last point for possible future research we like to discuss
is in settings where the payoff matrices (initially) are not
known. If the payoff matrix of the adversary stays hidden
throughout, it can be troublesome for teaching strategies,
since (arguably) they rely heavily on the payoff matrix of
the opponent. In these settings, it might be interesting to
investigate how teaching and following can still arise.
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ABSTRACT
In the well-known scheduling game, a set of jobs controlled by
selfish players wishes each to minimize the load of the machine
on which it is executed, while the social goal is to minimize the
makespan, that is, the maximum load of any machine. We consider
this problem on the three most common machines models, identi-
cal machines, uniformly related machines and unrelated machines,
with respect to both weak and strict Pareto optimal Nash equilib-
ria. These are kinds of equilibria which are stable not only in the
sense that no player can improve its cost by changing its strategy
unilaterally, but in addition, there is no alternative choice of strate-
gies for the entire set of players where no player increases its cost,
and at least one player reduces its cost (in the case of strict Pareto
optimality), or where all players reduce their costs (in the case of
weak Pareto optimality).

We give a complete classification of the social quality of such
solutions with respect to an optimal solution, that is, we find the
Price of Anarchy of such schedules as a function of the number
of machines, m. In addition, we give a full classification of the
recognition complexity of such schedules.

Categories and Subject Descriptors
K.6.0 [Management of Computing and information Systems]:
General—Economics; F.2.2 [Nonnumerical Algorithms and Prob-
lems]: [Sequencing and scheduling]

General Terms
Algorithms, Economics, Theory

Keywords
Economic paradigms: Economically-motivated agents, Game The-
ory (cooperative and non-cooperative), Price of Anarchy, Job Schedul-
ing

1. INTRODUCTION
The rise of the Internet as a global platform for communication,

computation, and commerce brought up the necessity to reconsider
the prevalent paradigm in system design which assumes a central
authority which constructs and manages the network and its par-
ticipants, with a purpose of optimizing a global social objective.
Cite as: On the quality and complexity of Pareto equilibria in the Job
Scheduling Game, Leah Epstein, Elena Kleiman, Proc. of 10th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2011),
Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei, Tai-
wan, pp. 525-532.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Designing a protocol intended for use in a global telecommuni-
cation network such as the Internet, we have to take into account
that it consists of multiple independent and self-interested users, or
players, which strive to optimize their private objective functions,
also known as individual costs. In networks of such scale and com-
plexity and in presence of raw economic competition between the
parties involved, there is no possibility to introduce a single regula-
tory establishment enforcing binding commitments on the players.

Obviously, such collective behavior often leads to sub-optimal
performance of the system, which is highly undesirable. In light of
the above, there is an increased need to design efficient protocols
that motivate self-interested agents to cooperate. Here ”coopera-
tion“ may be defined as any enforceable commitment that makes
it rational for the self interested players to choose a given strate-
gic profile. In the settings in discussion, any meaningful agreement
between the players must be self-enforcing. When deciding which
particular strategy profile to offer for the users, the first and most
basic requirement one has to consider is its stability, in a sense that
no player would have an interest to unilaterally defect from this
profile, given that the other players stick to it. This is consistent
with the notion of Nash equilibrium (NE) [25], which is a widely
accepted concept of stability in non-cooperative game theory. The
second requirement is that the profile must be efficient. A funda-
mental concept of efficiency considered in economics is the Pareto
efficiency, or Pareto optimality [24]. This efficiency criterion as-
sures that it is not possible for a group of players to change their
strategies so that every player is better off (or no worse off) than
before.

One may justifully argue that Nash stability and Pareto optimal-
ity should be minimal requirements for any equilibrium concept
intended to induce self-enforceability in presence of selfishness.

There are even stronger criteria for self-enforceability, requiring
fairness in terms of fair competition without coalitions (like cartels
and syndicates), and demanding from the profile to be resilient to
groups (or coalitions) of players willing to coordinate their deci-
sions, in order to achieve mutual beneficial outcomes. This is com-
patible with the definition of Strong Nash equilibrium (SNE) [3].
However, this requirement is sometimes too strong that it excludes
many reasonable profiles.

We therefore restrict ourselves to profiles that satisfy the require-
ments of Nash stability and Pareto efficiency. In a sense, Pareto op-
timal Nash equilibria can be considered as intermediate concepts
between Nash and Strong Nash equilibria; One may think of a
Pareto optimal equilibrium as being stable under moves by single
players or the grand coalition of all players, but not necessarily
arbitrary coalitions. We distinguish between two types of Pareto
efficiency. In a weakly Pareto optimal Nash equilibrium (WPO-NE)
there is no alternative strategy profile beneficial for all players. A
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strictly Pareto optimal Nash equilibrium (SPO-NE) is also stable
against deviations in which some players do not benefit but are also
not worse off and at least one player improves his personal cost.
Obviously, any strictly Pareto optimal equilibrium is also weakly
Pareto optimal, but not wise-versa.

In this paper we consider strict and weak Pareto optimal Nash
equilibria for scheduling games on the most common three ma-
chine models in the setting of pure strategies. This class of games
is particularly important to our discussion as it models a great vari-
ety of problems in modern networks. Example applications include
bandwidth sharing in ATM networks [7], market-based protocols
for scheduling or task allocation [28], and congestion control pro-
tocols [18].

1.1 Model and Notation
We now define the general job scheduling problem. There are

n jobs J = {1, 2, . . . . , n} which are to be assigned to a set of
m machines M = {M1, . . . ,Mm}. We study three models of
machines, that differ in the relation between the processing times of
jobs on different machines. In the most general model of unrelated
machines, job 1 ≤ k ≤ n has a processing time of pik on machine
Mi, i.e., processing times are machine dependent. In the uniformly
related (or related) machine model, each machine Mi for 1 ≤ i ≤
m has a speed si and each job 1 ≤ k ≤ n has a positive size pk.
The processing time of job k on machine Mi is then pik = pk

si
. If

pjk = pj′k = pk for each job k and machines Mi and Mi′ , the
machines are called identical (in which case it is typically assumed
the all speed are equal to 1).

An assignment or schedule is a function A : J → M . The load
of machine Mi, which is also called the delay of this machine, is
Li =

∑
k:A(k)=Mi

pik. The cost, or the social cost of a schedule is
the maximum delay of any machine, also known as the makespan,
which we would like to minimize.

The job scheduling game JS is characterized by a tuple JS =
〈N, (Mk)k∈N , (ck)k∈N 〉, where N is the set of atomic players.
Each selfish player k ∈ N controls a single job and selects the
machine to which it will be assigned. We associate each player
with the job it wishes to run, that is, N = J . The set of strategies
Mk for each job k ∈ N is the set M of all machines. i.e. Mk =
M . Each job must be assigned to one machine only. Preemption
is not allowed. The outcome of the game is an assignment A =
(Ak)k∈N ∈ ×k∈NMk of jobs to the machines, whereAk for each
1 ≤ k ≤ n is the index of the machine that job k chooses to run
on. Let S denote the set of all possible assignments.

The cost function of job k ∈ N is denoted by ck : S → R. The
cost cik charged from job k for running on machine Mi in a given
assignment A is defined to be the load observed by machine i in
this assignment, that is ck(i,A−k) = Li(A), when A−k ∈ S−k;
here S−k = ×j∈N\{k}Sj denotes the actions of all players except
for player k. The goal of the selfish jobs is to run on a machine
with a load which is as small as possible. Similarly, for K ⊆ N
we denote byAK ∈ S−K the set of strategies of players outside of
K in a strategy profile A, when S−K = ×j∈N\KSj is the action
space of all players except for players in K. The social cost of a
strategy profile A is denoted by SC(A) = max

1≤k≤n
ck(A).

We will next provide formal definitions of Nash, Weak/Strict
Pareto Nash and Strong Nash equilibria in the job scheduling game,
using the notations given above.

DEFINITION 1. (Nash equilibrium) A strategy profile A is a
(pure) Nash equilibrium (NE) in the job scheduling game JS if
for all k ∈ N and for any strategy Āk ∈ M , ck(Ak,A−k) ≤
ck(Āk,A−k).

It was shown that job scheduling games always have (at least
one) pure Nash equilibrium [15, 11]. We denote the set of Nash
equilibria of an instance G of the job scheduling game by NE(G).

DEFINITION 2. (Strong Nash equilibrium) A strategy profileA
is a Strong Nash equilibrium (SNE) in the job scheduling game JS
if for every coalition φ 6= K ⊆ N and for any set of strategies
ĀK ∈ ×j∈KMj of players in K, there is a player i ∈ K such
that ci(ĀK ,A−K) ≥ ci(AK ,A−K).

Existence of Strong Nash equilibrium in job scheduling games
was proved in [1]. We denote the set of Strong Nash equilibria of
an instance G of the job scheduling game by SNE(G).

Clearly SNE(G)⊆NE(G), as coalitions of size 1 can not improve
by changing their strategy.

DEFINITION 3. (Weak/Strict Pareto optimal profile) A strategy
profile A is weakly Pareto optimal (WPO) if there is no strategy
profile Ā s.t. for all k ∈ N , ck(Ā) < ck(A).

A strategy profile A is strictly Pareto optimal (SPO) if there is
no strategy profile Ā and k∗ ∈ N s.t. for all k ∈ N\k∗, ck(Ā) <
ck(A) and ck∗(Ā) ≤ ck∗(A).

We denote by SPO(G) and WPO(G), respectively, the sets of
strictly and weakly Pareto optimal profiles of an instance G of the
job scheduling game. Clearly, SPO(G)⊆WPO(G).

A strategy profile A ∈ NE(G)∩WPO(G) is called Weak Pareto
optimal Nash equilibrium (WPO-NE), and a strategy profile
A ∈NE(G) ∩ SPO(G) is called Strict Pareto optimal Nash equilib-
rium (SPO-NE), and these are the profiles that we focus on.

We note that every strong equilibrium is also weakly Pareto op-
timal, as the requirement in Definition 2 applies to the grand coali-
tion of all players. Hence SNE(G)⊆ WPO(G). The existence of
Strong Nash equilibria in job scheduling games assures the exis-
tence of weak Pareto optimal Nash equilibria.

On the other hand, in general, neither Nash equilibria nor Strong
Nash equilibria are necessarily strictly Pareto optimal. Existence of
strict Pareto optimal Nash equilibria in scheduling games (among
others) was proved in [16].

An important issue concerns the quality of these solution con-
cepts. As there is a discrepancy between the private goals of the
players and the global social goal, we would like to measure the
loss in the performance of the system as it is reflected by the close-
ness of the costs of these concepts to the cost of the optimal solu-
tion, when the accepted methodology is worst-case approach.

The quality measures which consider Nash equilibria are the
Price of Anarchy introduced by Koutsoupias and Papadimitriou
[20] and the more optimistic Price of Stability suggested by An-
shelevich et al. [2], which are defined as the worst-case ratio be-
tween the social cost of the worst/best Nash equilibrium to the so-
cial cost of an optimal solution, which is denoted by OPT. Formally,

DEFINITION 4. (Price of Anarchy and Stability) The Price of
Anarchy (PoA) of the job scheduling game JS is defined by

PoA(JS) = sup
G∈JS

sup
A∈NE(G)

SC(A)

OPT(G)
.

If instead we consider the best Nash equilibrium of every instance,
this leads to the definition of the Price of Stability (PoS):

PoS(JS) = sup
G∈JS

inf
A∈NE(G)

SC(A)

OPT(G)
.

This concept is applied analogously to Strong Nash equilibria as
well as to weakly/strictly Pareto optimal Nash equilibria yielding
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the Strong Price of Anarchy SPoA(JS) and the Strong Price of
Stability SPoS(JS) as well as the weak and strict Pareto Prices of
AnarchyWPO-PoA(JS), SPO-PoA(JS) and StabilityWPO-
PoS(JS), SPO-PoS(JS). By definition, it is clear that
SPoA(JS) ≤ WPO-PoA(JS) ≤ PoA(JS). As any strictly
Pareto optimal NE is also a weakly Pareto optimal NE, it must be
the case that WPO-PoA(JS) ≥ SPO-PoA(JS). However, we
can show that in the job scheduling game there is no immediate
relation between the SPO-PoA(JS) and the SPoA(JS), as there
are Strong Nash equilibria that are not strictly Pareto optimal, while
there are strictly Pareto optimal Nash equilibria that are not strong
equilibria.

Some natural questions in this context are whether the Pareto
Prices of Anarchy are significantly smaller than the standard Price
of Anarchy, whether the weak Pareto Price of Anarchy is much
larger than the Strong Price of Anarchy, and finally, whether there
is any relation between the Strong Price of Anarchy and the strict
Pareto Price of Anarchy. In other words, does the requirement that
the equilibrium must be Pareto optimal leads to greater efficiency,
and does the further demand that the equilibrium must be stable
against arbitrary coalitions is helpful.

1.2 Related work and our contribution
Pareto efficiency of resource assignments is a well referred issue

in economics, especially in welfare economics. Pareto efficiency
is a highly desirable trait, however Dubey [9] has shown that Nash
equilibria may generally be Pareto inefficient based on the differ-
ence between the conditions to be satisfied by Nash equilibria and
those to be satisfied by Pareto optima.

Job scheduling is a classical problem in combinatorial optimiza-
tion. The analysis of job scheduling in the algorithmic game the-
ory context was initiated by Koutsoupias and Papadimitriou in their
seminal work [20], which was followed by many others (see e.g. [8,
22, 1, 13]). In our overview of the known results we will limit our
discussion only to results concerning pure strategies. We will begin
with the results on quality measures that concern Nash equilibria of
the game. For m identical machines, the PoA is 2 − 2

m+1
which

can be deduced from the results of [14] (the upper bound) and [26]
(the lower bound). For related machines the PoA is Θ( log m

log log m
)

[19, 8, 20]. In the model of unrelated machines the PoA is un-
bounded [5], which holds already for two machines. From the re-
sults of [11] it is evident that in all three models the PoS is 1.
The study of quality measures that concern Strong Nash equilibria
of this game was initiated by Andelman at el. [1]. For identical
machines, they proved that the SPoA equals the PoA, which in
turn equals 2 − 2

m+1
. For related machines, Fiat et al. [1] showed

that the SPoA is Θ( log m
(log log m)2

). Surprisingly, the SPoA for this
problem is bounded by the number of machines m, as shown in
[13], and this is tight [1]. Andelman at el. also showed that SPoS
is 1.

The previous work on Pareto efficiency of Nash equilibria in al-
gorithmic game theory was mainly concerned with weak Pareto
equilibria, probably since a solution which is not weakly Pareto
optimal is clearly unstable. A textbook in economics states the
following: “The concept of Pareto optimality originated in the eco-
nomics equilibrium and welfare theories at the beginning of the past
century. The main idea of this concept is that society is enjoying a
maximum ophelimity when no one can be made better off without
making someone else worse off” [21]. Thus the strict Pareto is a
stronger and more meaningful efficiency notion, as it captures an
important aspect of human social behavior. Another issue is that
the weak Pareto implies that everyone prefers some assignment to
any other. In reality, such unanimity of preferences among all per-

sons is very rare. To conclude, both concepts are important, and we
focus on both of them in this work.

Pareto optimality of Nash equilibria has been studied in the con-
text of congestion games, see Chien and Sinclair [6] and Holzman
and Law-Yone [17]. The former gave conditions for uniqueness
and for weak and strict Pareto optimality of Nash equilibria, and the
latter characterized the weak Pareto Prices of Anarchy and Stabil-
ity. The existence, and complexity of recognition and computation
of weak Pareto Nash equilibria in congestion games was studied
recently by Hoefer and Skopalik in [27].

In [16] Harks at el. show that a class of games that have a Lex-
icographical Improvement Property (which our game indeed has)
admits a generalized strong ordinal potential function. They use
this to show existence of Strong Nash equilibria with certain ef-
ficiency and fairness properties in these games, strict Pareto effi-
ciency included. They do so by arguing that a player wise cost-
lexicographically minimal assignment is also strictly Pareto opti-
mal (and so it is optimal w.r.t. the social goal function as well).

Weak Pareto Nash equilibria in routing and job scheduling games
were considered recently in [4] by Aumann and Dombb. As a mea-
sure for quantifying the distance of a best/worst Nash equilibrium
from being weakly Pareto efficient, they use the smallest factor by
which any player improves its cost when we move to a different
strategy profile, which they refer to as “Pareto inefficiency”. They
do not consider however the quality of Pareto optimal Nash equi-
libria with respect to the social goal.

Among other results, it is shown in [4] that any Nash equilibrium
assignment is necessarily weakly Pareto optimal for both identi-
cal and related machines. Moreover, for any machine model, any
assignment which achieves the social optimum must be weakly
Pareto optimal. One such assignment is one whose sorted vector of
machine loads is lexicographically minimal is necessarily weakly
Pareto optimal (see also [1, 11]). Milchtaich [23] has proved related
results for the case of non-atomic players, where the processing
time of each player is negligible compared to the total processing
time.

We consider these issues for SPO-NE assignments. We show that
while the property of identical machines remains true, this is not
the case for related machines, that is, not every Nash equilibrium
assignment is strict Pareto optimal. For unrelated machines, while
there always exist an assignment which is a social optimum and a
SPO-NE, assignments with lexicographically minimal sorted vector
of machine loads are not necessarily strictly Pareto optimal. In this
paper we fully characterize the weak and strict Pareto Prices of An-
archy of the job scheduling game in cases of identical, related and
unrelated machines. The characterization of the Prices of Stability
follows from previous work as explained above.

Next, we consider the complexity of recognition of weak and
strict Pareto optimality of NE. Note that the recognition of NE can
be done in polynomial time for any machine model by examin-
ing potential deviations of each job. As for strong equilibria, it
was shown by Feldman and Tamir [12] that it is NP-hard to recog-
nize an SNE for m ≥ 3 identical machines and for m ≥ 2 unre-
lated machines. For two identical machines, they showed that any
NE is a SNE, so recognition can be done in polynomial time (for
m ≥ 3, it was shown in [1] that not every NE is a SNE). For the
only remaining case of two related machines, it was shown [10]
that recognition is again NP-hard. We show that the situation for
Pareto optimal equilibria is slightly different. In fact, recognition
of WPO-NE or SPO-NE can be done in polynomial time for identical
machines and related machines. For unrelated machines, we show
that the recognition of WPO-NE is NP-hard in the strong sense and
the recognition of SPO-NE is NP-hard.
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We reflect upon the differences between the results for weak and
strict Pareto equilibria also compared to strong equilibria, and make
conclusions regarding the relations between the quality measures in
this game. See Table 1 for a summary of the results.

2. PARETO PRICES OF ANARCHY IN
THE JOB SCHEDULING GAME

2.1 Identical and Related machines
A result from [4] shows that any NE schedule for identical and

related machines is weakly Pareto optimal. This result implies that
WPO-PoA(JS) = PoA(JS). For the case of identical ma-
chines, they give an even stronger result: every schedule where
every machine receives at least one job is weakly Pareto optimal.
Note that if n < m, then a schedule is weakly Pareto optimal if
and only if at least one machine has a single job (to obtain strict
Pareto optimality for this case, or to obtain a NE, each job needs to
be assigned to a different machine).

In the strict Pareto case, while the general result for identical
machines still holds, and the set of NE schedules is equal to the set
of SPO-NE schedules for identical machines (as we prove next), it
is not necessarily true for related machines. We exhibit an example
of a schedule which is a NE but it is not strictly Pareto optimal.

Consider a job scheduling game with two related machines of
speeds 1,2 and two jobs of size 2. There are two types of pure
NE schedules: in the first one, both jobs are assigned to the fast
machine, and in the other one job runs on each machine. The first
one is not a SPO-NE, as switching to a schedule of the second type
strictly reduces the cost for one of the jobs, while not harming the
other. Moreover, the sorted machine load vector of the first type
of schedules is (2, 0), while the load vector of the second type is
(2, 1), so the schedule with the lexicographically minimal machine
load vector is not a SPO-NE (even though it is a SNE).

This difference in the results for related machines is explained by
the fact that conditions for weak Pareto allow Pareto improvements
where not all jobs strictly improve while the strict Pareto does not.
If a NE schedule has an empty machine, and a job arrived to such
a machine as a result of a deviation to a different schedule, where
all jobs strictly reduce their costs, then the reduction in the cost of
this job contradicts the original schedule being a NE. However, if
the job only needs to maintain its previous cost, then there is no
contradiction.

We will prove the following theorem, extending the result of [4]
which will allow us to claim that for identical machines, SPO-
PoA(JS) = PoA(JS).

THEOREM 5. Any schedule for identical machines, where no
machine is empty, is strictly Pareto optimal.

This is a stronger result than the one in [4], since it deals with
strict Pareto. The idea of the proof goes along the lines of [4], but
we need to modify it so that it applies for the stronger conditions
of strict Pareto optimal schedules. First we prove the following
property, which we will also use to characterize the WPO-PoA
for related machines.

THEOREM 6. Consider a scheduleX that is not a SPO-NE, and
denote the set of non-empty machines (which receive at least one
job) in X by µX . Let Y be a different schedule where no job has a
larger cost than it has in X and at least one job has a smaller cost.
Denote the set of non-empty machines in Y by µY . Then,∑

i∈µX

si <
∑

i∈µY

si,

where si is the speed of machine i.

PROOF. Consider a transition from schedule X to schedule Y ,
and denote by xj

i the sum of the sizes of jobs that are moved from
machine i ∈ µX to machine j ∈ µY (for j = i, this gives the sum
of sizes of jobs that are assigned to this machine in both schedules).
Let `t, for t ∈ µX , be the sum of sizes of jobs that run on machine
t in X , and let `′t, for t ∈ µY , be the sum of sizes of jobs that run
on machine t in Y . We extended the definition so that if t /∈ µX ,
then `t = 0, and if t /∈ µY , then `′t = 0.

Consider the total sum of sizes of jobs assigned to a machine in
X or in Y , then the following claim holds:

CLAIM 7. For every i ∈ µX ,
∑

j∈µY

xj
i = `i, or

∑
j∈µY

x
j
i

`i
= 1.

For every j ∈ µY ,
∑

i∈µX

xj
i = `′j , or

∑
i∈µX

x
j
i

`′j
= 1.

By the definition of the costs in Y compared to X , we get that:

CLAIM 8. If xj
i > 0, then

`′j
sj
≤ `i

si
, and there exist i ∈ µX ,i ∈

µY such that
`′j
sj
< `i

si
.

The following also holds:

CLAIM 9. For every i ∈ µX , j ∈ µY : x
j
i

`i
≤ sj

si
· x

j
i

`′j
, and there

exist i, j such that x
j
i

`i
<

sj

si
· x

j
i

`′j
.

PROOF. As i ∈ µX , `i > 0, as j ∈ µY , `′i > 0. If xj
i > 0, it is

derived from Claim 8, if xj
i = 0 it holds trivially. Since there is at

least one job for which the cost in Y is strictly smaller than its cost
in X , then the second property must hold.

Summing up the inequalities in Claim 9 over all j ∈ µY , in
combination with Claim 7, we get that for any i ∈ µX :

1 =
∑

j∈µY

x
j
i

`i
≤ ∑

j∈µY

sj

si
· x

j
i

`′j
, where there is at least one

i ∈ µX for which this inequality is strict. Equivalently, si ≤∑
j∈µY

x
j
i ·sj

`′j
. Summing up the last inequality over all i ∈ µX

combined with the fact that for some i this inequality is strict,
changing the order of summation, and using Claim 7 we get:∑

i∈µX
si <

∑
i∈µX

∑
j∈µY

x
j
i ·sj

`′j
=

∑
j∈µY

∑
i∈µX

x
j
i ·sj

`′j
=∑

j∈µY
sj , which concludes our proof.

We now return to the proof of Theorem 5.

PROOF. We show that any schedule X for identical machines
where µX=M is strictly Pareto optimal. Assume by contradiction
that this is not the case, and hence there exists a different schedule
Y where at least one job improves, while all the other jobs are not
worse off. As the machines in question are identical, s1 = s1 =
. . . = sm holds, thus

∑
i∈µX

si = m and
∑

j∈µY
sj ≤ m. By

Theorem 6 we get that m =
∑

i∈µX
si <

∑
j∈µY

sj ≤ m, which
is a contradiction, and we conclude that such Y cannot exist.

COROLLARY 10. Every schedule on identical machines which
is a NE is also a SPO-NE. Thus in this case SPO-PoA=WPO-
PoA=PoA.

PROOF. Consider a NE schedule. If there is an empty machine,
then each machine has at most one job (otherwise, if some machine
has two jobs then any of them can reduce its cost by moving to
an empty machine), and thus each job has the smallest cost that it
can have in any schedule. Otherwise, the property follows from
Theorem 5.
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# of
Strict Pareto Weak Pareto

machines SPO-PoA SPO-PoS Recognition WPO-PoA WPO-PoS Recognition

identical m 2− 2
m+1

1 [16] P 2− 2
m+1

1 [1, 4] P

related m Θ( log m
log log m

) 1 [16] P Θ( log m
log log m

) 1 [1, 4] P

unrelated
m = 2 2

1 [16] NP-hard
2

1 [1, 4] NP-hard
m ≥ 3 m ∞

Table 1: Summary of Results

We next consider related machines and prove that the three mea-
sures are equal in this case as well.

THEOREM 11. In the job scheduling game on related machines
SPO-PoA=WPO-PoA=PoA.

PROOF. As any SPO-NE is also a WPO-NE, and every WPO-NE is
a NE, the following sequence of inequalities holds: SPO-PoA ≤
WPO-PoA ≤ PoA. We will prove that this is actually a sequence
of equalities. It is enough to prove that PoA ≤ SPO-PoA. We
will do it by showing that the lower bound example for the PoA
given in [8] is also a lower bound for the SPO-PoA, by proving
that it is strictly Pareto optimal.

For completeness, we first present the lower bound of [8]. Con-
sider a job scheduling game on m related machines. The machines
are partitioned into k + 1 groups, each group j ,0 ≤ j ≤ k has Nj

machines. The sizes of the groups are defined in inductive manner:
Nk = Θ(

√
m), and for every j < k: Nj = (j+1)·Nj+1 (and thus

N0 = k! · Nk). The total number of machines m =
∑k

j=0Nj =∑k
j=0

k!
(k−j)!

·Nk. It follows that k ∼ log m
log log m

. The speed of each
machine in group j is sj = 2j .

A schedule is defined as follows: each machine in group j has
j jobs, each with size 2j . Each such job contributes 1 to the load
of its machine. The load of each machine in group Nj is then j,
and therefore the makespan which is accepted on the machines in
group Nk is k. Note that all the machines in group N0 are empty.

We denote this schedule by X . It was proven in [8] that X is a
pure NE. We claim that it is also strictly Pareto optimal.

CLAIM 12. X is strictly Pareto optimal.

PROOF. Assume by contradiction that X is not a SPO-NE, so
there exists another schedule Y where at least one job improves,
and all the other jobs are not worse off. Observe that all the ma-
chines in group N0 necessarily remain empty in Y ; each job that
runs on a machine in groupNj for 1 ≤ j ≤ k pays a cost of j inX ,
and if it is assigned on a machine from group N0 in Y it has to pay
a cost of 2j , and 2j > j for j ≥ 1, which makes it strictly worse
off. This means that µY ⊆ µX . On the other hand, according to
Theorem 6 which we proved earlier,

∑
i∈µX

si <
∑

i∈µY

si must hold,

and we get a contradiction. Hence, the schedule in this example is
strictly Pareto optimal.

An optimal schedule has a makespan of 2. To obtain such a
schedule, we move all jobs from machines in Nj (j ·Nj jobs, each
of size 2j) to machines in Nj−1, for 1 ≤ j ≤ k. Every machine
gets at most one job, and the load on all machines is less or equal
to 2j

2j−1 = 2. The SPO-PoA is therefore Ω( log m
log log m

).

We conclude that SPO-PoA=WPO-PoA=PoA.

It was proved in [13] that schedule X is not a SNE, as a coalition
of all k jobs from a machine in groupNk with 3 jobs from each of k

different machines from groupNk−2 can jointly move in a way that
reduces the costs of all its members. In addition to determining the
SPO-NE, this example illustrates the point that in the job schedul-
ing game not every SPO-NE is necessarily a SNE. We saw that for
related machines, the SPO-PoA=WPO-PoA are the same as the
PoA, while the SPoA is lower.

2.2 Unrelated machines
We saw that already for related machines, not every SNE is a

SPO-NE and vice versa. However, the results which we find for
the SPO-PoA on unrelated machines are similar to those which
are known for the SpoA, that is, the SPO-PoA is equal to m for
any number of machines m. Interestingly, the WPO-PoA for the
setting m = 2 is exactly 2, like the SPO-PoA, but for m ≥ 3 it is
unbounded like the PoA.

THEOREM 13. There exists a job scheduling game with 2 unre-
lated machines, such that WPO-PoA ≥ 2. For any, m ≥ 3 there
exists a job scheduling game with m unrelated machines, such that
WPO-PoA is unbounded.

PROOF. Consider a job scheduling game with two unrelated ma-
chines and two jobs, where p11 = p21 = p12 = 1 and p22 = 2.
A schedule where job 1 is assigned to M1 and job 2 is assigned to
M2 with a makespan of 2 is a WPO-NE; No job would benefit from
moving to a different machine, and job 1 will not profit by switch-
ing to a different schedule. In an optimal schedule for this game,
job k, k ∈ {1, 2} is assigned to Mk, and the makespan is 1. We
get that WPO-PoA ≥ 2.

Now, consider a job scheduling game with m ≥ 3 unrelated
machines and n = m jobs, where for each job k, 1 ≤ k ≤ m:
pkk = ε, and pjk = 1 for all j 6= k, for some arbitrary small
positive ε. A schedule where job 1 is assigned to run on M1, job
m is assigned to M2 and each job k for 2 ≤ k ≤ m − 1 is as-
signed to Mk+1, is a WPO-NE. It is weakly Pareto optimal since
job 1 cannot decrease its cost by changing to any other assignment.
The only way that another job could decrease its cost would be by
moving to the machine where its cost is ε, but the load on all those
machines is 1. Therefore, the schedule is a NE. The makespan of
this schedule is 1. An optimal schedule for this game, where each
job 1 ≤ k ≤ m is assigned to machine Mk, has a makespan of ε.
In total, we have WPO-PoA ≥ 1

ε
, which is unbounded letting ε

tend to zero.

We next prove a matching upper bound for m = 2.

THEOREM 14. For any job scheduling game with 2 unrelated
machines, WPO-PoA ≤ 2.

PROOF. Consider a schedule on two unrelated machines which
is a WPO-NE. Without loss of generality, assume that the load of
M1 is not larger than the load of M2, and denote the loads of the
machines are by L1 and L2, respectively. The makespan of this
schedule is then L2. We show L2 ≤ 2OPT. We first show L1 ≤
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OPT. If L2 ≥ L1 > OPT then an optimal schedule has the property
that every job has a smaller cost in it than it has in the current
schedule (a cost of at most OPT < L1 ≤ L2), in contradiction to
the fact that this schedule is a WPO-NE.

To complete the proof, we upper bound L2. If L2 ≤ OPT, then
we are done, otherwise, L2 > OPT, and there must exist a job k
assigned to M2 which is assigned to M1 in an optimal schedule
(since the load resulting from jobs assigned to M2 in an optimal
schedule is no larger than OPT). Thus, p1k ≤ OPT, and in the
alternative schedule, where this job moves to M1, the new load of
M1 is at most L1 + p1k ≤ 2OPT. However, we know that the
given schedule is a NE, which means that L1 + p1k ≥ L2, giving
L2 ≤ 2OPT . Therefore, WPO-PoA ≤ 2.

From Theorems 13 and 14 we conclude that for m = 2, WPO-
PoA = 2, and for m ≥ 3, WPO-PoA =∞.

We prove next that like the SPoA, the SPO-PoA is m. We
should note that the previous results for the SPoA cannot be used
here. As we saw, the sets of SNE and SPO-NE have no particular
relation. The proofs used for the SPoA do not hold for the SPO-
PoA and need to be adapted. The lower bound of m on the SPoA
by Andelman et al. [1] is not strictly Pareto optimal (see below),
and in the proof of the upper bound by Fiat et al. [13] the claim is
proved by considering alternative schedules where the jobs which
change their strategies are proper subsets of jobs (so other jobs may
increase their costs).

THEOREM 15. The SPO-PoA for m unrelated machines in
any job scheduling game is at most m.

PROOF. Consider a scheduleA onm unrelated machines which
is a SPO-NE. Assume that the machines are sorted by non-increasing
order of loads, that is, L1 ≥ L2 ≥ . . . ≥ Lm. The makespan of A
is therefore L1.

First, note that Lm ≤ OPT . If Lm > OPT then an optimal
schedule has the property that every job has a smaller cost in it,
contradicting the strict Pareto optimality ofA. Next, we will prove
that Li−Li+1 ≤ OPT holds for any 1 ≤ i ≤ m− 1. Assume by
contradiction that there exists i so that Li −Li+1 > OPT . We let
Li+1 = δ. By our assumption Li > δ +OPT holds.

Now, consider another schedule A′, where each one of the jobs
from machines Mj for 1 ≤ j ≤ i in A is running on the ma-
chine on which it runs in an optimal schedule (all the other jobs
hold their positions). We observe that none of these jobs runs on
machines Mi+1, . . . ,Mm in A′ (or in the optimal schedule under
consideration); The processing time of each such job in A′ is at
most OPT, and as Lk ≤ δ for i + 1 ≤ k ≤ m, its cost in A if it
switches to the machines out of Mi+1, . . . ,Mm on which its pro-
cessing time is at most OPT, then the load of this machine would
be at most δ + OPT , while its cost in A was strictly larger than
δ +OPT , contradicting A being a NE.

We conclude that these jobs are scheduled in A′ on machines
M1, . . . ,Mi, where the load of each one of the machines is at most
OPT, and that the loads and the allocations on machinesMi+1, . . . ,
Mm do not change from A to A′.

This means that inA′ the costs of all jobs from machinesM1, . . .
,Mi in A are strictly improved, and the costs of all jobs from ma-
chines Mi+1, . . . ,Mm in A do not change, which contradicts A
being a SPO-NE. Hence, such i does not exist. Applying this in-
equality repeatedly, we get that L1 ≤ Lm + (m − 1)OPT, which
in combination with the fact that Lm ≤ OPT gives us SPO-
PoA ≤ m.

THEOREM 16. There exists an instance of job scheduling game
with m unrelated machines for which SPO-PoA ≥ m.

PROOF. Consider a job scheduling game with m unrelated ma-
chines and n = m jobs, where for each job k, 2 ≤ k ≤ m:
pkk = k− kε, pk(k−1) = 1 and pik =∞ for all i 6= k− 1, k. For
job 1, p11 = 1− ε (for some small positive ε < 1

m
), pm1 = 1 and

pi1 =∞ for all i 6= 1,m.
In an optimal schedule for this game each one of the jobs 2 ≤

k ≤ m runs alone on machineMk−1 and job 1 runs onMm, which
yields a makespan of 1.

On the other hand, a schedule where each one of the jobs 1 ≤
k ≤ m runs alone on machine Mk has a makespan of m − mε.
We will show that this schedule is a SPO-NE. The schedule is a
NE, since for each job, moving to the only additional machine on
which its processing time is not infinite increases it cost by at least
ε. Consider an alternative schedule where no job increases its cost.
Job 1 is currently assigned on a machine with load 1− ε, which is
the minimal possible cost for it, and this minimum is unique. Thus
any alternative schedule must keep job 1 assigned alone to the first
machine. We can prove by induction on the indices of jobs that
every job has to stay assigned to its current machine alone; once
job k must stay on its machine alone, job k + 1 does not have an
alternative machine, and adding another job to the machine that it
is assigned to (Mk) would increase its cost. Thus such a schedule
does not exist. This gives that SPO-PoA ≥ m.

We conclude that for for any m, SPO-PoA = m.
This is a proper place to mention that the lower bound example

from [1] showing that SPoA ≥ m looks similar to our example at
a first glance. The difference in processing times is in the definition
pkk = k, for 1 ≤ k ≤ m. However, this example does not apply
here, as the schedule of cost m which it gives is not strictly Pareto
optimal; if we switch to the optimal schedule, where job 1 runs on
Mm and each job 2 ≤ k ≤ m runs on Mk−1, all jobs 2 ≤ k ≤ m
strictly improve their costs and job 1 is not worse off.

This is another example which demonstrates the fact that in the
job scheduling game we consider not every SNE is necessarily a
SPO-NE. However, we showed that this is the case already for re-
lated machines.

3. RECOGNITION OF PARETO OPTIMAL
EQUILIBRIA

In this section we consider the computational complexity of
SPO-NE and WPO-NE for all machine models. Specifically, we in-
vestigate the problem of recognition of such schedules.

THEOREM 17. There exists a polynomial time algorithms which
receives a schedule on related machines (or on identical machines)
and check whether the schedule is a SPO-NE and whether it is a
WPO-NE.

PROOF. Consider a schedule A, and recall that one can deter-
mine in polynomial time whether a given schedule is a NE. Since
any NE on identical machines is a WPO-NE and a SPO-NE, the
recognition of such schedules is equivalent to recognition of NE.
This is also the case for related machines and WPO-NE.

For the recognition of SPO-NE on related machines, we use the
following algorithm. First, check whether the schedule is a NE (if
not, then output a negative answer). If the schedule is a NE and it
does not contain an empty machine, return a positive answer. Oth-
erwise, for every job k, such that k is assigned to a machine which
has at least two jobs assigned to it, test if moving it to an empty
machine of maximum speed does not increase its cost. If there
exists a job for which the cost is not increased, return a negative
answer, and otherwise, a positive answer. Note that if there exists
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an empty machine, but no machine has two jobs assigned to it, then
the returned answer is positive.

Now we prove correctness of the last algorithm. If there are no
empty machines then any NE is a SPO-NE (by Theorem 6). For the
remaining cases of the algorithm, we prove the following claim.

CLAIM 18. Given A, which is a NE, there exists an alternative
schedule A′ where no job increases its cost and at least one job
reduces its cost if and only if there exists a job k which is assigned
to a machine with at least one other job in A, and moving it to an
empty machine of maximum speed does not increase its cost.

PROOF. We first assume that such a job k exists. Consider the
schedule Ã in which k is assigned to a machine of maximum speed
which is empty in A, and the rest of the assignment is the same
as in A. There is at least one job which is assigned to the same
machine as k inA, whose cost is strictly reduced (since the load of
its machine decreases when k is moved to another machine). The
cost of k does not increase, and any job assigned to any machine
other than the machine of k in A and the machine of k in Ã keeps
its previous cost.

Next, assume thatA′ exists, and assume that among such sched-
ules, A′ has a minimum number of jobs which are assigned not to
the same machine as in A. Using Theorem 6, we get that A neces-
sarily has an empty machine Mi′ which is non-empty in A′. Let k
be a job assigned to Mi′ inA′ and let Mi be the machine to which
it is assigned in A.

If machine Mi does not have an additional job in A, and since
its cost on Mi′ (possibly with additional jobs) is no larger, we get
si′ ≥ si. However, the schedule is a NE, so k cannot reduce its cost
by moving to an empty machine. Therefore, its cost on Mi′ is the
same as its cost on Mi, si′ = si and k is assigned to Mi′ alone in
A′. The jobs assigned toMi inA′ are not assigned toMi′ or toMi

inA. This is true since Mi′ is empty inA and Mi only has the job
k in A. We construct a schedule Â where the jobs assigned to Mi

and Mi′ in A′ are swapped and the other jobs are assigned to the
same machines as inA. The number of jobs assigned to a different
machine from their machines in A is reduced by 1 (due to k being
assigned to the same machines in Â and A), which contradicts the
choice of A′.

Thus, there exists an additional job k′ assigned toMi inA. Since
moving k to some empty machine does not increase its cost, then
moving it to an empty machine with maximum speed clearly does
not increase its cost.

Given the claim, if every non-empty machine has a single job
then the schedule is a SPO-NE. Otherwise, the algorithm tests the
existence of a job k as in the claim.

THEOREM 19. i. The problem of checking whether a given
schedule on unrelated machines is a WPO-NE is strongly co-NP-
complete. ii. The problem of checking whether a given schedule
on unrelated machines is a SPO-NE is co-NP-complete.

PROOF. Given a schedule and an alternative schedule, checking
whether the alternative schedule implies that the given schedule is
not a NE or not (weakly or strictly) Pareto optimal can be done in
polynomial time, and therefore the problems are in co-NP.

To prove hardness of the recognition of WPO-NE, we reduce from
the 3-PARTITION problem, which is strongly NP-hard. In this prob-
lem we are given an integer B and 3M integers a1, a2, . . . , a3M ,

where B
4
< ak < B

2
for 1 ≤ k ≤ 3M ,

3M∑
k=1

ak = MB, and

we are asked whether there exists a partition of the integers into
M sets, where the sum of each subset is exactly B. We construct

an input with m = 4M machines. There are 4M jobs, 3M of
them are based on the instance of 3-PARTITION and the last M
jobs are dummy jobs. For 1 ≤ k ≤ 3M , we have pik = B + 1
for 1 ≤ i ≤ 3M , and pik = ak for 3M + 1 ≤ i ≤ 4M . For
3M + 1 ≤ k ≤ 4M , we have pik = B for 1 ≤ i ≤ 3M , and
pik = B + 1 for 3M + 1 ≤ i ≤ 4M . The given schedule is one
where job k is assigned to machine k. All machines have a load of
B+1, so the schedule is a NE. We show that the schedule is weakly
Pareto optimal if and only if a 3-partition as required does not ex-
ist. Assume first that a 3-partition exists. We define an alternative
schedule. In this schedule, each one of the last M machines runs
one subset of jobs of the first 3M jobs, out of the M subsets of the
3-partition. The sum of the corresponding subsets of numbers in
the input of 3-PARTITION is B and therefore, their total processing
time on such a machine is B. Each dummy job runs on a different
machine out of the first 3M machines, having a cost ofB. Thus, all
jobs have a smaller cost in the alternative schedule, so the original
one is not Pareto optimal.

On the other hand, if there exists an alternative schedule where
all jobs reduce their costs, then all the first 3M jobs must be as-
signed to the last M machines (since on the other machines even if
such a job is assigned to alone it still has a cost ofB). For job k, no
matter which such machine receives it, it has a processing time of
ak on it, so all jobs have a total processing time of MB. Since all
numbers are integers, the only way that every job reduces its load
is that each machine will have a load of exactly B, which implies a
3-partition.

To prove hardness of the recognition of SPO-NE, we can use the
reduction of [12] showing that the recognition of SNE is hard. For
completeness we present an alternative reduction. To prove hard-
ness of the recognition of SPO-NE, we reduce from the PARTITION
problem, which is NP-hard. In this problem we are given an inte-

ger B and N integers a1, a2, . . . , aN , where,
N∑

k=1

ak = 2B, and

we are asked whether there exists a partition of the integers into
two sets, where the sum of each subset is exactly B. We construct
an input with m = 2 machines (it is possible to use the same input
for any larger number of machines, giving all jobs infinite process-
ing times on every machine except for the first two machines). We
have N + 2 jobs. Job k, for 1 ≤ k ≤ N , p1k = ak + 1

2N
while

p2k = ak. Job N + 1 has p1(N+1) = B and p2(N+1) = B + 1
2

.
Job N + 2 has p1(N+2) = ∞ and p2(N+1) = B so it must be as-
signed to M2. We are given the schedule where the first N jobs are
assigned toM1 and the two last jobs are assigned toM2. The loads
of both machines are 2B + 1

2
, thus this schedule is a NE. If there

exists a partition, consider the alternative schedule where each ma-
chine receives one subset of jobs whose total size in the original
input is B, and job N + 1 is assigned to M1. Let K1 be the cardi-
nality of the set of jobs assigned to M1 in the alternative schedule.
Then the resulting load ofM1 is 2B+ K1−1

2N
. SinceM2 receives at

least two jobs, then K1 ≤ N , so the load is strictly below 2B + 1
2

.
The load of M2 is exactly 2B. Thus, the original schedule is not
strictly (or weakly) Pareto optimal. On the other hand, if the orig-
inal schedule is not strictly (or weakly) Pareto optimal, then in an
alternative schedule, job N + 1 must be assigned to M1, and the
total processing time of jobs assigned with it must be strictly below
B + 1. The total processing time of jobs assigned to M2 must be
strictly below B + 1 as well, and so there are two sets whose sizes
(in the original input) are at most B, which implies a partition.

Note that this reduction can be used to prove the (weak) co-NP-
completeness of the recognition of WPO-NE schedules. Thus both
problems are hard for any number of machines.
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4. CONCLUSIONS
In this paper we have studied the quality and complexity of the

strict and weak Pareto optimal Nash equilibria in job scheduling
games, in the settings of identical, related and unrelated machines.

We found that in the models of identical and related machines,
strict and weak Pareto optimal Nash equilibria can be as bad as pure
Nash equilibria, however in the model of unrelated machines, while
for weak Pareto optimal Nash equilibria and m ≥ 3 this is still the
case, strict Pareto optimal Nash equilibria (and even weak Pareto
optimal equilibria, for m = 2) are as good as Strong Nash equi-
libria w.r.t. the Price of Anarchy. This implies that for unrelated
machines, cooperation between all players (as opposed to coopera-
tion between subsets of players) still gives solutions of high quality.

As for identical and related machines, recognition of weakly or
strictly Pareto optimal equilibria can be done in polynomial time,
unlike strong equilibria. Despite the slightly worse quality of such
equilibria compared to strong equilibria (due to the results for the
Price of Anarchy on related machines), we conclude that weak and
strict Pareto optimal equilibria are of interest for identical and re-
lated machines.

5. ACKNOWLEDGMENT
The authors would like to thank Asaf Levin for many helpful

discussions.

6. REFERENCES
[1] N. Andelman, M. Feldman, and Y. Mansour. Strong price of

anarchy. Games and Economic Behavior, 65(2):289–317,
2009.

[2] E. Anshelevich, A. Dasgupta, J. M. Kleinberg, É.Tardos,
T. Wexler, and T. Roughgarden. The price of stability for
network design with fair cost allocation. SIAM Journal on
Computing, 38(4):1602–1623, 2008.

[3] R. J. Aumann. Acceptable points in general cooperative
n-person games. In A. W. Tucker and R. D. Luce, editors,
Contributions to the Theory of Games IV, Annals of
Mathematics Study 40, pages 287–324. Princeton University
Press, 1959.

[4] Y. Aumann and Y. Dombb. Pareto efficiency and
approximate pareto efficiency in routing and load balancing
games. In Proc. of the 3rd International Symposium on
Algorithmic Game Theory (SAGT’10), 2010.

[5] B. Awerbuch, Y. Azar, Y. Richter, and D. Tsur. Tradeoffs in
worst-case equilibria. Thoeretical Computer Science,
361(2-3):200–209, 2006.

[6] S. Chien and A. Sinclair. Strong and pareto price of anarchy
in congestion games. In Proc. of the 36th International
Colloquium on Automata, Languages and Programming
(ICALP’09), pages 279–291, 2009.

[7] A. F. T. Committee. ATM forum traffic management
specification version 4.0, 1996.

[8] A. Czumaj and B. Vöcking. Tight bounds for worst-case
equilibria. ACM Transactions on Algorithms, 3(1), 2007.

[9] P. Dubey. Inefficiency of Nash equilibria. Mathematics of
Operations Research, 11(1):1–8, 1986.

[10] L. Epstein, M. Feldman, and T. Tamir. Approximate strong
equilibria in job scheduling games: an analysis for two
uniformly related machines. Manuscript, 2009.

[11] E. Even-Dar, A. Kesselman, and Y. Mansour. Convergence
time to Nash equilibrium in load balancing. ACM
Transactions on Algorithms, 3(3):32, 2007.

[12] M. Feldman and T. Tamir. Approximate strong equilibrium
in job scheduling games. Journal of Artificial Intelligence
Research, 36:387–414, 2009.

[13] A. Fiat, H. Kaplan, M. Levy, and S. Olonetsky. Strong price
of anarchy for machine load balancing. In Proc. of the 34th
International Colloquium on Automata, Languages and
Programming (ICALP’07), pages 583–594, 2007.

[14] G. Finn and E. Horowitz. A linear time approximation
algorithm for multiprocessor scheduling. BIT Numerical
Mathematics, 19(3):312–320, 1979.

[15] D. Fotakis, S. C. Kontogiannis, E. Koutsoupias,
M. Mavronicolas, and P. G. Spirakis. The structure and
complexity of Nash equilibria for a selfish routing game.
Theoretical Computer Science, 410(36):3305–3326, 2009.

[16] T. Harks, M. Klimm, and R. H. Möhring. Strong Nash
equilibria in games with the lexicographical improvement
property. In Proc. of the 5th International Workshop on
Internet and Network Economics (WINE’09), pages
463–470, 2009.

[17] R. Holzman and N. Law-Yone. Strong equilibrium in
congestion games. Games and Economic Behavior,
21(1-2):85–101, 1997.

[18] R. M. Karp, E. Koutsoupias, C. H. Papadimitriou, and
S. Shenker. Optimization problems in congestion control. In
Proc. of 41st Annual IEEE Symposium on Foundations of
Computer Science (FOCS’00), pages 66–74, 2000.

[19] E. Koutsoupias, M. Mavronicolas, and P. G. Spirakis.
Approximate equilibria and ball fusion. Theory of
Computing Systems, 36(6):683–693, 2003.

[20] E. Koutsoupias and C. H. Papadimitriou. Worst-case
equilibria. In Proc. of the 16th Annual Symposium on
Theoretical Aspects of Computer Science (STACS’99), pages
404–413, 1999.

[21] D. T. Luc. Pareto optimality. In A. Chinchuluun, P. M.
Pardalos, A. Migdalas, and L. Pitsoulis, editors, Pareto
optimality, game theory and equilibria, pages 481–515.
Springer, 2008.

[22] M. Mavronicolas and P. G. Spirakis. The price of selfish
routing. Algorithmica, 48(1):91–126, 2007.

[23] I. Milchtaich. Network topology and the efficiency of
equilibrium. Games and Economic Behavior,
57(2):321–346, 2006.

[24] R. B. Myerson. Game Theory: Analysis of Conflict. Harvard
University Press, 1991.

[25] J. Nash. Non-cooperative games. Annals of Mathematics,
54(2):286–295, 1951.

[26] P. Schuurman and T. Vredeveld. Performance guarantees of
local search for multiprocessor scheduling. INFORMS
Journal on Computing, 19(1):52–63, 2007.

[27] A. Skopalik and M. Hoefer. On the complexity of
pareto-optimal Nash and strong equilibria. In Proc. of the 3rd
International Symposium on Algorithmic Game Theory
(SAGT’10), pages 312–322, 2010.

[28] W. E. Walsh and M. P. Wellman. A market protocol for
decentralized task allocation. In Proc. of the 3rd
International Conference on Multiagent Systems
(ICMAS1998), pages 325–332, 1998.

532



Game Theory-Based Opponent Modeling in Large
Imperfect-Information Games∗

Sam Ganzfried and Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
{sganzfri, sandholm}@cs.cmu.edu

ABSTRACT
We develop an algorithm for opponent modeling in large
extensive-form games of imperfect information. It works by
observing the opponent’s action frequencies and building an
opponent model by combining information from a precom-
puted equilibrium strategy with the observations. It then
computes and plays a best response to this opponent model;
the opponent model and best response are both updated
continually in real time. The approach combines game-
theoretic reasoning and pure opponent modeling, yielding
a hybrid that can effectively exploit opponents after only a
small number of interactions. Unlike prior opponent mod-
eling approaches, ours is fundamentally game theoretic and
takes advantage of recent algorithms for automated abstrac-
tion and equilibrium computation rather than relying on
domain-specific prior distributions, historical data, or a hand-
crafted set of features. Experiments show that our algorithm
leads to significantly higher win rates (than an approximate-
equilibrium strategy) against several opponents in limit Texas
Hold’em — the most studied imperfect-information game
in computer science — including competitors from recent
AAAI computer poker competitions.
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1. INTRODUCTION
While much work has been done in recent years on ab-

stracting and computing equilibria in large extensive-form
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games, relatively little work has been done on exploiting sub-
optimal opponents (aka opponent modeling). While playing
an equilibrium guarantees at least the value of the game in
a two-player zero-sum game, often much higher payoffs can
be obtained by deviating from equilibrium to exploit oppo-
nents who make significant mistakes. For example, against
a poker opponent who always folds, the strategy of always
raising will perform far better than any equilibrium strategy
(which will sometimes fold with bad hands).

Texas Hold’em poker has emerged as the main testbed
for evaluating algorithms in extensive-form games. In ad-
dition to its tremendous popularity, it also contains enor-
mous strategy spaces, imperfect information, and stochastic
events; such elements also characterize most of the chal-
lenging problems in computational game theory and multia-
gent systems. In light of these factors and the AAAI annual
computer poker competition, poker has emerged as an im-
portant, visible challenge problem for AI as a whole, and
multiagent systems in particular.

It is worth noting, however, that a fair amount of prior
work has been done on opponent exploitation in significantly
smaller games. For example, Hoehn et al. [7] run experi-
ments on Kuhn poker, a small two-player poker variant with
about 20 states in its game tree. Recent work has also been
done on opponent exploitation in rock-paper-scissors [12]
and the repeated prisoners’ dilemma [2]. However, these
algorithms do not scale to large games. In contrast, the
game tree of limit Texas hold’em has about 1018 states.

A potential drawback of evaluating algorithms on one spe-
cific problem is that we run the risk of developing algorithms
that are so game specific that they will not generalize to
other settings. Heeding this risk, in this work we abandon
many of the game-specific assumptions taken by prior ap-
proaches. Rather than relying on massive databases of hu-
man poker play [3, 14] and expert-generated features or prior
distributions [7, 16], we will instead rely on game-theoretic
concepts such as Nash equilibrium and best response, which
apply to all games.

In addition, we require our algorithms to operate effi-
ciently in real time (online), as opposed to algorithms that
perform offline computations assuming they have access to
a large number of samples of the opponent’s strategy in ad-
vance [9, 13]. That prior work also assumed access to his-
torical data which included the private information of the
opponents (i.e., their hole cards) even when such informa-
tion was only observed by the opponent. In many multiagent
settings, an agent must play against opponents about whom
he has little to no information in advance, and must learn to
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exploit weaknesses in a small number of interactions. Thus,
we assume we have no prior information on our opponent’s
strategy in advance, and our algorithms will operate online.

Our main algorithm, called Deviation-Based Best Response
(DBBR), works by noting deviations between the opponent’s
strategy and that of a precomputed approximate equilibrium
strategy, and constructing a model of the opponent based
on these deviations. Then it computes and plays a best re-
sponse to this opponent model (in real time). Both the con-
struction of the opponent model and the computation of a
best response take time linear in the size of the game tree and
can be performed quickly in practice. As discussed above, we
evaluate our algorithm empirically on limit Texas Hold’em;
it achieves significantly higher win rates against several op-
ponents — including competitors from recent AAAI com-
puter poker competitions — than an approximate equilib-
rium strategy does.

2. GAME THEORY BACKGROUND
In this section, we review relevant definitions and results

from game theory.

2.1 Extensive-form games
An extensive-form game is a general model of multiagent

sequential decision-making with imperfect information1. As
with perfect-information games, extensive-form games con-
sist primarily of a game tree; each non-terminal node has
an associated player (possibly chance) that makes the de-
cision at that node, and each terminal node has associated
utilities for the players. Additionally, game states are parti-
tioned into information sets, Ii ∈ Ii, where a player cannot
distinguish among the states in the same information set.
Therefore, the player whose turn it is to move must choose
actions with the same distribution at each state in the in-
formation set.

In this paper, we will only concern ourselves with two-
player, zero-sum2, extensive-form games (though our algo-
rithm extends naturally to multiplayer and non-zero-sum
games as well). Furthermore, we will make the standard
assumption of perfect recall : no player forgets information
that he previously knew.

A history, h ∈ H, is a sequence of actions. A (mixed) strat-
egy for player i, σi, is a function that assigns a probability
distribution over all actions at each information set belong-
ing to i; by convention the opponent’s strategy is denoted
σ−i. Let Σi denote the (mixed) strategy space of player i.
A strategy profile σ is a vector of strategies, one for each
player.

In this paper we will assume that the moves of all players
other than chance are observed by all players; for example,
in poker all moves other than the initial dealing of the cards
are publicly observed. In this setting, we can partition all
game states into public history sets, PHi, where states in
the same public history set correspond to the same history
of publicly observed actions. Note that each public history
set must consist of a set of information sets of player i. For
public history set n ∈ PHi, let An denote the set of actions
of player i at n. In general when we omit subscripts, player

1Much of our description of extensive-form games is adapted
from [11].
2An extensive-form game is zero-sum if the sum of the pay-
offs at each terminal node equals zero.

i will be implied.

2.2 Best responses and Nash equilibria
Player i’s best response to σ−i is any strategy in

arg max
σ′

i∈Σi

ui(σ
′
i, σ−i).

A Nash equilibrium is a strategy profile σ such that σi is a
best response to σ−i for all i. An ε-equilibrium is a strategy
profile in which each player achieves a payoff of within ε of
his best response. Formally, an ε-equilibrium is a strategy
profile σ∗ such that, for all i, we have

ui(σ
∗
i , σ
∗
−i) ≥ max

σi∈Σi

ui(σi, σ
∗
−i)− ε.

All finite games have at least one Nash equilibrium. In the
case of zero-sum extensive-form games with perfect recall,
there are efficient techniques for finding an ε-equilibrium,
such as linear programming (LP) [10], the excessive gap
technique (EGT) [6], and counterfactual regret minimiza-
tion (CFR) [17]. However, the latter two scale to much
larger games; they scale to 1012 states in the game tree,
while the best current LP techniques do not scale beyond
108 states.

Best responses can be computed much more efficiently
than Nash equilibria. Computing a best response involves
a single matrix-vector multiplication followed by a traversal
up the game tree, both of which take linear time in the size
of the game tree.

2.3 Abstraction
Despite the tremendous progress in equilibrium-finding in

recent years, many interesting real-world games (such as
poker) are so large that even the best algorithms have no
hope of computing an equilibrium directly. The standard
approach of dealing with this is to apply an abstraction al-
gorithm, which constructs a smaller game that is similar to
the original game; then the smaller game is solved, and its
solution is mapped to a strategy profile in the original game.
The approach has been applied to two-player Texas Hold’em
poker, first with a manually generated abstraction [1], and
currently with abstraction algorithms [4]. Many abstraction
algorithms work by coarsening the moves of chance, collaps-
ing several information sets of the original game into single
information sets of the abstracted game. We will sometimes
refer to information sets in abstracted games as buckets.

The game tree of limit Texas hold’em has about 1018

states, and recent solution techniques can compute approx-
imate equilibria for abstractions with up to 1012 states [5,
17]. Such algorithms typically take several weeks to compute
an ε-equilibrium for reasonably small ε. On the other hand,
best responses in such an abstraction can be computed in
about an hour. If coarser abstractions are used, best re-
sponses can be computed in minutes or even seconds, and
can potentially be used as a subroutine in adaptive real-time
algorithms.

3. IMPOSSIBILITY OF SAFE
EXPLOITATION

While deviating from equilibrium to exploit an opponent
can often lead to a significantly higher payoff, it also runs
the risk that the exploitative strategy can itself become ex-
ploitable. For example, the opponent could play a certain
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strategy for several iterations to trick the exploiter, then
exploit him in turn; this is referred to as the get-taught-and-
exploited problem [15].

One might think that this problem can be avoided by only
risking the amount won so far. For example, suppose we are
repeating a two-player zero-sum game (with value zero) 100
times, and have won $50 so far through 50 iterations. Then
if we attempt to exploit the opponent for the next 50 iter-
ations by playing a strategy with exploitability at most $1
per iteration, it appears that we may be able to safely ex-
ploit the opponent by deviating from equilibrium while still
guaranteeing the value of the game. Unfortunately, this in-
tuition is not correct; it is possible that the opponent was
in fact playing an equilibrium all along and that we were
just lucky for the first 50 iterations. If we then deviate from
equilibrium, our overall strategy could actually have a nega-
tive payoff in expectation against an equilibrium opponent.
Formally:

Proposition 1. It is not possible to exploit an opponent
by deviating from equilibrium while simultaneously guaran-
teeing obtaining the value of the game in expectation.

Thus, we must turn to algorithms that are exploitable to
some extent in the worst case if we hope to exploit the op-
ponent more than any equilibrium strategy does.

4. DBBR: AN EFFICIENT REAL-TIME
OPPONENT MODELING ALGORITHM

In this section we present our algorithm, Deviation-Based
Best Response (DBBR). It works by observing the oppo-
nent’s action frequencies over the course of game, then us-
ing these observations to construct a model of the opponent’s
strategy. Essentially, we would like to conservatively assume
that the opponent is playing the best (i.e., least exploitable)
strategy that is consistent with our observations of his play.
The obvious way to accomplish this would be to add linear
constraints to the LP for finding an equilibrium [10] that
force the opponent model to conform with our observations.
However, as discussed in Section 2.3, such a computation
could take several weeks, and would not be practical for
real-time play in large games.

To obtain a more practical algorithm, we must find a faster
way of constructing an opponent model from our observa-
tions. DBBR constructs the model by noting deviations of
our opponent’s observed action frequencies from equilibrium
frequencies. For example, in poker suppose an equilibrium
strategy raises 50% of the time when first to act, while the
opponent raises only 30% of the time. While the opponent
might be raising any 30% of hands, a safe guess might be
to assume that he is raising his ‘best’ 30% of hands; we can
construct such a strategy by starting with the equilibrium
strategy, then removing the ‘worst’ 20% of hands from the
raising range. Our algorithm is based on this intuition.

4.1 Overview of the algorithm
Pseudocode for a high-level overview of DBBR is given in

Algorithm 1. In the first step, an approximate equilibrium
σ∗ of the game is precomputed offline. Next, when the game
begins, the frequencies of the opponent’s actions at different
public history sets are recorded. These are used to compute
the opponent’s posterior action probabilities: the probabil-
ities with which he chooses each action at each public his-
tory set n ∈ PH−i. (We say that the elements of PH−i are

numbered according to breadth-first-search (BFS) traversal
order.) Next, we compute the probability the opponent is in
each bucket at n given our model of his play so far; we refer
to these probabilities as the posterior bucket probabilities.
We then compute a full model of the opponent’s strategy by
considering the deviations between the opponent’s posterior
action probabilities and those of σ∗ at n. Based on these
deviations, we iterate over all buckets and shift weight away
from the action probabilities in σ∗ until we obtain a strategy
consistent with our model of the opponent’s action probabil-
ities. Finally, after we have iterated over all public history
sets, we compute a best response to the opponent model.
The next subsections will discuss the different components
of the algorithm in detail.

Algorithm 1 High-level overview of DBBR

Compute an approximate equilibrium of the game.
Maintain counters from observing opponent’s play
throughout the match.
for n = 1 to |PH−i| do

Compute posterior action probabilities at n.
Compute posterior bucket probabilities at n.
Compute full model of opponent’s strategy at n.

end for
return Best response to the opponent model.

4.2 Computing posterior action probabilities
In the course of our play against the opponent, we observe

how often he chooses each action a at each public history
set n; we denote this quantity by cn,a. One idea would be
to assume the opponent will play action a with probability

cn,a∑
a′ cn,a′

.

However, doing this could be problematic for a few reasons.
First, we might not have any observations at a given set
n, in which case this quantity would not even be defined.
More generally, the quality of our observations might vary
dramatically between public history sets; for example, we
have a lot more confidence in sets for which we have 1000
observations than sets for which we have just 1 or 2, and we
would like our algorithm to reflect this. A similar observa-
tion was the motivation behind a recent paper [8], though
that work assumed that the opponent’s private information
was observable.

Our algorithm works by choosing a combination of the ob-
served probability and the probability under the equilibrium
strategy σ∗, where the weight on the observed frequencies is
higher at public history sets for which we have more obser-
vations. Specifically, we use a Dirichlet prior distribution,
where we assume we have seen Nprior fictitious hands at the
given public history set for which the opponent played ac-
cording to σ∗. Let p∗n,a denote the probability that σ∗ plays
action a at public history set n. We compute the posterior
action probabilities, αn,a, as follows:

αn,a =
p∗n,a ·Nprior + cn,a

Nprior +
∑
a′ cn,a′

. (1)

4.3 Computing posterior bucket probabilities
Since we are constructing the model of the opponent’s

strategy using a BFS ordering of the public history sets,
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we assume that we have already set his strategy for all an-
cestors of the current set n (including the parent n′). Let
sn′,b,a denote our model of the probability that the oppo-
nent plays his portion of the strategy sequence leading to n′,
then chooses action a in bucket b at state n′; this quantity
has already been computed by the time we get to n in the
algorithm. We can use these probabilities to construct the
posterior probability, βn,b, that the opponent is in bucket b
(i.e., in poker, the opponent has those private cards) at pub-
lic history set n. Pseudocode for this procedure is given in
Algorithm 2, where hb denotes the probability that chance
makes the moves needed to put the opponent in bucket b.

Algorithm 2 ComputeBucketProbs(n)

for b = 1 to |Bn| do
n′ ← parent(n)
a← action taken to get from n′ to n.
βn,b ← hb · sn′,b,a

end for
Normalize the values βn so they sum up to 1.

4.4 Computing the opponent model
In this section we will present three different techniques for

computing the opponent model. Recall that our high-level
goal is to compute the ‘best’ (i.e., least exploitable) strategy
for the opponent that is consistent with our observations of
his behavior. We could accomplish this by performing an
equilibrium-like computation; however, such a computation
is too challenging to be performed in real time.

Rather than find the strategy consistent with our observa-
tions that is least exploitable, we will instead find the strat-
egy that is ‘closest’ to the precomputed equilibrium. It turns
out that this can be accomplished efficiently in practice, and
intuitively we would expect strategies closer to equilibrium
to be less exploitable.

4.4.1 Weighted L1-distance minimization
Recall that the L1 distance between two vectors x and y

is defined as

||x− y||1 =

k∑
i=1

|xi − yi|. (2)

While this function treats all indices of the vector equally,
in some cases we might want to put more weight on some
components than on others. If p is a probability distribution
over the integers from 1 to k, we define the weighted L1

distance between x and y as

k∑
i=1

pi · |xi − yi|. (3)

Now, suppose we are at public history set n, where βn,b
denotes the posterior probability that we are in bucket b, as
computed by Algorithm 2. If we let the yi’s in Equation 3
correspond to the equilibrium probabilities of taking each
action, and let the pi’s correspond to the βn,b’s, then we
can formulate the problem of finding the strategy closest to
the precomputed equilibrium, subject to the posterior action
probabilities αn,a, as an L1-distance minimization problem.

Formally, we can formulate the optimization problem as
follows, for a given public history set n:

minimize
∑
b∈Bn

∑
a∈An

[
βn,b · |xn,b,a − σ∗n,b,a|

]
(4)

subject to
∑
b∈Bn

[βn,b · xn,b,a] = αn,a for all a ∈ An∑
a∈An

xn,b,a = 1 for all b ∈ Bn

0 ≤ xn,b,a ≤ 1 for all a ∈ An, b ∈ Bn
Recall that Bn denotes the set of all buckets we could

be in at public history set n, while An denotes the set of
actions at n. The variables xn,b,a correspond to the model
of the opponent’s strategy that we are trying to compute.
Note that we can do this optimization separately for each
public history set n; it makes more sense to do many smaller
optimizations than to do a huge one for all public history
sets at once, since the computations of the actions taken at
different states do not depend on each other.

So as discussed above, we will perform a separate opti-
mization at each n according to the program of Equation 4.
It turns out that this can be cast as a linear program (LP)
and solved efficiently using CPLEX’s dual simplex algorithm
for solving LPs. Doing this for each public history set n
yields the opponent model x. Note that the program could
have many solutions, and that CPLEX will just output the
first solution it encounters (and not necessarily the solu-
tion that performs best in practice). This means that there
might actually exist a strategy that minimizes L1 distance
from equilibrium that performs better in practice than the
strategy output by CPLEX.

4.4.2 Weighted L2-distance minimization
While Section 4.4.1 uses the weighted L1 distance to mea-

sure the proximity of two strategies, we could also use other
distance metrics. In this section we will consider another
common distance function: the weighted L2 distance.

Similarly to Equation 2, the L2 distance between x and y
is defined as

||x− y||2 =

√√√√ k∑
i=1

(xi − yi)2. (5)

Analogously to the L1 case, we define the weighted L2

distance between x and y as√√√√ k∑
i=1

pi · (xi − yi)2. (6)

The new program for computing the opponent model at
n is the following:

minimize
∑
b∈Bn

∑
a∈An

[
βn,b · (xn,b,a − σ∗n,b,a)2] (7)

subject to
∑
b∈Bn

[βn,b · xn,b,a] = αn,a for all a ∈ An∑
a∈An

xn,b,a = 1 for all b ∈ Bn

0 ≤ xn,b,a ≤ 1 for all a ∈ An, b ∈ Bn
Note that we can omit the square root, since it is a mono-

tonic operator. The resulting formulation in Equation 7 is a
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quadratic program (QP), which can also be solved efficiently
in practice using CPLEX. As in the L1 case, we can for-
mulate and solve a separate optimization problem for each
public history set n to compute the opponent model x.

4.4.3 Our custom weight-shifting algorithm
While the previous two sections described how to compute

an opponent model using two popular distance functions,
perhaps we can do even better by designing our own custom
algorithm that takes into account the conservative reasoning
about the opponent that we discussed earlier. In this section
we will describe such an algorithm. In particular, it takes
into account the fact that we already know an approximate
ranking of the buckets at each public history set from the
approximate equilibrium σ∗.

For example, suppose the opponent is only raising 30% of
the time when first to act, while σ∗ raises 50% of the time in
that situation (as given in the example at the beginning of
this section). Instead of doing a full L1 or L2-minimization
explicitly, we could use the following heuristic algorithm:
sort all buckets by how often the opponent raises with them
under σ∗, then greedily keep removing buckets from his rais-
ing range until the weighted sum (using the βn,b’s as weights)
equals 30%. This is a simple greedy algorithm, which can
be run significantly more efficiently in practice than the L1

and L2-minimization procedures described in the last two
subsections, which must repeatedly use CPLEX at runtime.

For simplicity, we present our algorithm for the case of
three actions, although it extends naturally to any number
of actions. First we initialize the opponent’s strategy at
n, σn, to the equilibrium σ∗. We also initialize our current
model of his action probabilities γn to p∗n,a, the equilibrium
action probabilities.

Next, we check whether the opponent is taking action 3
more often than he should at n by comparing αn,3 to γn,3.
If he is, we are going to want to increase the probabilities he
plays action 3 in various buckets; otherwise, we will decrease
these probabilities. For now, we will assume that αn,3 > γn,3
(the other case is handled analogously).

We start by adding weight to the bucket that plays action
3 with the highest probability at n; denote this bucket by b̂.
If

γn,3 + βn,b̂ · (1− σn,b̂,3) < αn,3, (8)

we set σn,b̂,3 = 1, since that will not cause γn,3 to exceed
αn,3 once it is adjusted. Otherwise, we increase σn,b̂,3 by
(αn,3−γn,3)

β
n,b̂

. (Recall that βn,b̂ denotes the posterior proba-

bility that the opponent holds bucket b̂ at n, as computed
in Algorithm 2.) Let ∆ denote the amount by which we
increase σn,b̂,3. We will also increase the action probability
γn,3 by βb̂ ·∆.

Next we must compensate for this increase of the prob-
ability of playing action 3 in bucket b̂ by decreasing the
probabilities of playing actions 1 and/or 2. Let a denote the
action (1 or 2) played with lower probability in σn in bucket

b̂, and let a denote the other action. If σn,b̂,a ≥ ∆, then we
set σn,b̂,a = σn,b̂,a −∆ and update γn,a accordingly. Other-
wise, we set σn,b̂,a = 0 and remove the remaining probability
∆− σn,b̂,a from σn,b̂,a.

If the inequality of Equation 8 held above, then our op-
ponent model probabilities still do not agree with the poste-
rior action probabilities, and thus we must continue shifting

probability mass; we continue by setting b̂ to the bucket that
plays action 3 with the second highest probability at n, and
repeating the above procedure. Otherwise, we are done set-
ting the probabilities for action 3, and we perform a similar
procedure to shift weight between the probabilities that he
plays actions 1 and 2 until they agree with αn.

We have now constructed an opponent model that agrees
with our posterior action probabilities. Note that we had to
iterate over possibly all of the buckets at public history set
n. Since each bucket is contained in only one public history
set, the algorithm’s run time is linear in the size of the game
tree.

Additionally, although we presented this algorithm for the
case of three actions at n, it easily generalizes to more ac-
tions. Rather than just designating a and a, we will sort all
actions in the order of how often they are played in bucket
b̂, and proceed through this list adjusting probabilities as in
the three-action case.

4.5 Full algorithm
In practice, constructing an opponent model and comput-

ing a best response at each repetition of the game (e.g., hand
in poker) might be too slow. This can be mitigated by do-
ing so only every k repetitions. In addition, we may want
to start off playing the equilibrium σ∗ for several repeti-
tions so that we can obtain a reasonable number of samples
of the opponent’s play, rather than trying to exploit him
immediately. Overall, our full algorithm will have three pa-
rameters: T denotes how many repetitions to first play the
equilibrium σ∗ before starting to exploit, k denotes how of-
ten to recompute an opponent model and best response, and
Nprior from Equation 1 is the parameter of the action prob-
ability prior distributions. Pseudocode for the algorithm is
given in Algorithm 3, where M is the number of repetitions
in the match.

Algorithm 3 DBBR(T,k,Nprior)

for iter = 1 to T do
Play according to the precomputed equilibrium strategy
σ∗

end for
opponent model = ComputeOppModel(Nprior)
σBR = ComputeBestResponse(opponent model)
for iter = T + 1 to M do

if iter is a multiple of k then
opponent model = ComputeOppModel(Nprior)
σBR = ComputeBestResponse(opponent model)

end if
Play according to σBR

end for

5. EXPERIMENTS AND DISCUSSION
We used two-player Limit Texas Hold’em as our experi-

mental domain. It is a large-scale game with 1018 states in
the game tree. It is the most-studied full-scale poker game in
computer science, and is also played by human professionals.

5.1 Limit Texas Hold’em
The rules of the game are as follows. Each player at the

table is dealt two private hole cards, and the players initially
have 1 and 2 chips invested in the pot respectively. Then
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there is a round of betting, after which three cards (called
the flop) are dealt face up in the middle of the table. Then
there is another round of betting, followed by another card
dealt face up (the turn); then one more round of betting,
followed by a fifth card face up (the river), followed by a
final round of betting.

During each betting round, each player has three possible
options. (1) fold : pass and forfeit his chance of winning the
pot. (2) call : put a number of chips equal to the size of the
current bet into the pot. (3) raise: put a fixed number of
additional chips in the pot beyond what was needed to call.

If one player folds during the course of betting, then the
other player wins the entire pot. If neither player has folded,
the player with the best five-card hand (constructed from his
two hole cards and the five community cards) wins the pot.
In case of a tie, the players split the pot evenly.

As in the AAAI computer poker competitions, in our
experiments, each match consists of 3000 duplicate hands:
3000 hands are played normally, then the players switch po-
sitions and play the same 3000 hands (with no memory of
the previous hands). This is a well-known technique for re-
ducing the variance so that fewer hands are needed to obtain
statistical significance. Whenever we match two players, we
have them play several duplicate matches and report the
standard error.

5.2 Experimental results
We ran our algorithm against several opponents; the re-

sults are shown in Table 1. The first four opponents —
Random, AlwaysFold, AlwaysCall, and AlwaysRaise — play
näıvely as their names suggest. GUS2 and Dr. Sahbak were
entrants in the 2008 AAAI computer poker competition, and
Tommybot was an entrant in the 2009 competition; we se-
lected these bots to experiment against because they had the
worst performances in the competitions, and we expect op-
ponent modeling to provide the biggest improvement against
weak opponents. Against stronger opponents one might pre-
fer to always play the precomputed equilibrium rather than
turning on the exploitation. This can be accomplished by
periodically looking at the win rate, and only attempting to
exploit the opponent if a win rate above some threshold is
attained.

GS5 is a bot we entered in the 2009 AAAI computer poker
competition that plays an approximate-equilibrium strategy.
It was computed using an abstraction which had branching
factors of 15, 40, 6, and 6 respectively in the four betting
rounds. The parameter values we used in DBBR (as de-
scribed in Section 4.5) were T = 1000, k = 50, Nprior =
5, with GS5 playing the role of the initial approximate-
equilibrium strategy (i.e., we ran GS5 for the first 1000
hands of each match and recomputed an opponent model
and best response every 50 hands subsequently). Since each
match consists of 3000 duplicate hands, this means that GS5
and DBBR play the same strategy for the first third of each
match.

We set T = 1000 since it is essential that our algorithm
obtains a reasonable number of samples of the opponent’s
play (in different parts of the game tree) before attempting
to exploit. As discussed in the next paragraph, our main mo-
tivation in setting k was to allow us to update the opponent
model as frequently as we could while remaining under the
competition time limit. For Nprior, we wanted to choose a
small number so that our observations would quickly trump

the prior for common public history sets, but so that the
prior would have more weight if we had just one or two ob-
servations. Note that setting Nprior = 5 means that our
prior and our observations will have equal weight in our
model when we have observed the opponent’s action 5 times
at the given public history set. Changing the parameter
values could certainly have a large effect on the results, and
should be studied further.

Unfortunately GS5 was too large to use as the approximate-
equilibrium strategy in our real-time opponent modeling up-
dates. Therefore, we also precomputed an approximate-
equilibrium σ∗ that used a much smaller abstraction than
GS5: the branching factors of its abstraction were 8, 12, 4,
and 4. While σ∗ is clearly an inferior strategy to GS5, it
was small enough to allow us to construct opponent models
and compute best responses in just a few seconds, keeping
us within the time limit of the AAAI competition.

We experimented with all three of the approaches for
computing the opponent model described in Section 4.4:
the three algorithms DBBR-L1, DBBR-L2, and DBBR-WS
(i.e., ‘Weight-Shifting’) correspond to the three different al-
gorithms in that section. We ran all three of these algo-
rithms against each of the opponents described above (with
the exception of Tommybot, which we were not able to play
against DBBR-L1 and DBBR-L2 due to technical issues).

As shown in Table 1, our main algorithm DBBR-WS per-
formed significantly better against all of the opponents than
GS5 did (in one case, the win rate was over twice as high).
Furthermore, DBBR-WS beat GUS2 by more than any other
bot in the 2008 competition did, and its win rates against
Dr. Sahbak and Tommybot were surpassed by the win rate
of just a single bot.

5.3 Comparing the opponent modeling
algorithms

It is not totally clear from the results in Figure 1 which of
the three algorithms for constructing the opponent model —
L1, L2, or our weight-shifting algorithm — is best. For ex-
ample, DBBR-WS obtains a win rate of 1.391 sb/h against
AlwaysRaise while DBBR-L1 obtains a win rate of 0.878
sb/h, but DBBR-L1 obtains a win rate of 2.164 sb/h against
Random while DBBR-WS obtains only 1.769 sb/h. Simi-
larly, for all other pairings there exist opponents such that
one bot achieves a higher win rate against one opponent, but
not against the other opponent. So there is no clear total
ordering of the three algorithms.

That being said, DBBR-L2 does at least as well (or essen-
tially the same) against all of the opponents as DBBR-L1,
except for Dr. Sahbak; this suggests that DBBR-L2 is a
stronger program. As between DBBR-L2 and DBBR-WS,
it really seems to depend on the opponent. DBBR-WS per-
forms significantly better against AlwaysRaise, GUS2, and
Dr. Sahbak and slightly better against AlwaysFold than
DBBR-L2; however, DBBR-L2 performs significantly bet-
ter against Random and slightly better against AlwaysCall
than DBBR-WS. So DBBR-WS performs significantly bet-
ter against three of the six opponents than DBBR-L2 (and
essentially the same against two opponents), suggesting that
it is a better algorithm.

In addition, DBBR-WS performs significantly better against
both of the actual opponents from the AAAI competition
(GUS2 and Dr. Sahbak) than DBBR-L2, which suggests
that it might perform better in practice against realistic op-
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Random AlwaysFold AlwaysCall AlwaysRaise GUS2 Dr. Sahbak Tommybot
GS5 0.854 ± 0.008 0.646 ± 0.0009 0.582 ± 0.005 0.791 ± 0.009 0.636 ± 0.004 0.665 ± 0.027 0.552 ± 0.008

DBBR-WS 1.769 ± 0.025 0.719 ± 0.002 0.930 ± 0.014 1.391 ± 0.034 0.807 ± 0.011 1.156 ± 0.043 1.054 ± 0.044
DBBR-L1 2.164 ± 0.036 0.717 ± 0.002 0.935 ± 0.017 0.878 ± 0.032 0.609 ± 0.054 1.153 ± 0.074
DBBR-L2 2.287 ± 0.046 0.716 ± 0.002 0.931 ± 0.026 1.143 ± 0.084 0.721 ± 0.050 1.027 ± 0.072

Table 1: Win rate in small bets/hand of the bot listed in the row. The ± given is the standard error (standard
deviation divided by the square root of the number of hands).

ponents. This fact, combined with the fact that DBBR-WS
is more efficient than the other algorithms, which have to
perform many optimizations using CPLEX at runtime, sug-
gest that DBBR-WS is a better algorithm to use in practice.

Note that this does not imply that the weighted L1 and L2

distance functions are poor distance metrics; it just means
that the particular solution output by CPLEX does not do as
well as the solution output by DBBR-WS. It is very possible
that if CPLEX used different LP/QP algorithms, it might
find a solution that does significantly better. This would
certainly be a worthwhile avenue for future work.

5.4 Win rates over time
One might expect that DBBR3 would immediately begin

exploiting the opponents at hand 1001 — when it switches
from playing an approximate equilibrium to opponent mod-
eling — and that the win rate would increase steadily. In
fact, this happened in the matches against most of the bots.
For example, Figure 1(a) shows that DBBR’s profits against
AlwaysFold increase linearly over time, and Figure 1(d) shows
that DBBR’s win rate increases in a concave fashion.

Surprisingly, we observed a different behavior in the matches
against AlwaysRaise and GUS2. In both of these matches,
the win rate decreases significantly for the first several hun-
dred hands before it starts to increase, as shown in Figure 1.
This happens because the approximate-equilibrium strategy
plays some action sequences with very low probability, lead-
ing it to not explore the opponent’s full strategy space in the
1000 hands. This will lead to a significant disparity between
the prior and actual strategies of the opponent at hand 1001
if the opponent’s strategy differs significantly from the ap-
proximate equilibrium in those unexplored regions. This in
turn may cause DBBR to think it can immediately exploit
the opponent in certain ways, which turn out to be unsuc-
cessful; but eventually as DBBR explores these sequences
further and gathers more observations, it figures out suc-
cessful exploitations.

The following hand from our experiments between DBBR
and AlwaysRaise exemplifies this phenomenon. The hand
was the 1006’th hand of the match. There were many raises
and re-raises during the preflop, flop, and turn betting rounds.
When the river card came, DBBR had only a ten high (a
very weak hand in this situation). However, based on its
observations during the first 1005 hands, it knew that Al-
waysRaise had a very wide range of hands given this bet-
ting sequence, many of which were also weak hands (though
probably still stronger than ten high). On the other hand,
DBBR had very few observations of how AlwaysRaise re-
sponds to a series of raises on the river, since GS5 made
those plays very rarely during the first 1000 hands; hence,
DBBR resorted to the prior to model the opponent, which
had the opponent folding all of his weak hands to a raise

3The results in this section refer to our main algorithm,
DBBR-WS.

(since GS5 would do this). So DBBR thought that raising
would get the opponent to fold most of his hands, while in
reality AlwaysRaise continues to raise with all of his hands.
In this particular hand, DBBR lost a significant amount of
money due to the additional raises he made on the river with
a very weak hand.

6. CONCLUSION
We presented DBBR, an efficient real-time algorithm for

opponent modeling and exploitation in large extensive-form
games. It works by observing the opponent’s action fre-
quencies and building an opponent model by combining in-
formation from a precomputed equilibrium strategy with the
observations. This enables the algorithm to combine game-
theoretic reasoning and pure opponent modeling, yielding a
hybrid that can effectively exploit opponents after a small
number of interactions.

Our experiments in full-scale two-player limit Texas Hold-
’em poker show that DBBR is effective in practice against a
variety of opponents, including several entrants from recent
AAAI computer poker competitions. DBBR achieved a sig-
nificantly higher win rate than an approximate-equilibrium
strategy against all of the opponents in our experiments.
Furthermore, it achieved a higher win rate against the op-
ponents from previous competitions than all of the entrants
from that year’s competition achieved (except for at most
one). We compared three different algorithms for construct-
ing the opponent model, and conclude that our custom weight-
shifting algorithm outperforms algorithms that employ weight-
ed L1 and L2-distance minimization.

While DBBR is able to effectively exploit weak opponents,
it might actually become significantly exploitable to strong
opponents (e.g., opponents who operate in a finer-grained
abstraction). Thus, we would like to only attempt to ex-
ploit weak opponents, while playing the equilibrium against
strong opponents. This can be accomplished by periodically
looking at the win rate, and only attempting to exploit the
opponent if a win rate above some threshold is attained. Our
current work involves developing automated schemes that al-
ternate between DBBR and equilibrium play based on the
specific opponent at hand. In addition, DBBR could be ex-
tended to the setting where the opponent’s private informa-
tion from the previous game iteration is sometimes observed.
Finally, future work could look at more robust versions of
DBBR, where the opponent model allows the opponent to
sometimes deviate from his observed action probabilities, or
a safer strategy than the actual best response is used.
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ABSTRACT
False-name bids are bids submitted by a single agent under
multiple fictitious names such as multiple e-mail addresses.
False-name bidding can be a serious fraud in Internet auc-
tions since identifying each participant is virtually impos-
sible. It is shown that even the theoretically well-founded
Vickrey-Clarke-Groves auction (VCG) is vulnerable to false-
name bidding. Thus, several auction mechanisms that can-
not be manipulated by false-name bids, i.e., false-name-proof
mechanisms, have been developed.

This paper investigates a slightly different question, i.e.,
how do they affect (perfect) Bayesian Nash equilibria of
first-price combinatorial auctions? The importance of this
question is that first-price combinatorial auctions are by far
widely used in practice than VCG, and can be used as a
benchmark for evaluating alternate mechanisms. In an en-
vironment where false-name bidding are possible, analyti-
cally investigating bidders’ behaviors is very complicated,
since nobody knows the number of real bidders. As a first
step, we consider a kind of minimal settings where false-
name bids become effective, i.e., an auction with two goods
where one naive bidder competes with one shill bidder who
may pretend to be two distinct bidders. We model this auc-
tion as a simple dynamic game and examine approximate
Bayesian Nash equilibria by utilizing a numerical technique.
Our analysis revealed that false-name bidding significantly
affects the first-price auctions. Furthermore, the shill bidder
has a clear advantage against the naive bidder.
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1. INTRODUCTION
In a combinatorial auction, also called package auction,

multiple goods are simultaneously for sale, and, in general,
bidders can express arbitrary valuation functions over sub-
sets of the goods. This allows bidders to express substi-
tutability and complementarity of the goods in their valua-
tions. A recent book by Cramton et al. [3] gives a thorough
survey of the theory and practice of combinatorial auctions.
False-name bids [16] are bids submitted by a single agent
under multiple fictitious names such as multiple e-mail ad-
dresses. False-name bidding can be a serious fraud in com-
binatorial auctions on the Internet, since identifying each
participant is virtually impossible.

The Vickrey-Clarke-Groves (VCG) auction is best moti-
vated by its dominant strategy property under incomplete
information, that is, truth-telling by all bidders in the auc-
tion leads outcomes (allocation of goods) to be efficient.
However, VCG has several limitations in environments with
complementarities among goods. One is vulnerability to
false-name bidding. As mentioned above, since such dishon-
est actions are very difficult to detect, they can cause even
more serious problems in auctions on the Internet. Several
auction mechanisms that cannot be manipulated by false-
name bids (i.e., false-name-proof mechanisms) have been de-
veloped [15, 7, 6]. We say a mechanism is false-name-proof
if, for each bidder, declaring his true valuation function us-
ing a single identifier is a dominant strategy, even though
the bidder can choose to use multiple identifiers.

In this paper, we investigate a slightly different question.
We know false-name manipulations can affect a dominant-
strategy equilibrium of strategy-proof mechanisms, i.e., VCG
is not false-name-proof. How do they affect (perfect) Bayesian
Nash equilibria of other non-direct-revelation mechanisms,
in particular, the first-price combinatorial auction mecha-
nism? The importance of such analysis is that first-price
combinatorial auctions are by far widely used in practice
than VCG, and the obtained results can be used as a bench-
mark for evaluating other auctions/mechanisms. In first-
price auctions, bidders simply submit sealed bids, they are
allocated the goods so that the combination of bids max-
imizes the seller’s revenue, and each winning bidder pays
the amount of the associated bid. However, it is not so far
investigated how false-name bidding affects first-price com-
binatorial auctions.

In an environment where false-name bids are possible,
analytically investigating bidders’ behaviors is very compli-
cated, since bidders are asymmetric and nobody knows the
number of real bidders. Bidders are asymmetric if their val-
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ues are drawn from asymmetric distributions. Much of the
motivation in investigating false-name bidding arises from
environments where bidders have complementarities among
goods. The equilibria in first-price auctions do not have
a well-known closed-form solution. Accordingly, many ap-
proaches by computer scientists and economists have been
developed to approximate an equilibrium strategy. Seminal
works by Wellman and his colleagues have developed tech-
niques to obtain an analytically intractable Nash equilib-
rium in empirical mechanism design [14, 12, 8]. Those have
recently been used to design and evaluate alternate mecha-
nisms [13, 10]. Armantier et al. advocated a similar tech-
nique called a constrained strategic equilibrium approach [1].

False-name bidding affects first-price auctions in a differ-
ent way than VCG auctions. At first glance, false-name
bidding seems not effective in first-price auctions. In a first-
price combinatorial auction, if a bidder wins, he pays the
amount of his bid. Assume a (potential shill) bidder can win

two goods X and Y with bid b{X,Y }. Assume he uses false-
names, splits his bid, and obtains X and Y separately by bid
b{X} and b{Y }, respectively. As far as b{X,Y } = b{X}+b{Y },
his payment does not change. However, the behaviors of
other bidders might be influenced by false-name bidding.
Let us assume there exists a competing bidder (denoted as
bidder 1) who also wants X and Y. For bidder 1, his bidding
strategy changes if his belief about his opponents changes.
In short, his bid decreases when he thinks he is facing two
opponents, each of whom wants either X or Y, compared
to the case where he thinks he is facing one opponent who
wants both X and Y. This is because, when there exist two
(real) bidders, each tries to free-ride the other bidder’s ef-
fort; neither raises his bid in the hopes that the other raises
his bids high enough to beat bidder 1 [11]. Thus, the total
of these two bidders’ bids tends to be small. Then, bidder
1 can safely decrease his bid. Consequently, when the shill
bidder pretends to be two bidders, bidder 1 decreases his
bid. The shill bidder can take advantage of this fact.

It is very complicated to construct a game of auctions
with false-name bidding. In the analysis of auctions with in-
complete information, it is assumed that each bidder knows
how many bidders are participating before an auction be-
gins. This is because we require the cumulative distribution
function of each bidder as common knowledge to solve such
auctions. Therefore, we must properly model how many
identifiers a shill bidder uses and when bidders know the
number of bidders.

As a first step, we consider a very simple and stylized
model where false-name bids become effective, i.e., an auc-
tion with two goods where one naive bidder competes with
one shill bidder who may pretend to be two distinct bidders.
We model this auction as a dynamic game with incomplete
information. We then examine approximate Bayesian Nash
equilibria when bidders’ preferences are drawn from asym-
metric distributions, by utilizing the CSE approach [1].

This paper provides novel insights into the properties of
first-price auctions in environments where false-name bid-
ding is possible. The numerical results suggest that false-
name bidding in first-price auctions can dramatically reduce
the revenue and does not reduce the surplus so much. Fur-
thermore, a shill bidder can highly increase his profit us-
ing two identifiers, while a naive bidder can keep his profit,
though he is less likely to defeat the shill bidder.

Let us briefly describe the organization of this paper. Sec-

tion 2 formalizes the first-price combinatorial auctions and
the solution concepts. Section 3 constructs a dynamic game
of auctions with false-name bidding. Section 4 shows the nu-
merical results of equilibrium bidding strategies. Section 5
examines the effect of false-name bidding in terms of the ma-
jor properties of auctions. Section 6 concludes this paper.

2. PRELIMINARIES

2.1 First-price combinatorial auctions
In a first-price single-item auction, each agent i submits

sealed bid bi for a good valued by agent i at vi. Among
all agents, the agent with the highest bid wins the good
(ties are broken randomly). In a combinatorial auction set-
ting, the auction is also called a menu auction. Bernheim
and Whinston developed a theory of sealed-bid, first-price
combinatorial auctions [2]. Let us consider a first-price com-
binatorial auction with two goods X and Y .

1. Each bidder i submits sealed bids bi = (b
{X}
i , b

{Y }
i , b

{X,Y }
i )

on {X} only, {Y } only, and the set/bundle of {X,Y }.
2. The auctioneer chooses an allocation, so that the com-

bination of bids maximizes the seller’s revenue.

3. Each winning bidder pays the amount of the associated
bid.

We also assume a quasi-linear, private value model with
no allocative externality. The utility (profit) of bidder i, if

he wins either X or Y with b
{X}
i or b

{Y }
i , is v

{X}
i − b

{X}
i

or v
{Y }
i − b{Y }i ; and the utility of bidder i, if he wins both

goods with b
{X,Y }
i , is v

{X,Y }
i − b{X,Y }i .

A losing bidder obtains nothing, pays zero, and thus, his
utility is zero, since we assume normalization. The seller
revenue, i.e., the utility of the auctioneer, is the sum of the
payments of the winning bidders.

2.2 Equilibrium concepts
We use two of the most prevalent solution concepts from

game theory: Bayesian Nash equilibrium (BNE) and per-
fect Bayesian equilibrium (PBE). BNE are used to analyze
games with incomplete information, or Bayesian games, e.g.,
analysis of non-direct-revelation mechanisms, such as first-
price auctions. A bidder’s (expected) profit depends not
only on the bids of other bidders but also on information
that is only partly known to the bidder, i.e., a distribution
function on the values of other bidders. Furthermore, PBE
is a refinement of BNE for dynamic games, which is required
to describe environments where false-name bidding is possi-
ble: a shill bidder can use multiple identifiers.

Let us define BNE in an auction with bidder 1 and 2 in
environments where false-name bidding is not possible. Bid-
der i assigns a value of vi for each combination of goods on
sale drawn from a cumulative probability distribution with
function Fvi and associated probability density function fvi .
Bidder i knows his own value vi and only that any other bid-
der j(6= i)’s value is independently distributed based on Fvj .
Thus, Fvj for all other bidder j and the number of them are
common knowledge. In general, the distribution of valua-
tions is assumed to be the same for all bidders, i.e., sym-
metric. However, since it must be asymmetric in auctions
with false-name bidding, we do not specify the distribution
here.
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A bidding strategy for bidder i is defined as a function si.
For example, bidder i with vi submits bi = si(vi). The in-
verse function of si is denoted as s−1

i . Any other bidder j’s
strategy sj is assumed to be increasing and differentiable. To
draw bidder i’s bid bi, we can obtain the cumulative prob-
ability distribution function Fbi and the associated density
function fbi for an arbitrary value of b:

Fbi(b) = Fvi(s
−1
i (b)) and fbi(b) =

fvi(s
−1
i (b))

d

db
si(s

−1
i (b))

.

The expected profits of bidder i ∈ {1, 2} for given vi and si
are calculated as follows:

Ui(bi, sj ; vi) = (vi − bi)Fbj (bi) for all i.

From these expected profit, we define a BNE in the auction
with bidder 1 and 2.

Definition 1 (Bayesian Nash equilibrium) A profile of
bidding strategies (s∗1, s

∗
2) consists of a Bayesian Nash equi-

librium in an auction with bidder 1 and 2 if

∀v1,∀v2, ∀s1,∀s2,
U1(s∗1(v1), s∗2; v1) ≥ U1(s1(v1), s∗2; v1), and
U2(s∗2(v2), s∗1; v2) ≥ U2(s2(v2), s∗1; v2).

The profile of the strategies maximizes the expected profit
of each bidder when the probabilistic distribution of values
and the number of bidders are common knowledge.

If a shill bidder can use multiple identifiers, the bidders’
equilibrium strategies become significantly more intricate.
In the analysis of auctions with incomplete information, it
is assumed that each bidder knows the number of participat-
ing bidders before an auction begins, as common knowledge.
However, if the shill bidder may pretend to be multiple dis-
tinct bidders, it is essential for a naive bidder to consider the
number of real bidders. For example, when the naive bidder
faces two bids, he may think that those come from a shill
bidder using two false identifiers or he may think they come
from two distinct bidders. As a result, a bidder’s (expected)
profit comes to depend on the prior distribution of others’
values and the partial information about the number of real
bidders. To model this, we construct a dynamic game and
focus on the PBE analysis in the later section.

PBE is the most commonly used for analyzing sequential
(dynamic) games with observed actions and private types
(values) [4]. Each bidder has a strategy si and beliefs that
are represented as a cumulative probability distribution func-
tion about values of other bidders. A strategy profile si is
a PBE if each bidder updates his beliefs using Bayes rule
whenever possible (consistency) and, whenever it is bidder
i’s turn to move, si prescribes an action that maximizes i’s
expected payoff from then on, given i’s beliefs (sequential
rationality).

As a first step, we consider a very simple and stylized
model where we restrict the number of false identifiers each
bidder can use and each bidder’s observable information.
This is because computing a PBE is intractable in environ-
ments where false-name bidding becomes effective. Thus,
in subgames of the restricted dynamic game, we can com-
pute a BNE strategies by utilizing a numerical technique
that enables one to approximate an analytically intractable
Nash equilibrium in a broad class of games with incomplete
information.

2.3 Constrained strategic equilibrium
This section briefly describes a solution concept for games

with incomplete information, called constrained strategic equi-
librium (CSE) [1]. The sequence of CSEs approximates an
equilibrium and CSE provides a useful way to numerically
compute BNE for games whose solutions cannot be analyt-
ically derived.

We consider a single play of an two-person simultaneous-
move game. Let N = {1, 2} denote a set of bidders (players).
The subscript i denotes a specific player i ∈ N , and the
subscript j refers to the player except i. CSE is defined as
a Nash equilibrium of a modified game in which strategies
are constrained to belong to an appropriate subset typically
indexed by an auxiliary parameter vector. Let us denote S
as a subset of all feasible strategy profiles and Sk as a set of
constrained strategy profiles for parameter k. Formally,

Definition 2 (Constrained strategic equilibrium) Let
Sk = {Sk1 , Sk2 } for a parameter k denote a set of constrained
strategy. Sk∗ ⊂ Sk is the set of CSEs if ∀ski ∈ Ski and
∀i ∈ N , Ũi(s

k∗
i , s

k∗
j ) ≥ Ũi(s

k
i , s

k∗
j ) where Ũi is the expected

utility of player i.

Armantier et al. [1] identified a compacity condition under
which a sequence of CSEs converges toward a Nash equilib-
rium.

Proposition 1 ([1]) If an expected utility Ũ is continuous
and if a sequence of CSEs {sk∗}k=1→∞ has a subsequence
with limit s̄ ∈ S, then s̄ is a Nash equilibrium.

Corollary 1 ([1]) If a set of strategy profiles S is compact,

Ũ is continuous and there exists a CSE strategy sk∗ for all
k > 0, then there exists a Nash equilibrium in S, and any
sequence of CSEs {sk∗}k=1→∞ has a subsequence that con-
verges toward a Nash equilibrium.

The compacity of the strategy space is standard in games
with incomplete information and it applies to a large class of
games including several auction models, such as asymmetric
first-price auctions. The numerical technique enables one
to approximate an analytically intractable Nash equilibrium
in such a class. CSE also has an approximation algorithm
that can be applied for asymmetric games with incomplete
information. Let us briefly show the algorithm:

1. Consider a family of parameterized constrained strate-
gies: ski (vi) = si(d

k
i , vi) ∈ Ski , with dki ∈ Dk

i ⊂ Rγ(k).
Note that γ(k) is a function of the final dimension and
is set to 2k−1.

2. Maximize player i’s expected utility after fixing pa-
rameter dkj . The approximation of the expected utility

for dkj is defined as

ŨMi (si(d
k
i , vi)) =

1

M

M∑
m=1

Vi(d
k, ṽm)Gi(si(d

k
i , ṽ

m
i )).

where Vi is the utility function of player i with value
ṽm, which denotes a vector of two values drawn ran-
domly (N = 2). M is the Monte Carlo size and
Gi is the cumulative probability distribution function
that player i wins the game (auction) when he takes
si(d

k
i , ṽ

m
i ).
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3. Step 2 is repeatedly applied for each player. If dk for
all i is not updated, this algorithm stops.

In most applications, Gi cannot be calculated analytically
and needs to be approximated by a kernel density estima-
tion. The kernel density estimation is a non-parametric way
of estimating Gi by L sample drawn from the distribution
of values F . Let {v1, . . . , vL} denote L sample drawn from

F . The kernel density estimation f̂h(v) is shown by the
following equation:

f̂h(v) =
1

Lh

L∑

l=1

K(
v − vl
h

),

where K(·) is the Gaussian distribution as a kernel function
and h is a smoothing parameter called a bandwidth

Notice that the accuracy of kernel density estimation de-
pends on bandwidth h. For example, if you enlarge h more
than an appropriate value, f̂ loses its feature – and vice
versa. However, it is difficult to find the optimal bandwidth
because it heavily depends on the structure of problems. In
this paper, we use the following equation that achieves em-
pirically good accuracy [5].

h = (

∫
K(t)2dt)1/5(

3

8
√
π
σ−5)−1/5L−1/5.

where σ is the sample variance of L.

3. A DYNAMIC GAME WITH FALSE-NAME
BIDDING

This section illustrates the PBE analysis through a 2- or
3-bidder combinatorial auction with two different goods, X
and Y . Consider a dynamic game shown in Figure 1 with
two stages: identifier-choice and bidding. First, with prob-
ability p, bidder 1 and 2 participate in an auction (N = 2),
and with probability 1 − p, bidder 1, 3, and 4 participate
(N = 3). Assume that bidders have no knowledge about
probability p. Second, at the identifier-choice stage, each
bidder chooses how many identifiers he uses, and, in prac-
tice, only bidder 2 can choose one or two identifiers. Last,
at the bidding stage, each bidder bids after observing the
number of participating bidders, which may include false
identifiers.

We also need to define a type that each bidder receives in
games with incomplete information to provide each bidder
with strategy space and information. We assume that the
type determines the value for each combination of auctioned
goods and the number of identifiers he can use.

Let us define types of bidder 1-4 and the observable infor-
mation in the following. Bidder 1 values only the set of two
goods drawn from the sum of two uniform distributions on
interval [0, 1], Uni(0, 1):

(v
{X}
1 , v

{Y }
1 , v

{X,Y }
1 ) = (0, 0, Uni(0, 1) + Uni(0, 1)),

each of which is drawn independently. At the identifier-
choice stage, he does nothing, since he can use only a single
identifier. He also has a belief about how many bidders are
participating as probability p1, with which he is competing
with bidder 2. Here, p1 does not always be true, i.e., p1 may
not be equal to the true probability p. Before the bidding
stage, he observes the number of bidders. When he observes
one other bidder, he realizes that his opponent is bidder 2

Nature

Identifier-choice stage Bidding stage

p: N=2

p1

1-p1

1-p: N=3

bidder 2

bidder 1 bidder 2

Case 1:
(U1,U2)

Case 3:
(U'1,U'2)

Case 2: 
(U''1,U''3,U''4)

Case 4

bidder 1 bidder 2uses two 
identifiers

uses one 
identifier

bidder 4

possible
bid

possible
bid

possible
bid

possible
bid

possible
bid

bidder 3

possible
bid

possible
bid

Figure 1: A dynamic game of an auction with false-
name bidding

and bids to maximize his profit conditional on his belief
about bidder 2’s value. On the other hand, when he observes
two other bidders, he realizes that his opponents are false
identifiers of bidder 2 with probability p1, or that they are
distinct bidders of bidder 3 and 4, with 1−p1. Consequently,
he bids to maximize his profit conditional on his joint belief
about bidder 3 and 4s’ value.

Bidder 2 positively values both {X}, {Y }, and {X,Y }.
Each value on {X} and {Y } is independently drawn from
Uni(0, 1) and value on {X,Y } is their sum:

(v
{X}
2 , v

{Y }
2 , v

{X,Y }
2 ) = (Uni(0, 1), Uni(0, 1), v

{X}
2 + v

{Y }
2 ).

Thus, bidder 1 and 2 have a symmetric distribution on
{X,Y }. At the identifier-choice stage, bidder 2 can use one
or two identifiers and knows that N = 2 was chosen because
he himself participated. He also exactly knows what infor-
mation bidder 1 observes. When he uses one identifier, he
knows that bidder 1 realizes that no bidder uses false identi-
fiers. When he uses two identifiers, he knows that bidder 1
has that belief p1 about bidder 2’s presence. At the bidding
stage, bidder 2 bids based on that information and his belief
about bidder 1’s value.

Bidder 3 and 4 can use only a single identifier. We only
explain bidder 3’s case only, since bidder 3 and 4 have al-
most identical information and value except the good he

desires. Bidder 3 values only {X} and v
{X}
3 is drawn from

Uni(0, 1). After the identifier-choice stage, he knows that
N = 3 was chosen because he himself participated. At the
bidding stage, bidder 3 bids based on that information and
his joint belief about bidder 1 and 3s’ values.

We explore the strategies in four specific subgames for
some p and p1 to effectively show how bidders’ behaviors
change. Then, we calculate bidders’ expected profits in a
subgame of the dynamic game by utilizing the CSE approx-
imation algorithm.

Case 1: 2 bidders - 2 identifiers (p = 1).

With probability p = 1, bidder 1 and 2 participate
(N = 2) and bidder 2 always chooses to use a single
identifier. Since bidder 1 and 2 use a single identifier
and submit their bids, no false-name bidding occurs.
They obtain profits of U1 and U2.
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Case 2: 3 bidders - 3 identifiers (p = 0 and p1 = 0).

With probability p = 0, bidder 1, 3 and 4 participate
(N = 3), always use a single identifier, and submit
their bids, knowing that bidder 1 believes that no false-
name bidding occurs (p1 = 0). They obtain profits of
U ′′1 , U ′′3 and U ′′4 .

Case 3: 2 bidders - 3 identifiers (p = 1 and p1 = 0).

With probability p = 1, bidder 1 and 2 participate
(N = 2), and bidder 2 always chooses to use two iden-
tifiers. Thus, three identifiers submit their bids. Since
bidder 1 believes that no false-name bidding occurs
(p1 = 0), he chooses the same bidding strategy as in
Case 2. Bidder 2 takes the best response to the bidding
strategy of bidder 1. Bidder 1 and 2 obtain profits of
U ′1 and U ′2. Note that, for bidder 2, the expected profit
when he uses two identifiers is always better than when
he uses a single identifier; for bidder 2, the strategy us-
ing two identifiers is PBE.

Case 4: 2 or 3 bidders - 3 identifiers (p = 1/2 and p1 =
1/2).

Case 4 stochastically combines Case 2 and 3 where,
with p = 1/2, Case 3 occurs, and with 1 − p = 1/2,
Case 2 occurs. No bidder knows exactly the proba-
bility, but every bidder knows bidder 1’s belief about
Case 2 or 3 occurs (p1 = 1/2). Except bidder 1, all bid-
der take a best response to bidder 1’s bidding strategy
in which he considers false-name bidding.

4. NUMERICAL RESULTS
This section illustrates the PBE bidding strategies in Case 1-

4, which are the consequences of the dynamic game de-
scribed in Section 3. For comparison, we also note the
corresponding strategies in VCG auctions in Appendix A.1.
Since the values of the bidders on {X,Y } in Case 1 are
drawn from symmetric distributions, PBE has a well-known
closed-form solution. On the other hand, those in Case 2-4
are drawn from asymmetric distributions. Thus, we the-
oretically show the PBE bidding strategies in Case 1 and
numerically show them in Case 2-4 by utilizing the CSE ap-
proximation method.1 The required parameters are set to
k = 5, M = 1000000, and L = 1000.

4.1 Case 1: 2 bidders – 2 identifiers
Let v ∈ [0, 2] be a value on the bundle of {X,Y } for bid-

der 1 and 2 and let s(v) : R+ → R+ be a mapping function
of the value to the bid. Since PBE in Case 1 has a closed-
form solution, we can theoretically derive the equilibrium
bidding strategy s(v) [9]:

s(v) =

{
2
3
v if 0 ≤ v ≤ 1,

2
3
(v + 1 + 2v−1

v2−4v+2
) if 1 < v ≤ 2.

The red line in Figures 2-5 shows this bidding strategy,
which is labeled as “Case 1: symmetric bidder.” Bidder
1 with low value (v < 1) shades his bid to two-thirds of his
value, and bidder 1 with high value (v > 1), further shades
his bid as his value increases.

1In addition to the CSE approximation method, we exam-
ined these cases by a similar algorithm to [12] and obtained
almost identical results.
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4.2 Case 2: 3 bidders – 3 identifiers
Unlike Case 1, the values of all bidders are drawn from

asymmetric distributions. In fact, bidder 1 values [0, 2] only
at {X,Y }, and bidder 3 and 4 values [0, 1] at {X} and {Y },
respectively. In general, there are no closed-form solutions
for this case, but it can be easily solved by appropriate nu-
merical methods. Figure 2 illustrates the bidding strategies
of bidder 1, 3, and 4 with respect to their realizations of the
values drawn from each distribution (blue and pink lines
labeled as “Case 2: bidder 3” and “Case 2: bidder 4”).

Bidder 1 with low value less than about 0.75, shades his
bid to the same amount as in Case 1, and bidder 1 with high
value reduces his bid more than in Case 1. The amount of
reduction gradually increases as his value increases. Bidder
3 and 4 still shade their bids, in particular, with very low
values, they prefer to bid zero.

This result is consistent with the free-rider problem in
auctions [11]: A bidder does not raise his bid in the hopes
that the other raises his bid high enough for that bidder
to obtain a good. For example, bidder 3 and 4 value {X}
and {Y }, respectively. If the sum of their bids exceeds the
amount of the bid on {X,Y }, bidder 3 and 4 win. Bidder 3
may expect bidder 4 to bid so high that bidder 1 loses and
has an incentive to obtain {X} with a low bid, and vice
versa. Also, bidder 1 takes the best response to their shaded
bids.
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4.3 Case 3: 2 bidders – 3 identifiers
Case 3 has a more complicated strategy space, since bidder

2 can use two identifiers. Figure 3 illustrates the bidding
strategies of bidder 1 and 2 (green and blue lines labeled
as “Case 3: bidder 1” and “Case 3: false-name bidder 2”).
Bidder 1’s strategy is equivalent to the one in Case 2, since
he believes that he is competing with two distinct bidders.
Bidder 2 splits his bid into two bids on {X} and {Y } by
using two identifiers. The blue line in Figure 3 indicates the

sum of those two bids in v
{X,Y }
2 .

Bidder 2 with low value (v
{X,Y }
2 < 0.75) or very high

value (1.8 < v
{X,Y }
2 ) prefers to bid almost the same amount

as bidder 1. On the other hand, bidder 2 with intermediate
values first submits a slightly higher bid than bidder 1, raises
his bid, and gradually reduces toward bidder 1, as his value
increases.

This result suggests that bidder 2 can increase his profit
as a result of taking the best response to the distribution of
bidder 1’s value which is a joint distribution of two Uni(0, 1).
With such a distribution, bidder 1 is most likely to have his
value of 1 and is least likely to have 0 or 2. Thus, bidder 2
raises his bids around 1 to maximize his profit. Therefore,
bidder 2 has enough opportunities of false-name bidding to
increase his expected profit.

4.4 Case 4: 2 or 3 bidders – 3 identifiers
In Case 4, bidder 1 considers the possibility that two of

his competing bids come from one shill bidder (bidder 2)
conditional on his belief about the actual number of par-
ticipating bidders, i.e., p1 = 1/2. Figure 4 illustrates the
bidding strategies of bidder 1-4. Note again that bidder 2’s
strategy is represented as the sum of two bids.

The doubt of bidder 1 that a shill bidder exists raises his
bid, so it becomes much closer to that in Case 1. Bidder 1
averages his bidding strategies in Case 1 and 2 in Figure 5.
Unlike bidder 1, bidder 2 can slightly raise his bid higher
than bidder 1 because bidder 1 may not correctly suspect
the number of real bidders. Thus, the opportunities of false-
name bidding are reduced. As well as bidder 2, bidder 3
and 4 know bidder 1’s strategy. With lower value, they bid
slightly lower than in Case 2, but, with higher value, they
bid slightly higher.

5. DISCUSSION
This section discusses obtained properties from the nu-

merical results: the social surplus, the auctioneer’s revenue,
and the profits of bidders. We decide the values of bidders
based on the settings in Case 1-4 and generate 10 million
instances. Table 1 summarize the average properties when
bidders take the equilibrium bidding strategies in first-price
auctions. For comparison, we also note the corresponding
results of VCG auctions in Appendix A.2.

From bidder 1’s perspective, Case 1 (N = 2) and Case 2
(N = 3) are seemingly the same, since the (aggregated) val-
ues of the opponents are the same. However, in Case 2,
bidder 3 and 4 try to free-ride each other and decrease their
bids. Thus, bidder 1 lowers his bids to maximize his profit.
As a result, bidder 1 successfully increases his profit from
0.233 to 0.334 (+43%). This also significantly decreases the
revenue from 0.767 to 0.620 (-19%); the decrease of the sur-
plus from 1.23 and 1.22 (-1%) is relatively small. The fact
that the surplus does not significantly change means that the
obtained allocation is nearly efficient. All bidders decrease
their bids. Occasionally, bidder 1 wins when the efficient
allocation is allocating goods to bidder 3 and 4, but this
happens only when bidder 1’s value is close to the sum of
values of bidder 3 and 4.

Let us examine Case 3 where false-name bidding is possi-
ble, i.e., a naive bidder (bidder 1) and a shill bidder (bidder
2) participate. The naive bidder completely believes that
he is competing with two bidders (p1 = 0), and the shill
bidder knows this fact and always uses two false identifiers.
Recall that this behavior of bidder 2 consists of a PBE. The
revenue of 0.681 is intermediate between Case 1 and 2 and
it decreases from 0.767 in Case 1 to 0.681 (-11%). Here,
bidder 1 believes that he is facing two small bidders. If
they were real bidders, they would try to free-ride and lower
their bids. Thus, bidder 1 also lowers his bid. However,
bidder 2 optimizes his two bids against the wrong belief of
bidder 1. Thus, false-name bidding by bidder 2 decreases
the revenue. In contrast, the surplus hardly changes regard-
less of the existence of false-name bidding. This fact means
that the obtained allocation is nearly efficient. All bidders
decrease their bids. Occasionally, bidder 2 wins when the
efficient allocation is allocating goods to bidder 1, but this
happens only when bidder 2’s value is close to bidder 1’s
value.

In addition, the existence of false-name bidding signifi-
cantly affects the profits of bidders. Bidder 2 significantly
increases his profit from 0.233 to 0.312 (+34%) by using
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Table 1: Properties of Case 1-4 in first-price auctions
Case 1 Case 2 Case 3 Case 4a Case 4b

revenue 0.767 0.620 0.681 0.718 0.660
surplus 1.23 1.22 1.22 1.23 1.22
(efficiency) (100%) (99%) (99%) (100%) (99%)
profit (bidder 1) 0.233 0.334 0.226 0.244 0.319
profit (bidder 2) 0.233 - 0.312 0.269 -
profit (bidder 3) - 0.134 - - 0.122
profit (bidder 4) - 0.134 - - 0.122

false identifiers, but the profit of bidder 1 does not change
much from Case 1, only from 0.233 to 0.226 (-3%). However,
this is not what bidder 1 expected. If he were facing two
real bidders, his profit would have been 0.334 (in Case 2).
Bidder 2 steals a significant amount of bidder 1’s profit by
over-bidding bidder 1. Interestingly, the profit of bidder 2
in Case 3 (0.312) is relatively close to that of bidder 1 in
Case 2 (0.334). Also, the profit of bidder 1 in Case 2 (0.334)
is relatively close to the sum of profits of bidder 3 and 4 in
Case 2 (0.384).

Let us examine Case 4 where a naive bidder (bidder 1) is
suspicious of the number of real bidders. Bidder 1 is won-
dering if the two observed bids were submitted from two
distinct bidders or one shill bidder. We categorize Case 4
as either Case 4a with false-name bidding or Case 4b with-
out. These results are summarized in the last two columns
of Table 1. In Case 4a, the revenue decreases from 0.767 in
Case 1 to 0.718 (-6%), and it increases from 0.681 in Case 3
to 0.718 (+5%). Recall that bidder 1 in Case 4 takes an av-
erage bidding strategy of Case 1 and 2 under the suspicion
of the actual number of participating bidders, i.e., p1 = 1/2.
Thus, bidder 1 raises his bids more than Case 3. By false-
name bidding the profit of bidder 2 (0.269) is higher than
in Case 1 (0.233). However, he cannot increase his profit
(0.269) so much as in Case 3 (0.312). Accordingly bidder
1’s suspicion effectively mitigates the decrease of revenue
when a shill bidder may be present. The effect of false-name
bidding is reduced by the fact that the naive bidder is aware
of its possibility.

Let us turn to Case 4b where bidder 3 and 4 submit two
distinct bids, considering the suspicion of bidder 1. Case 4b
achieves the revenue of 0.660, and Case 2 does 0.620. The
revenue increases by about +6%, but the profits of the bid-
ders decrease, including bidder 3 and 4, who are the real
bidders. In a contrast to Case 4a, the suspicion of bidder 1
increases the revenue and reduce the profits of all bidders.

It is worthy to note that, if the naive bidder can distin-
guish Case 4a and 4b for sure, false-name bidding is no
longer profitable. This implies that, if your opponent is
sure about your identity, it is useless that you pretend to be
somebody else and there is no point using false-name bid-
ding. However, since this is impossible on the Internet, a
shill bidder can take advantage of false-name bidding. It is
most effective when your opponent never imagines the pos-
sibility of disguise. Also, it is still effective if your opponent
is aware of that possibility, but cannot distinguish a real
person and a false identifier.

We have so far investigated situations where bidder 1’s
belief is correct (p = p1), except Case 3 (p = 1 and p1 = 0).
Let us consider what happens if bidder 1’s belief is incorrect
(p 6= p1). When p1 increases in Case 3, bidder 1’s belief

gradually becomes correct for the probability of number of
real bidders p = 1. Thus, the bidding strategies of bidder 1
and 2 change from Case 3 toward Case 1. If bidder 1 has
p1 = 1, the properties in Case 3 are identical to those in
Case 1. On the other hand, when p1 increases in Case 2
(p = 0 and p1 = 0), bidder 1’s belief gradually becomes
incorrect. Then, if bidder 1’s belief becomes p1 = 1/2, the
situation becomes identical to Case 4b. Bidder 1 increases
his bid. As a result, the revenue increases and the profits of
all bidders decrease.

6. CONCLUSION
This paper numerically analyzes how false-name bidding

affects the outcomes in first-price combinatorial auctions.
False-name bidding causes serious problems in the VCG
auctions. However, to the best of the authors’ knowledge,
this is the first analysis about first-price combinatorial auc-
tions. The game of first-price auctions is regarded as a game
of incomplete information, which typically does not have a
closed-form solution, except under such simplifying assump-
tions as symmetry among types of bidders. Thus, predict-
ing the consequences of such games is often analytically in-
tractable. In addition, the extension of games of auctions
to games where false-name bidding is possible further com-
plicates them. Therefore, we construct a dynamic game of
auctions with false-name bidding and approximately solve
the subgames in four specific settings.

We reveal how the existence of false-name bidding changes
the equilibrium bidding strategies and its properties. The
results suggest that false-name bidding in first-price auctions
dramatically reduces the revenue and the profits of bidders
who neither use nor are concerned about false-name bidding.

In future works, we will extend our analysis to a variety
of empirical distributions and generalize the approximation
algorithm to solve dynamic games of auctions with false-
name bidding.
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APPENDIX

A. VCG COMBINATORIAL AUCTIONS

A.1 PBE bidding strategies
This subsection summarizes the consequences of Case 1-

4 in VCG. Throughout Case 1 and 2, all bidders have a
dominant strategy to bid their own values in VCG. In Case 3,
bidder 1 believes that truth-telling is the dominant strategy,
since he never considers the possibility of false-name bidding.
In sharp contrast, bidder 2 uses two false identifiers and
manipulates VCG so that he always obtain the goods and

pays zero. This strategy is an equilibrium strategy as long
as bidder 1 takes the truth-telling strategy.

For example, in our setting, the value on {X,Y } of bid-
der 1 is drawn from a joint distribution on interval [0, 2].
Bidder 2 splits his bid and bids 2 on {X} and {Y }, respec-
tively. As long as bidder 1 keeps s1(v) = v, bidder 2 has an

equilibrium strategy to bid b{X} and b{Y }, each of which is

greater than or equal to b
{X,Y }
1 , i.e., to bid 2 which is the

maximum value of b
{X,Y }
1 .

In Case 4, bidder 1 considers false-name bidding. When
bidder 3 and 4 are present (N = 3), Truth-telling for them
is clearly a dominant strategy as in Case 2. When bidder 2
is present (N = 2), as mentioned in Case 3, he has an equi-
librium strategy so that he always win with zero payment
as long as bidder 1 takes the truth-telling strategy. Against
this strategy, we restrict our attention to a situation where
bidder 1 takes the truth-telling strategy because bidder 1
has no chance to obtain any good. There exists no bidding
strategy that outperforms the truth telling strategy, even
if he is confident that his opponents are using false-name
bidding. To be precise, we must consider situations so that
bidder 1 over-bids to obtain the goods, which never increase
his profit. Accordingly, for all bidders, an equilibrium bid-
ding strategy in Case 4 is equivalent to Case 3.

A.2 Discussions
The results of VCG are much simpler than those of first-

price auctions. The difference from Case 1 (N = 2) to Case 2
(N = 3) only depends on the payment rules. The revenue
decreases from 0.767 to 0.617 (-20%), and the surplus re-
mains unchange, since all bidders submit their own values in
the equilibrium. The profit of bidder 1 also doesn’t change,
but the sum of the profits of bidder 3 and 4 in Case 2 exceeds
the profit of bidder 2 in Case 1.

In Case 3 where false-name bidding is possible, the rev-
enue is zero, and only the profit of bidder 2 is positive. As
mentioned in Section 4, bidder 2 uses two false identifiers
and manipulates the VCG outcome so that he always ob-
tain the goods and pays zero. Also, the surplus drastically
decreases from 1.23 to 1.00 (-19%). Note that the surplus
of 1.00 equals the lowest achievable surplus in our setting.
Furthermore, Case 4 inherits this result in Case 3. Case 4a
corresponds to Case 3, and Case 4b corresponds to Case 2,
even if bidder 1 is suspicious of the number of real bidders.
These obtained results imply that false-name bidding is even
more serious in VCG than in the first-price auctions, as ex-
isting theoretical considerations in mechanisms that have
dominant-strategy equilibria. In other words, outcomes in
VCG are significantly manipulated by false-name bidding,
regardless whether bidder 1 considers the possibility of false-
name bidding by bidder 2.
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ABSTRACT
This paper presents a novel method to describe and analyze strate-
gic interactions in settings that include multiple actors, many pos-
sible actions and relationships among goals, tasks and resources.
It shows how to reduce these large interactions to a set of bilat-
eral normal-form games in which the strategy space is significantly
smaller than the original setting, while still preserving many of its
strategic characteristics. We demonstrate this technique on the Col-
ored Trails (CT) framework, which encompasses a broad family of
games defining multi-agent interactions and has been used in many
past studies. We define a set of representative heuristics in a three-
player CT setting. Choosing players’ strategies from this set, the
original CT setting is analytically decomposed into canonical bi-
lateral social dilemmas, i.e., Prisoners’ Dilemma, Stag Hunt and
Ultimatum games. We present a set of criteria for generating strate-
gically interesting CT games and empirically show that they indeed
decompose into bilateral social dilemmas if players play accord-
ing to the heuristics. Our results have significance for multi-agent
systems researchers in mapping large multi-player task settings to
well-known bilateral normal-form games in a way that facilitates
the analysis of the original setting.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]; J.4 [Social and Be-
havioral Sciences]

General Terms
Design, Experimentation

Keywords
Colored Trails, Metastrategies

1. INTRODUCTION
Computer systems are increasingly being deployed in task set-
tings where multiple agents interact and make decisions together—
whether collaboratively, competitively or in between—in order to
accomplish individual and group goals. Often, such interactions
can be modeled and analyzed in terms of complex game-theoretic
games. A fundamental problem when performing an analysis of
such games is dealing with large action spaces. Once we go beyond
typical two-player two-action normal form games, the curse of di-
mensionality occurs in terms of finding equilibria and analyzing
dynamics. For example, when analyzing the evolutionary dynam-
ics of auctions or Poker, we need to abstract over atomic actions by

Cite as: Metastrategies in the Colored Trails Game, Steven de Jong, Daniel
Hennes, Karl Tuyls, and Ya’akov Gal, Proc. of 10th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011), Yolum,
Tumer, Stone and Sonenberg (eds.), May, 2–6, 2011, Taipei, Taiwan, pp.
551-558.
Copyright (c) 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

introducing metastrategies [18, 16, 14], thus reducing large-scale
interactions to smaller games.

Recently a new testbed has been introduced to enable evaluation
and comparison between computational strategies for a wide va-
riety of complex multi-agent task settings, i.e. the Colored Trails
(CT) framework [3].1 CT has spawned many publications in di-
verse multi-agent settings, such as repeated negotiation, interrup-
tion management, team formation and space research [4, 12, 10].
CT is particularly attractive because it is grounded in a situated task
domain and is rich enough to reflect features of real-life interac-
tions. The CT framework encompasses a family of different games
that provide an analogue to the ways in which goals, tasks and re-
sources interact in real-world settings. CT is parametrized to allow
for increasing complexity along a number of dimensions, such as
task complexity, the availability of and access to information, the
dependency relationships that hold between players, and the com-
munication protocol. In abstracting from particular domains, CT
provides a general framework to analyze multi-agent interactions.

In a similar vein as the aforementioned work in e.g. auctions
or Poker, this paper suggests a way of reducing multi-player in-
teractions in the CT framework to a set of smaller games. It pro-
vides a mapping between a particular CT task setting and normal-
form games in a way that preserves much of the strategic quali-
ties of the original setting. To this end, it defines a set of heuris-
tic metastrategies for each player that are domain-independent and
make minimal assumptions about the way other players make de-
cisions. These metastrategies allow a reduction to canonical bilat-
eral social dilemma games taking place between (pairs of) play-
ers, i.e., Stag Hunt, Prisoners’ Dilemma, and Ultimatum games.
In these games, the metastrategies correspond to Nash equilibria
and/or Pareto-optimal strategies. The mapping from CT game in-
stances to well-known social dilemmas allows to compare partici-
pants’ behavior in CT with prior results from these smaller, more
traditional settings. Given the mapping of the CT game to social
dilemmas, our analysis is extended by assessing the effect of adding
social factors to participants’ decision-making.

In the paper, we also lay down a set of criteria that make gener-
ated CT game instances strategically interesting for human play-
ers (e.g., they enforce negotiation). Results from simulation ex-
periments that sample thousands of such strategically interesting
CT game instances confirm that participants’ outcomes from play-
ing metastrategies in the original game instances correspond to the
outcomes from playing the same strategies in the reduced Prison-
ers’ Dilemma, Stag Hunt, and Ultimatum games. The results in this
paper have significance for agent-designers in that they facilitate
the comparison of computational strategies in different task set-
tings with results obtained in more traditional idealized settings.
Moreover they allow to generate new types of interactions in task
settings that meet scientifically and strategically interesting criteria.

1Colored Trails is free software and is available for download at
http://www.eecs.harvard.edu/ai/ct. A complete list of publications
can also be found at this link.
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2. RELATED WORK
The idea to consider aggregate or metastrategies for facilitating
(game-theoretic) analysis of a complex game is not new. In related
work, strategies are often aggregated using heuristics, allowing the
construction of e.g. heuristic payoff tables [18, 19]. Generally, a
normal-form-game payoff matrix is replaced by a heuristic payoff
table, since assembling all possible actions into a matrix is imprac-
tical for complex games (the resulting matrix would have too many
dimensions). A heuristic allows to define metastrategies over the
atomic actions, reducing the number of actions that have to be ex-
plicitly taken into account. A metastrategy typically represents a
philosophy, style of play, or a rule of thumb.

Recent domains in which the heuristic approach has been fol-
lowed include auctions [17, 11] and Poker [16]. In these do-
mains, expert knowledge is available to assist in the establish-
ment of suitable heuristics. For instance, in auctions, there are
many well-known automated trading strategies such as Gjerstad-
Dickhaut, Roth-Erev, and Zero Intelligence Plus [15, 14]. In Poker,
experts describe metastrategies based on only a few features, such
as players’ willingness to participate in a game, and players’
aggression-factor once they do participate. Examples of metastrate-
gies in Poker, based on these features, are the tight-passive (a.k.a.
Rock), tight-aggressive (a.k.a. Shark), loose-passive (a.k.a. Fish)
and loose-aggressive (a.k.a. Gambler) metastrategies. Depending
on the actions taken by a player over a series of games, it may be
categorized as belonging to a specific type of player, i.e., as using a
certain metastrategy. This allows researchers to analyze real-world
Poker games, in which the metastrategy employed by each player
in a particular series of games can be identified. Subsequently, ob-
tained payoffs in this series of games may be used to compute
heuristic payoff tables for each metastrategy [16]. These tables then
allow to study the evolutionary dynamics of Poker.

In this paper, we pursue a similar approach, although a lack of
heuristic expertise implies that we need to first perform an in-depth
study of the game and possible means of aggregating strategies.
Since expert knowledge on heuristics within the CT framework is
not available, we cannot readily label a certain chip exchange as
being, e.g., an egocentric or a social one. We aim to provide an
analysis that does allow us to label chip exchanges in this manner.

We discuss three distinct levels within the CT framework. On the
highest level, we have the complete framework itself, i.e., all pos-
sible CT games. The intermediate level identifies a certain game
within the framework, e.g., the three-player variant we study in this
paper. The lowest level is a game instance, e.g., one specific board
configuration with a certain allocation of chips and a certain posi-
tion for each of the three players and the goal. Going up from the
lowest level, we see that players can perform certain actions in a
CT game instance, can adhere to certain strategies in a CT game,
and can use certain metastrategies in the CT framework.

While we restrict our analysis to one CT game (the three-player
variant discussed below), the same analysis also applies to other
games within the framework. Therefore, the analysis indeed leads
to the identification of metastrategies. These metastrategies may be
used as a solid basis to come up with heuristic payoff tables.

3. COLORED TRAILS
We focus on a three-player negotiation variant [2] of CT that in-
cludes a board of 4x4 squares, colored in one of five colors. Each
player possesses a piece located on the board and a set of colored
chips. A colored chip can be used to move a player’s piece to an
adjacent square (diagonal movement is not allowed) of the same
color. The general goal is to position pieces onto or as close as

possible to a goal location indicated by a flag. Each player receives
points purely based on its own performance. There are three distinct
players in the game: two proposers (P1 and P2) and a responder
(R). Figures 1(a) and 1(c) show two examples of game instances.
The two instances will be used as running examples throughout the
paper. Game instances include game boards with goal and player
locations, as well as the chip sets that have been allocated to each
player. The CT game is divided into a sequence of three phases and
ends with an automatic evaluation.

Initial phase. The game board and the chip sets are allocated to the
players. This initial phase allows participants to locate their own
piece on the board and reason about the game. For example, in
Figure 1(a), proposer P1 is missing a green chip to get to the goal
(by moving left-up-up), proposer P2 is missing a gray or green
chip (moving up-up-right or up-right-up) to get to the goal, and
responder R is missing a gray chip and a blue chip to get to the
goal (moving right-3up-right). The game state is fully observable
at this point, except that proposers cannot see each other’s chips.

Proposal phase. The two proposers can make chip exchange of-
fers to the responder. Both proposers make offers to the responder
simultaneously; they cannot observe each other’s offer.

Reaction phase. The responder is presented with the two propos-
als. It can only accept one or reject both proposals and is not al-
lowed to make a counter-proposal.

Termination and scoring phase. In this phase, players automati-
cally exchange chips if they have reached agreement, and the icon
of each player is advanced as close as possible towards its goal
(using the Manhattan path with the shortest distance) given the re-
sult of the negotiation. The game ends and scores are automatically
computed for each player: for every step between the goal and the
player’s position, 25 penalty points are subtracted. For every chip
the player has not used, it receives 10 extra points.

In the current paper, we use the following terminology associated
with scores. First, the base score for a player p ∈ {R,P1, P2} is
the score the player receives when there is no agreement.2 Second,
the gain for a player p and a chip exchange proposal s denotes the
difference in the score in the game (given that s is realized) and the
base score, and is denoted as Gp (s).The base score for p, i.e., the
gain when there is no agreement, is denoted as Gp (∅).

For example, in Figure 1(a), GP1 (∅) = −20. This is because
if there is no agreement, the player can only move one square to
the left by using its red chip. It is still two squares away from the
goal, yielding 2×25 = 50 penalty points. It has 3 remaining chips,
yielding 3 × 10 = 30 points. In this particular game, GP2 (∅) =
−20 as well, with the optimal move being one to the right, using
one red chip. The responder has a base score of −25; it can spend
two blue chips to go right and upward, yielding a distance of 3 to
the goal (i.e., 75 penalty points) and 5 remaining chips (50 points).
One possible proposal for P1 is to offer a red and a grey chip for a
blue chip, a green chip, and three yellow chips from the responder.
In this case the proposer can get to the goal, and receives a gain
of 60. Meanwhile, the responder can use this exchange to get one
square away from the goal, but it uses all of its chips then. The gain
from this exchange to the responder is zero.

4. DEFINING METASTRATEGIES
Although the rules of the CT game are simple, it is not trivial to
analyze. Both proposers need to reason about the tradeoff between

2Whenever we are not referring to one specific proposer, we will use
the general notation ‘P ’ when we imply ‘P1 and/or P2’.
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(a) First example Colored Trails game instance.
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(b) Gain graph of the game instance presented in (a).

(c) Second example Colored Trails game instance.
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(d) Gain graph of the game instance presented in (c).

Figure 1: Example Colored Trails game instances and gain graphs. In (a) and (c), the three players (R, P1 and P2) are shown, along
with their chip sets. The two proposers cannot observe each others’ chip sets. All players can see the board, on which their locations
are indicated, as well as the goal state (a yellow flag). In (b) and (d), we show the gain graphs for both proposers. These graphs
plot proposer gain versus responder gain for each possible proposal with non-zero benefit. The convex hull in this graph denotes the
Pareto-front. The meta-strategies PF, RF and QF are located on this front, as indicated. In (b), QF is a pure meta-strategy; in (d), it
is a mixed meta-strategy (of PF and RF), since there is no proposal on the convex hull between PF and RF.

making beneficial offers to the responder and offers that are ben-
eficial for themselves, especially because they compete with each
other for making the best offer to the responder. Moreover, the num-
ber of possible strategies is large. In the example instance presented
in Figure 1(a), the number of unique proposals for P1 is 240, while
P2 can choose from 144 unique proposals.3 The responder can
choose to accept or reject any of these offers, so the size of the
strategy space for the responder is 240 × 144 × 2. The size of the
combined strategy space makes it difficult to analyze this game in
a principled way. In this section we show how to reduce this large
setting to smaller interactions in a way that preserves the strategic
flavor of the original CT scenario.

The analysis presented in this section is not specifically tailored
to (three-player) CT. Basically, any multi-agent one-shot negotia-
tion setting may be analysed in the manner presented here; as with
CT, agents may each have a large number of actions to choose from,
making straightforward game-theoretic analysis very hard. We will
discuss this after outlining the analysis.

4.1 Initial Assumptions
We first describe two assumptions we make about the various play-
ers in the game. We will relax the first assumption later.

Rational responder. The responder R has three possible actions,
i.e., to accept the proposal of P1, to accept the proposal of P2, or

3Two proposals are unique if they do not use the same chips.

to accept neither of them. For the responder, the game is thus sim-
ilar to an Ultimatum game with proposer competition [9]. Initially,
in our analysis, we assume that the responder plays according to
a rational strategy. If both proposals do not provide it with a pos-
itive gain, it rejects both; if both proposals yield an equal gain, it
accepts one of them with equal probability for both; if one proposal
is strictly better, it accepts this proposal.

Semi-rational proposers. In order to select a strategy, i.e., a pro-
posal to offer to the responder, proposers have to take into account
the gain resulting from each proposal for themselves as well as the
responder. For our analysis, we assume that proposer P limits the
set of possible proposals to those that (1) lead to a non-negative
personal gain, i.e., GP (s) ≥ 0, and (2) have a chance of being ac-
cepted by the responder, i.e., GR(s) ≥ 0. For example, in Figure
1(a), P1 (P2) has 79 (50) valid proposals given this limitation.

4.2 Analysis of Scenario
A CT game with only one proposer and one responder is highly
similar to the canonical Ultimatum game. In this game, the optimal
strategy s for the proposer P against a rational responder maxi-
mizes its gain while providing a non-negative gain for the respon-
der (i.e., the optimal strategy is arg maxs GP (s)). However, in the
two-proposer setting we consider, proposers compete with each
other, which means proposers have to take into account the gain
of the responder. To facilitate analysis, we plot the gains GR(s)
against GP (s) for each possible proposal s in a gain graph. Gain
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Figure 2: Extensive-form representation of the three-player ne-
gotiation variant of CT with two proposer metastrategies. The
payoff for the rational responder R is not shown.

graphs for the two example games are given in Figures 1(b) and
1(d). In the interaction between a proposer and the responder, the
Pareto-dominant proposals are located on the convex hull, as indi-
cated in the figures.

Two proposer metastrategies. We note the following proposals
located on the convex hull.

1. Proposer focus (PF). PF is the strategy in which the pro-
poser first maximizes its own gain, and then finds the maxi-
mum gain for the responder.

PFP = arg max
s′

GR(s′), s′ ∈ arg max
s

GP (s), s ∈ S.

2. Responder focus (RF). RF is the strategy in which the pro-
poser first maximizes the responder’s gain, and then finds the
maximum gain for itself.

RFP = arg max
s′

GP (s′), s′ ∈ arg max
s

GR(s), s ∈ S.

We call these proposals metastrategies, as their definition does not
depend on the actual CT setting. The proposals corresponding to
the metastrategies PF and RF for the example CT games appear in
Figures 1(b) and (d). In the example instance of Figure 1(b), the
strategy PF for P1 corresponds to the chip exchange we mentioned
before (in which P1 offers one red chip and one gray chip in ex-
change for a blue, a green, and three yellow chips, leading to a
gain, if accepted, of 60 for P1 and 0 for R), while RF corresponds
to giving a blue chip, a red chip, and a gray chip in exchange for
two green chips (leading to a gain of 20 for P1 and 55 for R here).

Interactions between metastrategies. Suppose that proposers
play only the metastrategies PF and RF. We show an extensive-
form representation of the resulting CT scenario in Figure 2 (for
proposer 2). We do not list the payoff for the responder from play-
ing its rational strategy. In the figure, the two decision nodes of P2
are grouped into into one information set, because the players make
their proposals simultaneously. Once P2 has chosen, the static and
rational strategy of the responder (which is indicated in the figure)
leads to certain expected gains.4 Here, A denotes the gain that a

4When calculating these expected gains, we assume that metastrat-

proposer receives when playing PF and being accepted; C denotes
the gain for RF being accepted. Clearly, this extensive-form game
can be represented in a 2x2 matrix game which omits the respon-
der’s strategy. The gain matrix of the symmetrical game between
the two proposers is given below.

PF RF

PF 1
2A, 12A 0,C

RF C,0 1
2C, 12C

Since the game between the two proposers is a 2x2 matrix game,
it is straightforward to analyze. The game depends on the relation-
ship between A and C, as follows. For A < 2C, the game is a
Prisoners’ Dilemma, with one Nash Equilibrium at (RF, RF) and
a Pareto-optimal outcome at (PF, PF). For A ≥ 2C, we obtain
a Stag Hunt game, with two Nash Equilibria; the RF-equilibrium
(shorthand notation) is risk-dominant, while the PF-equilibrium is
payoff-dominant. Both the Prisoners’ Dilemma and the Stag Hunt
game are well-known social dilemmas [13].

The strategic qualities of the original CT game are preserved in
the 2x2 matrix game played between metastrategies. In the original
CT game, the RF metastrategy corresponds to offering the best pos-
sible offer to the responder. RF is therefore also the risk-dominant
proposal in the original game, because it guarantees a positive gain
to the proposer. Even if both proposers play RF, the expected gain
for each proposer will be positive. In contrast, the PF metastrategy
is payoff-dominant but risky, because it provides a low (or even
zero) gain to the responder. It will yield the most positive possi-
ble gain (payoff) for the proposer if the other proposer also plays
PF, but will yield no gain at all otherwise. The proposers’ dilemma
in the original game (favoring themselves or the responder) is thus
accurately reflected in the reduced 2x2 matrix game.

In the example CT instance shown in Figure 1(a) and (b), we find
that the PF strategy yields a gain to the proposer of 60 and a gain
of 0 to the responder if accepted, while the RF strategy yields a
gain of 20 to the proposer and 55 to the responder. Hence, A = 60
and C = 20 here, and A > 2C; the game played between the two
proposers is thus a Stag Hunt. In a similar manner, we can conclude
that the CT game of Figure 1(c) and (d) is a Prisoners’ Dilemma,
because A = 25 and C = 15 yields A < 2C.

Introducing a third metastrategy. While we distinguish only two
metastrategies thus far, a proposer’s actual strategy smay be mixed,
yielding (in theory) infinitely many possible (mixed) strategies s
based on the two metastrategies.

We now demonstrate that a proposer can benefit from employing
a metastrategy other than such a mixed strategy s. This is illustrated
in Figure 3 (left and right). In the gain graph, all mixed strategies
of PF and RF are located on the straight line connecting PF and RF.
From the proposer’s perspective, any mixed strategy s is strictly
dominated by a strategy s∗ for which GP (s∗) > GP (s). This con-
straint is met by all points to the right of s in the plot. Given that
the responder behaves rationally, we say that s∗ strictly dominates
s iff GR(s∗) > GR(s). All points above s in the plot meet this
constraint. Thus, strategies that lie in the white area of the graphs
in Figure 3 strictly dominate the mixed strategy s.

egy pairs (e.g., PFP1 and PFP2) yield the same gain for the re-
sponder, so the responder is indifferent to the two metastrategies.
In other words, we assume the CT game instance is symmetrical. A
CT game instance may generally not be (fully) symmetrical, unless
we explicitly generate only symmetrical games. As we will discuss
in our experimental section, using our set of criteria that lead to
strategically interesting games, we find games that are symmetrical
in expectation, even though symmetry is not a criterium.
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Figure 3: Pure or mixed strategies on the convex hull may
strictly dominate a mixed strategy of PF and RF. In the exam-
ple on the left, we find a pure strategy s∗ on the convex hull
that strictly dominates a mixed strategy s of PF and RF. On the
right, a mixed strategy s∗ strictly dominates s.

In some cases, the convex hull may lie on the straight line be-
tween PF and RF, as for instance in the second example game (Fig-
ure 1(d)); then, there is no strategy that strictly dominates s. In
other cases however, as in Figures 3 and 1(b), the convex hull may
be located above the line PF-RF. In these cases, we can always find
a strategy s∗ that strictly dominates s, except if s is a pure strategy
itself, i.e., if s assigns a probability of 1 to a certain metastrategy.
For instance, in Figure 3 (left), we find a pure strategy s∗ on the
convex hull that dominates s. In Figure 3 (right), a mixed strategy
s∗ on the convex hull dominates s. In Figure 1(b), both proposers
have three pure strategies (and an infinite number of mixed strate-
gies involving one or more of these pure strategies) that dominate
a mixed strategy of PF and RF.

Thus, proposers indeed may benefit from employing additional
metastrategies, since these additional metastrategies may dominate
(mixed strategies of) the two metastrategies we already defined.
We therefore introduce a third metastrategy, named QF (where Q is
chosen simply because it is between P and R), which is to play the
median proposal on the convex hull. Note that the median may be
defined for any number of proposals on the convex hull; for an even
number, we probabilistically select a proposal from the two median
ones. Thus, proposals corresponding to the third metastrategy may
again be found in any CT game.

Figures 1(b) and 1(d) show the mixed metastrategy QF for the
two example CT instances. We see that the first instance has a pure
QF metastrategy which dominates a mixed strategy of PF and RF.
The gain graph shows that QF yields a proposer (responder) gain of
40 (35) here. The second instance has no strategies on the convex
hull that dominate a mixed strategy of PF and RF; still, QF may
be defined by choosing probabilistically from PF and RF. The (ex-
pected) gain for QF is then the average of the gains for PF and RF,
i.e., 20 for the proposers and 17.5 for the responder.

Interactions between three metastrategies. With three metas-
trategies, the game between the two proposers becomes a 3x3 ma-
trix game as follows.

PF QF RF

PF 1
2A, 12A 0,B 0,C

QF B,0 1
2B, 12B 0,C

RF C,0 C,0 1
2C, 12C

Here, A ≥ B ≥ C. As with the two-strategy game, we can find
different types of game depending on the relation between A, B,

and C. It is easy to see that potential equilibria are located on the
diagonal of the matrix. Moreover, as in the two-strategy game, (RF,
RF) is an equilibrium. Depending on the values of A, B, and C,
we may distinguish four different games. For all games in which
A < 2B < 4C, (RF, RF) is the sole equilibrium. For A ≥ 2B ≥
4C, all three diagonal strategies are equilibria. For A < 2B and
B ≥ 2C, the equilibria are (RF, RF) and (QF, QF). For A ≥ 2B
and B < 2C, we find equilibria at (RF, RF) and (PF, PF).

In the example of Figure 1(a), we findB = 40 (A = 60 andC =
20 still holds); thus,A < 2B andB = 2C, meaning the 3x3 matrix
game has two equilibria, i.e., the RF- and the QF-equilibrium. In
Figure 1(c), we find A = 25, B = 20 and C = 15, so A < 2B
and B < 2C, yielding a single equilibrium at (RF, RF).

Adding social factors to the responder model. Thus far we have
assumed the responder to be rational. Empirical evidence (in Ul-
timatum game settings) suggests that human responders are actu-
ally not fully rational [5]. One of the most well-known alternative
models for Ultimatum-game responder behavior is inequity aver-
sion [1]. The responder does not act directly on its gain GR(s), but
instead on a utility function UR(s), which depends on its own gain,
but also on how it compares to the gain of the proposer,GP (s). The
original model distinguishes two components in the utility function,
namely greed and compassion, both of which decrease the respon-
der’s utility in comparison to the actual gain. The greed component
is generally far stronger (in humans); we do not consider the com-
passion component here. Translated to our settings, the responder’s
utility function may be then defined as follows.

UR(s) =

{
GR(s) GR(s) ≥ GP (s)
GR(s)− αR (GP (s)−GR(s)) otherwise

There is one parameter, αR, which determines how strongly the
responder dislikes a proposal which gives a proposer more gain
than the responder.

To illustrate the effect of inequity aversion, we apply it to the
gain graph of proposer 1 in the first example game (Figure 1(a) and
(b)). The effect for αR = 0.5 is visualized in Figure 4. For pro-
posals that give the proposer more gain than the responder (i.e.,
below the diagonal), the utility (perceived gain) for the respon-
der is lower than the actual gain. As a result, some proposals that
may be accepted by a rational responder are not accepted by an
inequity-averse responder. As is visible from the figure, the convex
hull changes, as does the location of the PF metastrategy. If the re-
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change. PF will no longer be accepted by the responder, which
means proposers need to offer PF’ instead.
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sponder is inequity-averse and the proposers do not take this into
account, they may coordinate (without communication) to offer the
PF proposal, expecting that one of them will be accepted, while in
reality, the responder will reject both proposals.

Instead of offering PF, proposers should offer PF’, yielding a
gain of 50 instead of 60 in the example. They are able to find PF’
if they are aware of the inequity aversion present in the respon-
der (i.e., the value of αR), which implies they can calculate the
modified gain graph. We deal with both unaware as well as aware
proposers in our empirical evaluation.

4.3 Generalizing the analysis
In this section we show that our analysis may be generalized to
more than three metastrategies and other variants of the CT game.

An arbitrary number of metastrategies. We may introduce ad-
ditional metastrategies in a similar manner as the third one; e.g.,
we could have five metastrategies, corresponding to the minimal,
first quartile, median, third quartile, and maximal proposal on the
convex hull. Generally speaking, for nmetastrategies, we obtain an
nxn matrix game. The n diagonal strategies may each be equilib-
ria or not, except the ever-present RF-equilibrium. Depending on
the gains for each metastrategy pair, we may thus distinguish 2n−1

different possibilities for equilibria in the nxn game.

Generalizing to other CT variants. The analysis above is specifi-
cally performed on the three-player negotiation variant of CT. How-
ever, results generalize to other games within the CT framework,
since chip exchanges are a vital part of the framework [7]. We will
provide a few pointers here. A common different variant is a two-
player negotiation game (i.e., one proposer and one responder), po-
tentially with multiple phases and/or alternating roles [8]. The one-
shot two-player game also allows us to construct the gain graph and
identify the metastrategies. Since the dilemma (and the associated
competition) between the proposers is missing, the single proposer
may get away with offering PF every time.5

More generally, the concept of the gain graph naturally extends
to negotiation games with any number of proposers and responders.
For instance, a game with three proposers and one responder leads
to a three-player social dilemma between the proposers, which may
be modeled for instance as a Public Goods game, and interactions
similar to the Ultimatum game between each proposer and the re-
sponder. In a game with multiple responders we can still construct
gain graphs between pairs of proposer(s) and responders, with an
Ultimatum game with responder competition [6] taking place be-
tween these pairs. Analytical and experimental studies in the Ulti-
matum game clearly indicate that players benefit from an increased
number of opponents in the opposite role (e.g., responders fare well
with more proposers) [6, 9].

5. EMPIRICAL EVALUATION
In this section, we outline how strategically interesting instances of
the CT game may be generated. We then discuss how players that
perform actions according to the metastrategies may be heuristi-
cally implemented. Finally, we generate a large number of games,
have our heuristic players play them, and evaluate the empirical
payoff tables, which can be compared with analytical results.

5.1 Strategically interesting games
This section outlines three criteria that ensure strategically inter-
esting games, i.e., games that require strategic thinking from their

5Repeated games fall outside the scope of this paper.

players, and thus facilitate researchers to study this strategic think-
ing. Basically, strategically interesting games are fair games that
require negotiation and mutual dependence.

Baseline scores. The initial board state (positions and chip sets)
should yield baseline scores that are comparable for all three play-
ers. We generate games that limit the difference in baseline scores
to be less than a certain ε.

max {GP1 (∅) , GP2 (∅) , GR (∅)}
−min {GP1 (∅) , GP2 (∅) , GR (∅)} < ε

Negotiation requirement. No player should be able to reach the
goal location on its own without engaging in a chip trade. We define
isSolution(P,C) = true iff player P can reach the goal given a
chip set C. The initial chip set of a player P is given by chips(P ).

¬isSolution(P1, chips(P1)) ∧
¬isSolution(P2, chips(P2)) ∧
¬isSolution(R, chips(R))

Mutual dependence. Due to the negotiation requirement, both pro-
posers depend on a subset of the responder’s chip set. In turn, the
responder relies on a subset of either proposer 1 or proposer 2. A
one-sided proposal (i.e. asking for all chips or dispensing of all
chips) may not lead to a chip set allowing both the proposer and the
responder to reach the goal.
∃CP1,CR ∈ chips(P1) ∩ chips(R) s.t.

CP1 ∩ CR = ∅ ∧ isSolution(P1, CP1) ∧ isSolution(R,CR)

∃CP2,CR ∈ chips(P2) ∩ chips(R) s.t.

CP2 ∩ CR = ∅ ∧ isSolution(P2, CP1) ∧ isSolution(R,CR)

We implement these three criteria by generating many pseudo-
random games and checking them against the criteria, keeping only
those games that match. In a similar manner, we may introduce ad-
ditional criteria, such as symmetry (see the discussion following).

5.2 Experimental setup
For the empirical evaluation of the proposed metastrategies we gen-
erate a database of 10K games that adhere to the criteria listed
above (we chose ε = 20). Below, we discuss how the metastrate-
gies are implemented in heuristic players and how empirical pay-
offs are computed from games played between these players.

Heuristic players. We implemented three heuristic players, each
following one of the three metastrategies, i.e. PF, QF and RF. All
three heuristic players start by enumerating all possible chip ex-
change proposals. Proposals that yield negative gains for either the
proposer or the responder are neglected. Heuristic players follow-
ing metastrategies PF and RF are a straightforward implementation
of the definitions given earlier. Metastrategy QF requires to com-
pute the PF and RF strategy points in the gain graph, as well as
the convex hull connecting both.6 The median proposal on the con-
vex hull is then selected. For an even number, the heuristic player
probabilistically selects a proposal from the two median ones.

Computing empirical payoffs. A single entry of the empirical
payoff matrix is computed as follows. The row determines the
metastrategy played by P1, while the column determines the metas-
trategy for P2. For each game in the database, chip exchanges pro-
posed by the players are evaluated by the responder and if a pro-
posal is excepted, chips are exchanged and scores evaluated. The
resulting payoff is the difference between final and baseline scores
(i.e. gain) averaged over all 10K games. This process leads to a full
empirical payoff table for the game as a whole.

6While any convex hull algorithm is adequate, our implementation
is based on the time-efficient Graham scam algorithm.
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5.3 Results
In this section, empirical payoff tables obtained by the metastrate-
gies are presented and compared to the predicted payoff tables.

Two-strategy game. With two metastrategies PF and RF, we obtain
an empirical payoff table as follows.

PF RF

PF 21.0, 20.6 2.9, 11.7
RF 11.8, 2.6 6.5, 6.2

The empirical payoffs yield a Stag Hunt game, with A ≈ 42 and
C ≈ 12. When we compare the empirical payoff table to the ana-
lytical one, we notice two things.

First, the game is nearly, but not completely symmetrical. This
may be explained by the relatively small size of the board, which
leads to relatively large differences (i.e. possible disbalances) be-
tween the two proposers. On the small board we use, symmetry
arises from repeated play. The game is guaranteed to be symmetri-
cal in expectation, since proposers’ positions are randomized.

Second, there are (small) positive values where we expected val-
ues of 0. In some instances, a certain proposer’s PF proposal is
preferred by the responder over the other proposer’s RF proposal.
Once again, this issue may be dealt with by using larger boards,
which would reduce the probability that PF ‘wins’ from RF. How-
ever, larger boards are (even) more difficult for human players.

Three-strategy game. The empirical payoff table for the three-
strategy game is given below. The values in the corners of the table
are identical to those in the two-strategy game.

PF QF RF

PF 21.0, 20.6 5.7, 24.3 2.9, 11.7
QF 24.5, 5.6 14.8, 14.2 6.0, 9.8
RF 11.8, 2.6 10.0, 5.7 6.5, 6.2

We see that B ≈ 25. It is interesting to consider the interactions
between the ‘neighboring’ metastrategies. Looking at the interac-
tion between PF and QF, we find a Prisoners’ Dilemma. The QF
metastrategy is very strong against PF, giving proposers a strong
incentive to defect. Between QF and RF, we find a Stag Hunt. The
payoff table thus yields a game with two equilibria, namely the QF-
and the RF-equilibrium.

Inequity aversion (unaware proposers). In our next experiment,
we determine the effect of introducing social considerations (in-
equity aversion) in the responder’s decision-making, without the
proposers being aware of this. We provide the empirical payoff ma-
trices for two reasonable values of αR, restricting ourselves to the
two-strategy game.

αR = 0.5 αR = 1.0

PF RF

PF 9.6, 9.9 1.2, 12.0
RF 12.0, 1.2 6.4, 6.3

PF RF

PF 5.3, 5.3 0.7, 11.9
RF 12.0, 0.7 6.5, 6.1

The second equilibrium (PF, PF) disappears, because proposers
expect their PF proposal to be accepted more than it actually is.
The game thus turns into a Prisoners’ Dilemma with one Pareto-
dominated equilibrium at (RF, RF). The higher the value of αR,
the stronger this effect.

Inequity aversion (aware proposers). We also investigate what
happens if the proposers do know that the responder is inequity-
averse. The payoff matrices for the same values of αR are:

αR = 0.5 αR = 1.0

PF RF

PF 17.0, 17.2 3.4, 11.3
RF 11.3, 3.2 6.5, 6.1

PF RF

PF 15.3, 15.1 4.6, 10.4
RF 10.5, 4.4 6.4, 6.1

The second equilibrium is back again; proposers appropriately ad-
just their PF proposals to the expectations of the responder. The
payoff for PF is (sensibly) lower against itself than in the original
game with a rational responder. PF does increasingly well against
RF, simply because PF is (slightly) more similar to RF when pro-
posers take into account the responder’s expectation.

6. DISCUSSION
The previous sections have shown how CT games can be decom-
posed into a set of multiple normal-form games that are character-
ized by social dilemmas (i.e., Prisoners’ Dilemma, Stag Hunt and
Ultimatum games), as visualized in Figure 5, using a number of
metastrategies defined on th chip exchange proposals in the game.
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Figure 5: Decomposing the three-player negotiation variant of
the Colored Trails Game.

We show that the metastrategy that favors the responder (RF) is
always an equilibrium in the reduced normal form game, regard-
less of the number of metastrategies. This is because the responder
has an advantage in the CT setting we consider, in that no player
receives a gain if it does not accept an offer. An empirical analy-
sis of a large set of game instances illustrates that, in expectation,
two metastrategies yield two equilibria, reducing it to a Stag Hunt
game. We may also find game instances that are Prisoners’ Dilem-
mas, i.e., with only the equilibrium that favors the responder. Using
three metastrategies in the same set of game instances also yields
two equilibria in expectation, namely those two metastrategies that
are most favorable for the responder (QF and RF).

Adding social factors to the responder allows this player to en-
force a higher payoff—essentially, the proposers are driven to de-
fection in the Stag Hunt or Prisoners’ Dilemma game they play, be-
cause the responder is better at exploiting the proposer competition
in the Ultimatum game component. This increased power for the
responder may be countered by introducing multiple responders,
as in an Ultimatum game with responder competition [6].

As noted, our analysis of a single game instance assumes that re-
sponders are indifferent between the gains from the two proposals
resulting from any pair of metastrategies, i.e., for the metastrate-
gies PFP1 and PFP2, we have that GR(PFP1) = GR(PFP2)
(and similar for QF and RF). If this condition does not hold, the
responder will favor one of the metastrategy proposals over the
other, which means the actual game instance does not reduce to
a Stag Hunt or Prisoners’ Dilemma. We observed that approxi-
mately 25% of the 10K games we generated (and that met our
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three criteria) were actually games in which the responder is in-
different between metastrategy pairs. Of these 25%, approximately
one-fifth are Prisoners’ Dilemmas, and four-fifth are Stag Hunts.
The remaining games (i.e., 75%) were not symmetrical, meaning
that one proposer has a strategic advantage over the other proposer.
Even though our symmetry assumption thus does not hold for a
majority of generated game instances, our empirical results show
that, even for games in which the assumption does not hold, the
expected gains to proposers from playing metastrategies do in fact
correspond to Stag Hunt and Prisoners’ Dilemma games.

In case a certain experiment requires all games to be Stag Hunts
or Prisoners’ Dilemmas (i.e., not only in expectation), the assump-
tion of responder indifference can be enforced during game gener-
ation. We note that, for the case in which responders are assumed
to be rational, we do not need to make assumptions about the gains
to proposers from pairs of metastrategies (a rational responder does
not consider those gains), while for inequity-averse responders, the
gains to proposers for every metastrategy pair must also be equal,
i.e., GP1(PFP1) = GP2(PFP2) (and similar for QF and RF).

7. CONCLUSION AND FUTURE WORK
In this paper, we show how to reduce a large multi-agent task-
setting, i.e., a game in the often-used Colored Trails (CT) frame-
work, to a set of smaller, bilateral normal-form games, while still
preserving most of the strategic charachteristics of the original set-
ting. We show how to define representative heuristic metastrategies
in the CT setting that make minimal assumptions about the other
players. The games taking place between metastrategies are shown
to correspond to Prisoners’ Dilemma, Stag Hunt and Ultimatum
games. We demonstrate that the metastrategies’ analytical payoff
tables, which we generated on the basis of assumptions that are not
always met, nonetheless correspond to empirical payoff tables by
sampling from thousands of CT game instances and showing that
the outcome to players from using the metastrategies corresponds
on average to the outcomes from the social dilemma games.

Although our analysis and examples are based on a particular CT
scenario (a three-player take-it-or-leave-it game), they demonstrate
the possibility of using metastrategies to reduce other CT games
(e.g., games with a different number of players in each role, or even
games that are further removed from the game under consideration
here), and multi-agent interactions in general, to (social dilemma)
normal-form games. More precisely, the techniques we present ap-
ply to general multi-agent interactions in which optimal actions can
be computed, given that other players are using specified strategies.

We are currently extending our approach in two ways. First, we
are developing metastrategies that consider other social factors that
affect people’s behavior in task settings, such as altruism and gen-
erosity, also from the perspective of the proposers. Second, we are
considering more complex CT scenarios that include repeated ne-
gotiation, in which metastrategies will need to account for players’
trust and reciprocity relationships.
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ABSTRACT
We study the computational complexity of finding stable
outcomes in hedonic games, which are a class of coalition
formation games. We restrict our attention to a nontrivial
subclass of such games, which are guaranteed to possess sta-
ble outcomes, i.e., the set of symmetric additively-separable
hedonic games. These games are specified by an undirected
edge-weighted graph: nodes are players, an outcome of the
game is a partition of the nodes into coalitions, and the
utility of a node is the sum of incident edge weights in the
same coalition. We consider several stability requirements
defined in the literature. These are based on restricting
feasible player deviations, for example, by giving existing
coalition members veto power. We extend these restrictions
by considering more general forms of preference aggregation
for coalition members. In particular, we consider voting
schemes to decide if coalition members will allow a player
to enter or leave their coalition. For all of the stability re-
quirements we consider, the existence of a stable outcome is
guaranteed by a potential function argument, and local im-
provements will converge to a stable outcome. We provide
an almost complete characterization of these games in terms
of the tractability of computing such stable outcomes. Our
findings comprise positive results in the form of polynomial-
time algorithms, and negative (PLS-completeness) results.
The negative results extend to more general hedonic games.

Keywords
Hedonic games, coalition formation, voting, local search,
PLS-completeness.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; F.2.0 [Analysis of Algorithms and Problem
Complexity]: General

General Terms
Algorithms, Economics, Theory

Cite as: Computing stable outcomes in hedonic games with voting-
based deviations, M. Gairing and R. Savani, Proc. of 10th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011,
Taipei, Taiwan, pp. 559-566.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Hedonic games were introduced in the economics litera-

ture as a model of coalition formation where each player
cares only about those within the same coalition [12]. Such
games can be used to model a variety of settings ranging
from multi-agent coordination to group formation in social
networks. This paper studies the computational complex-
ity of finding stable outcomes in hedonic games. We con-
sider and extend the stability requirements introduced in
the work of Bogomolnaia and Jackson [6], which includes
a detailed discussion of real-life situations in which purely
hedonic models are reasonable.

An outcome is called Nash-stable if no player prefers to be
in a different coalition. Here a deviation depends only on
the preferences of the deviating player. Less stringent stabil-
ity requirements restrict feasible deviations: a coalition may
try to hold on to an attractive player or block the entry of
an unattractive player. In [6], deviations are restricted by
allowing members of a coalition to “veto” the entry or exit
of a player. They introduce individual stability, where there
is a veto for entering - a player can deviate to another coali-
tion only if everyone in this coalition is happy to have her.
They also introduce contractual individual stability, where,
in addition to a veto for entering, coalition members have a
veto to prevent a player from leaving the coalition - a player
can deviate only if everyone in her coalition is happy for her
to leave.

The case where every member of a coalition has a veto on
allowing players to enter and/or leave the coalition can be
seen as an extreme form of voting. This motivates the study
of more general voting mechanisms for allowing players to
enter and leave coalitions. In this paper, we consider general
voting schemes, for example, where a player is allowed to join
a coalition if the majority of existing members would like the
player to join. We also consider other methods of preference
aggregation for coalition members. For example, a player is
allowed to join a coalition only if the aggregate utility (i.e.,
the sum of utilities) existing members have for the entrant
is non-negative. These preference aggregation methods are
also considered in the context of preventing a player from
leaving a coalition. We study the computational complexity
of finding stable outcomes under stability requirements with
various restrictions on deviations.

The model.
In this paper, we study hedonic games with symmetric

additively-separable utilities, which allow a succinct repre-
sentation of the game as an undirected edge-weighted graph
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G = (V,E,w). For clarity of our voting definitions, we
assume w.l.o.g. that we 6= 0 for all e ∈ E. Every node
i ∈ V represents a player. An outcome is a partition p of
V into coalitions. Denote by p(i) the coalition to which
i ∈ V belongs under p, and by E(p(i)) the set of edges
{{i, j} ∈ E | j ∈ p(i)}.

The utility of i ∈ V under p is the sum of edges to others in
the same coalition, i.e.,

P
e∈E(p(i)) w(e). Each player wants

to maximize her utility, so a player wants to deviate if there
exists a (possibly empty) coalition c whereX

e∈E(p(i))

w(e) <
X

{{i,j}∈E | j∈c}
w({i, j}).

We consider different restrictions on player deviations. Those
restrict when players are allowed to join and/or leave coali-
tions. A deviation of player i to coalition c is called

• Nash feasible if player i wants to deviate to c.

• vote-in feasible with threshold Tin if it is Nash feasible
and either at least a Tin fraction of i’s edges to c are
positive or i has no edge to c.

• vote-out feasible with threshold Tout if it is Nash-feasible
and either at least a Tout fraction of i’s edges to p(i)
are negative or i has no edges within p(i).

• sum-in feasible if it is Nash feasible andX
{{i,j}∈E | j∈c}

w({i, j}) ≥ 0.

• sum-out feasible if it is Nash feasible andX
e∈E(p(i))

w(e) ≤ 0.

Outcomes where no corresponding feasible deviation is pos-
sible are called Nash stable, vote-in stable, vote-out stable,
sum-in stable, and sum-out stable, respectively. Outcomes
which are vote-in (resp. vote-out) stable with Tin = 1 (resp.
Tout = 1) are also called veto-in (resp. veto-out) stable.
Note that a veto-in stable outcome is an individual stable
outcome i.e., any player can veto a player joining a coali-
tion; an outcome that is veto-in and veto-out stable is a
contractual individual stable outcome.

An example.

a b c

d e f

1

33

5

5 6

−1

−2−2

The above figure gives an example of a hedonic game.
Consider the outcome {{a, b, d}, {c, e, f}}. The utilities of
the players a, b, c, d, e, f are 10, 5,−1, 5, 1, 4, respectively.
Players a, b, d, f have no Nash-feasible deviations, c has a
Nash-feasible deviation to go alone and start a singleton
coalition, and e has a Nash-feasible deviation to join the
other coalition. The deviation of c is not veto-out feasible,
since f prefers c to stay, however it is vote-out feasible for
any Tout ≤ 0.5. It is also sum-out feasible. The devia-
tion of e is not veto-in feasible, but is vote-in feasible for

any Tin ≤ 2/3. Since there are no deviations that are both
veto-in and veto-out feasible, this is a contractual individ-
ual stable outcome. The outcome {{a, b, d}, {c}, {e, f}} is an
individual stable outcome, and {{a, b, d, e, f}, {c}} is Nash
stable.

Justification of the model.
With the goal of understanding how difficult it is for agents

to find stable outcomes, we focus on a model in which they
are guaranteed to exist. The computational complexity of
a problem is measured in terms of the size of its input and
therefore depends on the representation of the problem in-
stance. For games, we desire that the size of the input is
polynomial in the number of players, as this is the natu-
ral parameter with which to measure the size of the game.
We consider only such succinct representations, since other-
wise we can find solutions using trivial algorithms (enumer-
ation of strategy profiles) that are polynomial in the input
size. Our focus on additively-separable games is motivated
by the hardness of even deciding the existence of stable out-
comes and other solution concepts for more general (uni-
versal) succinct representations, such as hedonic nets [14].
A non-symmetric additively-separable game, which is rep-
resented by a edge-weighted directed graph, may not have
a Nash-stable outcome [6, 4], and deciding existence is NP-
complete. We study a more restrictive model where stable
outcomes (for all of the stability requirements we consider)
are guaranteed to exist, noting that our hardness results ex-
tend to all more general models where existence of stable
outcomes is either guaranteed or promised, i.e., instances
are restricted to those possessing stable outcomes.

In a symmetric additively-separable hedonic game, for
each of the stability requirements we consider, a stable out-
come always exists by a simple potential function argument:
the potential function is the total happiness of an outcome,
i.e., the sum of players’ utilities. Unilateral player deviations
improve the potential. So for all our considered stability re-
quirements, local improvements will find a stable outcome,
and all the problems we consider are in the complexity class
PLS (polynomial local search) [20], which we introduce next.

Local search and the complexity class PLS.
Local search is one of few general and successful approaches

to difficult combinatorial optimisation problems. A local
search algorithm tries to find an improved solution in the
neighborhood of the current solution. A solution is locally
optimal if there is no better solution in its neighborhood.
Johnson et al. [20] introduced the complexity class PLS
(polynomial local search) to capture those local search prob-
lems for which a better neighboring solution can be found
in polynomial time if one exists, and a local optimum can
be verified in polynomial time.

They also introduced the notion of PLS-reduction. Sup-
pose A and B are problems in PLS. Then A is PLS-reducible
to B if there exist polynomial time computable functions f
and g such that f maps instances of A to instances of B
and g maps the local optima of B to local optima of A.
A problem is PLS-complete if all problems in PLS are PLS-
reducible to it. Prominent PLS-complete problems are those
of finding a local max-cut in a graph (LocalMaxCut) [24],
a stable solution in a Hopfield network [20], or a pure Nash
equilibrium in a congestion game [16]. PLS captures the
problem of finding pure Nash equilibria for many classes of
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games where pure equilibria are guaranteed to exist.
On the one hand, finding a locally optimal solution is

presumably easier than finding a global optimum; in fact,
it is very unlikely that a PLS problem is NP-hard since
this would imply NP=coNP [20]. On the other hand, a
polynomial-time algorithm for a PLS-complete problem would
immediately imply such an algorithm for all problems in PLS
and thus solve a number of long open problems including the
simple stochastic game problem [29]. PLS-complete prob-
lems are believed not to have polynomial-time algorithms.

Computational problems.
We define the search problems, NashStable, IS (individ-

ual stable), CIS (contractual individual stable), VoteIn,
and VoteOut of finding a stable outcome for the respec-
tive stability requirement. We introduce VoteInOut as the
search problem of finding an outcome which is vote-in and
vote-out stable. All voting problems are parametrized by
Tin and/or Tout. We also introduce sumCIS as the problem
of finding an outcome which is sum-in and sum-out stable.

Symmetric additively-separable hedonic games are closely
related to party affiliation games, which are also specified
by an undirected edge-weighted graph. In a party affiliation
game each player must choose between one of two “parties”;
a player’s happiness is the sum of her edges to nodes in the
same party; in a stable outcome no player would prefer to
be in the other party. The problem PartyAffiliation is
to find a stable outcome in such a game. If such an instance
has only negative edges then it is equivalent to the prob-
lem LocalMaxCut, which is to find a stable outcome of
a local max-cut game. In party affiliation games there are
at most two coalitions, while in hedonic games any number
of coalitions is allowed. Thus, whereas PartyAffiliation
for instances with only negative edges is PLS-complete [24],
NashStable is trivial in this case, as the outcome where all
players are in singleton coalitions is Nash-stable. Both prob-
lems are trivial when all edges are non-negative, in which
case the grand coalition of all players is Nash-stable. Thus,
interesting hedonic games contain both positive and nega-
tive edges.

The problem OneEnemyPartyAffiliation is to find a
stable outcome of a party affiliation game where each node
is incident to at most one negative edge. This problem was
introduced in [17]. In this paper, we use a variant of this
problem as a starting point for some of our reductions:

Definition 1. Define the problem OneEnemyPartyAffi-
liation* as a restricted version of OneEnemyPartyAffi-
liation which is restricted to instances where no player is
ever indifferent between the two coalitions.

Gairing and Savani [17, Corollary 1] showed that OneEnemy-
PartyAffiliation* is PLS-complete.

Our results.
In this paper, we examine the complexity of computing

stable outcomes in symmetric additively-separable hedonic
games. In [17], it was shown that NashStable is PLS-
complete while CIS is solvable in polynomial time. We make
explicit two conditions, both met in the case of CIS, that
(individually) guarantee that local improvements converge
in polynomial time. The complexity of IS (i.e., of find-
ing a veto-in stable outcome) was left open in [17]. Here
we resolve that question, showing that IS is PLS-complete.

Perhaps surprisingly, given the apparantly restrictive nature
of the stability requirement, we show that sumCIS is PLS-
complete, in contrast to CIS.

We also study the complexity of finding vote-in and vote-
out stable outcomes. Using a different argument to the
polynomial-time cases mentioned previously, we show that
local improvements converge in polynomial time in the case
of vote-in- and vote-out- stability with Tin, Tout ≥ 0.5 and
Tin + Tout > 1. We show that if we require vote-in-stability
alone, we get a PLS-complete search problem. The problem
of finding a vote-out stable outcome is conceptually differ-
ent, and we can find a veto-out-stable outcome in polynomial
time (whereas it is PLS-complete to find a veto-in-stable out-
come). The technical difficulty in proving a hardness result
for VoteOut is restricting the number of coalitions. Ul-
timately, we leave the complexity of VoteOut open, but
do show that k-VoteOut, which is the problem of com-
puting a vote-out stable outcome when at most k coalitions
are allowed, is PLS-complete (Theorem 2). Our results are
summarized in Figure 1, which gives an almost complete
characterization of tractability.

Related work.
Hedonic coalition formation games were first considered

by Dreze and Greenberg [12]. Greenberg [18] later surveyed
coalition structures in game theory and economics. Based
on [12], Bogomolnaia and Jackson [6] formulated different
stability concepts in the context of hedonic games - see also
the survey [26]. These stability concepts were our motiva-
tion to introduce definitions of stability based on voting and
aggregation.

The general focus in the game theory community has
been on characterizing the conditions for which stable out-
comes exist. Burani and Zwicker [8] showed that additively-
separable and symmetric preferences guarantee the existence
of a Nash-stable outcome. They also showed that under cer-
tain different conditions on the preferences, the set of Nash-
stable outcomes can be empty but the set of individually-
stable partitions is always non-empty.

Cechlárová [9] surveys algorithmic problems related to
stable outcomes. Ballester [4] showed that for hedonic games
represented by an individually rational list of coalitions, the
complexity of checking whether core-stable, Nash-stable or
individual-stable outcomes exist is NP-complete, and that
every hedonic game has a contractually-individually-stable
solution. Recently, Sung and Dimitrov [27] showed that for
additively-separable hedonic games checking whether a core-
stable, strict-core-stable, Nash-stable or individually-stable
outcome exists is NP-hard. For core-stable and strict-core-
stable outcomes those NP-hardness results have been ex-
tended by Aziz et al. [2] to the case of symmetric player
preferences. Brânzei and Larson [7] studied the tradeoff be-
tween stability and social welfare in additively-separable he-
donic games. Elkind and Wooldridge [14] characterize the
complexity of problems related to coalitional stability for
hedonic games represented by hedonic nets, a succinct, rule-
based representation based on marginal contribution nets
(introduced by Ieong and Shoham [19]).

This work extends the model and results in Gairing and
Savani [17]. The definition of party affiliation games we
use appears in Balcan et al. [3]. Recent work on local max
cut and party affiliation games has focused on approxima-
tion [5, 10]; see also [23]. For surveys on the computational
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XXXXXXXXXLeave
Enter

1: 2: 3: 4:

no restr. sum-in veto-in vote-in

A: NashStable IS VoteIn

no restr.
PLS-complete PLS-complete PLS-complete PLS-complete

[17] [17] Theorem 4 Theorem 1
B: sumCIS

sum-out
PLS-complete PLS-complete P ?

Theorem 5 Theorem 5 Proposition 1
C: CIS

veto-out
P P P P

Proposition 2 Proposition 2 [17] Proposition 2
D: VoteOut VoteInOut

vote-out
? ? P P (Tin, Tout > 0.5)

(see Theorem 2) (see Theorem 2) Proposition 1 Theorem 3

Figure 1: Table showing the computational complexity of the search problems for different entering and
leaving deviation restrictions. Note that columns 1 and 2 are essentially equivalent, since if a player has
a Nash-feasible deviation that results in a negative payoff, she also has a sum-in feasible (and hence also
Nash-feasible) deviation, namely to form a singleton coalition.

complexity of local search, see [22, 1]. We use the PLS-
completeness of LocalMaxCut which was shown in Schäf-
fer and Yannakakis [24].

There is an extensive literature on weighted voting games,
which are formally simple coalitional games. For such a
game, a “solution” is typically a vector (or set of vectors) of
payoffs for the players, rather than a coalition structure as
in our setting; for recent work on computational problems
associated with weighted voting games see [13, 15]. Deng
and Papadimitriou [11] examined the computational com-
plexity of computing solutions for coalitional games for a
model similar to additively-separable hedonic games, where
the game is given by an edge-weighted graph, and the value
of a coalition of nodes is the sum of weights of edges in the
corresponding subgraph. Here, we study the complexity of
finding a stable set of coalitions.

2. COMPUTATIONAL COMPLEXITY OF
FINDING STABLE OUTCOMES

In this section we study the complexity of computing sta-
ble outcomes under various stability requirements. We start
by showing PLS-hardness for the case that a deviating player
needs a Tin majority in the target coalition but there is no
restriction on leaving coalitions.

Theorem 1. VoteIn is PLS-complete for any voting
threshold 0 ≤ Tin < 1.

Proof. We reduce from OneEnemyPartyAffiliation*
represented by an edge-weighted graph G = (V,E,w). Let
∆(G) be the maximum degree of a node in G. Recall that
no player is ever indifferent between the two coalitions.

First observe that the case Tin > ∆(G)−1
∆(G)

is exactly the

same as IS (for which we show hardness in Theorem 4), since
in this case one negative edge is enough to veto a player join-

ing a coalition. In the following we assume Tin ≤ ∆(G)−1
∆(G)

.

We augment G as follows:
For every negative edge (a, b) in G we introduce 2∆(G)−2

new nodes, called followers, and connect them with a and
b as shown in the Figure 2. Both, a and b, get ∆(G) − 1
followers and have a δ edge to each of them. Moreover, the
followers have also an edge of weight ε to the other node.

−

a b

ǫ

ǫ

ǫ

ǫ

ǫ

ǫδ

δ

δ

δ

δ

δ

Figure 2: Gadget used for showing that VoteIn is
PLS-complete. The gadget augments negative edges
with followers that ensure that there is always a Tin-
majority when a player enters a coalition.

Here 0 < ε < δ and δ is small enough so that the player pref-
erences of the original players (a and b) are still determined
only by the original edges. In a stable outcome the followers
will be in the same coalition as their “leader”, i.e., the node
to which they have a δ edge. The followers make sure that
their is always a Tin-majority for entering a coalition. In
other words, in a stable outcome of the VoteIn instance,
the voting doesn’t impose any restrictions.

To ensure that any stable outcome for the VoteIn in-
stance has only two coalitions we further augment G by in-
troducing two new players, called supernodes. Every player
i ∈ V has an edge of weight W >

P
e∈E |we| to each of the

supernodes. The two supernodes are connected by an edge
of weight −M , where M > |V | ·W . This enforces that the
two supernodes are in a different coalition in any stable out-
come. Moreover, by the choice of W , each player in V will
be in a coalition with one of the supernodes. The fact that
edges to supernodes have all the same weight directly im-
plies that a stable outcome for the VoteIn instance is also a
stable outcome for the OneEnemyPartyAffiliation* in-
stance. The claim follows.

In contrast to VoteIn, VoteOut is conceptually differ-
ent. In VoteOut a coalition of two players connected by
a positive edge is vote-out stable. This makes it hard to
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restrict the number of coaltions. Doing this is probably the
key for proving PLS-hardness also for VoteOut. For the
following theorem we consider a version of VoteOut where
the number of coalitions are restricted by the problem. Let
k-VoteOut be the problem of computing a vote-out stable
outcome when at most k coalitions are allowed. Observe
that for any k ≥ 2 such a vote-out stable outcome exists
and that local improvements starting from any k-partition
converge to such a stable outcome.

Theorem 2. k-VoteOut is PLS-complete for any vot-
ing threshold 0 ≤ Tout < 1 and any k ≥ 2.

Proof. Our reduction is from OneEnemyPartyAffi-
liation, but we first reduce to the intermediate problem
OneEnemyNashStable, which is a restricted version of
NashStable where each player is only incident to at most
one negative edge. Consider an instance of OneEnemy-
PartyAffiliation which is represented as an edge-weighted
graph G = (V,E,w). We augment G with two supernodes
in exactly the same way as in Theorem 1. This ensures that
any stable outcome of the OneEnemyNashStable instance
uses only two coalitions and thus is also a stable outcome for
the OneEnemyPartyAffiliation instance. Hence, OneEn-
emyNashStable is PLS-complete.

We now reduce from OneEnemyNashStable to k-Vote-
Out. Let G be the graph corresponding to an instance of
OneEnemyNashStable. Let ∆(G) be the maximum de-
gree of a node in G. We augment G as follows: We in-
troduce s · k · ∆(G) new nodes where s is an integer satis-
fying s ≥ Tout

1−Tout
. Those nodes are organized in s · ∆(G)

complete graphs of k nodes each. All the edges in the com-
plete graphs have weight −M where M is sufficiently large
(M > |V | · ∆(G) · ε will do). Moreover, we connect every
original node u ∈ V to every new node with an edge of
weight −ε, where ε > 0.

By the choice of M and since at most k coalitions are
allowed, in any stable solution there will be one node from
each complete graph in each of the k coalitions. This shifts
the utility of each player i ∈ V with respect to each coalition
by −s ·∆(G) · ε. Moreover, every original node has at least
s · ∆(G) negative edges to each coalition. Since each node
is incident to at most ∆(G) positive edges, it follows that
the fraction of negative edges to each coalition is at least
s
s+1
≥ Tout. Thus, in every stable outcome all nodes u ∈ V

have a Tout-majority for leaving their coalition. This implies
that in the corresponding outcome of the OneEnemyNash-
Stable instance, no player can improve her utility by joining
one of the k coalitions used in k-VoteOut. Moreover, in
every stable outcome the utility of each node u ∈ V with
respect to the set of original nodes V is non-negative, since
u has at most one negative incident edge in the OneEne-
myNashStable instance and k ≥ 2. It follows that a stable
outcome for the k-VoteOut instance is also a stable out-
come for the OneEnemyNashStable instance. The claim
follows.

It is an interesting open problem whether PLS-complete-
ness also holds if the restriction on the number of allowed
coalitions is dropped. Can we construct a gadget that im-
poses this restriction without restricting the problem a pri-
ori?

Since VoteIn and a restricted version of VoteOut are
PLS-complete it’s interesting to study the combination of

both problems. What happens if we require vote-in stabil-
ity and vote-out stability? With a mild assumption on the
voting thresholds Tin, Tout, we establish:

Theorem 3. For any instance of VoteInOut with vot-
ing thresholds Tin, Tout ≥ 1

2
and Tin + Tout > 1, local im-

provements converge in O(|E|) steps.

Proof. For any outcome p define a potential function
Φ(p) = Φ+(p) − Φ−(p), where Φ+(p) (resp. Φ−(p)) is the
number of positive (resp. negative) internal edges, i.e. edges
not crossing coalition boundaries. Consider a local improve-
ment of some player i from coalition p(i) to p′(i). Since
Tout ≥ 1

2
, player i has at least as many negative as posi-

tive edges to p(i). Likewise since Tin ≥ 1
2
, player i has at

least as many positive as negative edges to p′(i). So Φ(p)
cannot decrease by a local improvement. Moreover, since
Tin + Tout > 1, one of the threshold inequalities must be
strict, which implies Φ(p′) > Φ(p). The claim follows since
−|E| ≤ Φ(p) ≤ |E| and Φ(p) is integer.

Without the assumption on the voting thresholds, the com-
plexity of computing stable outcomes remains an interesting
open problem. In particular the case Tin = Tout = 1/2 is
very tantalizing.

We proceed by studying the complexity of finding stable
outcomes if a single player in the target coalition can pre-
vent (veto) a player from joining it. Observe, that the proof
of Theorem 1 does not go through for this case. In [17] it
was shown that a restricted version of IS (where in addition
to normal IS deviations, two players connected by an neg-
ative edge are allowed to swap coalitions) is PLS-complete.
Here, we show that allowing swaps is not necessary for PLS-
hardness.

Theorem 4. IS is PLS-complete.

Proof. We start with an instance of OneEnemyParty-
Affiliation*. The instance has the property that no player
is ever indifferent between the two coalitions that make up
stable outcomes. We add four supernodes which are con-
nected by a complete graph of sufficiently large negative
edges. This enforces that in any stable outcome the supern-
odes are in different coalitions, say 0, 1, 2, 3. The supernodes
are used to restrict which coalition a node can be in in a sta-
ble outcome. This is achieved by having large positive edges
of equal weight to the corresponding supernodes. All orig-
inal nodes of the OneEnemyPartyAffiliation* instance
are restricted to be 0 or 1.

We now show how to simulate a negative edge of One-
EnemyPartyAffiliation* by an IS-gadget. To do so, we
replace a negative edge (a, b) of weight −w with the gadget
in Figure 3. Nodes a and b are original nodes and restricted
to {0, 1}, node a′ is restricted to {0, 1, 2}, node b′ is re-
stricted to {0, 1, 3}, and node c is restricted to {2, 3}. As
depicted in the gadget, nodes a′ and b′ have an additional
offset to 2 and 3, respectively. Coalitions 2 and 3 are only
used locally within the gadget. The pseudocode next to the
gadget describes how the internal nodes of the gadget are
biased. Here, checking whether a node can improve is w.r.t.
her original neighborhood. We use “look at” and “bias” as
defined in the following lemma and definition, which are
analogous to those in [28, 21]. In particular, we check if
a node can improve by looking at all nodes in her original
neighborhood.
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Bias internal nodes

if a can improve then
bias c to 3
bias a′ to 2

else
bias a′ to {0, 1}
bias c to 2

end if
if b can improve then

bias b′ to 3
else

bias b′ to {0, 1}
end if

Figure 3: Gadget to replace negative edges

Lemma 1. For any polynomial-time computable function
f : {0, 1}k 7→ {0, 1, 2, 3}m one can construct a graph Gf =
(Vf , Ef , w) having the following properties: (i) there exist
s1, . . . , sk, t1, . . . , tm ∈ Vf , (ii) all edges e ∈ Ef are positive,
(iii) f(s1, . . . , sk) = (t1, . . . , tm) in any stable solution of the
hedonic game defined by Gf .

Definition 2. For a polynomial-time computable func-
tion f : {0, 1}k 7→ {0, 1, 2, 3}m we say that Gf as constructed
in Lemma 1 is a graph that looks at s1, . . . , sk ∈ Vf and bi-
ases t1, . . . , tm ∈ Vf according to the function f .

Recall that the instance of OneEnemyPartyAffiliation*
has the property that no player is ever indifferent between
the two coalitions that make up stable outcomes. By scal-
ing edge weights we can implement the “look at” required to
bias the internal nodes of the gadget without affecting their
original preferences.

We say that node a is locked by the gadget if a = 1 and
a′ = 0 or a = 0 and a′ = 1. Node b is said to be locked
accordingly. The following two lemmas describe the opera-
tion of the gadget. Both lemmas should be read with the
implicit clause: If the internal nodes (a′, b′, c) are stable.
Let ¬u denote the complement of u over {0, 1}.

Lemma 2. If neither a nor b can improve then a and b
are locked by the gadget.

Lemma 3. If a or b (or both) can improve then one im-
proving node is not locked while the other node is locked by
the gadget. Moreover, if a (resp. b) is not locked by the
gadget then b′ = ¬b (resp. a′ = ¬a).

To complete the proof we show that a stable outcome of
the IS instance is also a stable outcome for the OneEnemy-
PartyAffiliation* instance. Suppose the contrary. Then
there must exist an original node which is stable for IS
but not for OneEnemyPartyAffiliation*. Clearly such
a node must be the node a or b for some gadget. So either
a or b (or both) can improve. But then by the first state-
ment in Lemma 3 one of the improving nodes is unlocked,
say a. Since a was only incident to one negative edge in
the OneEnemyPartyAffiliation* instance, a cannot be
locked by any other gadget. Moreover, by the second state-
ment in Lemma 3, a is now connected in the gadget by a
positive edge to the node b′ and b′ = ¬b. On the one hand, if
a = b then the original edge (a, b) contributes −w to a’s util-
ity while now a receives 0 from the edge (a, b′). On the other

hand, if a 6= b then the corresponding utility contributions
are 0 and w. So if a changes strategy then the difference in
her utility w.r.t. b is the same in both problems, since we
just shifted the utility of node a w.r.t. b by w. So a is also
not stable for IS, a contradiction. This finishes the proof of
Theorem 4.

In IS a single player can veto against others joining her
coalition but there is no restriction on leaving a coalition.
The following proposition shows that adding certain leaving
conditions yields polynomial-time convergence from the all-
singleton partition.

Proposition 1. Any problem in column 3 of Figure 1
can be solved in polynomial time provided that the leaving
condition requires that the leaving node has at least one neg-
ative edge within the coalition. In particular this hold for the
problems in cells 3B, 3C, and 3D.

Proof. We use local improvements starting from the set
of singleton coalitions. Then a player can make at most
one improving step, since all edges in resulting non-singleton
coalitions will be positive, and so no player can leave such
a coalition. Hence we arrive at a stable outcome in at most
|V | improving steps.

Interestingly, requiring veto-feasablity is already enough
for polynomial-time convergence even if we have no restric-
tion on the entering condition. This stands in contrast to
Theorem 4.

Proposition 2. All problems in row C of Figure 1 can
be solved in polynomial time by local improvements using at
most 2|V | improving steps.

Proof. To get a running time of 2|V | (rather thanO(|V |2))
we restrict players from joining a non-empty coalition to
which they have no positive edge. This ensures that when-
ever a player joins a non-empty coalition then this player
(and all players to which she is connected by a positive edge
in the coalition) will never move again. Moreover, a player
can only start a new coalition once. It follows that each
player can make at most two strategy changes. In total we
have at most 2|V | local improvements.

We close this paper with a result for sumCIS. Even though
deviations are very restricted here, it is PLS-complete to
compute a stable outcome.
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Theorem 5. sumCIS is PLS-complete.

Proof. We reduce from LocalMaxCut. Consider an
arbitrary instance of LocalMaxCut with only integer edge
weights. Recall that such an instance can be cast as an in-
stance of PartyAffiliation by negating the weights of the
edges. Let G = (V,E,w) represent the PartyAffiliation
instance. For each player i ∈ V let σi be the total weight of
edges incident to player i, i.e. σi =

P
(i,j)∈E w(i,j). Observe

that σi is a negative integer. We augment G by introduc-
ing two new players, called supernodes. Every player i ∈ V
has an edge of weight −σi

2
+ 1

4
to each supernode. The two

supernodes are connected by an edge of weight −M where
M is sufficiently large (i.e., M >

P
i∈V (−σi

2
+ 1

4
)). The

resulting graph G′ represents our sumCIS instance.
Consider a stable outcome of the sumCIS instance G′.

By the choice of M the two supernodes will be in different
coalitions. Now consider any player i ∈ V . If i is not in
a coalition with one of the supernodes, then i’s payoff is
negative. On the other hand joining the coalition of one of
the supernodes yields positive payoff, since 2(−σi

2
+ 1

4
)+σi >

0. Thus, each player i ∈ V will be in a coalition with one
of the supernodes. So our outcome partitions V into two
partitions, say V1, V2.

It remains to show that any stable outcome for the sum-
CIS instance is also a local optimum for the PartyAffil-
iation instance. Assume that the outcome of the sum-
CIS instance is stable but in the corresponding outcome
of PartyAffiliation instance there exists a player i which
can improve by joining the other coalition. W.l.o.g. as-
sume i ∈ V1. Then,

P
s∈V1

w(i,s) <
P
s∈V2

w(i,s). With

σi =
P
s∈V w(i,s) and since σi is integer, we getX

s∈V1

w(i,s) ≤ σi
2
− 1

2
<
σi
2
<
σi
2

+
1

2
≤
X
s∈V2

w(i,s).

It follows that in the sumCIS instance, player i’s payoff is
negative in her current coalition V1 whereas joining V2 would
yield positive payoff. This contradicts our assumption that
we are in a stable outcome of the sumCIS instance. The
claim follows.

3. CONCLUSIONS AND OPEN PROBLEMS
Our findings comprise both positive and negative results,

some of which are somewhat surprising. There is an asym-
metry between the case of vote-in and vote-out stability. We
show that VoteIn is PLS-complete for all voting thresholds,
including Tin = 1. The case for Tin = 1, which corresponds
to the search problem IS for finding a veto-in stable out-
come, has to be treated separately from the case Tin < 1.
In contrast, we show that the case of finding a veto-out sta-
ble outcome is polynomial-time solvable. This suggests that
VoteOut is conceptually different from VoteIn. Indeed,
it seems difficult to restrict the coalitions in this case. We
do show that k-VoteOut, where we restrict the outcome to
have at most k coalitions, is PLS-complete for 0 ≤ Tout < 1,
but we leave the complexity of VoteOut as an interesting
open problem.

We show that even though requiring both sum-in and
sum-out stability is apparantly quite restrictive, the result-
ing search problem sumCIS is PLS-complete.

In terms of positive results, we show that local improve-
ments converge in polynomial time in the case of requiring
both vote-in- and vote-out- stability with Tin, Tout ≥ 0.5

and Tin + Tout > 1. We leave open the interesting case
of VoteInOut with voting thresholds that do not satisfy
Tin, Tout ≥ 1

2
and Tin + Tout > 1. We also leave open the

case of finding an outcome that is vote-in and sum-out sta-
ble.
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APPENDIX

Proof of Lemma 1
Proof. It is well known that for any polynomial com-

putable function f : {0, 1}k 7→ {0, 1}m one can construct a
circuit C with polynomial many gates that implements this
function [25, Theorem 9.30]. Clearly, we can also restrict C
to NOR gates with fan-in and fan-out at most 2. Organize

the gates in levels according to their distance to C’s output;
output gates are at level 1.

We replace each gate gi at level ` with the gadget in Fig-
ure 4. Nodes a, b are inputs and e is the output of the gate.

0

a

b

c d e

3
4ℓ

3
4ℓ

3
4ℓ−1

3
4ℓ−1

3
4ℓ−2

3
4ℓ−2

3
4ℓ−3

≤ 3
4(ℓ−1)

12

Figure 4: NOR gate

Nodes a, b and e are restricted (by supernodes) to {0, 1},
node c is restricted to {1, 2}, and node d is restricted to
{0, 2}. If a (or b) is an input of the circuit then we connect
a to the corresponding input s-node by an edge of weight
34`+1. If ` = 1, i.e. gi is an output gate, then we connect e to
the corresponding output t-node with an edge of weight 1.
Otherwise (` > 1), d is also the input to at most 2 lower
level gates. The corresponding edges have weight at most
34(`−1). In any Nash-stable solution, e = 1 if and only if
a = b = 0. In other words e = NOR(a, b). The claim
follows since our construction fulfils properties (i), (ii) and
(iii). If a component of the function output has to be 2 or 3
we slightly adjust the corresponding output NOR gate.

Proof of Lemma 2
Proof. Since neither a nor b can improve, a′ and b′ are

biased to {0, 1} and c is biased to 2. If c = 2 then the bias
on a′ assures a′ = ¬a. So b′ has an edge of weight w to
both 0 and 1. Together with the bias this implies b′ = ¬b.
If c = 3 then the bias on b′ assures b′ = ¬b. So a′ has an
edge of weight w to both 0 and 1. Together with the bias
this implies a′ = ¬a. So in both cases a′ = ¬a and b′ = ¬b.
The claim follows.

Proof of Lemma 3
Proof. We consider three cases: (i) only a can improve,

(ii) only b can improve, (iii) a and b can improve.
Case (i) (only a): Here c is biased to 3, a′ is biased to 2, and

b′ is biased to {0, 1}. First assume c = 2. This enforces
a′ = ¬a which together with the bias implies b′ = ¬b. But
then the bias on c gives c = 3, a contradiction. Thus c = 3,
which enforces b′ = ¬b and with the bias implies a′ = 2. So
a is not locked and b is locked.
Case (ii) (only b): Here c is biased to 2, a′ is biased to {0, 1},
and b′ is biased to 3. First assume c = 3. This enforces
b′ = ¬b which together with the bias implies a′ = ¬a. But
then the bias on c gives c = 2, a contradiction. Thus c = 2,
which enforces a′ = ¬a and with the bias implies b′ = 3. So
a is locked and b is not locked.
Case (iii) (a and b): Here c is biased to 3, a′ is biased to 2,

and b′ is biased to 3. If c = 2 then this enforces a′ = ¬a,
which together with the bias implies b′ = 3. So in this case
a is locked and b is not locked. If c = 3 then this enforces
b′ = ¬b, which together with the bias implies a′ = 2. So in
this case a is not locked and b is locked.

In every case both claims of the lemma are fulfilled.
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ABSTRACT

The concept of creating autonomous agents capable of exhibiting

ad hoc teamwork was recently introduced as a challenge to the AI,

and specifically to the multiagent systems community. An agent ca-

pable of ad hoc teamwork is one that can effectively cooperate with

multiple potential teammates on a set of collaborative tasks. Pre-

vious research has investigated theoretically optimal ad hoc team-

work strategies in restrictive settings. This paper presents the first

empirical study of ad hoc teamwork in a more open, complex team-

work domain. Specifically, we evaluate a range of effective algo-

rithms for on-line behavior generation on the part of a single ad

hoc team agent that must collaborate with a range of possible team-

mates in the pursuit domain.

Categories and Subject Descriptors

I.2 [Artificial Intelligence]

General Terms

Algorithms, Experimentation

Keywords

Ad Hoc Teams, Agent Cooperation: Teamwork, coalition forma-

tion, coordination, Agent Reasoning: Planning (single and multi-

agent), Agent Cooperation: Implicit Cooperation

1. INTRODUCTION
Autonomous agents, both of the software and robotic varieties,

are becoming increasingly common and accepted as a part of day to

day life. More often than not, these agents are deployed in settings

in which they are aware ahead of time of what other agents they will

encounter. In multiagent team settings, the teammates are usually

deployed at the same time and by the same developers or users.

However, as agents become more robust and therefore more re-

lied upon, they are likely to be deployed for longer periods of time

and in less controlled teamwork settings. When that happens, these

agents will need to be prepared to cooperate with many different

types of teammates. For example, in a software setting, an agent

may need to create travel plans for a client by interacting with other

agents that it has not encountered before.

Cite as: Empirical Evaluation of Ad Hoc Teamwork in the Pursuit Do-
main, Samuel Barrett, Peter Stone, and Sarit Kraus, Proc. of 10th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei,
Taiwan, pp. 567-574.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

In a recent AAAI challenge paper, Stone et al. defined an ad hoc

team setting as a problem in which team coordination strategies

cannot be developed a priori [15]. They presented an evaluation

framework for measuring the ad hoc teamwork capabilities of an

agent and summarized previous theoretical results. Although they

emphasized that the ad hoc teamwork challenge is “ultimately an

empirical challenge,” to the best of our knowledge, there have not

yet been any empirical evaluations of strategies for ad hoc team-

work.

This paper fills that gap. Specifically, using the evaluation frame-

work from the aforementioned challenge paper, we evaluate and

compare strategies for ad hoc teamwork in the popular pursuit do-

main from the multiagent systems literature [1]. In this domain,

four predators must collaborate to capture a prey. In the usual set-

ting, strategies for a full team of predators are evaluated together.

In contrast, we study the effectiveness of an individual ad hoc team

agent’s strategy when combined with various sets of teammates.

We begin with the simplest case in which the agent’s teammates

are homogeneous and behave deterministically, and the agent has

a full model of their behavior (though it only learns of this behav-

ior at the last minute: it still needs to determine its own behavior

online). We then consider progressively more difficult scenarios in

which the teammates are stochastic, heterogeneous, unknown but

drawn from a distribution of types, and eventually completely un-

known a priori. In so doing, we compare several different success-

ful methods for generating teamwork behavior online. These meth-

ods range from optimal, but computationally complex, solutions

to efficient, approximate sampling-based methods that incorporate

Bayesian updates over the space of possible teammate behaviors.

The primary contribution of this paper is the initial empirical

evaluation of ad hoc teamwork strategies. We present detailed anal-

yses of extensive controlled empirical tests comparing generally

applicable and effective algorithms for ad hoc teamwork.

The remainder of the paper is organized as follows. Section 2

describes our problem setting, including the testbed domain and

evaluation framework. Section 3 introduces the space of teammates

with which we test our ad hoc team agent, and Section 4 fully spec-

ifies the on-line behavior planning algorithms that we evaluate for

the purposes of ad hoc teamwork. Section 5 presents the main con-

tribution, namely detailed empirical results and analysis. Section 6

situates our contribution in the literature, and Section 7 concludes.

2. PROBLEM DESCRIPTION
The focus of this paper is an empirical evaluation of ad hoc

teams. To this end, we present a well defined testing domain that

requires the cooperation of a team, but still relies on each team

member performing intelligently. Also, we specify a framework for

evaluating and comparing the performance of ad hoc team agents.
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(a) Random starting
position

(b) One capture posi-
tion

(c) Another capture
position

Figure 1: Start and capture positions in the pursuit domain. The green
rectangle is the prey, the red ovals are predators, and the red oval with the
star is the ad hoc predator (the one under our control that is being evaluated).

2.1 Pursuit Domain
The pursuit domain was introduced by Benda et al. [1] and has

been used frequently in the multiagent systems literature [18]. This

problem is well suited for ad hoc team research as it requires co-

operation between the agents; no agent can accomplish the task by

itself regardless of its abilities. There are many variations of the

pursuit domain, but they all involve a set of predators whose aim

is to “capture” a prey, though the mechanics of the world and the

definition of “capture” vary. A common formulation that we adopt

is that the world is a toroidal grid and the predators must block all

possible moves of the prey. For this work, we use a single prey and

four predators, with only left, right, up, down, and no-op move-

ments. We use a simple prey behavior that moves randomly.

Note that the world is a torus, so moving off one side of the world

brings the agent back on the opposite side. This means that all four

predators are required to capture the prey; it is not possible to trap

the prey against the side of the board. Each agent can observe the

positions of all other agents, but the agents are not capable of ex-

plicit communication. Agents start in random positions and select

their actions simultaneously at each time step. Collisions are han-

dled by ordering the agents, including the prey, randomly each time

step, and performing moves in this order. If an agent’s desired des-

tination is occupied, the agent stays in its current location. Exclud-

ing collisions, all action effects are deterministic. Examples of the

starting positions and capture positions can be found in Figure 1.

2.2 Ad Hoc Team Agent
For the purpose of comparing potential ad hoc team agents, we

adopt the evaluation framework introduced by Stone et al. [15] and

reproduced in Algorithm 1. According to this framework, the qual-

ity of an ad hoc team player depends on both the domain D and the

set of possible agentsA that the ad hoc agent will interact with. The

algorithm compares agents a0 and a1 as potential ad hoc teammates

of agents drawn from the set A collaborating on tasks drawn from

domain D. Note that s(B, d) is a scalar score resulting from the

team B executing the problem d, where higher scores indicate bet-
ter team performance and smin is a minimum acceptable reward.

Throughout this paper, the domainD is the pursuit domain as de-

scribed in Section 2.1. We consider each task d ∈ D to be defined

by the starting positions of the agents, the sequence of moves to be

made by the prey, and the agent orderings for collisions. Therefore,

if two different ad hoc agents perform the same actions on the same

task, they will end with the same reward. The possible teammates

comprising the set A are described next in Section 3.

3. AGENT DESCRIPTIONS
In order to meaningfully test our proposed ad hoc teamwork al-

gorithms, we implemented four different predator algorithms with

varying and representative properties. The deterministic greedy

predator mostly ignores its teammates’ actions while the determin-

istic teammate-aware predator tries to move out of the way of its

teammates, but it also assumes that they will move out of its way

Algorithm 1 Ad hoc agent evaluation

Evaluate(a0 , a1 , A, D):

• Initialize performance (reward) counters r0 and r1 for agents

a0 and a1 respectively to r0 = r1 = 0.
• Repeat:

– Sample a task d from D.

– Randomly draw a subset of agents B, |B| = 4, from A
such that E[s(B, d)] ≥ smin.

– Randomly select one agent b ∈ B to remove from the

team to create the team B−.
– Increment r0 by s({a0} ∪B−, d)
– Increment r1 by s({a1} ∪B−, d)

• If r0 > r1 then we conclude that a0 is a better ad hoc team

player than a1 in domain D over the set of possible team-

mates A. Similarly, if r1 > r0 then a1 is better.

when needed. We expect these differences to require the ad hoc

agent to adapt and reason about how its actions will interact with its

teammates’ actions. In addition to these two deterministic agents,

we created two stochastic agents that select an action distribution at

each time step. We expect it to be fairly trivial for the ad hoc agent

to differentiate the deterministic agents, but harder to differentiate

the stochastic agents. Finally, we tested our agent’s ability to coop-

erate with a number of other agents for which it had no model.

(a) Configuration 1 (b) Configuration 2

Figure 2: World configurations that differentiate the predators’ behaviors.

We will now introduce some notation to simplify the predator

descriptions. Assume that a predator is at position (x, y) and is

trying to move to a destination (x′, y′) on a world of size (w, h).

∆x = (x′ − x)modw ∆y = (y′ − y)modh
dimmin = argmin(∆x, ∆y) dimmax = argmax(∆x, ∆y)

mi = argmin
moves

∆i

Thus, mi is the move that minimizes the difference to the destina-

tion for dimension i, and mi is the move in the opposite direction.

The stochastic agents use the softmax activation function, which

assigns probabilities to a set of values, favoring the higher values.

The temperature, τ , controls the amount of this bias, with values

closer to 0 resulting in higher probabilities of the maximum value.

If v(i) is the value of option i, the probability of option a is

p(a) =
exp(v(a)/τ)

∑n
i=1 exp(v(i)/τ)

To clarify the predators’ behaviors, we will show examples of

their action selection on the cases shown in Figure 2, looking at the

actions taken by the starred agent. The letters in the figure indicate

the destination of the agent after taking one step. Note that none

of the predators we created ever choose to stay still, so we do not

label that action here.

3.1 Greedy Predator
The greedy predator selects the nearest unoccupied cell neigh-

boring the prey, and tries to move towards it while avoiding imme-

diate obstacles. It follows the following rules in order.
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• If already neighboring the prey, try to move onto the prey so

that if it moves, the predator will follow.

• Choose the nearest unoccupied cell neighboring the prey as

the destination.

• Let d = dimmax. If md is not blocked, take it.

• Let d = dimmin. If md is not blocked, take it.

• Otherwise, move randomly.
For example, using the configurations shown in Figure 2 and tak-

ing actions as the starred agent, if the starred agent were a Greedy

predator, it chooses the move taking it to cell C in configuration 1,

and B in configuration 2. On average, a team of all Greedy preda-

tors captures the prey in 7.74 steps on a 5x5 world.

3.2 Teammate-aware Predator
The teammate-aware predator considers its teammates’ distances

from the prey when selecting its destination and uses A* path plan-

ning (an optimal heuristic search algorithm) [10] to avoid other

agents, treating them as static obstacles. In contrast to the greedy

predator, a teammate-aware predator that is already neighboring the

prey may move towards another neighboring cell to give its spot to

a farther away teammate. It is implemented as follows.
• Calculate the distance from each predator to each cell neigh-

boring the prey.

• Order the predators based on worst shortest distance to a cell

neighboring the prey.

• In order, the predators are assigned the unchosen destination

that is closest to them (without communication), breaking

ties by a mutually known ordering of the predators.

• If the predator is already at the destination, try to move onto

the prey so that if it moves, the predator will follow.

• Otherwise, use A* path planning to select a path, treating

other agents as static obstacles.
For the configurations shown in Figure 2, a Teammate-aware preda-

tor in the position of the starred predator chooses the move taking it

to cell D in configuration 1, and C in configuration 2 (note that since

the world is a torus, this is a single move). A team of Teammate-

aware predators captures the prey in 7.41 steps on a 5x5 world.

3.3 Greedy Probabilistic Predator
The greedy probabilistic predator moves towards the nearest cell

neighboring the prey, but does not always take a direct path there.

The predator favors minimizing dimmax and prefersmdim overmdim.

• If already neighboring the prey, try to move onto the prey so

that if it moves, the predator will follow.

• Choose the nearest unoccupied cell neighboring the prey as

the destination.

• Given a destination, choose a dimension, d, to minimize us-

ing the softmax function with temperature 0.5 using the dis-

tance as v.
• Choose either md or md using the softmax function with

temperature -0.5, using the distance after the move as v, but
penalizing moves that are currently blocked.

On configuration 1 from Figure 2, the predator is deterministic,

choosing the action taking it to position C. On configuration 2, it

selects a distribution of actions, specifically the moves taking it to

cells A, B, C, and D with probabilities 0.000, 0.879, 0.119, and

0.002. On a 5x5 world, a team of Greedy Probabilistic predators

captures the prey in 12.88 steps.

3.4 Probabilistic Destinations Predator
The probabilistic destinations predator attempts to tighten a cir-

cle around the prey. It favors destinations that are both nearer to the

prey and to itself, but may choose farther destinations to prevent

getting stuck on other predators and dealing with a moving prey.

• If already neighboring the prey, try to move onto the prey so

that if it moves, the predator will follow.

• Select a desired distance from the prey using the softmax

function with temperature -1 using the distance as v.
• Select a destination at the chosen distance using the softmax

function with temperature -1 weighted by the distance of the

destination to the predator’s current position.

• Let d = dimmax, and select md.

• If the destination or the next position is occupied, repeat.

For the configurations in Figure 2, a Probabilistic Destinations preda-

tor would select the move ending in C in configuration 1. On con-

figuration 2, it would select actions taking it to cells A, B, C, and

D with probabilities 0.007, 0.596, 0.388, and 0.009. A team of

predators following the Probabilistic Destinations behavior capture

in 9.19 steps on a 5x5 world.

3.5 Student-created Predator
In some situations, an ad hoc team agent may be aware of the

space of possible behaviors from which its teammates are drawn.

However in other cases, it may not know anything about them. To

fairly test the latter scenario, we incorporated into our testing a

number of agents that we did not create. Specifically, we used a

set of agents created by undergraduate and graduate Computer Sci-

ence students for an assignment in a workshop on agents. These

students were initially provided with a skeleton agent and then it-

eratively improved their agent.

As one might expect from a class, there was a wide variety in

the quality of the agents that were submitted. In order to ensure a

base level of competence, we only considered agents that were able

to capture the prey within 15 steps on average on a 5x5 world (i.e.

smin = 15 in Algorithm 1). Out of the 41 agents submitted, 12 of

the agents met this threshold.

Due to space constraints, we cannot fully describe all of the stu-

dent agents used, but here we highlight some interesting cases. One

student focused on avoiding collisions at cells neighboring the prey.

Therefore, this student assigned the predators an arbitrary ordering

and had each predator only consider blocking a specific direction

chosen based on the assigned ordering. This strategy works if all

the predators have mutually complementary assignments, but can

create inefficiencies when the predators start far from their desired

blocking directions.

The highest performing agent from the class performed better

than any of our agents on the 5x5 world, capturing in only 4.05

steps on average. This agent considers all the cells neighboring the

prey, and then considers all possible assignments of these destina-

tions to the predators. For each possible assignment, it calculates

the distance from each predator to its destination. Then, it chooses

the assignment that minimizes the sum of these distances. Finally,

each predator chooses the move that minimizes its distance to the

selected destination. This agent performs quite well, although it

does not seek to avoid collisions among the predators.

4. PLANNER DESCRIPTIONS
As is clear from the evaluation framework described in Sec-

tion 2.2, the main thing that distinguishes one ad hoc team agent

from another is its strategy for planning and selecting actions as a

function of the current task d and current set of teammates B−. In
this section we describe the ad hoc teamwork planning algorithms

that we test in this paper.

One might think that the most appropriate thing for an ad hoc

team agent to do is to “fit into” the team by following the same be-

havior as its teammates. However, in some cases, it is possible for
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the ad hoc team agent to improve on this or even solve for the opti-

mal behavior, if the agent has a full model of its teammates’ behav-

iors. Even without such a model, the ad hoc agent can approximate

the optimal behavior. Indeed, in our tests, we found situations in

which model-based planning even with an imperfect model outper-

forms the ad hoc agent mimicking its teammates’ behaviors.

In some cases, the ad hoc team agent may “recognize” its team-

mates and be able to use its stored knowledge of their behaviors to

plan its own actions. This situation is still an ad hoc team setting

because the agent must generate its strategy on-line: it does not

know in advance whom its teammates will be.

4.1 Value Iteration
When there is a fully known model of the environment and each

agent, the ad hoc team agent can treat the domain as a Markov

Decision Process (MDP) and can solve for the optimal behavior

using Value Iteration (VI) [19]. Value iteration relies on dynamic

programming to solve the optimal state-action values for all state-

action pairs. VI initializes the state-action values arbitrarily, and

then improves these estimates using an update version of the Bell-

man optimality equation:

Q(s, a) =
∑

s′
P a

ss′

[

Ra
ss′ + γ max

a′ Q(s′, a′)
]

where Q(s, a) is the long term expected reward of taking action a
from state s, P a

ss′ is the probability of transitioning from state s to

state s′ after taking action a, Ra
ss′ is the corresponding reward, and

γ is the discount factor. These updates are repeated iteratively until

convergence. The state-action values calculated by VI are guaran-

teed to be correct.

However, the problem space is exponential in the size of the

world, with a power proportional to the number of agents. The use

of symmetries can reduce the size of this space, but in our tests, VI

on a 5x5 world took approximately 12 hours on the [[removed for

blind review]] computing cluster. Due to the exponential blowup

of the state space, there are 1005 states in a 10x10 world (without

using symmetries) as opposed to 255 in a 5x5 world, so running VI

on larger worlds was unfeasible.

4.2 Monte Carlo Tree Search
When the state space is large and only small sections of it are

relevant to the agent, it can be advantageous to use a sample-based

approach to approximating the values of actions, such as Monte

Carlo Tree Search (MCTS). Specifically, we use the MCTS algo-

rithm called Upper Confidence bounds for Trees (UCT) as a start-

ing point for creating our algorithm [13].

MCTS does not require the complete model of the environment;

it only needs a way of sampling the effects of selected actions. Fur-

thermore, rather than treating all of the state-actions as equally

likely, UCT focuses on calculating only the values for relevant

state-actions. UCT does so by performing a number of playouts

at each step, starting at the current state and sampling actions and

the environment until the end of the episode. It then uses these

playouts to estimate the values of the sampled state-action pairs.

Also, it maintains a count of its visits to various state actions, and

estimates the upper confidence bound of the values to balance ex-

ploration and exploitation. UCT has been shown to be effective in

games with a high branching factor, such as Go [7], so it should be

able to handle the branching factor caused by the number of agents.

We modify UCT to use eligibility traces and remove the depth in-

dex to help speed learning in the pursuit domain. The pseudocode

of the algorithm can be seen in Algorithm 2, with s being the cur-

rent state. Similar modifications were made by Silver et al. with

good success in Go [14].

Algorithm 2 The Monte Carlo Tree Search algorithm used by our

ad hoc agent.

function Select(s):
for i = 1 to NumPlayouts do

Search(s)
return a = argmax

a
Q(s, a)

function Search(s):
a = bestAction(s)
while s is not terminal do

(s′, r) = simulateAction(s, a)
a′ = bestAction(s′)
e(s, a) = 1
δ = r + γQ(s′, a′)−Q(s, a)
for all s∗, a∗ do

Q(s∗, a∗) = Q(s∗, a∗) + e(s∗, a∗) ∗ δ/visits(s∗, a∗)
e(s∗, a∗) = λe(s∗, a∗)

s = s′; a = a′;

4.3 Planning for uncertainty
Both of the planners described above assume that some kind of

a model of the environment is known. However, it is likely that the

ad hoc team agent has some uncertainty about the behavior of its

teammates. One possibility is that the agent has a prior probability

distribution over a set of possible behaviors, representing its belief

of the likelihood of its teammates following this behavior. As the

ad hoc agent gets more information about the agents from their

actions, it should update its belief using Bayes theorem:

P (model|actions) =
P (actions|model) ∗ P (model)

P (actions)

If the agent has a complete model of each of the teammate types and

a prior beliefP (model), it can calculateP (actions|model). Finally,
P (actions) can just be treated as a normalizing factor, to make the

probabilities of the various models sum to 1.

Using this method, the MCTS-based agent can keep track of the

probabilities of the different behaviors, and sample the environment

accordingly. For Value Iteration, the exact solution requires recal-

culating the correct Q-values for each new set of probabilities, but

this was not feasible for our tests. Therefore, we approximate the

VI solution using a linear combination of the Q-values learned for

each set of teammates:

Q(s, a) = p1 ∗Q1(s, a) + p2 ∗Q2(s, a) + . . . + pn ∗Qn(s, a)

where pi = P (modeli|actions) and Qi(s, a) are the Q-values cal-
culated for modeli. Note that this is not guaranteed to be correct,

but it works well in practice and gives us a baseline of how well

an ad hoc agent can do. However, this approach still requires the

ad hoc agent to know that the teammates are using one of several

known behaviors.

4.4 Learning to model teammates
Sometimes the ad hoc agent will encounter teammates that do

not come from its set of known behaviors, so it may need to learn

a model of these teammates. To learn a model of the teammates,

we used an implementation of the C4.5 algorithm for generating

decision trees, provided in WEKA [9]. The decision tree was given

the absolute x and y coordinates of each agent in the world, and

attempted to predict the action that the agent would take in that

world state. However, the ad hoc agent does not directly observe

its teammates’ actions; it only observes the results of the actions.

For the training data, these actions were approximated by observing
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the agents’ movements. If the agent did not move, it may have

chosen not to move or it collided, so the decision tree is given both

possibilities, weighted by the probability that each occurred.

In this case, the ad hoc agent starts with no information about

these agents and has only a single episode to learn about its team-

mates, so it must adapt over a short period of time. In this paper, we

assume that all the teammates are running the same algorithm, so

we use a single decision tree to learn about the behaviors of all the

teammates. Thus the decision tree is given three additional obser-

vations of the agents’ actions at each time step. The ad hoc agent

continues to use its set of known models to plan as it builds the

model, tracking the probabilities of these models and the learned

model using the Bayesian updates as in Section 4.3. The idea is

that the agent will use the known models for its initial planning

until it encounters actions that these models would not predict, at

which time it will increase its reliance on the learned model.

Due to the extreme paucity of data available to the learner, it

would be difficult to learn a useful model over the course of a single

episode. Surprisingly, our empirical results in Section 5.6 indicate

that this form of model learning is beneficial.

5. RESULTS
In this section, we evaluate and thoroughly analyze the planning

algorithms in Section 4 in a series of increasingly open-ended ad

hoc team scenarios. These results constitute the main contribution

of this paper.

In all of our experiments, we use the evaluation framework dis-

cussed in Section 2.2. For each test, D is the set of all valid start-

ing positions of the agents. For each episode, the starting position

is randomly selected, but these positions are held constant across

evaluations of the different agents. Similarly, other random factors

such as the prey’s action selection and collision tie-breakers are

fixed with the starting positions. Therefore, if two ad hoc agents

execute the same sequence of actions on the same problem, their

results will be exactly the same. This approach controls for ran-

domness in the environment and makes differences in the ad hoc

agent’s behavior the only cause for differences in the results.

For the first set of experiments, we assume that the behavior of

the teammates is known at the start of the episode (though not be-

fore), and that this behavior is deterministic (Section 5.1). Even

though the ad hoc team agent has a full model of its teammates,

this scenario is still an ad hoc teamwork setting because there is no

opportunity for the team to coordinate prior to starting the task: the

agent must determine its strategy online. In the second set of ex-

periments, we relax the constraint that the teammates’ behavior is

deterministic and investigate stochastic agents (Section 5.2). Next,

we explore the performance of the ad hoc agents when the team-

mates’ behavior is not exactly known, but is instead known to be

drawn from a set of known behaviors (Section 5.3). Then, we mix

the teammate types to see how the ad hoc agent could cope with

unplanned teams and select the correct model from a large set of

possible models (Section 5.4). In Section 5.5, we test against a set

of agents that we did not create and that do not fit the models given

to the ad hoc agent. Finally, we enable the agent to learn models on

the fly to deal with these agents (Section 5.6).

For these tests, we compare against value iteration on the 5x5

worlds as it defines the optimal policy for the ad hoc agent, but we

were unable to practically run VI on larger worlds as discussed in

Section 4. In the graphs, we use VI(Greedy) and MCTS(Greedy)

to indicate that the planning was performed treating the teammates

as Greedy Predators, and we do likewise for VI(Teammate-aware),

etc. Note that all of the predators on a team follow the same behav-

ior for Sections 5.1–5.3, but not necessarily for Sections 5.4–5.6.

In all cases, a lower number on the graphs is better, as it means

that it took fewer steps to capture the prey. All results are aver-

aged for 1,000 runs, but note that the ad hoc agent does not keep

any knowledge between runs. All statistical tests are performed as

paired Student-T tests to control for the randomness caused by the

starting positions of the tests. The error bars shown are given as σ
n
,

where σ is the standard deviation of the lengths of the runs and n
is the number of runs (1,000).

5.1 Deterministic known teammates
For our initial tests, we consider the simple case in which the ad

hoc agent has an exact model of its teammates and its teammates

are deterministic (either Greedy or Teammate-aware). These tests

are designed to determine whether the ad hoc agent can do better

than just mimicking its teammates, and how effective MCTS is at

approximating the optimal behavior found by VI.

(a) 5x5 World (b) 10x10 World

(c) 20x20 World

Figure 3: Results with known deterministic teammates.

The results in Figure 3 show that the ad hoc agent can do much

better than just copying the behavior of its teammates. Following

the optimal behavior found by VI achieves capture in 5.19 and 5.92

steps respectively when cooperating with Greedy and Teammate-

aware teammates as opposed to 7.74 and 7.41 steps when mim-

icking their behavior. These differences are statistically significant

with p < 0.001. The improvements of planning over mimicking

the teammates increase as the worlds get larger, although we use

MCTS to approximate the optimal behavior for these worlds.

We verify that this use of MCTS is not much of a compromise,

since it performs nearly as well as VI despite using much less com-

putation time. In the 5x5 world, it takes 5.50 and 5.92 steps to

capture with Greedy and Teammate-aware agents, as opposed to

VI’s 5.19 and 5.66 steps. The difference with the Greedy team-

mates is statistically significant (p = 0.0244), but the difference

with the Teammate-aware teammates is not significant. The differ-

ence in performance could be lowered by using more playouts in

the MCTS at the cost of more computation time. Given the close

approximation to optimal that MCTS provides, the most important

difference between the methods is the time it takes to plan. On the

5x5 world, MCTS episodes take on average less than a minute com-

pared to VI’s 12 hour computation (although VI only needs to run

once, rather than for each episode). Furthermore, MCTS is an any-

time algorithm, so it can be used to handle variable time constraints

and can modify its plan online as the models change.

The results also show that having an incorrect model of your

teammates can be costly. Even simply playing the Teammate-aware

behavior when your teammates play Greedy hurts the team by a

large amount. Intuitively, this seems odd as the ad hoc agent play-
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ing smarter should help the team, but the Teammate-aware behavior

relies on its teammates also moving out of its way, which will not

happen with Greedy teammates. Planning as if your teammates are

Greedy, when in fact they are Teammate-aware is costly when mim-

icking their behavior or when planning using VI or MCTS. On the

5x5 world, using the wrong model results in taking 13.75, 9.92, and

9.97 steps to capture for the mimic, VI, and MCTS cases, respec-

tively, when the teammates are in fact Teammate-aware as opposed

to 7.41, 5.66, and 5.92 steps when using the correct models.

5.2 Known stochastic teammates
We now consider the case where the ad hoc agent once again

has an exact model of its teammates, but this time its teammates’

behavior is stochastic (either Greedy Probabilistic or Probabilis-

tic Destinations). The goal was to test whether the ad hoc agent

could plan for agents choosing from several possible actions at any

time step. VI uses the entire probability distribution of possible

outcomes to update its values, while MCTS samples from this dis-

tribution to approximate the values.

(a) 5x5 World (b) 10x10 World

(c) 20x20 World

Figure 4: Results with known stochastic teammates.

Figure 4 shows that theMCTS-based and VI-based agents are ca-

pable of planning with this uncertainty, and still significantly out-

perform mimicking the behavior of its teammates. Similar to the

deterministic results, MCTS performs nearly as well as VI taking

7.84 and 6.07 steps versus 7.63 and 5.82 steps with Greedy Prob-

abilistic and Probabilistic Destinations teammates respectively on

the 5x5 world. These differences are significant, but MCTS still

does a good job of approximating the optimal behavior.

On the larger worlds, the performance of MCTS is much bet-

ter than copying its teammates. For example, on the 20x20 world,

the MCTS-based agent takes 24.00 steps to capture when cooperat-

ing with Greedy Probabilistic teammates compared to 78.48 steps

when mimicking the teammates’ behavior. Similarly, the MCTS-

based agent takes 24.39 steps rather than 173.46 steps when paired

with Probabilistic Destinations teammates.

Unlike the deterministic case, using an incorrect model for the

teammates is not a large penalty with these agents. We believe that

this is due to the overlap in the possible actions taken, and that

the plans must be fairly robust to unexpected actions due to the

stochasticity of the teammates.

5.3 Unknown stochastic teammates
Expanding the problem once again, all four predators used in the

previous tests were used for this test, i.e. the Greedy, Teammate-

aware, Greedy Probabilistic, and Probabilistic Destinations behav-

iors were used. Furthermore, the ad hoc agent did not know which

of the four types of behavior its teammates were using. This setting

gets us closer to the general ad hoc teamwork scenario, because it

shows how well an ad hoc agent can do if it only knows that its

teammates are drawn from a larger set A of possible teammates.

If it has a set of possible models for its teammates, ideally the

ad hoc agent should be able to determine which model is correct

and plan with that model appropriately. The VI and MCTS agents

use the algorithm described in Section 4.3 to calculate the proba-

bilities of each model. For both the MCTS and VI based ad hoc

agents, we used a uniform prior over the teammate types, but as-

sume that its teammates are homogeneous; i.e. there were no teams

with some agents following the Greedy behavior and others follow-

ing the Teammate-aware behavior. It is fairly trivial to differentiate

the deterministic agents because as soon as they take one action that

does not match the deterministic behavior, that incorrect model can

be removed. However, the stochastic teammates are more difficult

to differentiate, as there is significant overlap in the actions that are

possible for them to take.

(a) 5x5 World (b) 10x10 World

(c) 20x20 World

Figure 5: Results with unknown stochastic teammates. MCTS(All) means
that the MCTS-based agent planned considering all homogeneous teams
of the known predator models according to the current probabilities of the
models.

The results in Figure 5 show that both the VI and MCTS agents

perform well despite this uncertainty and determine which model

its teammates are following when given the set of possible models.

These results are not quite as good as if the agent had the correct

models to start with, but still perform quite well. For example,

on the 20x20 world, if the ad hoc agent knew its teammates were

using the Probabilistic Destinations behavior, it took 26.14 steps to

capture, while if it needed to select the correct model, it took 27.83

steps. On the other hand, if it mimicked its teammates, the team

would have taken 173.46 steps to capture the prey.

5.4 Mixed stochastic teammates
To this point, all of the teammates have used the same behavior, a

fact which was known to the ad hoc team agent. In this section, we

remove that restriction, thus significantly increasing the size of the

possible set of agents A, specifically from 4 to 43 = 64 possible

teams. Doing so again moves us towards the general ad hoc team

problem, where teammates may be following a variety of behaviors

and may not be coordinating with one another.

Note that the teammate types were fixed for each problem, so

this variance does not affect the different ad hoc agents’ evalu-

ation. As shown in Figure 6, following any of the fixed preda-

tor types achieved fairly poor results. However, the MCTS-based

agent with the knowledge that any mix of the teammates was pos-
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sible performs quite well. It learns which behaviors its teammates

are likely to be following and adapts appropriately. For example,

on the 20x20 world, the MCTS agent takes 20.19 steps to capture

rather than 96.32 if it randomly chooses a model to mimic (labeled

“Mixed” in the graphs). We were unable to run VI on this case, as it

would have had to learn the optimal behavior for each combination

of agents (43 = 64 possible teammate combinations).

(a) 5x5 World (b) 10x10 World

(c) 20x20 World

Figure 6: Results with mixed teams of stochastic teammates. The Mixed re-
sults are from the ad hoc agent randomly choosing a known predator model
to mimic. MCTS(Mixed) refers to a MCTS-based agent that plans con-
sidering all heterogeneous teams of the known predator models, sampled
according to the current probabilities of the models.

5.5 Unmodeled teammates
To this point, the ad hoc team agent has always had the benefit of

a full model of all the teammates in A, even when it has not known

a priori which types its teammates were. We now consider the case

where there are agents in A for which the ad hoc team agent does

not have a prior behavior model. Instead, we give the agent the

same four models from before, and see how well it handles agents

not following those models. To make sure we have not biased the

creation of these agents, and that they truly are unknown, we used

the student agents described in Section 3.5. Note that all the agents

on each team used here are produced by the same student: we did

not mix and match agents from different students. However, on

some of the students’ teams, not all of the agents use the same

behavior. As before, the ad hoc agent does not store information

between trials, so any learning happens during a single episode.

In this section, the ad hoc agent maintains the probabilities of the

four known models as before and samples from this distribution.

It does not actively consider the possibility that the teammates are

unknown. Also, it assumes that all its teammates are using the same

model, so it does not consider heterogeneous teams of the known

models. Note that it is possible for the probability of all models to

drop to 0 after a move if no known model would select that move.

In this case, the agent just maintains the previous probabilities.

The results in Figure 7 show that the ad hoc agents do quite well

despite the incorrect models. For example, on the 20x20 world,

the MCTS agent captures in 26.47 steps rather than in 37.83 steps

if it followed the student’s behavior for the fourth agent. This is

surprising because one would assume that planning using an incor-

rect model would perform worse than playing the behavior of the

student’s agent that the ad hoc agent replaced. Also, if the ad hoc

agent follows any single one of its known models, it performs much

worse than this baseline. So the ability to adapt and select the best

known model at that time helps the ad hoc agent. This experiment

shows that it is possible for an agent to cooperate with unknown

teammates by using a set of known, representative models.

(a) 5x5 World (b) 10x10 World

(c) 20x20 World

Figure 7: Results with student teams.

5.6 Learning to model teammates
In Section 5.5, the ad hoc agent tried to deal with the unknown

agents as if they were one of the known models. Although this

works fairly well in practice, the other agents may differ signif-

icantly from the known models, so it is desirable for the ad hoc

agent to learn to model these agents as in Section 4.4. However,

the ad hoc agent is given a very short time to learn, so we still use

the set of known models and add an extra model that will be learned

on the fly.

The results in Figure 8 show that learning a model of the team-

mates can improve performance over pretending that the teammates

are following a known algorithm. Specifically, the MCTS-based

agent using the learned model captured the prey in an average of

7.98 steps, as opposed to 10.26 when the agent only considered

the known models. Furthermore, this is also an improvement over

using the student’s fourth agent, which captured in 10.40 steps on

average.

This positive result is surprising due to the small number of train-

ing examples given to the agent. The episodes only lasted about

nine steps on average, so the decision tree was being trained on

only 27 training examples by the end of an episode on average.

However, the learned model does not need to represent the entire

action model of the teammates: only the states which occur. The

visited number of states is likely to be small, and teammates are

likely to act similarly in the visited states. Therefore, this model is

much simpler to learn than a complete model. Also, we believe that

a main advantage of learning the model was to prevent situations

in which the agents became stuck due to collisions and incorrect

predictions of the ad hoc agent.

The known models also provide a good starting point for the ad

hoc agent, and it may not need to rely on the learned model too

much. In our tests, for the final step of each episode, the ad hoc

agent put 0.67 weight on the learned model on average, and that

model was correct only 0.26 of the time. So the agent relied on the

model, despite its inaccuracies. We theorize that the good perfor-

mance of the system is due to the fact that it increases the options

that the ad hoc agent considers, preventing it from being restricted

to the actions of the known models. By itself, it is unlikely that this

model would be sufficient for the agent, but when the agent uses

both the learned and known models, it performs quite well.

6. RELATEDWORK
The ad hoc team formulation and evaluation framework was pro-

posed by Stone et al. [15], and there have been a few theoretical

analyses of specific applications of ad hoc teams [16, 17]. Other
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(a) 5x5 World

Figure 8: Results of learning models with student teams.

work in this area (though prior to the introduction of the ad hoc

teamwork challenge) includes Brafman and Tennenholtz’s work in

which one agent teaches another while engaging in a repeated joint

activity [2]. Knudson and Tumer have also investigated ad hoc

teams, but in a significantly different framework [12]. Unlike our

work, all of their agents adapt, and each agent is given a clear metric

of its effect on the team’s performance in the form of a difference

objective. Furthermore, they learn over 2,000 episodes rather than

our single episode. On the other hand, most prior work on coordi-

nating teams of agents relies on explicit protocols for coordinating

such as SharedPlans [8], STEAM [20], and GPGP [6]. Our work

does not require these shared protocols, and does not even require

the teammates to know of the ad hoc agent’s existence.

The ad hoc team framework is similar to the existing opponent

modeling problem. The ad hoc agent needs to model and under-

stand its teammates, just from observing their actions, similar to

opponent modeling. However, the ad hoc agent does not need to

assume the worst case scenario; its teammates are not rational ad-

versaries. In the area of opponent modeling, Conitzer and Sand-

holm created AWESOME, an algorithm that achieves convergence

and rationality in repeated games [5]. Furthermore, Chakraborty

and Stone have developed an algorithm for repeated games that

handles arbitrary opponents safely and exploits memory bounded

opponents [4]. This work makes weak assumptions about the ad-

versaries, but it requires long learning times and assumes that all

agents can calculate the same Nash equilibrium. Our work makes

stronger assumptions about our teammates, but learns faster and

makes no requirements about calculating Nash equilibria.

The pursuit domain is a well studied problem in multiagent re-

search [18], but most research has focused on developing a coor-

dinated team. However, some work has been done on learning to

adapt to teammates. Chakraborty and Sen focus on having team-

mates teach novice predators, but they assume that the novices are

trying to learn and share a known training protocol [3]. On the

other hand, we assume that there is no shared protocol for training

agents, and that there is only a single episode in which to adapt.

Other work in the pursuit domain includes MAPS [21], which con-

siders partially observable environments and more sophisticated

prey behaviors, but require shared coordination algorithms. Alter-

natively, some approaches consider partial observability in contin-

uous worlds [11]. However, these approaches focus on creating an

entire team to solve the pursuit problem, rather than considering the

case where some teammates are already following fixed behaviors.

7. CONCLUSIONS AND FUTUREWORK
This work presents the first empirical investigation of ad hoc

teams, and establishes the pursuit domain as a useful domain for

testing ad hoc teams. We show that an ad hoc team agent can do

better than mimicking its teammates, and that efficient planning is

possible using MCTS. Additionally, the ad hoc agent can differen-

tiate its teammates on the fly when given a set of known starting

models. We show that even if these models are incorrect or incom-

plete, as long as they are representative, they can be used to provide

good performance. Finally, we show that it is possible to quickly

learn models for previously unseen teammates, using known mod-

els until an accurate model is learned.

As the initial empirical investigation of ad hoc teams, this pa-

per opens up several possible avenues for future research. In this

work, we only considered teammates following fixed behaviors,

and we assume that there is no explicit communication between

teammates. Our ongoing research agenda includes extending to

teammates that themselves learn, as well as considering the effects

of a capability for partial communication among the agents. For

example, the agents may then be able to communicate their desired

destinations. Finally, all of the results in this paper were reported

in the pursuit domain. Testing whether the same algorithms exhibit

the same properties in a variety of other domains is also an impor-

tant direction for future empirical research.
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ABSTRACT
The behavior composition problem involves realizing a virtual tar-
get behavior (i.e., the desired module) by suitably coordinating the
execution of a set of partially controllable available components
(e.g., agents, devices, processes, etc.) running in a shared partially
predictable environment. All existing approaches to such prob-
lem have been framed within strict uncertainty settings. In this
work, we propose a framework for automatic behavior composition
which allows the seamless integration of classical behavior compo-
sition with decision-theoretic reasoning. Specifically, we consider
the problem of maximizing the “expected realizability” of the tar-
get behavior in settings where the uncertainty can be quantified.
Unlike previous proposals, the approach developed here is able to
(better) deal with instances that do not accept “exact” solutions,
thus yielding a more practical account for real domains. Moreover,
it is provably strictly more general than the classical composition
framework. Besides formally defining the problem and what counts
as a solution, we show how a decision-theoretic composition prob-
lem can be solved by reducing it to the problem of finding an opti-
mal policy in a Markov decision process.

Categories and Subject Descriptors
I.12.4 [Artificial Intelligence]: Knowledge Representation For-
malisms and Methods.

General Terms
Theory, Verification, Algorithms.

Keywords
Behavior composition, decision theory, synthesis.

1. INTRODUCTION
In this work, we develop a decision theoretic account for be-

havior composition, that is, the problem of synthesizing a smart
controller that is able to realize a virtual (i.e., non-available) tar-
get behavior module by suitably coordinating a set of available be-
haviors acting in a shared environment. Such problem has been
extensively studied in the web-service composition literature (e.g.,
[1, 2]), where behaviors are deterministic and represent services,
and more recently within the AI literature in more general settings

Cite as: Decision Theoretic Behavior Composition, Yadav, N. and Sar-
dina, S., Proc. of 10th Int. Conf. on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone
(eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 575-582.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

(e.g., [5, 10, 11]), where nondeterministic behaviors may stand for
the logic of various artifacts, such as agents or agents’ high-level
plans, physical devices, business processes, or software modules.
Nonetheless, all approaches to behavior composition have assumed
a setting of strict uncertainty [6], in that the incomplete informa-
tion, for example, on the dynamics of the environment or on that
of the available behaviors, cannot be quantified in any way. Hence,
classical behavior composition problems may only accommodate
exact solutions, that is, controllers that will guarantee the realiza-
tion of the given target module no matter what. In many settings,
however, while exact solutions may not exist, the ability to obtain
a controller realizing the target module to the highest degree—the
“optimal” controller—is desirable.

In order to better deal with non-solvable behavior composition
instances, a framework in which different non-exact controllers can
be compared is required. To that end, we propose an extension of
the classical composition problem that goes beyond strict uncer-
tainty, by accommodating ways of quantifying the different uncer-
tainties in the model. Following the literature in behavior composi-
tion, we abstract the actual behaviors and environment as finite state
transition systems. More precisely, each available module is rep-
resented as a nondeterministic transition system (to model partial
controllability); the target behavior is represented as a determinis-
tic transition system (to model full controllability); and the environ-
ment, which is fully accessible by all behaviors, is represented as a
nondeterministic transition system (to model partial predictability).

As one can observe, in the above model, there are three sources
of uncertainty stemming from the potential nondeterminism in both
the environment and the available behaviors as well as in the po-
tential different transitions in the target behavior. In the extended
behavior composition framework to be developed here, all three
uncertainties can be quantified. Note this is a reasonable assump-
tion in many realistic settings, in which such information is readily
available to the modeller. Consider a domain in which different
bots are meant to maintain a garden, by performing various gar-
dening activities such as cleaning, watering, and plucking flowers.
Some bots may be equipped with buckets that may, nondetermin-
istically, get filled after using it, and such nondeterminism can be
quantified depending on various aspects of the domain (e.g., size of
the bucket, average amount of dirt collected in a single action, etc.)
Similarly, execution of actions in the garden environment—where
the bots are meant to operate—can also be represented stochasti-
cally: a single clean operation may not always successfully clean
the whole garden; the probability of a successful clean depends,
for example, on the size of the garden and the season. More in-
terestingly, given that the desired target behavior for maintaining
the garden may involve more than one action from a given state,
probabilities can be assigned to these depending on their expected

575



frequency. For instance, in some state, the gardening target system
is expected to request the plucking action 30% of the time only,
most times it will just request watering the garden.

The contributions of this paper are threefold. First, building
on [10, 5, 11], a decision theoretic framework for behavior com-
position is developed. In doing so, we define the notion of opti-
mal composition controllers using the “expected realizability” of
the target, as well as the notion of exact compositions, that is, con-
trollers that will solve the composition problem robustly. Unlike
previous frameworks for behavior composition, the proposed one
is able to deal with problems that do not accept exact solutions.
Second, we provide a translation of a decision theoretic behavior
composition problem into a Markov decision process (MDP) [8, 6],
and show that finding an optimal policy for such MDP amounts to
finding an optimal composition. This problem reduction provides a
readily available technique for solving the new composition frame-
work using the established MDP paradigm. Third, we show that the
decision theoretic framework developed here is a strict extension of
the classical behavior composition frameworks in the literature.

2. THE PROBABILISTIC FRAMEWORK
Classical behavior composition problems are stated on an ab-

stract framework based on a sort of finite state transition systems
(see, e.g., [1, 5, 10, 11]). Specifically, the so-called (available) sys-
tem includes a set of available behaviors representing those artifacts
or devices at disposal that are meant to run within a shared environ-
ment. A target behavior then stands for such module that is desired
but not directly available and is therefore meant to be “realized” by
suitably composing the available behaviors in the system.

In a classical composition problem, incomplete information on
any component is modeled by means of nondeterminism in the tran-
sition systems (in the available behaviors or in the environment) or
different action transitions per state (in the target). However, all the
work so far on the problem of behavior composition has assumed a
setting of strict uncertainty [6] in that the space of possibilities—
possible effects of actions, evolution of behaviors, and future action
requests—is known, but the probabilities of these potential alterna-
tives is not quantified.

In this section, we extend the framework used in [11, 10] to ac-
commodate stochastic measures in the different components, thus
yielding a framework for behavior composition under (non-strict)
uncertainty. In particular, we use probabilities to model the un-
certainty of the dynamics of the environment and of the available
behaviors, as well as of the preferences on actions in the target
module. Such probabilities are provided by a domain expert who
is able to state how often a device happens to fail, an action brings
about its expected effects, or certain requests arrive to the system.

Environment.
As standard in behavior composition, we assume to have a

shared fully observable environment, which provides an abstract
account of actions’ preconditions and effects, and a mean of com-
munication among modules. Since, in general, we have incomplete
information about the actual preconditions and effects of actions,
we shall use a stochastic model of the environment. Thus, given
a state and an action to be executed in such state, different suc-
cessor states may ensue with different probabilities. Formally, an
environment is a tuple E = 〈A, E, e0,PEnext〉, where:

• A is a finite set of shared actions;

• E is the finite set of environment’s states;

• e0 ∈ E is the initial state of the environment;

• PEnext : E × A × E 7→ [0, 1] is the probabilistic transition
function among states: PEnext(e, a, e

′) = p, or just e
a:p−→ e′

in E , states that action a when performed in state e leads
the environment to a successor state e′ with probability p.
Furthermore, we require that for every e ∈ E and a ∈ A,∑
e′∈E
PEnext(e, a, e

′) ∈ {0, 1}, that is, the action is not exe-

cutable (the sum is 0) or all possible evolutions of the envi-
ronment are accounted (the sum is 1).

EXAMPLE 1. A scenario wherein a garden is maintained by
several bots is depicted in Figure 1. To keep the garden healthy
one needs to regularly water the plants, pluck the ripe fruits and
flowers, clean the garden by picking fallen leaves and removing
dirt, and emptying the various waste bins. Whereas cleaning and
emptying the bins is a regular activity, plucking and watering are
done as required. The environment E models the states the garden
can be in. The environment allows plucking and cleaning activi-
ties to be done in any order, and plants can be watered in any state.
The pluck action results in the flowers and fruits been fully plucked
75% of the time (i.e., 25% of the time the garden still remains to
be plucked), whereas the clean action results in the garden being
totally cleaned 20% of the time (i.e., dirt still remains 80% of the
time). A pluck action from the initial state (e0) results in the garden
been plucked but dirty (e2) with a probability of .75, a subsequent
clean action results in the garden being both plucked and clean (e3),
with a probability of .2. Similarly, a clean action from the initial
state results in the garden being fully clean but not plucked (e1)
20% of the time, and a subsequent pluck action causes the garden
being cleaned and plucked (e3) 75% of the time. For simplicity,
we assume that emptying the bins always results in the environ-
ment evolving to its initial state. �

Behaviors.
A behavior stands, essentially, for the logic of some available

component (e.g., device, agent, plan, workflow), which provides,
step by step, its user with a set of actions that can be performed.
At each step, the user selects one action among those provided and
executes it. Then, a new set of actions is provided, and so on. As
behaviors are intended to interact with the environment (cf. above),
their dynamics may depend on conditions in the environment. For-
mally, a behavior over an environment E = 〈A, E, e0,PEnext〉 is a
tuple B = 〈B, b0,PBnext〉, where:

• B is the finite set of behavior’s states;

• b0 ∈ B is the initial state of the behavior;

• PBnext : B×E×A×B 7→ [0, 1] is the probabilistic transition
function of the behavior: PBnext(b, a, e, b

′) = p, or e
a,e:p−→ e′ in

B, denotes that action a executed in behavior state bwhen the
environment is in state e will result in the behavior evolving
to state b′ with probability p. Since all potential transitions
are accounted for in the model, we require that for every b ∈
B, a ∈ A, and e ∈ E,

∑
b′∈B
PBnext(b, a, e, b

′) ∈ {0, 1}.

Behaviors are, in general, nondeterministic, that is, given a state
and an action, there may be several transitions enabled by the en-
vironment. Hence, when choosing the action to execute next, one
cannot be certain of the resulting state and of which actions will be
available later on, since this depends on what particular transition
happens to take place. In other words, nondeterministic behaviors
are only partially controllable.
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Figure 1: The garden bots system SGarden = 〈BCleaner,BMulti,BPlucker, E〉 and the target behavior TGarden.

EXAMPLE 2. In the gardening scenario, we assume there are
three available garden bots; see Figure 1. The cleaner bot BCleaner

cleans the garden by collecting the fallen leaves, dirt, waste, etc.,
into its own bucket. Most generally—90% of the time—its bucket
gets filled up with a cleaning session, and the bot has to empty it
to be able to start cleaning again. We assume the empty action in-
volves emptying all garden bins as well as the bots’ buckets. The
plucker bot BPlucker can pluck and clean the garden; since it is not
equipped with a bucket, it plucks and collects from the ground di-
rectly. Finally, the multi-bot BMulti has the capability to water the
plants and pluck. It has a small bucket, and so it needs to empty it
after every plucking session. �

A behavior is deterministic if given a state and a legal action in
that state, we always know exactly the next behavior state—the be-
havior is fully controllable through the selection of the next action
to perform. Formally, a behavior B = 〈B, b0,PBnext〉 over an envi-
ronment E = 〈A, E, e0,PEnext〉 is deterministic iff for every b, b′ ∈
B, e ∈ E, and a ∈ A, it is the case that PBnext(b, e, a, b

′) ∈ {0, 1}.
In such case, the dynamics of the behavior can be represented using
a transition relation δB ⊆ B × E × A × B, where δB(b, e, a, b′)
holds iff PBnext(b, e, a, b

′) = 1.

Target behavior.
A target behavior is basically a deterministic behavior over E that

represents the fully controllable desired behavior. A target behavior
is virtual, in the sense that it does not exist in reality and, hence, is
meant to be “realized” through the available behaviors.

Formally, a target behavior over an environment E =
〈A, E, e0,PEnext〉 is a tuple T = 〈T, t0, δ, R,Preq〉, where:

• T is the finite set of target’s states;

• t0 ∈ T is the initial state of the target;

• δ ⊆ T × E × A × T is the target’s deterministic transition
relation: 〈t, e, a, t′〉 ∈ δ, or t e:a−→ t′ in T , states that action
a executed in the target state t, when the environment is in a
state e, results in the target evolving to (unique) state t′;

• R : T×A 7→ R+ is the reward function of the target: R(t, a)
denotes the reward obtained when the action a is successfully
executed in target state t;

• Preq : T ×E×A 7→ [0, 1] is the probabilistic action request
function: Preq(t, e, a) denotes the probability of the target
requesting the execution of action a when it is in state t and

the environment is in state e. For consistency, we require that∑
a∈A
Preq(t, e, a) ∈ {0, 1}, for every t ∈ T , e ∈ E (i.e., all

possible requests are accounted for), and moreover, for all
a ∈ A, we have Preq(t, e, a) = 0 whenever there is no state
t′ ∈ T such that 〈t, e, a, t′〉 ∈ δ.

A uniform-reward target behavior is one where all actions have
the same reward, that is, there exists α ∈ R+ such that for all
a ∈ A and t ∈ T , we have R(t, a) = α.

This concludes the definition of the basic components for a
decision-theoretic behavior composition problem. As the reader
can easily note, this framework is essentially that of [5, 10, 11],
except that stochastic probabilistic transitions are used instead of
transition relations, a probability distribution over the potential ac-
tion requests is used in the specification of the target, and a reward
function is used in the target to state how “important” a particular
request is. Note also that the probability function Preq in the target
is very different to the ones used in the available behaviors and the
environment. In the former, it denotes the probability of the target
executing (i.e., requesting) an action from a given state, whereas in
the latter the corresponding function simply denotes the stochastic
evolutions of the entity.

EXAMPLE 3. The desired behavior required to maintain the
garden in a particular season is not directly represented by any of
the existing bots in the garden, and is modeled by the deterministic
uniform-reward target bot TGarden shown in Figure 1. Intuitively, the
garden should always be cleaned first to remove any fallen leaves
and dirt, followed by either plucking or watering the garden. Since
flowers and fruits do not grow everyday, the plucking is required
only 30% of the time; 70% of the time a request for watering the
garden will be issued. Finally, the bins are to be emptied, and the
whole process can repeat again. All requests are of equal value,
namely, 1 unit (second component in each transition label). �

Enacted system.
A system S = 〈B1, . . . ,Bn, E〉 is built form n, possibly non-

deterministic, available behaviors Bi, with i ∈ {1, . . . n}, acting
in a shared environment E . Since, in the simplest case, one action
can be executed at a given time, available behaviors in a system are
meant to act concurrently in an interleaved fashion.

To refer to the behavior that emerges from the behav-
iors’ joint (interleaved) executions, we use the notion of en-
acted system behavior, the synchronous product of the envi-
ronment with the asynchronous product of all available be-
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haviors. Let S = 〈B1, . . . ,Bn, E〉 be a system, where
E = 〈A, E, e0,PEnext〉 and Bi = 〈Bi, bi0,PBinext〉, for i ∈
{1, . . . , n}. The enacted system behavior of S is the tuple TS =
〈S,A, {1, . . . , n}, s0,PS〉, where:

• S = B1 × · · · × Bn × E is the finite set of TS ’s states;
when s = 〈b1, . . . , bn, e〉, we denote bi by behi(s), for i ∈
{1, . . . , n}, and e by env(s);

• s0 ∈ S, with env(s0) = e0 and behi(s0) = bi0, for each
i ∈ {1, . . . , n}, is TS ’s initial state;

• PS : S×A×{1, . . . , n}×S 7→ [0, 1] is TS ’s probabilistic
transition function, defined as follows:

PS(s, a, k, s′) =

PEnext(env(s), a, env(s′))×
PBknext(behk(s), a, env(s), behk(s′)),

if behi(s) = behi(s′), for each i ∈ {1, . . . , n} \ {k}; and
PS(s, a, k, s′) = 0, otherwise.

To distinguish which behavior acts in each enacted transition, we
label each stochastic transition in TS with the corresponding be-
havior index—all other behaviors remain still. We observe that
the sources of nondeterminism in enacted behaviors stem from two
sources, namely, the nondeterminism in the environment and the
nondeterminism in the available behaviors.

So, informally, the decision-theoretic (DT) behavior composi-
tion task is stated as follows: Given a system S and a target behav-
ior T , find the “optimal” way of (partially) controlling the avail-
able behaviors in S in a step-by-step manner—by instructing them
on which action to execute next and observing, afterwards, the out-
come in both the behavior used as well as in the environment—so
as to “best realize" a specific deterministic target behavior. In the
next section, we make this problem definition precise.

3. DT-COMPOSITION
In order to bring about the desired virtual target behavior in an

available system, we assume the existence of a (central) controller
module that is able to control the available behaviors, in the sense
that, at each step, it can observe all behaviors, instruct them to exe-
cute an action (within their capabilities), stop, and resume them. In
classical behavior composition, one then looks for a controller that
guarantees that the target will be implemented in the system al-
ways, that is, no matter how the target happens to requests actions
within its logic or how the available behaviors and the environment
happen to evolve with actions. Such controller is then deemed an
(exact) solution to the problem. From a (generalized) planning per-
spective, the composition task can be seen as that of planning for a
“maintenance” goal, namely, always maintain target realization.

When it comes to realizing a target module in a composition
framework as the one described above, though, one should not just
look for exact solutions, as in general there may be none. Instead,
one shall look for optimal ways of maximizing the “expected real-
izability” of the target in the available system.

Controller.
Before formally defining the central module in charge of coor-

dinating the available behaviors, we first need to define the techni-
cal notions of traces and histories of a system. A trace for a sys-
tem S = 〈B1, . . . ,Bn, E〉 is a, possibly infinite, sequence of states

from the enacted system behavior of the form s0 a1,k1−→ s1 a2,k2−→ · · ·
such that (i) s0 = s0; and (ii) PS(sj , aj+1, kj+1, sj+1) > 0, for

all j ≥ 0. Intuitively, a trace represents a possible (legal) evolu-
tion of the (enacted) system, where kj is the index of the behavior
which has executed action aj . A history is a just a finite prefix

h = s0 a1,k1−→ · · · a
`,k`−→ s` of a trace. We denote s` by last(h), and

the length ` of the history by |h|. The set of all histories for a given
system will be denoted byH.

So, formally, a controller for an available system S =
〈B1, . . . ,Bn, E〉 is a total function C : H × A 7→ {1, . . . , n, u}
such that, given a system history h ∈ H and an action a ∈ A
that ought to be performed, returns the index of the behavior to
which the action a is to be delegated for execution. For technical
convenience, a special value u (“undefined”) may be returned, thus
making C a total function which returns a value even for actions
that no behavior can perform.1

Now, informally, a “dead-end” is reached in a history if the con-
troller in use selects a behavior which is not capable of executing
the delegated action. Then, given two controllers, one should pre-
fer the one that reaches a dead-end with lower probability, or put it
differently, the one that has the highest probability of honoring the
target’s requests. In particular, a controller that is guaranteed not to
ever reach a dead-end will be an exact, and thus optimal, solution.

We say that a history is reachable by a controller, if starting
from the initial state of the enacted system, the behavior execut-
ing the action at each state of the history is indeed the one se-

lected by the controller. More formally, a history h = s0 a1,k1−→
· · · a

`,k`−→ s` is reachable by a controller C (in a system S) iff

ki = C(s0 a1,k1−→ · · · a
i−1,ki−1

−→ si−1, ai), for each i ∈ {1, . . . , `}.
We denote withH`C the set of all reachable histories of length ` and
HC =

⋃
i≥0HiC the set of all histories reachable by C.

Value of a controller and compositions.
In order to evaluate and compare controllers, we define the value

of a controller for a given target and system. Roughly speaking, a
controller is “rewarded” for every action request from the target that
it fulfills by a successful delegation to an available behavior. More
specifically, at every point, a controller gets a reward that depends
both on the frequency of such request and the value of (fulfilling) it.

From now on, let T = 〈T, t0, δ,Preq〉 be a target behavior to be
realized in a system S = 〈B1, . . . ,Bn, E〉. Let C be a controller
for system S, and TS be the enacted system behavior as defined
in the previous section. First, consider the case of evaluating the
performance of a controller over a finite number of requests. The
value of C for k ≥ 1 requests at system history h ∈ H when the
target is in state t ∈ T , denoted YCk (h, t), is defined as follows:

YCk (h, t) =∑
a∈A

[Preq(t, env(last(h)), a)× IRC(h, t, a) +∑
s′∈S

〈t,e,a,t′〉∈δ

PS(last(h), a, C(h, a), s′)× YCk−1(h
a,C(h,a)−→ s′, t′)],

where YC0 (h, t) = 0, for all h ∈ H and t ∈ T , and IRC(h, t, a)
stands for the immediate reward collected by the controllerC when

1Although, as we shall see later, under the full observability as-
sumption, it is enough for a controller to depend only on the final
state of the enacted system—rather than the whole history–we shall
work with the most general definition that could also be used in set-
tings with partial observability.
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requested to delegate action a at history h:

IRC(h, t, a) =


R(t, a) if ∃s′.PS(last(h), a, C(h, a), s′) > 0;

0 if C(h, a) = u;

−R(t, a) otherwise.

The value of a controller for k steps of target T in a system S
is defined as YCk = YCk (s0, t0). We say that a controller C∗ is a
k-composition if for all other controllers C, YC∗k ≥ YCk holds.

Since the target may include infinite traces, we are in general
interested in controllers that are optimal for any number of potential
requests, that is, for infinite executions of the target behavior. To
cope with unbounded executions of the target, we appeal to the use
of a discount factor, as customary in sequential decision making
over infinite episodes [6, 3]. The idea is that the satisfaction of
later target-compatible requests are less important than those issued
earlier. Formally, the value of a controller C, denoted by YCγ (h, t),
relative to a discount factor 0 ≤ γ < 1, is defined as follows:

YCγ (h, t) =∑
a∈A

[Preq(t, env(last(h)), a)× IRC(h, t, a) +

γ
∑
s′∈S

〈t,e,a,t′〉∈δ

PS(last(h), a, C(h, a), s′)× YCγ (h
a,C(h,a)−→ s′, t′)].

The use of a discount factor plays the same role as in infinite hori-
zon Markov decision processes, namely, it allows convergence of
the value of a controller [3, 8]. Note that the assumption that tem-
porally closer rewards are more important than distant ones is par-
ticularly suitable in the context of composition problems, where
behaviors may fail, the target and available system may be reset, or
the problem may not be fully solvable.

As with the finite case, the value of a controller for a given target
T and system S is defined as YCγ = YCγ (s0, t0). Finally, we say
that a controller C∗ is a γ-composition (of target T in system S) if
for all other controllers C, it is the case that YC∗γ ≥ YCγ .

Put it all together, the decision theoretic behavior composition
problem, or simply DT-composition problem, amounts to synthe-
size a γ-composition for a given system S, target behavior T , and
discount factor γ.

Exact compositions.
A behavior composition problem has an exact solution when

there exists a controller that can fully realize the target, that is, a
controller that can always honor the target’s requests, no matter
what. There have recently been various approaches in the literature
to synthesize such a controller, called a composition, if any exists
(see, e.g., [5, 10, 11, 4]). Within our decision theoretic setting,
it is important to clearly define what an exact solution is and its
relationship with “optimal” controllers.

Since the target behavior is deterministic, its specification can
be seen as the set of all possible sequences of actions that can be
requested, starting from the initial state. Thus, given any finite run
of the target, the most one could expect is that every single action
has been successfully realized in the system. This would imply that
all possible rewards in the run have indeed been collected. Since
one does not know a priori which actual run will ensue, we consider
the maximum expected reward when running the target. To make
this precise, we defineRmax

k (t, e) as the maximum expected reward
when running the target from its state t at environment state e for

k ≥ 0 steps as follows (here,Rmax0 (t, e) = 0):

Rmax
k≥1(t, e) =∑

a∈A
[Preq(t, e, a)×R(t, a)]+

∑
e′∈E

〈t,e,a,t′〉∈δ

[PE(e, a, e′)×Rmax
k−1(t′, e′)].

As above, we take Rmax
k = Rmax

k (t0, e0), for any k ≥ 0. Note
that this definition is well defined for both cyclic and acyclic tar-
gets. Of course, for an acyclic target with a longest path of length
`, it is easy to show thatRmax

k = Rmax
` , for every k ≥ `.

Thus, a controller C is an exact composition if YCk = Rmax
k ,

for all k ≥ 1, that is, C can fully and always realize a target be-
havior in the available system. Note that controllers are meant to
have full observability of the current history. A Markovian (i.e.,
memoryless) controller C is one that only looks at the current
state of the system to decide the delegation; formally, for all his-
tories h, h′ ∈ H such that last(h) = last(h′) and action a ∈ A,
C(h, a) = C(h′, a) applies. When it comes to exact solutions,
Markovian controllers are enough under full observability.

THEOREM 1. Let S be a system and T be a target behavior.
Then, if there exists an exact solution for realizing T in S, then
there exists a Markovian controller which is also an exact solution.

PROOF. Let C∗ be an exact solution for realizing T in S. For
any h ∈ H and a ∈ A, we define a new controller Ĉ(h, a) =
C∗(h′, a) if h′ ∈ HC∗ is such that last(h) = last(h′) and for
all h′′ ∈ HC∗ such that last(h′′) = last(h), it is the case that
C(h′, a) ≤ C(h′′, a) (we assume u > i, for any i ∈ {1, . . . , n}).
Otherwise, if such history h′ does not exist, we take Ĉ(h, a) = u.

It is easy to check that Ĉ is well-defined. In addition, Ĉ is
Markovian. In fact, consider two histories h1, h2 ∈ H such that
last(h1) = last(h2), and suppose that Ĉ(h1, a) = k1. Then,
C∗(h′1, a) = k1, for some h′1 ∈ HC∗ and it is easy to show that
Ĉ(h, a) = C∗(h′1, a) = k1 as well, the same witness history h′1
can be used for h2 too. Furthermore, because h′1 is reachable by
C∗, together with the fact that C∗ is indeed an exact solution, im-
plies that k1 ∈ {1, . . . , n} is a correct delegation, in the sense that
behavior Bk1 is able to perform a legal step on action a when the
environment is in state env(last(h)), and since last(h) = last(h′1),
such delegation is also legal at history h and Ĉ is also exact.

More importantly, exact solutions are guaranteed to be always
optimal controllers under unbounded runs, independently of the
discount factor chosen.

THEOREM 2. If a controller is an exact composition for a
decision-theoretic behavior composition problem, then such con-
troller is a γ-composition, for any 0 ≤ γ < 1.

PROOF (SKETCH). Let C∗ be an exact solution to a DT-
composition problem, and assume, wlog, a target with a uniform
reward α. Then, at each step, C∗ collects the maximum possible
reward of α. If a discount factor γ is used, then C∗ will collect a

reward of α × ∑̀
n=1

γn−1 over ` steps, which is indeed the maxi-

mum possible reward for a γ-composition after ` steps. Hence, C∗

is also a γ-composition for the given composition problem.

4. SOLVING DT-COMPOSITIONS
Various techniques have been used to actually solve classical

behavior composition problems, including PDL satisfiability [5],
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search-based approaches [11], LTL/ATL synthesis [9, 4], and com-
putation of special kind of simulation relations [10, 2]. Unfortu-
nately, in the context of the decision theoretic framework from Sec-
tion 2, none of these techniques can be applied. In this section, we
show how to solve a decision theoretic composition problem, by
reducing it to a Markov decision problem in a natural manner. We
also demonstrate the reduction with a proof of concept implemen-
tation using an off-the-shelf existing MDP solver.

Markov decision processes.
A Markov decision process (MDP) is a discrete time stochastic

control process [8, 3]. At each step, the process is in a state q,
the decision maker chooses an action a, the process evolves to a
successor state q′ with some probability, and the decision maker
receives certain reward r. The “best" decision maker is one that
collects maximum (potential) rewards over time.

Formally, a Markov decision process (MDP) is a tuple
M = 〈Q,A, p, r〉, where:

• Q is a (finite) set of states;

• A is a (finite) set of actions;

• p : Q × A × Q 7→ [0, 1] is the probabilistic state transi-
tion function: p(q, a, q′) denotes probability of the process
evolving to state q′ when action a is executed in state q;

• r : Q × A 7→ R is the reward function: r(q, a) denotes the
immediate reward obtained when action a in executed state q.

A policy—the decision maker—is a collection of state-action
mappings stating what action to take in each state of the process.
Formally, a (stationary) policy is a function π : Q 7→ A; π(q) de-
notes the action to be taken in state q. Solving an MDP involves
then computing a policy that accumulates maximum reward over
time. In doing so, one can be interested in finite horizon problems,
where the decision maker is meant to perform a fixed number of
sequential decisions, or infinite horizon problems, where rewards
over infinite runs of the MDP are considered.

So, the value of an optimal policy in a state q for a finite horizon
k is given by the following Bellman’s principle of optimality [8, 3]:

V ∗k (q) = max
a∈A
{r(q, a) +

∑
q′∈Q

p(q, a, q′)× V ∗k−1(q′)}.

Similarly, the value of an optimal policy in a state q for infinite
horizon relative to a discount factor of 0 ≤ γ < 1 is as follows [7]:

V ∗(q) = max
a∈A
{r(q, a) + γ

∑
q′∈Q

p(q, a, q′)× V ∗(q′)}.

Howard [7] showed that there always exists an optimal station-
ary policy for infinite horizon problems, that is, one that does not
depend on which stage a decision is taken.

From behavior composition to MDPs.
With the notion of MDPs at hand, we show next how to reduce

a DT-composition problem, as described in Sections 2 and 3, to the
problem of solving an MDP.

Informally, in our setting, the decision maker is the controller,
and thus, the possible actions that can be taken are those of be-
havior delegation. Consider then a system S = 〈B1, . . . ,Bn, E〉,
with TS denoting the corresponding enacted system behavior, and
a target T = 〈T, t0, δ, R,Preq〉. We define the corresponding MDP
encodingMS,T = 〈Q,A, p, r〉 as follows:

• Q = S × T × A ∪ {qinit}, where for all 〈s, t, a〉 ∈ Q,
Preq(t, env(s), a) > 0. Given an MDP state q = 〈s, t, a〉 ∈
Q, we define sys(q) = s, tgt(q) = t, and req(q) = a. A
special, domain independent, state qinit is used as a “dummy"
initial state of the process.

• A = Index = {1, . . . , n, u}, that is, an action in the encoded
MDP stands for a behavior selection (or no selection at all).

• The state transition function is defined as follows:

p(q, i, q′) =



Preq(tgt(q′), env(sys(q′)), req(q′)), if
q = qinit, sys(q′) = s0, tgt(q′) = t0;

PS(sys(q), req(q), i, sys(q′))×
Preq(tgt(q′), env(sys(q′)), req(q′)), if
q 6= qinit;

0, otherwise.

• The reward function is defined as (α = R(tgt(q), req(q))):

r(q, i) =



α if PS(sys(q), req(q), i, sys(q′)) > 0

for some q′ ∈ Q and q 6= qinit;

0 if i = u or q = qinit;

−α otherwise.

In the resulting MDP, a state is built from the state of the enacted
system behavior (which includes the states of the environment and
those of all available behaviors), the state of target behavior, and an
action being requested; in other words, a “snapshot” of the whole
composition problem. Each transition in the MDP represents the
behavior—through its index—to which the current request is dele-
gated for execution. The dynamics of the MDP encodes both the
dynamics of the enacted system behavior and the target behavior,
as well as that of the stochastic process (i.e., the user of the target)
that is requesting actions. Finally, the reward function in the MDP
merely mimics that of the encoded behavior composition problem;
no reward is given from the initial dummy state, and an unfeasible
delegation (i.e., one where the chosen behavior may not perform
the action) receives a penalty (i.e., it is better to prescribe “u”).

Given a policy π : Q 7→ Index for the MDPMS,T , we define

the induced controller Cπ(h, a), where h = s0 a1,k1−→ · · · a
`,k`−→ s`,

with ` ≥ 0 and a ∈ A, as follows:

Cπ(h, a) =


π(q) if sys(q) = last(h), a = req(q), and

t0
env(s0):a1−→ · · · env(s`−1):a`−→ tgt(q) in T ;

u otherwise.

Note that the output for histories that do not yield any legal evo-
lution of the target is irrelevant, and hence, we just output value u.

We now state the main result of the section, namely, a solution to
the encoded MDP yields an optimal controller for the correspond-
ing DT-composition problem.

THEOREM 3. Let S be an available system and T a target be-
havior. Let MS,T be the corresponding MDP encoding as de-
scribed above. If π∗ is an γ-optimal policy for MS,T , then its
induced controller Cπ∗ is an γ-composition for realizing T in S.
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PROOF (SKETCH). This is proved by showing that a solution
to the optimality equation of the encoded MDP conforms to the
solution of the equation for a composition. Specifically, we show,
by induction on `, that γYCπ` (s0, t0) = V π`+1(qinit), where γ is a
discount factor, ` ≥ 0, and π is a policy forMS,T . To that end,
we rely on the fact that the value of a controller and that of a policy
in the MDP can be re-written as follows. First, the value of the
controller for k + 1 steps can be re-written as:

YCπk+1(s0, t0) =

YCπk (s0, t0) +

γk
∑

h∈HCπ
k

[PrCπ (h)
∑
a∈A
Preq(th, env(last(h)), a)× IRCπ (h, th, a)],

whereHCπk is the set of all histories of length k that may be reached
by following controller Cπ , PrCπ (h) is probability of such history
arising, and th stands for the resulting (unique) state of the target
after having performed all the actions in h.

Second, the cumulative reward gained by policy π after k + 2
steps can be re-written as follows:

V πk+2(qinit) =

V πk+1(qinit) + γk+1 ∑
λ∈Λπ

k+1

[Prπ(λ)× r(last(λ), π(last(λ)))],

where Λπk is the set of all MDP sequence of states of length k that
may be traversed when following policy π, and Prπ(λ) is the prob-
ability of sequence λ arising.

The fact that γYCπ` (s0, t0) = V π`+1(qinit), together with the fact
that every controller is always related to some policy in the MDP
(even non-Markovian controllers), is enough to prove the thesis.

This result proves the correctness of the encoding, and provides
us with a technique for solving DT-composition problems, by us-
ing, for instance, policy-iteration implementations [7].

EXAMPLE 4. We generated the optimal policy for the garden
scenario from Figure 1 by using a simple existing MDP solver.2

The problem does not actually have an exact solution. To see that,
consider the sequence of action requests clean ·water · empty com-
patible with the target TGarden. It is not hard to verify that the first
and last actions need to be delegated to bot BCleaner, whereas the
second action water ought to be delegated to bot BMulti. However,
bot BCleaner will be able to perform the last action empty only if
it has evolved to state a1 after clean’s execution. Otherwise, if
BCleaner happens to stay in state a0 instead, action empty cannot be
realized in the system SGarden and a dead-end is reached.

Note, though, that the chances of BCleaner evolving to state a0 are
indeed low. Hence, an optimal controller—a composition—should
still choose BCleaner to execute the first clean action. This is indeed
the controller induced by the optimal policy found when solving
the corresponding MDP, which is partially listed below as output
by the MDP solver (BEH0, BEH1, and BEH2 stand for behaviors
BCleaner, BMulti, and BPlucker, respectively):

Beh:0 0 0 | Tgt:0| Env:0|Act:CLEAN ------> BEH0
Beh:0 0 0 | Tgt:1| Env:0|Act:WATER ------> BEH1
Beh:1 0 0 | Tgt:1| Env:0|Act:WATER ------> BEH1
Beh:1 0 0 | Tgt:2| Env:0|Act:EMPTY ------> BEH0
Beh:0 0 0 | Tgt:2| Env:0|Act:EMPTY ------> U
...

2http://copa.uniandes.edu.co/software/jmarkov/

Observe that if after doing a clean action, behavior BCleaner

(BEH0) stays in its state a0, the policy prescribes U, thus signal-
ing a dead-end in the composition.

In turn, the following rules in the policy will successfully realize
the request sequence clean · pluck · empty:

Beh:0 0 0 | Tgt:0| Env:0|Act:CLEAN ------> BEH0
Beh:0 0 0 | Tgt:1| Env:0|Act:PLUCK ------> BEH1
Beh:0 1 0 | Tgt:1| Env:0|Act:WATER ------> BEH1
Beh:0 1 0 | Tgt:3| Env:0|Act:EMPTY ------> BEH1

Finally, botBPlucker (BEH2) will be used by the induced controller
in cases as the following ones:

Beh:0 1 0 | Tgt:1| Env:0|Act:PLUCK ------> BEH2
Beh:0 1 1 | Tgt:0| Env:0|Act:CLEAN ------> BEH2

Observe that in the configuration of the second rule, behavior
BCleaner is also able to perform the cleaning action; however, it is
best to use the plucker bot as it will bring it to state c0, from where
it is able to pluck again if needed (see that bot BMulti is in state b1
from where it cannot pluck).

All the above rules are only for the cases in which the environ-
ment remains in its state e0, other (similar) rules exist in the pol-
icy/controller for other environment states. �

Exact compositions.
As discussed, in a decision theoretic composition problem, one

looks, in general, for the “best” possible controller, since exact
compositions may not exist. Nonetheless, the following result
states that if one does exist, it is enough to restrict to the finite hori-
zon case in the corresponding MDP (without losing optimality).

THEOREM 4. If there exists an exact composition for realizing
a given target T in a system S, then the controller induced by any
(|Q|+ 1)-optimal policy for MDPMS,T is an exact composition.

PROOF (SKETCH). This follows from the fact that there exists
an optimal policy forMS,T that is stationary (which can be proven
by relying on the fact that there exists a Markovian exact composi-
tion due to Theorem 1), and the fact that by optimizing the MDP up
to Q + 1 steps, it is guaranteed that all possible configurations of
the whole composition framework—which includes both available
system and target—are taken into account.

This result is important in that it provides a way of verify-
ing whether a DT-composition problem accepts an exact solution,
namely, find an optimal policy π for horizon |Q| + 1 and check
whether YCπ|Q| = Rmax

|Q| (recall the first step in the MDP involves no
action request and attracts no reward). Of course, it is possible to
restate the above theorem in terms of an infinite horizon problem:

COROLLARY 1. If there exists an exact composition for real-
izing a given target T in a system S, then there exists a discount
factor γ̂ such that for any γ-optimal policy π for MDPMS,T , with
γ≥ γ̂, the induced controllerCπ is an exact composition of T in S.

When no exact composition exists, though, all one can do is to
settle for the (best) controller induced by an optimal policy in the
encoded MDP. Since non-exact compositions will include dead-
ends, that is, possible histories where some target-compatible re-
quest may not be fulfilled, other mechanisms will be required to
bring the overall system to a “healthy” configuration, such as reset-
ting the whole system or even some parts of it.
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We close this section by relating our approach to behavior com-
position with the “classical” approaches to the problem in the lit-
erature (e.g., [5, 10, 11, 4]). In such approaches, the task amounts
to decide whether an exact composition controller exists (and to
synthesize one if any) in settings under strict uncertainty. The dy-
namics of behaviors and that of the environment are represented
by means of transition relations, rather than probabilistic transition
functions. As a result, the designer can only model whether a tran-
sition is possible or not. In addition, the target behavior does not
include a probabilistic request function Preq, but simply a transition
relation stating what actions can be legally requested.

As expected, the following result states that our DT-composition
framework is at least as expressive as the classical one.

THEOREM 5. For any instance of a classical behavior compo-
sition (as in [10, 11]), there is a decision-theoretic behavior com-
position instance such that there exists a composition solution for
the former iff there exists an exact composition for the latter.

PROOF (SKETCH). This is shown by building a DT-
composition problem instance as follows:

• The environment probabilistic transition function is de-
fined such that PEnext(e, a, e

′) = 1/|∆(e, a)|, whenever
〈e, a, e′〉 ∈ ρ, where ρ is the transition relation of the original
classical environment and ∆(e, a) = {e′ | 〈e, a, e′〉 ∈ ρ}.
• The probabilistic transition function for each available be-

havior Bi is defined as PBinext(b, e, a, b
′) = 1/|∆(b, e, a)|,

whenever 〈b, e, a, b′〉 ∈ δi, where δi is the transition re-
lation of the original classical available behavior Bi and
∆(b, e, a) = {b′ | 〈b, e, a, b′〉 ∈ δi}.
• The probabilistic action request function of the target be-

havior is defined Preq(t, e, a) = 1/|∆(t, e)|, whenever
〈t, e, a, t′〉 ∈ δT , where δT is the transition relation of the
original target and ∆(t, e) = {a | 〈t, e, a, t′〉 ∈ δT }.
• The target reward function is defined as R(t, a) = 1 for all
a ∈ A and t ∈ T such thatPreq(t, e, a) > 0 for some e ∈ E.

(In all other cases, the probabilities are assumed to be zero.) It is
not hard to show that the resulting DT-composition instance has an
exact composition iff the original classical one has a solution.

Clearly, not every DT-composition problem can be mapped to
the classical setting, as it is the case with our gardening scenario. It
follows then that the framework developed here is, not surprisingly,
a strict extension of the classical ones for behavior composition.

We observe that all previous approaches provide an EXPTIME
upper bound to the computational complexity. Fully observable
MDPs can be solved in time polynomial in the size of state space
and actions [8]. Since the size ofMS,T ’s state space is indeed ex-
ponential in the number of behaviors, such bound still applies here.

5. CONCLUSIONS
In this paper, we have generalized the classical behavior com-

position problem (e.g., [11, 5, 10]) to one that is able to account
for quantified uncertainties in the domain, both in the dynamics
of the behaviors and environment, as well as in the preferences
over requests from the target user. The task then is to find the
“best" controller—a composition—that maximizes the expected re-
alizability of the target. Unlike previous approaches, the extended
decision theoretic composition framework is able to deal with un-
solvable problem instances, that is, those that do not accept ex-
act solutions. In addition, it is provably more expressive than the

classical version under strict uncertainty. In order to solve a DT-
composition problem, we showed how to reduce it to the problem
of finding an optimal policy in a Markov decision process, an es-
tablished framework for sequential stochastic decision making.

There are many open lines of research in this framework. A nat-
ural extension is to accommodate preferences over available be-
haviors. In many applications, using one component may be more
costly than using another one, e.g., it is preferred to transport goods
by car than to do by truck. Though catering for this may appear
straightforward to achieve by simply encoding, for instance, a rank-
ing over available behaviors in the reward function of the MDP, it
is not clear that all the results presented here would generalize. In
fact, under such setting, exact solutions may no longer be optimal
controllers. Another interesting issue is to combine our framework
with that of classical behavior composition in the literature. The
idea is that some actions in the target may not be compromised and
must be met in any composition. For example, once the garden has
been plucked, it is mandatory that the collected fruit be adequately
stored. Yet another possibility is to generalize the framework to one
under partial observability, and possibly using partially-observable
MDPs (POMDPs) to tackle those cases. Lastly, if rewards and tran-
sitions are not fully known, a reinforcement learning framework
could be used to find compositions while learning the domain.
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ABSTRACT
An interesting problem of multi-agent systems is that of vot-
ing, in which the preferences of autonomous agents are to
be combined. Applications of voting include modeling so-
cial structures, search engine ranking, and choosing a leader
among computational agents. In the setting of voting, it is
very important that each agent presents truthful informa-
tion about his or her preferences, and not manipulate. The
choice of election system may encourage or discourage vot-
ers from manipulating. Because manipulation often results
in undesirable consequences, making the determination of
such intractable is an important goal.

An interesting metric on the robustness of an election sys-
tem concerns the frequency in which opportunities of manip-
ulations occur in a given election system. Previous work by
Walsh has evaluated the frequency of manipulation in the
context of very specific election systems, particularly veto,
when the number of candidates is limited to at most three,
by showing that manipulation problems in these systems can
be directly viewed as problems of (Two-Way) Partition, and
then using the best known heuristics of Partition. Walsh also
claimed similar results hold for k-candidate veto election by
way of problems involving multi-way partitions.

We show that the results for k-candidate veto elections
do not follow directly from common versions of partition
problems and require non-trivial modifications to Multi-Way
Partition. With these modifications, we confirm Walsh’s
claim that these elections are also vulnerable to manipula-
tion. Our new computational problems also allow one to
evaluate manipulation in the general case of k-candidate
scoring protocols. We investigate the complexity of manip-
ulating scoring protocols using new algorithms we derive by
extending the known algorithms of Multi-Way Partition.

It is our conclusion that the problems of manipulation in
more general scoring protocols of four or more candidates
are not vulnerable to manipulation using extensions of the
current known algorithms of Multi-Way Partition. This may
be due to weaknesses in these algorithms or complexity in
manipulating general scoring protocols.
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lems, Andrew Lin, Proc. of 10th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2011), Yolum,
Tumer, Stone and Sonenberg (eds.), May, 2–6, 2011, Taipei, Taiwan, pp.
583Ð-590.
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Keywords
computational social choice, manipulation, scoring proto-
cols, partition

1. INTRODUCTION
A multi-agent system is composed of multiple interacting

intelligent agents, and is used to solve problems that are
otherwise difficult or impossible for an individual agent to
solve. An interesting problem in multi-agent systems is that
of voting [15], in which individual preferences of these agents
are to be combined. Voting is used by multi-agent systems in
interesting applications such as search engine ranking [17].
To ensure the integrity of the outcome of an election, an
important goal in designing election systems is to eliminate
or at least limit the opportunity for an agent to have an
incentive to report false preferences for personal gain.

An unfortunate result, the Gibbard-Satterthwaite theo-
rem [8, 16], shows that manipulation in inevitable in all
reasonable election systems. Manipulation, also known as
strategic voting, occurs when one or more voters vote con-
trary to their true preference ordering. A typical manipula-
tor may bury his or her 2nd true preference to give his first
preference a larger relative advantage.

Bartholdi, Tovey, and Trick [2] attack this problem by
evaluating the worst-case time complexity of computing such
manipulations, and show that in many cases this problem is
NP-hard, making NP-hardness the standard for worst-case
hardness in manipulation problems. It has since been shown
that most non-trivial weighted elections, and particularly
scoring protocols, are NP-hard to manipulate [4, 9].

Since NP-hardness only demonstrates worst-case hardness
and may not fully reflect the difficulty of finding manipula-
tions in typical settings of interest, more recent work has
been done to demonstrate the tradeoffs between fairness of
elections and frequency of manipulation, as well as hardness
of manipulation in random elections. It is now known that
in some cases of random elections, as well as elections in-
volving correlated voters such as single-peaked preferences
[1, 6], manipulation is easy either in the worst-case or for
the nearly all cases asymptotically.
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Walsh [18] furthers the study empirically, to investigate
issues such as hidden constants in theoretical asymptotic
results, as well as the effects of realistic assumptions such
as election systems being bounded in size. It is of interest
to discover how the known asymptotic behavior applies in
practice.

The weighted veto rule of three candidates was studied
in Walsh, particularly because it is most directly related
to the NP-hard problem of Partition, for which reason-
able heuristics, particularly the Complete Karmarkar-Karp
(CKK) Algorithm, are known [12]. The runtime of invok-
ing the CKK algorithm, in particular as measured by the
number of search-tree branches generated, is thus utilized
throughout the study as a metric to evaluate the hardness
of finding a manipulation in an election, or showing that
none exists. Particularly of interest is the result that hard
instances of manipulation for instances of veto elections of
three candidates are ”rare”and require highly correlated vot-
ers. Walsh also remarks that the Partition problem also ap-
plies in other cases of 3-candidate scoring systems, as well as
veto systems of multiple candidates, without demonstrating
the constructions involved.

In Walsh, the frequency of which manipulations occur for
this system is determined for varying election sizes, and is
shown to exhibit a smooth transition in probability in rela-
tion to the number of manipulators. More specifically, it is
shown that the probability that a coalition of m manipula-
tors can influence the outcome in an election of n elections is
directly correlated with the ratio

√
n

m
, and is independent of

the problem size. This is known as a phase transition, and
the majority of NP-complete problems exhibit their worst-
case complexity in instances defined by this region.

It is then shown that in most cases of uncorrelated voters,
including uniform votes, as well as when voter weights are
normally distributed, on average one may find a manipu-
lation or prove that none exists with very minimal search,
averaging slightly more than one search-tree branch in a
CKK search. This is true even in the range of the phase
transition, and is in direct contrast with other NP-complete
problems, in which hard problems are highly associated with
this transition.

In the extreme case of correlated voters, a case in which
all non-manipulative voters veto the candidate of interest,
and which the manipulators have a total weight of twice
the non-manipulative voters, is considered. In this case, the
runtime of invoking the CKK algorithm exhibits a phase
transition and grows exponentially in relation to the num-
ber of manipulators in the election. However, a further case
was studied in which the election is highly correlated as be-
fore but with one additional agent who votes at random
among the three candidates. Surprisingly, the runtime, as
measured in search-tree branches of CKK of manipulating
such an election rapidly decreases as the distribution of the
weight of this non-correlated voter increases, and exhibits a
strong phase transition into a constant as this distribution
approaches that of the correlated voters. Based on these re-
sults, it is concluded that in the case of 3-candidate weighted
veto systems, hard manipulation problems only occur when
all of the votes are highly correlated, and are thus exceed-
ingly rare in any reasonable distribution of voters. Unlike
common NP-complete problems, hard instances in such ma-
nipulation problems are also not directly related to the phase
transition of frequency of manipulation.

Although it is remarked in [18] that this technique can be
applied to that of all scoring systems of three candidates,
and that heuristics of the more general k-Way Partition to
that of veto systems of more than three candidates, this
construction as well as the problem of manipulating other
scoring systems of more than three candidates was left open.
We propose a solution remedy these open problem. We con-
firm the results of Walsh for that of k-candidate veto elec-
tions, but show that this problem does not directly relate to
the problem of (k− 1)-Way Manipulation, and require non-
trivial adjustments. We then show how these adjustments
allow one to evaluate general scoring protocols of more than
three candidates.

We attack the open problem of Walsh by introducing
an analogous partition-like problem for the case of general
scoring systems, and extending the known algorithms and
heuristics of Partition and k-Way Partition to that of our
new problem in a very natural way. We show how problems
involving partitions are related to that of manipulation, as
scores given by the voters need to be partitioned among the
candidates in a way to ensure a certain desirable outcome.
In doing so we are able to investigate whether the known
algorithms of these problems will give new results to scoring
systems of interest.

Based on our analogous testing of the results of Walsh
for these cases, we conclude that the algorithms of Korf, the
best-known algorithms for some partition problems, support
the results of Walsh for k-candidate veto elections of k >
3, but require some non-trivial adjustments to the problem
instances and algorithms involved.

As our adjustments further allow one to attack the prob-
lems of manipulation in more general scoring protocols, we
also study the runtime of invoking these new algorithms on
such instances. It is our conclusion that the problem of ma-
nipulating general scoring protocols, as well as families of
scoring protocols, such as veto, are not vulnerable to the
best-known algorithms of k-Way Partition and analogous
extensions thereof.

This may either support the fact that elections of more
than three candidates are inherently more resistant to ma-
nipulation, or weaknesses in these partition algorithms. We
leave these options as an open problem.

We organize the paper as follows. In the preliminaries
section, we formally define relevant problems and known al-
gorithms, as well as the connection between partition prob-
lems and election manipulation. In Section 3, we introduce
our extensions of the known problem of k-Way Partition,
which we will use to solve some instances of manipulation,
and introduce analogous extended algorithms. In the next
two sections, we define the connection between the prob-
lem of manipulation and the new partition problems, and
demonstrate the experimental results graphically.

2. PRELIMINARIES

2.1 Election Systems
An election E = (C, V ) consists of a set of candidates

C = {c1, . . . , cm} and voters V = {v1, . . . , vn}. Each voter
v ∈ V presents a preference ordering over the candidates
C, in the form of a complete linear ordering ci1 > · · · >
cim . An election system E : E → C+ maps an election
to winning candidates(s) based on the preferences of the
voters, for which it aggregates. An interesting set of election
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systems, scoring protocols, which we will evaluate in this
paper, encompasses systems such as plurality, veto, and the
Borda count where the number of candidates is fixed.

An m-candidate scoring protocol is defined as a vector
(α1, . . . ,αm). In such an election system, each voter con-
tributes αi points to the ith choice of his or her preference
ordering. The candidate with the highest score wins. An
election defined by such a scoring protocol can further be
weighted, in which each voter v is given a non-negative in-
teger weight w(v). In this case, the vote is counted as w(v)
non-weighted votes, and thus the ith choice of candidate c is
awarded w(v)αi points. A prominent example of weighted
elections occurs in the U.S. Presidential Elections, in which
the Electoral Colleges are given different weights. Weights
are also commonly used in computational elections, such as
search engine ranking aggregation [17, 5].

A family of scoring protocols is an infinite se-
ries of scoring protocols (α1, . . . ,αm, . . .) in which αm =
(αm

1 , . . . ,αm
m) is an m-element scoring protocol.

2.2 Manipulation
A common problem with many election systems is the

incentive for some voters to vote contrary to their true pref-
erences, either individually or collectively in a coalition, ma-
nipulating the outcome. This can occur when some voters
vote for their 2nd preference to avoid ”wasting a vote” on
their favorite candidate whom is not popular, or bury their
2nd preference to give their first preference a larger relative
advantage. Unfortunately, several early results have shown
that the existence of such strategies in elections is inevitable
[8, 16], and an early compromise was made to make the de-
termination of such results at least NP-hard [2]. We define
manipulation as a decision problem as follows.

Name: E-Manipulation

Instance: Candidates C, established voters V , unestab-
lished voters V ′, and distinguished candidate p ∈ C.

Question: Is there an assignment of preference profiles over
C for V ′ such that p is a winner of the election (C, V ∪
V ′)?

Although this problem is indeed NP-hard for some rela-
tively simple election systems, in particular almost all non-
trivial weighted scoring protocols [9], more recent papers
have focused outside of worst-case complexity. A notable
result [18] shows that for some election systems, particu-
larly the veto system and other systems for three candidates,
instances where it is easy to find a manipulation, or demon-
strate none exists, are very rare. This result was shown
using the known algorithms and heuristics for Partition, an
NP-hard problem closely related to manipulating weighted
three-candidate election systems. We make a definition in
the next section.

2.3 Set Partition
A primitive set partition problem is Two-Way Partition,

more simply known as Partition, which is NP-complete. We
give the decision version of the problem as follows.

Name: Partition[11] (See also [7])

Instance: A multi-set of positive integers S = {s1, . . . , sn}.

Question: Is there a subset A ⊆ S such that
P

A =P
(S −A)?

In the optimization version of Partition, we wish to
minimize the maximum of the two subsets, namely,
Max(

P
A,
P

(S −A)). Several heuristics exist to approxi-
mate this figure.

We give an example of the connection between election
manipulation of three-candidate veto election systems and
Partition given in Walsh as follows.

Consider a three-candidate veto election over the candi-
dates p, c1, and c2, in which we wish for p to win. Suppose
that initially, five voters, of weights 10, 8, 6, 4, and 2 veto
p, c1, p, c2, and c2 respectively. In addition, our coalition
consists of four voters of weights 6, 5, 4, and 3.

Without loss of generality, none of the four manipulators
will veto p, and in this example, we must distribute vetoes
of weights {6, 5, 4, 3} among candidates c1 and c2, currently
with vetoes of total weight 8 and 6, such that each receives
vetoes of weight totaling at least 16.

Since 8− 6 = 2, this corresponds to a partitioning of the
elements {6, 5, 4, 3, 2} such that each side has weight at most
10 (or equally, at least 10).

For this application, as well as many others, Partition has
been extended to that of k-Way Partition, in which the goal
is to divide the set into k equal subsets. It is noted in [14]
that there are at least three optimization functions of inter-
est: we may wish to minimize the maximum subset sum,
maximize the minimum subset sum, or minimize the max-
imum difference between the sums of each two subsets. It
is further demonstrated that all three of these optimization
functions can produce different optimal partitions. The first
two functions are of interest in our problem. The first opti-
mization is interesting because we want the maximum score
given to the non-distinguished candidates not to exceed the
final score of our distinguished candidate. The second opti-
mization is of interest in cases where vetoes are counted. We
define the problem and these two optimizations as follows.

Name: k-Way Partition[11] (See also [7])

Instance: A multi-set of positive integers S = {s1, . . . , sn}.

Question (decision): Are there disjoint and covering sub-
sets S = A1 ∪ · · ·∪Ak such that

P
A1 = · · · =

P
Ak?

Question (optimization #1): Find disjoint and covering
subsets S = A1 ∪ · · · ∪Ak that minimizes

Max(
P

A1, . . . ,
P

Ak).

Question (optimization #2): Find disjoint and covering
subsets S = A1 ∪ · · · ∪Ak that maximizes

Min(
P

A1, . . . ,
P

Ak).

In the coming sections, we will describe the algorithms
for the first optimization. The algorithms for the second
optimization follow symmetrically with some minor adjust-
ments.

Although it is mentioned in [18] that manipulation of veto
elections of more than three candidates can be resolved as
problems of multi-way partition, some adjustments must be
made to this problem. We give an example and demonstrate
the adjustments as follows.
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Consider a four-candidate veto election over the candi-
dates p, c1, c2, and c3, in which we wish for p to win. Sup-
pose that initially, four voters, of weights 20, 12, 9, and 7
veto p, c1, c2, and c3 respectively. In addition, our coalition
consists of six voters of weights 10, 8, 4, 4, 3, and 3.

In this example, we must distribute vetoes of weights
{10, 8, 4, 4, 3, 3} among candidates c1, c2, and c3, currently
with vetoes of total weight 12, 9, and 7, such that each re-
ceives vetoes of weight totaling at least 20.

Since 12 − 9 = 3 and 12 − 7 = 5, we are interested in
partitions of the set {10, 8, 4, 4, 3, 3} ∪ {3, 5}. However, in
this case, we are interested in partitions in which 3 and 5
are not placed in the same subset, as these two subsets rep-
resent the vetoes given to candidates c2 and c3, respectively.
This requires some adjustments to the partition problem
and algorithms of interest, which our work in later sections
encompasses.

Furthermore, as k-Way Partition problems partition only
individual numbers, the application of this problem and its
algorithms in that of manipulation of scoring protocols is
limited to cases of plurality and veto, in which each vote
is determined by a single candidate. For general scoring
protocols such as Borda, we will need to introduce analogous
partition problems.

2.4 Algorithms of Partition and k-Way Parti-
tion

Because Partition is NP-complete, several heuristics have
been developed to approximate the best partition. Two
heuristics of common use are the greedy method, which first
sorts the elements of S in non-ascending order, and places
each element in the set that minimizes the difference itera-
tively, and the Karmarkar-Karp heuristic [10], also known as
the differencing heuristic, which decides that the two largest
elements are in different sets, but defers deciding in which
set each element is placed. Both of these heuristics can be
modified into pruned exhaustive searches [12].

We give an example of the Karmarkar-Karp heuristic as
follows. We are given the multi-set {6, 4, 3, 3, 2, 2}, which
we wish to partition. We place 6 and 4 in opposite subsets.
By inserting these two elements in opposite subsets, we ef-
fectively create a new element equal to the difference of the
two largest elements, since we are only concerned about the
total difference. We thus are creating the new element of
2, resulting in multi-set {3, 3, 2, 2, 2}. We then place each 3
in different subsets, and two elements of 2 in different sub-
sets, resulting in {2}. In the base case of a single element,
we must place it in one of the two subsets. In this case,
this algorithm gives a partition of difference 2. Note that
in this case the optimal partition has a difference of 0, as
6 + 4 = 3 + 3 + 2 + 2, and this algorithm is not optimal.

Both of these heuristics can be extended to that of a
complete algorithm using a depth-first tree search. The
construction of the Complete Karmarkar-Karp algorithm is
given in [12], which we briefly review. We note that in any
given instance of Two-Way Partition, the two largest ele-
ments may be in different subsets or the same subset. By
the heuristic, we always try the former first, and terminate
if the partition is perfect, or within our desired maximum.
The search is also pruned if the first element is greater than
or equal to the sum of the remaining elements, as the best
partition places the first element in one subset and the re-
maining elements in the other.

An early result by Korf [12] showed how the greedy and
Karmarkar-Karp heuristics, as well as the corresponding
complete algorithms, can be extended to the case of k-Way
Partition. In the case of the greedy algorithm, we search a
k-ary tree in which we try inserting elements into each of
the k subsets. In the corresponding CKK algorithm, we will
need to try each combination of the largest two tuples, of
which there are k!.

In [13], the runtime of the greedy and CKK heuristics
are evaluated k-Way Partition, and two new algorithms of
a different type, which utilizes CKK for 2-Way Partition
recursively, are introduced. Interestingly, while CKK is still
more efficient than the greedy heuristic for 3-Way Partition,
the greedy heuristic has a better runtime for k-Way Partition
for k ≥ 4, due to the k!-ary search tree.

Two new algorithms for k-Way Partition, Sequential
Number Partitioning (SNP) and Recursive Number Parti-
tioning (RNP) were also introduced in [13]. In Sequential
Number Partitioning, one complete subset is first chosen,
and the remaining unpartitioned numbers are partitioned
recursively using this algorithm for (k−1)-Way Partition. In
the base case, 2-Way Partition is evaluated using the CKK
algorithm. The subsets are generated by inclusion-exclusion
tree search with various pruning techniques.

There are several pruning techniques for the search of this
first complete subset. First, to avoid symmetry, the first
subset sum of this subset is restricted to be no more than
( t

k
), where t is the sum of the elements, and the subsets

are subsequently chosen in non-descending order by sum.
Also, if m is the maximum subset sum of the best partition
found thus far, or our target maximum, we restrict the first
subset sum to be at least t − (k − 1)m, as otherwise the
best partition found utilizing this first subset sum cannot
beat this difference. To induce as much pruning as early as
possible in the search tree, the elements are considered in
non-ascending order, and we try including first.

In Recursive Number Partitioning, on an instance of k-
Way Partition for k even, the set is first divided into two
subsets, each of which will be partitioned k

2
ways, by a top-

level CKK search. In [13, 14], it is shown that both SNP
and RNP show a marked improvement over CKK for k-Way
Partition when k ≥ 3, with RNP significantly faster than
SNP for k ≥ 4.

We wish to introduce a further extension of Partition in
order to investigate the complexity of manipulating a gen-
eral scoring system of weighted voters. In this paper, we
demonstrate a natural extension of the above algorithms to
this problem and also how to apply this new problem to the
problem of manipulation in scoring systems. In doing so,
we wish to gain a better understanding of the complexity of
such manipulation problems in relation to the current best
known algorithms of such partition-type problems.

3. EXTENSIONS OF k-WAY PARTITION
In our new problem of k-Way Permutation Partition, we

are given a multiset of tuples, each of cardinality k. We
wish to find permutations of each tuple such that, if we take
the sum of each of the k positions among the tuples, the k
sums are equal. As in the case of k-Way Partition, there
are a few interesting optimization functions, of which two
are of interest to manipulation problems. We give a formal
definition as follows.
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Name: k-Way Permutation Partition

Instance: A multi-set of k-tuples, S = {x1, . . . , xn}, where
xi = {x1

i , . . . , x
k
i }. It can be assumed without loss of

generality that xk
i = 0 for all 1 ≤ i ≤ n, as one may

normalize the tuple, noting that only the difference
among tuple elements is crucial.

Question (decision): Is there a mapping P : {1, . . . , n}→
S{1,...,k}

1 such thatX
1≤r≤n

xP (r)1
r = · · · =

X
1≤r≤n

xP (r)k
r ?

Question (optimization #1): Find the mapping

P : {1, . . . , n}→ S{1,...,k} that minimizes

Max1≤i≤k

X
1≤r≤n

xP (r)i
r .

Question (optimization #2): Find the mapping

P : {1, . . . , n}→ S{1,...,k} that maximizes

Min1≤i≤k

X
1≤r≤n

xP (r)i
r .

Note that k-Way Partition is a special case of this prob-
lem, in which each k-tuple has the form (x1

i , 0, . . . , 0).
In this paper, we will examine extensions of algorithms

introduced by Korf in [12, 13, 14] from Partition and k-Way
Partition to that of k-Way Permutation Partition, their re-
lationship to that of more general scoring systems, the dis-
tribution of the complexity of instances in evaluating such
using these algorithms, and thus the frequency of hard in-
stances of this problem in a system of uniform voters. Using
these algorithms, we wish to show whether and when the re-
sults of [18] can be extended to that of other scoring systems
using these heuristics.

In the rest of this section, we examine how each of the
known algorithms for k-Way Partition may be extended to
that of k-Way Permutation Partition. Such algorithms allow
us to examine the complexity of manipulating some scoring
protocols.

4. K-WAY PERMUTATION PARTITION AS
A RESTRICTED K-WAY PARTITION
PROBLEM

Our extensions of the SNP and RNP algorithms to that
of k-Way Permutation Partition stem from the observation
that k-Way Permutation Partition is a restricted version of
the k-Way Partition problem. More specifically, given tuples
S = {x1 = {x1

1, . . . , x
k
1}, . . . , xn = {x1

n, . . . , xk
n}}, we wish to

find a k-Way Partition of the multiset of the union of all el-
ements, {x1

1, . . . , x
k
1 , . . . , x1

n, . . . , xk
n}, excluding zeros, with

the additional constraint that each of the k subsets contains
at most one element from each of the n tuples. As both the
SNP and RNP algorithm work in a divide-and-conquer man-
ner in which subpartitions are generated in sequence, this
constraint can be implemented by restrictions in branching
in each node of the search tree. We give a brief description
of how these restrictions are implemented.

1SA is the set of all permutations over A.

In the SNP algorithm, we wish to choose a set of elements
for our first subset. As in k-Way Partition, we consider the
elements in non-ascending order in an inclusion-exclusion
search tree. In the algorithm for k-Way Permutation Par-
tition, each element is labeled with its corresponding tuple,
and in the top-level inclusion-exclusion search, if an element
from this tuple has already been chosen, we must exclude
this element from the set. On the other hand, if this is the
last element from its tuple in the elements to be considered,
we must include it. We then partition the remaining ele-
ments k− 1 ways, normalizing the tuples if necessary. Note
that since zero elements are excluded, this algorithm is also
consistent with the SNP algorithm given by Korf.

There also exists a similarly well-defined extension of the
RNP algorithm proposed by Korf. In our extension of RNP
on k-Way Permutation Partition, we perform the CKK al-
gorithm on the elements, which are labeled with their corre-
sponding tuples, under the constraint that each of the two
subsets receive no more than k

2
elements from each tuple.

As each of the two branches in a CKK search node entail
combining two subpartitions, we achieve this by refraining
from combining subpartitions in which one or both subsets
exceeds k

2
elements from any tuple. There also exists sim-

ilar simple pruning techniques, that exclude search nodes
in which we cannot attain a subset minimum we used in
pruning, or that cannot beat the best partition found thus
far.

In both algorithms, the base case of 2-Way Permutation
Partition can be solved as a case of 2-Way Partition, as we
may normalize so that there is only one non-zero element in
each 2-tuple.

We consider an example as follows: partition the tuples
{{8, 0, 0, 0}, {6, 2, 0, 0}, {5, 5, 2, 0}, {5, 5, 0, 0}, {5, 4, 3, 0}}
optimally. In this algorithm we sort the union of the ele-
ments of each tuple, excluding zero, arriving at the multiset
{81, 62, 53, 53, 54, 54, 55, 45, 35, 22, 23}. We note the tuple
each element originates from as a subscript. The first branch
of the top-level CKK search combines elements 81 and 62,
adding a new element of net weight 2 to this set. Since
we are interested in the further partitioning of the 2-Way
Partition of this set, we must keep track of how we arrive at
our net elements. We could represent this resulting multiset
as follows: {53, 53, 54, 54, 55, 45, 35, 2 = 81 − 62, 22, 23}.
Skipping a few steps, eventually this top-level CKK al-
gorithm produces a partition of sets {62, 53, 54, 45, 35, 23}
and {81, 53, 54, 55, 22} at its first left-hand-side leaf.
This corresponds to two instances of 2-Way Permuta-
tion Partition: {{0, 0}, {6, 0}, {5, 2}, {5, 0}, {4, 3}} and
{{8, 0}, {2, 0}, {5, 0}, {5, 0}, {5, 0}}. In this case, since we
are interested in 4-Way Permutation Partition, we evaluate
two instances of 2-Way Permutation Partition for each leaf
of the top-level CKK instance.

We give some pseudocode for an implementation of such
an algorithm. In our code below, the RNPinner function takes
a multi-set of weights, each associated with a difference
between the sums of two sets of elements. In each of these
two sets of elements, each element is associated with the
tuple it originated from. For example, in the example
above, in the first node, we formed an element 2, which was
derived from the difference of element 8 and 6 from tuples
1 and 2 respectively. In the code below, recall that we are
minimizing the maximum subset sum. We store this figure
in the variable best.
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RNPinner(S = {(s1, A1, B1), (s2, A2, B2), . . . , (sn, An, Bn)},
k), where s1 ≥ · · · ≥ sn, si =

P
Ai −PBi. Ai and Bi are

multisets of elements, each element labeled with the tuple
it originated from.

if n = 1 [Base case.]
[Recursively partition the tuples corresponding to sets
A1 and B1

k
2

ways, after normalizing.]
return Max(RNP(Normalize(A1)), RNP(Normalize(B1)))

else
[Try difference if possible.]
if each of A1∪B2 and B1∪A2 sum to at most k(best−1)
and contain at most k

2
elements from each tuple

best← Min(best, RNPinner({
(s1 − s2, A1 ∪B2, B1 ∪A2), . . . ,
(sn, An, Bn)}, k))

[Try sum if possible.]
if each of A1∪A2 and B1∪B2 sum to at most k(best−1)
and contain at most k

2
elements from each tuple

best← Min(best, RNPinner({
(s1 + s2, A1 ∪A2, B1 ∪B2), . . . ,
(sn, An, Bn)}, k))

return best

At the top level, we break the tuples into individual
elements, with corresponding trivial element sets.

RNP(S = {(s1
1, . . . , s

1
k), . . . , (sm

1 , . . . , sm
k )})

best←∞
[Each element by itself, labeled with its originating tuple.]
return RNPinner({(s1

1, {(s1
1, 1)}, ∅), . . . ,

(sm
k , {(sm

k , m)}, ∅)}, k)

The main difference between the implementation of RNP
for this restricted RNP problem and that of Korf’s imple-
mentation for k-Way Partition is the extra restriction for
combining weights, as the subsets involved must not exceed
k
2

elements from any tuple. The SNP algorithm can be im-
plemented.

5. MANIPULATION AS A PARTITION
PROBLEM

We resolve manipulation in scoring systems into instances
of k-Way Permutation Partition. There are two relevant
cases.

Theorem 1. Consider an election of the scoring sys-
tem (α1, . . . ,αk) and candidates c1, . . . , ck with initial scores
s1, . . . , sk. Let the set of manipulative voters be V ′ of cardi-
nality ||V ′|| = m with weights w1, . . . , wm.

There exists a manipulation ensuring the victory of
c1 iff there exists a (k − 1)-way permutation partition
of the tuples {{s2, . . . , sk}} ∪ {{w1α2, . . . , w1αk} , . . . ,
{wmα2, . . . , wmαk}} with maximum subset sum of at most

s1 + α1

X
1≤i≤m

wi.

It should be noted that in order to apply this reduction,
it is only necessary that the each voter’s contribution to the

scores of each candidate depend only upon his or her position
in the voter’s preference ordering. It is not necessary for the
system to have a fixed scoring vector. Such elections may or
may not be of interest to computational social choice theory,
and will not be evaluated in this paper.

Proof. Without loss of generality, each voter from V ′

will choose c1 as his or her first preference, giving it a final

score of s1 + α1

X
1≤i≤m

wi. To ensure the victory of c1, none

of the final scores of candidates c2, . . . , ck can exceed this
figure. As each voter of weight wi is free to choose a permu-
tation of scores wiα2, . . . , wiαk for candidates c2, . . . , ck, this
corresponds to the problem of k-Way Permutation Partition
containing a vector containing these scores for each voter in
V ′, as well as a vector representing the current scores of the
k − 1 non-distinguished candidates.

A manipulation ensuring the victory of c1 thus exists iff a
such a (k− 1)-way permutation partition not exceeding the
final score of c1 mentioned earlier exists.

Theorem 2. Consider a q-veto election of candidates
c1, . . . , ck with initial scores s1, . . . , sk. Let the set of ma-
nipulative voters be V ′ of cardinality ||V ′|| = m with
weights w1, . . . , wm. Without loss of generality, suppose
sk ≥ s2, . . . , sk−1.

There exists a manipulation ensuring the victory of c1 iff
there exists a (k − 1)-way permutation partition of the tu-
ples {{sk − s2, . . . , sk − sk}} ∪ {{w1, . . . , w1| {z }

q

, 0, . . . , 0} , . . . ,

{wm, . . . , wm| {z }
q

, 0, . . . , 0} with minimum subset sum of at least

sk − s1.

Proof. In this case, we are counting the total weight
of the vetoes each non-distinguished candidates receives.
Without loss of generality, no vetoes are given to the dis-
tinguished candidate. With some modification, this reduc-
tion also applies to cases of scoring protocols of the form
(α, . . . ,α| {z }

k−q

,αk−q+1, . . . ,αk) for α >α k−q+1 ≥ . . . ≥ αk.

6. EXPERIMENTAL RESULTS
We test the feasibility of using algorithms of k-Way Per-

mutation Partition for solving manipulation problems of var-
ious election systems using the connections in the previous
section. To eliminate the issues of computer architecture and
focus on the algorithm computationally, in each case, as a
benchmark, we count the number of branches evaluated in
invoking the algorithms in question, as opposed to runtime,
for cases of interest. We also evaluate the standard error to
provide 95% confidence intervals on the experimental data,
to ensure statistical significance.

We choose voter weights uniformly from the range [0,
65536), and voter preference orderings uniformly as a ran-
dom permutation. This is consistent with the definition of
random voters in [18].

Our first test is for the case of manipulating weighted
2-approval and veto elections of a fixed number, k, of candi-
dates, as the (k−1)-Way Permutation Problem instances for
these cases are relatively similar to that of (k−1)-Way Par-
tition. We found that, for these simple cases, the runtime
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is similar to that of the 3-candidate cases tested by Walsh,
that most cases can be solved in an average of about one
branch. Particularly of interest, hard instances are not di-
rectly related to the phase transition of this problem. How-
ever, these results require the use of (k−1)-Way Permutation
Partition, due to the arbitrary nature of the initial scores.
Due to the nature of the reductions involved, we presume
that this result also applies to scoring protocols of the form
(α1,α2, 0, . . . , 0) for α1 > α2.

We test the case of 4-candidate Borda elections, which
is the simplest case of a scoring protocol not of the form
mentioned above. As with all of the plots in this section, we
plot the 95% confidence interval of the mean of our testing.
As demonstrated in [18] for elections of three candidates,
the phase-transition of this problem also occurs for m = cn2

for some constant c > 0. In the following chart, we plot the
runtime of invoking the SNP algorithm for an instances of
manipulating 4-candidate Borda elections of m = n2 non-
manipulative voters and n manipulators, as this is within
the phase transition of the problem.

As we can see in this plot, the runtime of evaluating
uniformly random instances of manipulating weighted 4-
candidate Borda elections soars exponentially for instances
near the phase transition of this problem. This result is in
direct contrast to the results in Walsh for 3-candidate elec-
tions. Our next test case involves 5-candidate Borda elec-
tions, for which we have a choice between the SNP and RNP
algorithms. As seen below, we observe that the RNP algo-
rithm is significantly slower than that of SNP, contrary to
the results in Korf in the general setting. Neither algorithms
extend the results of Walsh.

Our next two tests involves scaling the number of candi-
dates in the election. We wish to investigate how the run-
time complexity of the algorithms in question scale with the
number of candidates in the election.

Below, we are plotting the runtimes of our algorithms on

the case of manipulating k-candidate Borda elections for a
fixed number of non-manipulators and manipulators, 4 and
2 respectively. The exponential results demonstrate that the
SNP and RNP algorithms do not scale well with the size of
the candidate set, even for a small voter set.

In our last test case below, we test a simplier family of
scoring protocols, that of k-candidate k

2
-approval elections,

using the SNP algorithm (the runtime of the RNP algorithm
is similar). This case is of interest as it is the most complex
approval case for our algorithms, as one may choose to par-
tition approvals or vetoes. The exponential nature of these
results also show that the runtime of these algorithms stem
from the number of candidates, as opposed to the complex-
ity within the scoring protocol itself.

7. CONCLUSIONS AND FUTURE WORK
These new algorithms show how the problems of k-Way

Partition and the known algorithms of such can be applied to
the seemingly unrelated problem of manipulating weighted
scoring systems. These new findings allow one to develop
a better understanding of the inner workings of these ma-
nipulation problems. Known algorithms of partition-type
problems, including Sequential Number Partitioning (SNP)
and Recursive Number Partitioning (RNP) have the prop-
erty of finding a good partition relatively quickly when one
exists, and this property appears to extend to that of our
new problems. Although RNP has been demonstrated to
be faster than SNP for the special case of k-Way Partition,
this simplification does not appear to extend more generally
here, particularly for more complex systems such as Borda.

In each case, the best-known algorithms for Korf, and
very natural extensions and generalizations thereof, do not
validate the conclusions of Walsh and Nisan for elections of
more than three candidates, but instead show that scoring
protocols in general are not directly vulnerable to manipu-
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lation via the known algorithms of partition-like problems.
However, this may be due to either the strength of elections
having more than three candidates, or weakness of the best-
known algorithms for k-Way Partitioning and the extensions
given in this paper. We leave this as an open problem.

As an open problem, we note that there are also inherent
weaknesses of the known algorithms of partition. The ob-
vious weakness of RNP, for instance, is that it can only be
applied to cases of k-Way Permutation Partition for k even.
This weakness is demonstrated clearly in Korf, in which it
is shown that 3-Way Partition is almost as slow as 4-Way
Partition, and by extension, similar results hold for k-Way
Permutation Partition. In the cases where RNP would oth-
erwise be more efficient than SNP, it is not available as an
option for k odd as the CKK algorithm used at the top-level
division is designed to enumerate partitions which are very
close to even.

A second weakness of RNP relates to the top-level CKK
division, which divides the initial set of labeled elements
into two. Recall that in the CKK algorithm, the algorithm
tracks a list of 2-way partitions of subsets of the original
set. If either subset in any of the 2-way partitions in such a
list cannot be furthered partitioned k

2
ways in a way better

than the best partition found so far, it is clearly fruitless
to continue on this search branch, as the final 2-way par-
tition cannot yield a better overall k-way partition. One
way to capitalize on this insight is to perform the algorithm
recursively on the instances of k

2
-Way Permutation Parti-

tion at the search nodes of interest. Unfortunately, this will
only prune the top-level search tree only if a better parti-
tion does not exist, and may be expensive, as the number of
such nodes, absent pruning, may be exponential. A possible
open problem of interest is thus a study of the tradeoffs in
making such prunings, determining fast heuristics of when
to perform this test within the tree.

Resolving these two weaknesses of the RNP algorithm can
help explain the anomaly of why despite being faster than
SNP in k-Way Partition [13, 14], it behaved unusually slow
in general for k-Way Permutation Partition.

Another problem of interest involves using variations of
these new algorithms for polynomial-time approximation al-
gorithms, a problem studied in the context of different elec-
tion systems in [3]. Since it is also known that the CKK al-
gorithm, and possibly the extensions thereof, are especially
fast at finding a good partition when one exists, approxima-
tion and probabilistic algorithms may exist to capitalize on
the tradeoffs in performing an incomplete search. Interesting
optimization and approximation functions may include min-
imizing the number of manipulators needed, or relaxing the
restrictions of the manipulation problem. The problem Par-
tition has a polynomial-time approximation scheme (PTAS),
which may also be extended to some of the extensions used
here.
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ABSTRACT
The field of multiagent decision making is extending its
tools from classical game theory by embracing reinforcement
learning, statistical analysis, and opponent modeling. For
example, behavioral economists conclude from experimen-
tal results that people act according to levels of reasoning
that form a “cognitive hierarchy” of strategies, rather than
merely following the hyper-rational Nash equilibrium solu-
tion concept. This paper expands this model of the iterative
reasoning process by widening the notion of a level within
the hierarchy from one single strategy to a distribution over
strategies, leading to a more general framework of multi-
agent decision making. It provides a measure of sophistica-
tion for strategies and can serve as a guide for designing good
strategies for multiagent games, drawing it’s main strength
from predicting opponent strategies.

We apply these lessons to the recently introduced
Lemonade-stand Game, a simple setting that includes both
collaborative and competitive elements, where an agent’s
score is critically dependent on its responsiveness to oppo-
nent behavior. The opening moves are significant to the end
result and simple heuristics have achieved faster cooperation
than intricate learning schemes. Using results from the past
two real-world tournaments, we show how the submitted en-
tries fit naturally into our model and explain why the top
agents were successful.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

Keywords
Iterated reasoning, cognitive models, multiagent systems,
POMDPs, repeated games

1. INTRODUCTION
In many domains where multiple strategic actors are

present, it is becoming increasingly common to find com-
puter programs in place of human decision-makers. Algo-
rithmic trading [14], automated ad auctions [12], and bot-
nets [7] are just a few examples of the multiagent problem

Cite as: Using Iterated Reasoning to Predict Opponent Strategies,
Michael Wunder, Michael Kaisers, John Robert Yaros, Michael Littman,
Proc. of 10th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone
(eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 593-600.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

that have emerged over the past decade. The key challenge
of such settings is the deliberate unpredictability of other
adaptive agents that can prevent the formation of reliable
responses. On the other hand, if others are trying to predict
us, there is an opportunity to discover the pattern by which
they attempt to do so. Multiagent learning has been moti-
vated by successes in machine learning and several branches
of economics to answer the question of how computer agents
should make decisions when multiple decision makers are
present that may not have the same goals or incentives [13].
The task at hand is actually two separate but related tasks:
to predict the behavior of other unknown players, and to
respond in turn. Unlike the single agent case, here agent de-
signers need to recognize that other modelers are changing
and attempting to anticipate their agent’s actions.

One popular approach to building intelligent agents is to
apply reinforcement-learning techniques adapted from sin-
gle agent environments. Often, for learning to make speedy
progress, algorithm designers rely on assumptions about op-
ponents that are not always explicit, and we would like to
have a way to explore them and understand how they arise
as they do. We might notice that multiagent learning in
multiple round games raises similar questions to those of
reinforcement learning. Players need to learn how to act in
the long-run, how to escape from undesirable locally optimal
outcomes, and they need to learn quickly. One difference is
that the issue of time can have a big impact on the eventual
result of a game with multiple agents, while learners in fixed
single-agent environments will typically reach the same pol-
icy regardless of the pace of experience. For example, in a
game where two players get a high reward for cooperating
with each other at the expense of a third, it pays off to be
one of the first two cooperators—the third agent may never
achieve high reward.

Another option is to model opponent behavior directly, by
using recursive modeling [10], Interactive POMDPs [9], or
Networks of Influence Diagrams [8]. The famous RoShamBo
game is one domain where recursive reasoning has demon-
strated its relevance and applicability [1, 6]. The obstacle
that disrupts progress in this area is that modeling can go on
endlessly, as an agent forms ever more complicated models
using simpler models as parts, often in a rather unstruc-
tured way. Behavioral economists address very similar is-
sues from a slightly different angle. Using experiments on
humans playing games, they have found a great deal of evi-
dence that people use strategic reasoning to make decisions,
but only up to a point. Indeed, this reasoning conforms to a
well-defined cognitive hierarchy, or a related level-k model,
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composed of levels of thinking [2]. This model can apply to
games with two agents or larger population games.

One limitation of previous iterated best response models
is that there is a tendency to pick an exact strategy to rep-
resent each level. Assuming that agents can be classified as
one of a few ideal types is one option for modeling opponents,
but does not capture the aspect that players can belong to
multiple types. We address the opponent model selection
problem by allowing for a distribution of agents to represent
each level. The appeal of using distributions is that uncer-
tainty over opponents leads to multiple best responses, and
sometimes there is no principled way to choose from among
them. We can use this feature to cover uncertainties about
implementations or simplified approximate versions of opti-
mal strategies, which play a role in bounded reasoning mod-
els. Our enriched model, called a Parameterized I-POMDP,
highlights to the user the most important strategies of the
game, and identifies their relationships. Given a feasible un-
known strategy to test, the framework allows us to directly
measure the amount of reasoning that lies behind it by com-
paring it to constructed strategies derived from a thorough
reasoning process.

To illustrate this process, we utilize the recently intro-
duced Lemonade-stand Game (LG) as an example setting
where playing one’s opponents is more important than play-
ing the game. LG is played by three players, which is more
complicated than the simplest 2-player case, but still small
enough where the pairwise interactions are major factors.
This simple game leads to an elegant analysis, even with
the complications of triadic interaction. The main message
of our framework is that learning agents can use a number
of ways to plan against opponents, but in the end success
depends mostly on the distribution of types in the popu-
lation. The model guides theoretical analysis of the game
and its application is demonstrated with actual agents from
competitions. Such competitions have a history of focus-
ing researchers on important issues and providing a wide
selection of approaches that can be mined for data. This
method of mining data to discover aspects of the underlying
reasoning model is an exciting emerging branch of computer
science [15, 16].

The next section, 2, provides more detail about existing
models in both computer science and economics. In Sec-
tion 3, we introduce our proposed extension to those earlier
models. Section 4 explains the LG. Section 5 applies our
framework to LG and derives the resulting levels, resulting in
a hierarchy over the space of reasonable strategies. Section 6
uses previous tournament submissions as evidence that the
new model works in some interesting types of games.

2. BACKGROUND
The cognitive hierarchy model (CH) [3] and its cousin,

level-k thinking [4], have been used by behavioral economists
to explain observed human behavior. CH consists of an ini-
tial level of base strategies combined with a series of levels
found by repeatedly taking the best response of lower lev-
els. The level-k model operates by responding to just level
k−1 instead of levels 0, ..., k−1. In these investigations, the
games are generally simple enough that it is straightfoward
to construct the hierarchy. Experimental data then provides
knowledge about the frequencies of the various levels, and
therefore properties like the average level in a population.
CHs are useful in population games or 2-agent games alike,

but usually they consist of one-shot experiments, obviating
the need to build complex sequential models at each level.
While we will primarily consider games played through com-
puter agents and not directly by people, the same underlying
process is present in both systems.

From the computer-science or machine-learning perspec-
tive, this setting has been formalized as an Interactive Par-
tially Observable Markov Decision Process, or I-POMDP.
This development synthesizes the considerable work done
on single agent POMDPs with multiagent approaches such
as the Recursive Modeling Method (RMM) [11]. This for-
mulation is ideal for sequential or repeated games where
unknown opponents have limited reasoning capabilities.

POMDPs are similar to the standard Markov Decision
Process except it is not assumed that an agent knows what
state it is currently in. A solver must use observations to in-
fer the likely state by updating beliefs over the state space.
An I-POMDP is a POMDP that has interactive states in
place of states, and joint actions in place of actions [9]. This
interactive state is the cross product of environmental states
and internal states of agents present in the game. The inter-
active state space is constructed recursively starting where
other agents are represented strictly as a stochastic part of
the state. In other words, in the simplest interactive state
other agents are assumed to have no reasoning capacity or
sensitivity to payoffs, but instead exist as a noisy component
of the environment. Then, we build more advanced interac-
tive states in new I-POMDPs to represent further or higher
opponent reasoning. We can use this technique to reach any
level of sophistication that can be reasonably computed, but
in practice only a finite number of nested levels are used.

Associate I-POMDPi with agent i and the only other
agent is j. The definition generalizes to more agents. An
I-POMDPi = 〈ISi, A, Ti,Ωi, Oi, Ri〉 has the following fea-
tures:

• ISi is the set of interactive states ISi = S × πj where
S is the set of states from the environment and πj is
the set of policies for agent j.

• A is the set of joint actions Ai ×Aj .

• Ti is the transition function Ti : S × A × S → [0, 1].
The transition model, along with the internal decisions
for policy πj , determine the next interactive state, but
we assume that agent i does not directly control other
agents in its environment.

• Ωi is the set of observations.

• Oi is the observation function Oi : S ×A×Ω→ [0, 1].

• Ri is the reward function Ri : ISi ×A→ R.

Policies at each level k are derived from the beliefs bj,k−1

over the policies and states of the previous level k−1. Define
the following spaces.

• IS0
i = S, π0

j = IS0
i → Aj ∈ H0

• IS1
i = IS0

i × π0
j , π1

j = bj,1(IS1
i )→ Aj ∈ H1

.

.

.

• ISL
i = ISL−1

i × πL−1
j , πL

j = bj,L(ISL
i )→ Aj ∈ HL
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The strength of this formalism is that it suggests a rel-
atively general algorithm for computing policies and works
well with good initial beliefs. A weakness is that the set of
opponent policies to include is unspecified and therefore the
solution breaks down when those beliefs do not match real-
ity. We attempt to mitigate this flaw by keeping a range of
solutions to represent our initial uncertainty. The framework
also has the advantage that the solver has some flexibility in
selecting the planning problem to attack, which could allow
it to select simpler to reduce the computationally demands.
Currently there is no predescribed way to achieve this aim,
but it is another goal for our extended model.

3. PARAMETERIZED I-POMDPS
Our framework, entitled Parameterized Interactive Par-

tially Observable Markov Decision Processes (PI-POMDPs)
is a model for recursively deriving a set of policies that re-
spond to less advanced policies for use in highly structured
domains. We extend the I-POMDP framework by building
an entire profile of policies at each nested level in place of a
single solution. Instead of a single policy, the solution will
be the hierarchy of policies computed at each level.

Define for agent i rule-based policy H : IS → Ai to be
a basic rule that maps states to actions. One example of a
rule would be At

i = At−1
i , signifying constant action. Then,

a parameterized policy π : R → H maps real vector X ∈
[0, 1] to some rule. X could indeed be used to represent any
adjustable feature of an agent, but we will assume that Xr

is the probability of playing rule Hr. Note the rule is not
fixed for the whole game, but rechosen every time step.

The parameterization of policies begins right away when
deciding which beliefs over initial strategies to start with.
There may be several options that incorporate the idea of
non-reasoning policies, so we end up with π0(X) for agents
at level 0 to weight each tactic. In turn, following the I-
POMDP mechanism, the πj(X)s for each agent j and value
X are used to construct an instance of a POMDP problem.
Instead of optimizing over all X to arrive at a single pol-
icy, compute a range of policies as X changes. If possible,
we will attempt to condense all of these rules into a single
new parameterized policy π1 with as few input dimensions
as possible, to represent the result of a step of reasoning
over level 0. This way, we do not have to make the decision
about which strategies are valid for the next level derivation.
All of them are kept as a part of the final model. While it
is possible for games to take place in states in the environ-
ment, we will consider the partial observability to consist of
uncertainty over the parameterized policies present in the
agent’s population.

4. LEMONADE-STAND GAME
Recently, the Lemonade-stand Game was introduced to

demonstrate the interaction complexity that can arise in a
game from simple rules [17]. The game is played by three
lemonade vendors on a circular island with n beaches, where
typically n = 12, arranged like the numbers on a clock.
Each morning, the vendors have to set up on one of the
beaches, not knowing where the other vendors will show up.
Assuming the beach visitors are uniformly distributed and
buy their lemonade from the closest vendor, the payoff for
the day is equal to the distance to the neighboring lemon-
ade vendors. For convenience denote D(Ai, Aj) the distance
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Figure 1: This figure depicts key strategic patterns
of the lemonade game. Each of the six diagrams
refers to a (partial) joint action, and similarly a
strategic move by , expecting opponents to play

and . As the domain is on a ring, the patterns
are rotation insensitive.

function between agents i and j on the side with no other
agent in between. Then, Rt

0 =
∑2

j=1D(At
0, A

t
j).

In game-theoretic terms, LG is a 12-action normal form
game on a ring, where the payoff function equals the sum
of distances to the right and left neighboring vendor. As a
corollary, the cumulative payoff of the three players is 24.
The only exceptional formations are when multiple agents
conflict by choosing the same action (Collision). If two ven-
dors choose the same action, they receive a reward of 6 and
create the most favorable condition for the third agent who
receives the maximum of 12. If all three vendors choose the
same action, each receives 8. There is no special property
about any of the 12 locations on Lemonade Island. The
game is played repeatedly for T days and the joint action is
observable. T is set to 100 so that agents can learn about
the opponents’ behavior from previous rounds.

The dynamics of this game are particularly interesting
because it involves a sense of competition, as the gains of
one always have to be compensated by the loss of others,
as well as a sense of cooperation, because two agents can
coordinate a joint attack on the third. Figure 1 shows an
overview of the key strategic patterns in the LG. Each agent
has to choose an action, and the simplest move is to stick
with the initial action from then on (Stick). The Equilateral
pattern splits the payoff evenly into 8 for each agent, but
from worst case perspective is dominated by the cooperative
action Across. Once two agents coordinate on the action
Across, they will share 18, relegating the third agent to 6
regardless of the action it chooses. As an illustration of its
simplicity, must only find a predictable player and use
the action opposite to it. can be completely oblivious as
long as it is predictable (say, a pure Stick player).

If an agent finds its opponents in a consistent Across pat-
tern, it will lose unless it can entice at least one opponent
to break formation. In a simple form illustrated in Figure
1, bottom right, can alternate between using the same ac-

tion as and an action halfway between and . will
get the same utility whether it is Across from or during
the Reward phase of , but would choose Across from if it
wants to avoid low utility during its looming Punish phase,
essentially switching partners.
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5. LEVELS OF REASONING IN LG
The Lemonade-stand game is an ideal example of com-

petitive collaboration. That is, a player able to convince
another player to cooperate with it can achieve a higher
average score to the disadvantage of the third player. Of
course, each player has to choose the “friendlier” player to
cooperate with, with the knowledge that any attempts may
be tracked by the other players. Ultimately, the two players
who work together best will achieve the highest scores.

It appears that players have many repeated turns for ob-
servation and experimenting. In reality many matches are
settled in the first several rounds, as agents seek partners and
mutual history is established. Cooperation, however it is de-
fined, is self-reinforcing. Therefore, strategies in this game
put a premium on speed over data collection when finding
optimal actions. This property means that traditional learn-
ing methods, like gradient ascent or regret matching tend to
be outperformed by very simple rules. Because there are
many possible Nash equilibria in the game, it is also un-
clear which ones are optimal and how to reach them. Our
aim is a model that can explain such phenomena and yield
strategies that at least outperform the simplest heuristics.
An alternative approach [5] to this game identifies a stable
equilibrium and classifies agents as leaders or followers ac-
cording to who initiates the equilibrium pattern. While this
strategy works in some scenarios, in some cases it is possible
to identify several levels of leading and following. It also
makes no judgments about whether one is superior to the
other, or how one might measure that performance.

5.1 Long-run Optimal Behavior
LG translates into our PI-POMDP model, with several

simplifications. In this case, Ω ∈ A, so that O : IS×A×A→
[0, 1]. In addition, there is only one state in the environment,
which means there are only pseudo-states depending on the
agents’ behavior that is conditioned on the current At.

• ISi is the set of interactive states ISi = S × πj where
S is the set of states from the environment and πj is
the set of policies for agent j.

• S is defined by the time step in the finite horizon case.

• Ai = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}.
• HStick: A basic action type that repeats the same ac-

tion as the last turn

• HUniform: Play a random action.

• π0
j (X0) = a ∈ {Hstick, Huniform}

s.t. P (a = Hstick) = X0, P (a = Huniform) = 1−X0.

• Ωi is equivalent to
⋃
Aj∀j .

• Oi is determined by the policy of the opposite agent.

• Ri is the sum of distances to the players on either side.

To analyze this game rigorously using a PI-POMDP, we
begin like most iterated reasoning models with a base level
of non-reasoners, called Level 0 or L0. Analogously to an in-
ductive proof, L0 forms the basis for the rest of the hierarchy.
First, these base strategies are defined, and subsequently,
the higher layers can be constructed by iteratively applying
the reasoning step. Here, we define a step of reasoning to be

a policy that maximizes the score against either a distribu-
tion over previous levels, or a selection of agents from those
levels, by solving the POMDP formed by them. To avoid
losing information, a parameterized policy (responding to a
previous distribution of lower-level policies) represents the
next level.

In many games, a base strategy of a single uniform distri-
bution over all actions suffices: HUniform

j . In repeated games
like LG, there exists another trivial action Stick, which leads
to the basic notion of sticky strategies. Stickiness, as mea-
sured by the likelihood that a player remains in place, plays
an important role in this game because it makes action pre-
diction simple. As such, the rule HStick

j : At
j = At−1

j de-
serves a place among base strategies. In typical constant-
sum games, a non-changing strategy is easy to defeat. In
LG it is a powerful strategy on its own, as it forces other
players to take action beneficial to the sticky player, such as
to move away from it.

We take the general π0
j (X) base level L0 to be composed

of HUniform
j and HStick

j , with a single real parameter X0 to
control the relative frequency of each. Consider the two op-
ponents to be named Bk and Ck, where k is the amount of
reasoning the agent’s strategy contains. The solving agent’s
perspective is denoted agent I. The L0 strategy for B0 is
defined by an initial random action and the probability X0

to Stick with the previous action in the following turns, or
otherwise pick a new random action. Y0 is the corresponding
value for agent C0. For π0

j (0) = HUniform
j or π0

j (1) = HStick
j ,

L0 takes the form of a uniformly random (L0-U) or constant
strategy (L0-C) respectively. We refer to this policy π0

j as

πSemi-random
j (X). Define X̂ as the current estimate of X for

an opponent B0, and Ŷ as the estimate of Y for opponent
C0, signifying the same strategy. In other words, given a
sequence of observations from two unknown strategies im-
plementing π0 with values X and Y, we must make statistical
conclusions about those values given our experience. We are
then faced with finding a long-run strategy given observa-
tions X̂ and Ŷ . Although a POMDP solver could be utilized
to simulate the reasoning, here proofs are presented because
the steps are very open to analysis.

Theorem 1. The optimal L1 strategy for agent I1, π1
I , is

to maximize the distance D from the other two agents, giv-
ing HBetween-across

I = WBAcross(AB) + WCAcross(AC) where

WB = X(1−Y )
X(1−Y )+Y (1−X)

and WC = 1 −WB are weights that

determine how much HBetween-across
I should favor each of the

Across actions. This strategy will prefer to be Across from
the player who Sticks more often.

Proof. Since L0 agents do not respond to the actions of
agent I1, the POMDP reduces to a simple MDP. That is,
action AI has no effect on the transitions of the opponents,
so the best action is found by calculating the expected utility
of each spot, given X, Y , and the current placement of B0

and C0. If C0 Sticks at location 0 and B0 is random over all
locations, the expected value of action a for a > 0 is:

V (a) =
6

12
+

12

12
+

max(0, a− 1)

12

(
12− a

2

)
+

11− a
12

(
6 +

a

2

)
.

The first term is the event that B0 lands on I1. The second
term is the event that B0 lands on C0. The third term is
the event that B0 lands in the short distance between C0

and I0, and the fourth term is the event of landing on the
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large distance side. Taking the derivative, we then find that
(when n > 0)

V (a) = 6 + a− a2

12

V ′(a) = 1− a

6
= 0

a = 6.

The optimal action is 6, directly across from 0, where the

expected value is V (a) = 6+6− 62

12
= 12−3 = 9. All actions

on the far side of B0 and C0 have the same value when both
players Stick or act uniformly, so we just care about the case
when one of the two switches. Assume that B0 is at 0 and
C0 is DBC spaces away clockwise, where DBC ≤ 6 w.l.o.g.
The value of action a when C0 Sticks and B0 is random is

V (a) = 6 + a−DBC − (a−DBC)2

12

V ′(a) = 1− a−DBC

6
.

Therefore, the marginal value when B0 Sticks with proba-
bility X and C0 Sticks with probability Y is

V ′(a) =
(

1− a

6

)
X(1− Y ) +

(
1− a−DBC

6

)
Y (1−X) = 0

a =
6X(1− Y ) + (DBC + 6)Y (1−X)

X(1− Y ) + Y (1−X)
.

Intuitively, the first term of the numerator weights the posi-
tion directly across from B0, and the second term does the
same for C0. Therefore the optimal action depends on the
relative values of X and Y .

The implication of this theorem is that an L1 strategy is
predisposed toward choosing the action across from the more
stable player. In general an agent observing that X = Y
causes the agent to always maximize its distance to the clos-
est agent. Of course, in the initial rounds of a game, there
are not enough observations to accurately forecast these un-
knowns. There are various ways to implement this policy,
from the method of estimating X̂ and Ŷ to its reliance on

priors of X̂ and Ŷ . Assume X̂0 =
X1 + cStick

2X1 + cTotal
where cStick

is the number of Stick moves and cTotal is the current time
steps. Here, the new parameter XL ∈ [0,∞] represents the

degree of attachment to the prior X̂0 = 1
2
, such that X−1

L

is the learning rate at which this estimate converges to the
true value. With few observations, X̂0 will be noisy for low
XL (high learning rate). A high learning rate implies that if
one player is constant but the other moves, this strategy will
move sharply across from the constant player. When both
players have been constant, W is undefined because the ran-
dom (or half-random) cases does not occur, and therefore in
that case there are a range of optimal actions. Since an-
other feasible implementation is to assume both players are
constant until there is contrary evidence, there is certainly
room for parameterizing the preferred response in this case.
However, given asymmetric behaviors, the theorem holds,
where the constant player is the preferred partner.

For L2, we are looking for the best strategy given some
combination of the first two levels, which is partially observ-
able in the PI-POMDP. L2 optimizes against a distribution
of L0s and L1s. The new PI-POMDP is therefore distributed
across these two levels, as well as the range of parameters.

We have already solved the exclusive L0 case, which will de-
termine the default L2 behavior unless something close to
L1 is observed.

When examining the rest of this PI-POMDP, this new
type adds two elements to the policy calculation, which
again depend on the parameters of the policy. First,
the move-away-from-closest-player factor, represented by a
slower learning rate and strong commitment to equal priors,
exerts an influence on future levels to move directly across
from the other player. Second, the punish-movers factor
makes this movement less rewarding.

Theorem 2. Against HBetween-across
B1 and HBetween-across

C1 , the

optimal rule for agent I2 is HStick
I2 .

Proof. (Sketch) With two L1s B1 and C1, each L1 is try-
ing to move away from its two opponents. L1 is continually
estimating X̂ and using the estimate to adapt its strategy,
which is to follow across from the other two agents, accord-
ing to relative stickiness. An optimal rule here is just HStick

I

because B1 prefers to move Across(I2) over a moving agent,
which C1 certainly is. This tendency means that whenever
B1 registers a move by C1, it moves a little farther from
I2. This new move then registers as a move for C1, which
in turn updates its action, and so on. This repetitive rule
may reach oscillations, but the net effect will be to maneu-
ver away from I2, to the benefit of I2. This policy is correct
across the range of XL.

The interesting case is when the L2 player is up against
one L0 and one L1 because essentially πC0 “leads” and πB1

“follows”. The asymmetry of strategies allows for a new rule
to emerge. In effect, πB1 is constructed to move away from
the semi-random πC0 , but also from our agent I2. We can
use this tendency to our advantage in the best response.
B1 tends to play HAcross

B1 from the C0 with weighting WC =
Ŷ0(1−Ẑ0)

Ŷ0(1−Ẑ0)+Ẑ0(1−Ŷ0)
where Ẑ0 is the staying probability of I2.

Thus, in that case we would hope to keep Ẑ0 greater than
Ŷ0.

Theorem 3. Against HBetween-across
B1 and πSemi-random

C0 (Y ),

the optimal rule for agent I2 is HStick
I until the number of

moves of πSemi-random
C (Y ) reaches a certain threshold m, and

then to either move Across(C0) if C0 is too close or Stick as
(B1) moves closer to Across(I2).

Proof. (Sketch) We will consider the extreme cases
where Y0 = 0 or Y0 = 1, and XL = 0 or XL = ∞. If
Y0 = 0, then WC → 0 when Ẑ0 > 0 and B1 → Across(I2),
regardless of the value of XL. To accelerate this beneficial
response, I2 needs to Stick. If Y0 = 1, then HBetween-across

B1 (XL)
depends on the value of XL. As XL → 0, B1 is very sensitive
to differences in moving probability. WC → 1 when Z0 < 1
and B1 → Across(C0). To prevent this harmful response, I2
should Stick as much as possible, but recognizing that the
location of C0 matters. It is preferable that C0 be far from
I2 since B1 will make room for it. In the worst case, if I2
moves Across(C0) it gets a minimum reward of 6 and ex-
pects a reward of 9, so that action is optimal if the current
configuration gives a lower score. As XL → 1, B1 retains
more committment to its priors and has a high affinity for
moving exactly in between I and C, unless a large difference
(Ẑ0− Ŷ0) accrues. Therefore it is safer in that case for I2 to
move Across(C0) if the learning rate X−1

L is small. There-
fore, depending on the relative values of XL and Y0, it may
be optimal either to Stick or Across.
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We should note here that L2 can only classify opponents
in one of two ways. The special case is L1 behavior, which is
confined to a window of actions generally across from the two
opposing players. The default classification is L0, which is
defined by some combination of constant action and uniform
random action. The significance of this simple modeling is
that L2 would classify itself as L0, albeit with a high stay-
ing probability. Because L1 and L2 both have a tendency
to move Across from the stickier players given sufficient in-
formation, this property will be selected at future levels. In
fact, as more reasoning is applied, optimal strategies will
start as constant for longer and longer as they attempt to
out-wait earlier types. In those cases where all players have
been constant from the beginning of the game, the decision
about when to move is determined by the cost of remaining
in the same location combined with the degree of reasoning
ascribed to the opponents. In this case, the higher strate-
gies are discouraged from moving at all due to this tendency
to punish moving players. We can therefore consider the
parameter X2 to mean probability of moving into an Across
position, especially when the current position is suboptimal.

The iterated best-response methods employed here do not
necessarily adhere to the principle of auto-compatibility,
whereby players do well against copies of themselves. Evo-
lutionary strategy selection would pursue this goal more
closely. A game with two of the same agent and one that is
different would take on a new focus, where other forms of co-
operation may be attainable that involve breaking the simple
delayed across-move found by interated best response.

6. EXPERIMENTS
The levels of LG, while useful, are theoretical constructs.

Nonetheless, the basic elements of this account arose in a
group of agents developed independently. This section shows
the viability of the level-based analysis by applying it to
the two rounds of open LG competitions, one in Dec. 2009
and the other in Dec. 2010. The submitted strategies were
a diverse collection. No two were alike and ranged from
complete uniform action to near constant, to Across-seeking
and initiating, and many in between.

To apply the model to real agents, we would like to clas-
sify each strategy by level or as a hybrid between levels.
If our PI-POMDP model is a good fit for LG, populations
consisting of agents that correspond to a similar mix of
levels should behave, and score, in roughly the same way
as their idealized counterparts. Since each level has its
unique strengths and weaknesses, performance depends on
the makeup of the population and specifically the relative
frequency of each level. For the purposes of this paper, we
classify a strategy by inspecting how it scores against ide-
alized strategies from each of the levels we identified. See
Figure 2 and Tables 1 and 2, right hand side, for these es-
timated levels. We ran the submitted agents against strate-
gies over various values for the relevant parameters, such as
X0, X1, X2 ∈ [0, 0.5, 0.75, 0.9, 0.95, 1.0]. Using the derived
strategies as benchmarks to compare to, we take the squared
difference between unknown agent and level representative,
and find the smallest difference between two adjacent scor-
ings, say Level 2.95 and 2.975.

The rankings of the players in both tournaments provide
a rough correlation to the amount of reasoning. The bot-
tom half of the 2009 performers act like the base assump-
tion strategies. The top half behave like those derived in
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Figure 2: Estimated levels of competitors in two
Lemonade-stand Game tournaments. Both sets of
agents show positive correlation between reasoning
and performance. R2 values are 0.77 for 2009 and
0.34 for 2010. The more recent agents show a shift
to higher reasoning levels, as well as a compression
of scores.

the higher levels of the PI-POMDP model. From the 2010
dataset we find that on average reasoning has shifted up a
level. Players identify the Across position as a goal state,
but the top performers are more patient to get there, which
implies more reasoning according to the model.

Another prediction of this model is that agents that per-
form too much reasoning do less well than those that go just
beyond the average level of the population. We ran tour-
naments with both sets of agents and two additional agents
drawn from the model population. As Tables 1 and 2 show,
in the 2009 competition a strategy that is close to the Level
1 ideal (but modified for fast Across) outperforms the rest,
while a higher level strategy at Level 2.975 only gets to the
middle of the pack. In the 2010 population, this ordering is
reversed. Note that winning the competition is, in a sense,
easy. Given our analysis, the only missing information is a
guess of the average reasoning level of the population. Nev-
ertheless, without access to the complete set of submitted
agents, identifying the appropriate reasoning level is a seri-
ous challenge.

7. CONCLUSION
This article introduced a PI-POMDP analysis for repeated

games and applied it to the Lemonade-stand Game compe-
tition. In the competition, simple heuristics outperformed
intricate learning schemes, suggesting that PI-POMDP or
CH analysis might be preferable to domain-general best
responses in strategic interactions. The Lemonade-stand
Game rewards strategies that trade off patient exploration
for speed and commitment. Those participants who opt
for too much exploration over model-based responses suf-
fer against more carefully optimized strategies. The model
demonstrates that players must employ some basic heuris-
tics in the early stages of a game. If they do not, they risk
getting classified as the less responsive, consistent, or coop-

598



Table 1: 2009 LSG Tournament results including two agents inspired by the PI-POMDP hierarchy (italicized).
The winners are in bold. Level 0.83 would correspond to a player that Sticks with probability of 0.83, but
random the rest of the time. An agent that would qualify as Level 2.63 would mean that a player Sticks
when in an advantageous starting position. When its initial spot is less beneficial than it is constant with
probability equal to 0.63, and the rest of the time moves Across from another player, preferring the more
constant one. In cases where it is already Across from a player, it remains in place by choosing the same
action.

Rank Strategy (Affiliation) Score Error Level Parameterized Level
1. PI-POMDP Level 1.0 modified (New addition) 8.72 ± 0.0071 L1 1.00
2. EA2 (Southampton/Imperial) 8.56 ± 0.0069 L2 2.63
3. CoOpp (Rutgers) 8.51 ± 0.0055 L2 2.38
4. ModifiedConstant (Pujara, Yahoo!) 8.48 ± 0.0076 L2 2.93
5. PI-POMDP Level 2.975 (New addition) 8.10 ± 0.0083 L2 2.98
6. Waugh (Carnegie Mellon) 8.00 ± 0.0087 L0 0.96
7. ACT-R (Carnegie Mellon) 7.88 ± 0.0086 L0 0.96
8. GreedyExpectedLaplace (Princeton) 7.43 ± 0.0086 L0 0.83
9. FrozenPontiac (U Michigan) 7.38 ± 0.0075 L0 0.63
10. Kuhlmann (U Texas Austin) 6.94 ± 0.0054 L0 0.13

Table 2: 2010 LSG Tournament results including two agents inspired by the PI-POMDP hierarchy.
Rank Strategy (Affiliation) Score Error Level Parameterized Level
1. PI-POMDP Level 2.975 (New addition) 8.30 ± 0.0099 L2 2.98
2. TeamUP (Southampton/Imperial) 8.25 ± 0.0099 L2 2.83
3. Waugh (Carnegie Mellon) 8.19 ± 0.0094 L2 2.93
4. ModifiedConstant (Pujara, Yahoo!) 8.17 ±0.0097 L2 2.93
5. Matchmate (GA Tech) 8.15 ±0.0095 L2 2.13
6. Shamooshak (Alberta) 8.10 ±0.0094 L2 2.25
7. GoffBot (Brown) 7.97 ±0.0108 L2 2.13
8. Collaborator (Rutgers) 7.95 ±0.0105 L2 2.38
9. Meta (Carnegie Mellon) 7.80 ±0.0102 L2 2.38
10. PI-POMDP Level 1.0 modified (New addition) 7.80 ±0.0096 L1 1.00
11. Cactusade (Arizona) 7.27 ±0.0085 L2 2.13

erative partner and suffering as a result.
Despite the difficulty of behavior forecasting, there is no

question that learning can play a role, even among higher
level strategies. However, that learning needs to take place
in the proper space, or else a strategy will not have the ca-
pacity to react to basic heuristics. For instance, the top
three 2009 players did adapt somewhat in response to their
opponents. They did so by recognizing that they were not
playing against distributions like those found in single-agent
domains, but other players who understood the rules and
were prepared to leverage them against slower players. The
PI-POMDP framework identifies this reasoning process and
is able to suggest a strategy that performs much better than
previous agents. The resulting population profile gives in-
sight to predict our opponents and respond preemptively.

In sum, the PI-POMDP analysis achieves good predictions
of the strategies’ performances. Furthermore, it has revealed
characteristic properties of the LG. Future work will aim to
show its applicability to further domains and establish the
method as a framework to understand similar multiagent
games of this kind.
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ABSTRACT
In continuous learning settings stochastic stable policies are often
necessary to ensure that agents continuously adapt to dynamic en-
vironments. The choice of the decentralised learning system and
the employed policy plays an important role in the optimisation
task. For example, a policy that exhibits fluctuations may also in-
troduce non-linear effects which other agents in the environment
may not be able to cope with and even amplify these effects. In
dynamic and unpredictable multiagent environments these oscilla-
tions may introduce instabilities. In this paper, we take inspiration
from the limbic system to introduce an extension to the weighted
policy learner, where agents evaluate rewards as either positive or
negative feedback, depending on how they deviate from average
expected rewards. Agents have positive and negative biases, where
a bias either magnifies or depresses a positive or negative feedback
signal. To contain the non-linear effects of biased rewards, we in-
corporate a decaying memory of past positive and negative feed-
back signals to provide a smoother gradient update on the proba-
bility simplex, spreading out the effect of the feedback signal over
time. By splitting the feedback signal, more leverage on the win
or learn fast (WoLF) principle is possible. The cognitive policy
learner is evaluated using a small queueing network and compared
with the fair action and weighted policy learner. Emphasis is placed
on analysing the dynamics of the learning algorithms with respect
to the stability of the queueing network and the overall queueing
performance.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms
Algorithms, Experimentation

Keywords
Multiagent Reinforcement Learning, Stochastic Policies

1. INTRODUCTION
Multiagent Reinforcement Learning (MARL) techniques have

been successfully applied to a number of domains, ranging from
Cite as: Cognitive Policy Learner: Biasing Winning or Losing Strate-
gies, Dominik Dahlem, Jim Dowling, William Harrison, Proc. of 10th
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei,
Taiwan, pp. 601-608.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

general sum games [12, 14] to application areas such as packet rout-
ing [18], robot control [15], and resource allocation [20, 21]. A the-
oretical framework for sequential decision and multiagent problem
settings is provided by the formalisms of the decentralised Markov
Decision Process (DEC-MDP) [5, 10]. Planning-based solution
methods have been devised to solve these models offline. However,
their complexity increases dramatically if no reward or transition
model is available or the number of agents goes beyond small sce-
narios. In contrast, online approximate solutions have been shown
to be useful in solving DEC-MDP problems [25]. Their central
idea is that models of learning and memory are continuously up-
dated and incorporated into a trial-and-error interaction within the
agent’s local context. Agents learn using only local information,
but they should support near optimal global decision making. In
unison, all agents contribute to the global goal of optimising some
system objective. Simultaneous and independent interactions, how-
ever, pose a challenge to multiagent systems, because they are non-
deterministic, may have non-linear effects, and may lead to slow
convergence characteristics or even diverge. Some research di-
rections tackle these difficulties by modelling the other agents in
the environment [9] or by providing a mechanism to communicate
feedback of parallel optimisation processes underway in the envi-
ronment [10, 19].

Additionally, the modelling assumptions of DEC-MDP often need
to be extended to capture the application specific constraints. For
example, for packet routing or task allocation networks, the ser-
vice stations or nodes have limited capacity to service requests and
limited resources to store waiting tasks. Networked systems ex-
hibit a level of complexity that is very challenging to deal with. In
the absence of direct communication links between nodes sharing a
common resource, coordination is difficult to achieve to optimally
utilise this common resource. For example, consider the queue-
ing network presented in Figure 1 which is used for all evaluation
scenarios. Both agents (nodes 6 and 7) share a common resource
(node 4) and may observe that the common resource offers enough
capacity to service their individual requests. As such, both agents
may decide to utilise this resource at the same time causing po-
tential congestion. Under certain conditions, this may lead to fluc-
tuating performance that may cascade through the network. Con-
sequently, autonomous agents need to mitigate the occurrence of
cascades (non-linear effects) and adapt quickly to changing condi-
tions.

In this paper, we introduce two new features to the weighted pol-
icy learner: an inherent bias that magnifies or depresses rewards
depending on how far they diverge from the average expected re-
ward for different actions in that state, and, secondly, a transient
memory of recent rewards for actions that smooth out the current
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Figure 1: Queueing Network

reward. Both of these features dampen cascading effects of large
changes in rewards at key nodes, preventing system hysteresis, but
still enabling agents to converge to a stable stochastic policy. More-
over, the cognitive policy learner offers greater control over the ex-
tent of the win or learn fast strategy by interpreting the positive and
negative feedback signals separately.

We evaluate the cognitive policy learner using a small queueing
network given in Figure 1 and compare it with the fair action and
weighted policy learner. We investigate whether modulating the
strength of feedback signals can have a stabilising impact on the
learning system. Emphasis is given to analysing the dynamics of
the learning algorithms with respect to the stability of the queue-
ing network and the overall queueing performance. Our results
show improved queueing performance compared to the fair action
learner, and similar queueing performance to the weighted pol-
icy learner. However, our results suggest that our cognitive policy
learner yields a more stable multiagent learning system compared
to the weighted policy learner, as it has a significantly lower to-
tal mean-squared training error for the SARSA(0) steepest-descent
gradient update.

2. BACKGROUND
This section provides the background to the collaborative multi-

agent reinforcement learning environment for queueing networks.
We assume that the queueing network is given as a directed acyclic
graph, which implies that all interactions between the agents are
directed and do not form any cycles. Similar in concept to the col-
lective intelligence framework of Wolpert et al. [23], a subworld,
ψi, constitutes a number of queueing agents that together com-
plete a task for agent i. Each agent can be viewed as though it is
striving to maximise its own reward function with the consequence
of improving the performance of the subworld as a whole. The
engineering discipline is based on division of labour, where the
system is sub-divided into smaller parts. The solution of the de-
centralised optimisation problem is brought about in a bottom-up
fashion. More formally, a subworld can be defined as

DEFINITION 1 (SUBWORLD). A subworld,ψi, is a subgraph
of the queueing network comprising all agents j reachable from
agent i.

• The queueing network induces nested subworlds. At the leaf
nodes of the queueing network subworlds consist of empty
sets.

• A path, pi, in subworldψi represents a realisation of a local
queueing task assignment to agent i.

• Wi is a set of all possible paths in subworld ψi.

With the help of the subworld definition, the multiagent sequen-
tial decision problem can be formalised in a DEC-MDP given in
Definition 2.

DEFINITION 2. An n-agent continuous state DEC-MDP of a
queueing network is defined by a tuple M = 〈DAG, A, S, P, R〉,
where

• DAG is the directed acyclic graph prescribed by the agent’s
interactions. Each agent is represented as a vertex on the
graph and the arcs between the agents represent available
actions to the respective agents.

• A = A1 × · · · × An is the finite set of actions and is given
by the possible interactions.

• S = S1 × · · · × Sn is finite set of queueing network states,
which can be factored into local states Si for each agent i, in-
cluding queueing metrics such as delay, utilisation, or num-
ber of events in the queue.

• Pwi
= P {st+1 = s′ | st = s, ~at ∃pi ∈Wi} is the transition

probability of state s ′ for agent i when the actions ~a com-
prising path pi have been taken in state s.

• Rwi
= E {rt+1 | st = s, ~at ∃pi ∈Wi, st+1 = s′} is the ex-

pected value of the next reward for agent i when actions ~a
are taken in state s and transitioning to the next state s′.

It is important to note that a policy must exist for which the ag-
gregated arrival rates at each node of the queueing network do not
yield unstable queues. More specifically, this implies that solving
the traffic equations

λ = λ0(I−Q)
−1, (1)

where λ0 is the vector of external Poisson arrival rates for each
node in the network andQ specifies the transition probabilities de-
rived from the policy, requires that the stability criterion, λi

µi
< 1,

holds for each node. Here, µ is the vector of exponential service
rates, which is considered fixed and represents the nodes’ capability
to service incoming requests.

Following [25], each agent observes local reward signals, which
are given as the negative task processing time. Longer task com-
pletion times are less desirable, which makes this reward function a
natural choice. This includes all local processing times of the task
at each service station (agent) where no communication delay is
assumed. Then the value function for a local policy πi is defined
with respect to the average expected reward as:

ρi(πi) = lim
N→∞

1
N

E

[
N−1∑
t=0

rti | πi

]
, (2)

where rti is the observed reward at time t and it depends on
the global states of the queueing network. However, unlike [25],
our model cannot be reformulated into an average-reward factored
DEC-MDP, because the rewards received by each agent are not in-
dependent, that is the global reward is not equal to the sum of the
local rewards. Noting that the reward is the response time of the
completion of a local task, one can informally see that a reward
can only be given when the local task is completed. An external
request for a task entering the system at agent i yields an execu-
tion path pi ∈ Wi through this agent’s subworld ψi. Each agent
along this path maximises its own reward function forming their re-
spective subworlds. Consequently, since the rewards are computed
based on completion times of local tasks a reward relationship of
r1 < r2 < · · · < ri is established, so each ri is the negative value
of the response time of the local task ti.
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This reward structure is said to be global, because it incorporates
the rewards of all agents involved in completing a task. More im-
portantly, the reward function has optimal substructure. This means
that if we take the negative task completion times as rewards, the
credit given to a fulfilled task is apportioned fairly among the agents
involved in the completed task. This yields a cooperative multia-
gent system, as distinct from local reward functions that encourages
competitive behaviour among selfish agents. An advantage of this
reward structure is that no communication is required to correlate
rewards and apportion the reward fairly.

Therefore the agents’ reward functions are not mutually indepen-
dent and offline planning approaches are more difficult to achieve.
Moreover, the lack of an explicit reward and transition model in-
creases the complexity of solving such a system and consequently
is only feasible for the most simple cases. Online approaches, how-
ever, offer a scalable and approximate alternative. Here, we use
a standard backpropagation feedforward neural network with one
hidden layer on each arc of the task network to estimate the Q-
values for each action given a state vector [16]. The temporal dif-
ference scheme SARSA(0) can then be expressed as the general
gradient-descent update rule for neural network training as

∆ωt+1 = α[υt+1 −Q(st,at)]∇ωtQ(st,at) + η∆ωt, (3)
υt = rt + λQ(st,at), (4)

where η is a constant representing the momentum, which de-
termines the effect of past changes to the weight vector, ω, and
∇ωtQ(st,at) is the vector of partial derivatives of the value func-
tion Q(st,at) with respect to the weight vector ωt. The action-
value estimation is updated every time a task in the queueing net-
work is completed. That means, that all value functions of all arcs
in the queueing network that were involved in forwarding a re-
quest to the next sub-task will be updated according to ωt+1 =
ωt + ∆ωt+1. The optimal action-value function Q∗ is estimated
with a parametric function approximator,Qω, whereω is the vec-
tor of weights as given above. The neural network function approx-
imator is instantiated with one hidden layer and 10 hidden neurons.
The agents take only local information into account to train the Q-
value function. In all evaluation scenarios of this paper, the delay
ŵi in the local queue forms the input to the neural network. The
delay is calculated as the difference between the time of arrival of
a task at a node in the queueing network and the time of schedul-
ing the task. The state vector can easily be extended with other
queueing metrics, such as current utilisation or the number of task
assignments waiting to be scheduled. The queueing discipline is
first-in-first-out. This means that as the node is processing a task
all tasks arriving at the same time are put into a waiting queue. As
the node finishes processing tasks, tasks in the waiting queue are
dequeued on a first come, first served basis.

3. RELATED WORK
Multiagent reinforcement learning has seen significant contribu-

tions in packet routing [8, 18, 22, 23]. Q-routing was one of the
first multiagent approaches applied to routing [8]. Q-routing by
itself has its roots in the Bellman-Ford shortest path routing algo-
rithm [4]. The original Q-learning algorithm has routing perfor-
mance comparable to the Bellman-Ford algorithm under low load.
However, since Q-routing uses estimates of the delivery time of a
packet, it tends to congest paths if a better performing link has been
over-estimated. This problem persists, because Q-routing is a de-
terministic protocol that always chooses the best performing link
to deliver a packet. An attempt to mitigate choosing sub-optimal
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Figure 2: Mean Response Time versus Utilisation

paths communication between adjacent nodes is established to up-
date estimates before decisions are made. It turns out, however, that
high-load scenarios result in fluctuations with routing performance
worse off than in the basic Q-learning algorithm. This result can
be reconciled with stochastic policies that adjust mixed strategies
with continuously adapting agents.

This can be readily understood by studying the sensitivities of
queueing metrics with respect to the utilisation of a single queue.
Little’s theorem states that the long-term average number of events
in a stable queue is equal to the long-term average arrival rate mul-
tiplied by the long-term average time an event spends in the system
[6]. Based on this theorem, the response time versus the utilisation
can be examined, W =

1/µ
1−ρ

, where ρ = µ
λ

is the utilisation. As-
suming µ = 1 and varying the utilisation rate, the response time
has two regimes as shown in Figure 2. For utilisation rates below
∼ 70% the response time grows linearly. But for higher utilisation
rates the response time has an exponential growth. So, if greedy
link selection is employed, sub-optimal decisions have a dramatic
impact if the queue is in the sensitive regime. This is why the fluc-
tuations are observed with the extended Q-routing algorithm de-
scribed above.

Tao et al. introduced a multiagent, partially observable Markov
Decision Process for packet routing. Each node in the network is
parameterised by a real-valued vector for each destination/outgoing
link pair [18]. This vector is adjusted in order to ascend the gradi-
ent of the expected long-term average reward for all nodes. The
rewards are computed at the destinations of the packets and broad-
cast into the network. The probability of selecting a link is cal-
culated according to the Gibbs distribution using this vector. This
approach is very similar to the application of collective intelligence
(COIN) for packet routing [23]. Tumer and Wolpert mathemati-
cally formalised collective intelligence solutions and proved that
“Tragedy of the Commons” does not exist under certain condi-
tions [19]. These are that the environment can be factored into
sub-worlds, which encompass all nodes that share the same des-
tination. The reward is also computed at the destinations and is
broadcast in its own sub-world. Each agent maximising its long-
term average reward also leads to maximising the global reward.
In an extended study, Wolpert and Tumer show that COIN-based
models for network routing almost always avoid the Braess’ para-
dox [22]. Braess’ paradox states that selfish routing behaviour on
a network can result in a lower throughput when additional capac-
ity through a new edge in the network is introduced. In particular,
the ideal shortest path algorithm introduced side-effects that lead
to the observation of the Braess’ paradox. With a COIN-based ap-
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proach, Braess’ paradox can almost always be avoided while at the
same time exhibiting significantly improved global throughput per-
formance.

In highly dynamic and large environments modelling other agents
or extra communication effort becomes prohibitively expensive.
Direct policy learning algorithms are a promising alternative, be-
cause they align with the expected reward for the actions. A direct
policy called Fair Action Learning (FAL) is presented in [24]. FAL
approximates the policy gradient of each state-action pair using the
difference between the expectedQ-value for the state and its actual
Q-value. As such it learns a stochastic policy that increases the
probability of actions receiving a higher reward then the current
average. Consequently, FAL will converge to a fair policy reflect-
ing the expected reward for all actions and states. However, if one
action is always more favourable than the other ones, FAL will con-
verge to a deterministic policy, which is not always desirable.

The weighted policy learner (WPL) addresses this issue of ensur-
ing that all actions have a minimum probability of being selected [1,
2]. The WPL algorithm was also designed with the need of quickly
converging to a stable stochastic policy. This is achieved by per-
forming a gradient ascent towards a stable policy and slowing down
learning gradually for as long as the gradient does not change direc-
tion and learn fastest when the gradient changes direction. This pol-
icy ensures that no action probabilities converge to a deterministic
policy using a euclidean projection onto the probabilistic simplex,
where each probability is greater than a given value ε. Mathemati-
cally, this projection is equivalent to solving a constrained optimi-
sation problem for which closed-form and efficient solutions exist
whose complexity are linear in time [11]. This is advantageous
in settings where agents have a large number of actions. The eu-
clidean projection is given as ΠX(x) = arg minx′:valid(x′)(x − x′),
which returns a policy that is closest to x and satisfies the con-
straints that it sums to 1 and action probabilities are greater than a
given parameter ε. The weighted policy learning (WPL) algorithm
has been applied to distributed task allocation, a similar setting as
described in this article, where stochastic stable policies are desir-
able [2].

Both FAL and WPL use the expected Q-value for the state and
its actual Q-value to calculate the gradient. This is in contrast to
“Win or Learn Fast” (WoLF) algorithms, such as Generalised In-
finitesimal Gradient Ascent WoLF (GIGA-WoLF) [7], which use
approximations to determine when an agent is moving towards or
away from a Nash Equilibrium.

4. COGNITIVE POLICY LEARNER
This section introduces a policy learning algorithm that is in-

spired by the limbic system of the brain. There are two basic con-
cepts underlying the cognitive policy learner: firstly, an inherent
bias that magnifies or depresses rewards depending on how far they
diverge from the average expected reward for different actions in
that state, and, secondly, a transient memory of recent rewards for
that action that smooth out the current reward. Rewards are cate-
gorized as either positive or negative, depending on whether they
are higher or lower than the average expected reward, respectively.
Both positive and negative rewards are scaled by the amount they
differ from the average expected reward and a fixed bias called the
amplitude, A+/−. A+ scales positive rewards, while A− scales
negative rewards. In addition to biases, a transient memory model
stores an accrued sum of recent positive rewards, c+(a), and recent
negative rewards, c−(a). Both c+/−(a) are decayed over time at
a configurable rate of decay, r+/−. To give an example, this en-
ables us to define a reward model that amplifies positive rewards
and spreads out the assignment of the reward over time. So, a

positive reward may persist for longer than the current time step.
Additionally, the factor for the amplitude can be used to interpret
the intensity of the positive or negative feedback signal. For ex-
ample, by assigning an amplitude twice as high to the positive sig-
nal compared to the negative signal, positive signals have a larger
impact on the update step on the probabilistic simplex than neg-
ative ones. This setting embodies some notion of risk aversion,
because punishment does not induce a rapid update of one’s strat-
egy to avoid similar negative experiences. While, there might be
situations favouring such a setting, it is more intuitive and in fact
more natural to have risk-averse agents. Hence the win or learn fast
strategies.

CPL is presented in Algorithm 1. The basic principle is similar
to the weighted policy learner. Before conducting the update on the
policy simplex, the memory for each signal is decayed, and the new
signal is multiplied by the amplitude and added to the decayed sig-
nal. The memory signals are bounded, i.e., 0 < c+(a) 6 s(a)max
and s(a)min 6 c+(a) < 0, where s(a)min/max are the minimum
negative and maximum positive observed feedback signal. This
means that the accrued feedback signals cannot attain values higher
than the single strongest component of the feedback signal. The
resultant positive and negative signals are added together, giving
∆(a), and the vector of all such signals for all actions, ∆, is used
to proceed with the policy projection routine π ← ΠX(π + ζ∆). ζ
denotes the update rate also used in FAL and WPL.

Algorithm 1: CPL: Cognitive Policy Learner
Input: Q(s,a), the expected reward for executing action a in

state s
Input: c+(a) & c−(a), the accrued reward/punishment signal

for action a
Input: A+/− & r+/−, the amplitude and decay rate for the

respective feedback signals

Q̄ =
∑
a∈A π(a)Q(s,a)

foreach action a ∈ A do
c+(a)← c+(a) ∗ er+t

c−(a)← c−(a) ∗ er−t

}
Decay

s(a)← Q(s,a) − Q̄
if s(a) > 0 then c+(a)← c+(a) +A+ ∗ s(a)
else c−(a)← c−(a) +A− ∗ s(a)
∆(a)← max (c−(a), s(a)min) + min (c+(a), s(a)max)

end
π← ΠX(π+ ζ∆)
Output: A new policy π
Output: Updated reward/punishment signals c+(a) & c−(a)

The amplitude parameter can be tuned in four different ways to
modulate the effects of the positive and negative feedback signals:

1. A+ > A−, r+ > r−: Positive feedback signals are ampli-
fied more than negative ones. Also, accrued positive rewards
decay at a slower rate.

2. A+ > A−, r+ < r−: Positive feedback signals are amplified
more than negative ones. In contrast to the previous case,
accrued negative rewards decay at a slower rate.

3. A+ < A−, r+ > r−: Negative feedback signals are ampli-
fied more than positive ones. Also, accrued negative rewards
decay at a slower rate.
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4. A+ < A−, r+ < r−: Negative feedback signals are ampli-
fied more than negative ones. In contrast to the previous case,
accrued positive rewards decay at a slower rate.

If both decay rates are set to −∞ and A+ = A− then the fair
action learner is recovered. If A+ < A−, then the cognitive pol-
icy learner resembles the effects of the weighted policy learner
with a win or learn fast strategy without taking the accrued re-
ward/punishment signals into account.

5. EVALUATION
We evaluate the cognitive policy learner using a small queueing

network given in Figure 1. The respective external Poisson arrival,
λ0, and Exponential service rates, µ, are given in Table 1. The
network represents three decision makers, nodes 4, 6, and 7. Each
node’s objective is to optimise the routing decisions of the tasks
based on the negative completion times. Node 4 experiences neigh-
bours 1 and 2 with different external arrival and service rates. Node
1 has a lower intrinsic utilisation than node 2 and consequently,
node 4 needs to learn a policy that balances this difference such
that the reward is maximised, or the task completion times are min-
imised in the long run. Both nodes 6 and 7 rely on the assignment
of tasks given to node 4. Due to the reward functions having op-
timal substructure, the queueing performances of nodes 6 and 7
improve if node 4 learns an optimal policy. Node 7 has a higher
external arrival rate of tasks and therefore receives a higher number
of feedback signals from its task assignments than node 6. This
implies that node 7 may be faster in recognising deteriorating per-
formances than any of its neighbours. Both nodes share a common
resource (node 4) and have each a private resource (node 3 and 5
respectively). Because node 3 has a much lower intrinsic utilisation
than node 5, node 6 may be the first to utilise this resource in case
node 4 deteriorates.

Table 1: Arrival and Service Rates
Node 1 2 3 4 5 6 7
λ 0.33 0.51 0.04 0.11 0.21 0.32 0.51

µ 0.68 0.9 0.48 0.76 0.58 0.55 0.55

The initial policy assumes uniformly random probabilities and
three policy learning algorithms are evaluated including CPL, the
fair action learner (FAL) [24] and the weighted policy learner (WPL)
[1]. The underlying euclidean projection is the same for all three al-
gorithms to ensure that action probabilities do not attain values less
than a specified parameter ε = 0.05. Each algorithm was individ-
ually optimised within the range of parameters α ∈ [0.0001; 0.1],
λ ∈ [0.01; 0.9], η ∈ [0.01; 0.5], ζ ∈ [0.1; 0.0001] for both FAL
and WPL and additionally A+ ∈ [0.01; 2.0], A− ∈ [0.01; 2.0],
r+ ∈ [−20.0; −0.01], r− ∈ [−20.0; −0.01] for CPL using Gaus-
sian Process Regression [3, 10, 17]. The results of this global opti-
misation are summarised in the following Table 2.

In all three algorithms the learning rate, discount factor, and
the momentum for the SARSA(0) gradient-update descent (Equa-
tion 3) are 0.1, 0.9 and 0.5 respectively. The update factor on the
policy simplex, ζ, is low for FAL and high for WPL and CPL. The
optimal parameters for the cognitive policy learner resemble the
win or learn fast strategy, because both the amplitude for the nega-
tive signal is higher and the decay rate slower. This means that the
memory for negative signals persists for a longer period of time.
This result is interesting in that the global simulation optimisation
technique found optimal values for CPL that reflect risk-aversion.

Table 2: Optimal Learning Parameters
FAL WPL CPL

α 0.1 0.1 0.1

λ 0.9 0.9 0.9

η 0.5 0.5 0.5

ζ 0.0001 0.1 0.1

A+ 1.76

A− 2.0

r+ −1.7

r− −4.55

The analysis of the performance and the dynamics of the differ-
ent algorithms are based on at least 10 replications of simulation
runs using the optimal parameters. These simulation runs are also
controlled to be within 90% confidence intervals with a relative er-
ror of 10% [13].

Figures 3 and 4 present the queueing results with respect to mean
utilisation of the queueing network and total average delay in the
queues. The delay measures the time a task waits in the queue until
it can be serviced, since each node in the queueing network can
only process one task at a time.
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Figure 3: Utilisation

Both utilisation and delay are inferior for the fair action learner,
while WPL and CPL show similar queueing performance. The util-
isation and the 95% confidence interval half-widths for WPL and
CPL respectively are 73.3%(±0.0009) and 72.8%(±0.0009).

Figure 5 shows the percentage of unstable nodes across the repli-
cations in order to illustrate the dynamics of WPL and CPL in the
steady state using Equation 1. An unstable queue is defined as hav-
ing a utilisation rate larger than 100% in the steady state. Intu-
itively, unstable queues show a behaviour of processing the tasks
slower than they arrive, which leads to a growing waiting queue.

This calculation is equivalent of assuming the current policy to
be fixed. FAL does not yield unstable queues at any given time and
is, therefore, not shown in this plot. Nodes 1 and 4 show similar
values for the percentage of unstable queues (23% and 8% respec-
tively). But the percentage of unstable queues is increased for CPL
for nodes 2 and 5 (2.5 and 9 percentage points higher). This may
be explained by the fact that both their respective alternative paths
have a lower intrinsic utilisation and since CPL has an accrued
memory of the feedback signals, it is slower to adapt to rapidly
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Figure 5: Stability of the Queues

The dynamics of queueing performance measures can be cap-
tured in several ways. The first metric we use is based on the ma-
trix of routing probabilities Q derived from the employed policy.
The following quantity captures learning as distinct from random
behaviour, where uniformly random decisions manifest themselves
in all outgoing links, deg+(·), in the network having equal proba-
bilities of being selected. The distance measure from random be-
haviour is denoted as

dn = ‖Q(n) −Qr(n)‖1, ∀ n ∈ V & deg+(n) > 0, (5)

where ‖·‖1 is the `1-norm of a vector, i.e., ‖a‖1 =
∑n
i=1|ai| and

Qrnj = 1
deg+(n)

is the probability of taking a uniformly random
action for all actions j available to n. The probability of taking ac-
tions Q(n) is derived from the employed policy. This measure is
bounded by dn = 0, if the action selection probabilities are uni-
formly random, and sup{dn} = 2 for deterministic action selection
as deg+(n)→∞. Also, dn = 0, n ∈ V & deg+(n) = 1.

This metric does not make any qualitative statement about learn-
ing behaviour, because it cannot be ruled out that uniformly random
behaviour is actually the best policy. Instead it gives an indication
of how distinctive the learnt policies are.

Figure 6 shows the result for this metric. FAL learns the least
distinctive policies in the queueing network, which means that the

policy updates are very close to the initial policy configuration of
uniformly random decisions. Additionally, the policy gradient up-
date factor, ζ, for FAL is low, suggesting that FAL prefers small
incremental changes to the policy. CPL in turn learns the most
distinctive policies. These results show that temporarily unstable
queues in the steady state lead to a higher throughput in the algo-
rithms considered in this evaluation.
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Figure 6: Distance from Uniformly Random Decision Policies

In order to quantify the level of distinctiveness of the policies
we evaluate the ownership of node 4. The ownership metric is cal-
culated as the normalised fourth column of the routing matrix Q,
where nodes 6 and 7 are the only predecessors. Figure 7 depicts
this evolution of ownership. In all cases node 6 directs most of
its tasks towards node 3, while node 7 directs most of its tasks to-
wards node 4. Since node 7 also has a higher arrival rate with the
same service rate compared to node 6, node 7 dominates node 4.
This plot also mirrors our previous result that CPL learns more dis-
tinctive policies, i.e., the spread between nodes 6 and 7 is higher
for CPL. Importantly, FAL exhibits barely any fluctuations in its
learning dynamics. This shows that FAL learns a stochastic stable
policy, while WPL and CPL learn stochastic unstable policies. An
interesting result, however, is that this instability (which exists only
in the steady state) yields a better performing system as a whole.
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Figure 7: Ownership of Node 4

In order to understand the extent of the fluctuations, the coeffi-
cient of variation of the Q-value estimation is calculated based on
a buffer of the last 100 Q-value estimations:
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cυ(Q) =
σQ

µQ
. (6)

Figure 8 shows the densities of the coefficient of variation for
each decision making node individually. Intuitively, one would as-
sume that the coefficient of variation scales with the height of the
queueing network, i.e., the least dependent node (here node 4) has
lower values than the nodes that depend on it. Interestingly, this is
only observed for FAL, which can be interpreted as FAL’s learning
dynamics results in cascading effects. Because of this behaviour,
FAL learns the least distinctive policies and also performs poorly
compared to WPL and CPL. Because the values for the coefficient
of variation are significantly higher than the ones with WPL and
CPL, the densities are left out of Figure 8.

WPL and CPL on the other hand do not exhibit cascading effects.
In fact, the fluctuations observed for those algorithms appear to
have a stabilising impact on the learning dynamics. For all nodes,
the absolute value of the coefficient of variation is slightly higher
for CPL compared to WPL.

Figure 9 presents the total mean-squared error of the loss func-
tion of the neural network excluding FAL, because it is significantly
higher than WPL and CPL again. This plot suggests that the CPL
algorithm yields a more stable reinforcement learning system than
WPL as its total mean-squared error is significantly lower.
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Figure 9: Neural Network Error

To summarise the results, FAL has inferior queueing performance
than WPL and CPL. FAL also learns the least distinctive policies,
which may be attributed to the large fluctuations in the coefficient
of variation of the Q-value estimation. These fluctuations lead to
cascading effects in the fair action learner and therefore this pol-
icy is not a good candidate for autonomous agents in queueing
networks. Instead, both WPL and CPL learn stochastic unstable
policies with respect to the instantaneous steady state distribution.
However, these instabilities only persist temporarily with agents
continuously adapting to the changing conditions in the queueing
environment. In fact, these instabilities do not exhibit cascading
effects. The coefficients of variation are approximately normally
distributed with a slight skewness towards the left. This is in con-
trast to the distribution for FAL, which has a long tail representing
rare events. In multiagent systems behaviours that can be char-
acterised by long-tailed distributions introduce challenges for the
other agents to adapt accordingly.

Finally, the mean-squared error of the neural network is the low-
est for the CPL algorithm, which implies more stable reinforcement
learning updates. However, the structure of the neural network is

considered fixed in this paper. Optimising with respect to the neu-
ral network structure itself may be one way of reducing the mean-
squared error for both FAL and WPL.

6. CONCLUSION AND FUTURE WORK
This paper investigated an extension to the weighted policy learner

which modulates the strength of positive and negative feedback.
The cognitive policy learner is inspired by the limbic system of the
brain. The feedback signal is split into two parts, positive and neg-
ative, with respect to the current estimate of the Q-value function.
Each signal is given free parameters to model an amplitude and
a decay factor. This way the win or learn fast strategy obtains a
higher level of control in terms of the updates on the probabilistic
simplex. We showed that the cognitive policy learner performs as
well as the weighted policy learner.

The empirical investigation of a small queueing network also
revealed that the fair action learner exhibits cascading effects in
the queueing network. This means that deteriorating performance
closer to the leaf nodes of the network has a detrimental impact on
the queueing performance of the other nodes dependent on them.
This behaviour was not observed with the weighted and cognitive
policy learners where the variations of the Q-value estimation is
much better behaved. Biasing a losing strategy and maintaining
a transient memory of received rewards and punishments results
in a more stable multiagent learning system, which was shown to
reduce the total mean-squared error of the SARSA(0) steepest de-
scent gradient update.

Future work will investigate more dynamic and larger queueing
settings. Also, the global optimisation of the simulation parameters
need to be analysed with respect to how sensitive the optimal values
are to small perturbations.
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ABSTRACT
Distributed collaborative adaptive sensing (DCAS) of the atmo-
sphere is a new paradigm for detecting and predicting hazardous
weather using a large dense network of short-range, low-powered
radars to sense the lowest few kilometers of the earths atmosphere.
In DCAS, radars are controlled by a collection of Meteorological
Command and Control (MC&C) agents that instruct where to s-
can based on emerging weather conditions. Within this context,
this work concentrates on designing efficient approaches for allo-
cating sensing resources to cope with restricted real-time require-
ments and limited computational resources. We have developed a
new approach based on explicit goals that can span multiple system
heartbeats. This allows us to reason ahead about sensor allocations
based on expected requirements of goals as they project forward
in time. Each goal explicitly specifies end-users’ preferences as
well as a prediction of how a phenomena will move. We use a
genetic algorithm to generate scanning strategies of each single M-
C&C and a distributed negotiation model to coordinate multiple
MC&Cs’ scanning strategies over multiple heartbeats. Simulation
results show that as compared to simpler variants of our approach,
the proposed distributed model achieved the highest social welfare.
Our approach also has exhibited similarly very good performance
in an operational radar testbed that is deployed in Oklahoma to ob-
serve severe weather events.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Design, Experimentation, Performance

Keywords
Multi-agent systems, sensor networks, coordination, negotiation

1. INTRODUCTION
Over the last 6 years we have been developing and deploying a

new paradigm called collaborative adaptive sensing of the atmo-
sphere (CASA) for detecting and predicting hazardous weather [5,
15]. This new paradigm is achieved through a distributed, collab-
orative, adaptive sensing (DCAS) architecture. Distributed refers
to the use of large numbers of small radars, whose range is short
enough to see close to the ground in spite of the Earth’s curvature
Cite as: Agent-mediated Multi-step Optimization for Resource Allocation
in Distributed Sensor Networks, Bo An, Victor Lesser, David Westbrook
and Michael Zink, Proc. of 10th Int. Conf. on Autonomous Agents
and Multiagent Systems – Innovative Applications Track (AAMAS
2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei,
Taiwan, pp. 609-616.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

and to avoid resolution degradation caused by radar beam spread-
ing. Collaborative operation refers to the coordination of the beams
from multiple radars to cover the blind, attenuated or cluttered re-
gions of their neighbors and to simultaneously view the same re-
gion in space (when advantageous), thus achieving greater sensi-
tivity, precision, and resolution than possible with a single radar.
Adaptive refers to the ability of these radars and their associated
computing and communications infrastructure to dynamically re-
configure in response to changing weather conditions and end-user
needs. The principal components of a CASA DCAS system in-
cludes the sensors (radars); algorithms that detect, track, and pre-
dict meteorological hazards; interfaces that enable end-users to ac-
cess and interact with the system; storage; and an underlying sub-
strate of distributed computation that dynamically processes sensed
data and manages system resources. At the heart of a DCAS system
is its Meteorological Command and Control (MC&C) that perform-
s the system’s main control loop - ingesting data from the remote
radars, identifying meteorological features in this data, reporting
features to end-users, and determining each radar’s future scan s-
trategy based on detected features and end-user requirements.

MC&Cs’ resource allocation problem of deciding radars’ scan
strategies is challenging due to a number of reasons. First, DCAS
is an end-user driven approach and different users (e.g., Nation-
al Weather Service (NWS) whose role is to issue severe weath-
er watches and warnings, regional Emergency Managers (EMs)
whose role is to alert the public about weather hazards and to co-
ordinate first responders) have different data collection preferences
and needs. Second, in DCAS, adaptive radars are controlled by a
collection of MC&Cs and each MC&C tries to find the best scan
strategy for the set of radars it controls. While such a distributed
model brings some good properties (e.g., robustness, scalability),
the problem of coordinating scan strategies of multiple MC&Cs
arises as radars belonging to different MC&Cs may have an over-
lapping region. In certain situations, it is advantageous to have
two or more radars focus their scans on overlapping regions in the
atmosphere to provide accurate estimation of wind velocity vec-
tors. In some other situations, a single radar’s scanning can provide
very high quality data and coordination can allow other radars to s-
can other meteorological features. Third, DCAS is a real-time sys-
tem and radars must be re-tasked by the MC&Cs every 60 seconds,
which defines the system heartbeat interval [5, 15]. Therefore, the
optimization for allocating radar resources should be completed in
less than 60 seconds. Furthermore, the strategy space of each radar
is infinite since each scan action can be represented by a region in
the atmosphere.

In the previous resource allocation model [3], all the MC&Cs
are myopically optimizing every “single” heartbeat’s utilities with-
out explicitly taking into account end-users’ various needs over

609



multiple heartbeats. It turns out this model leads to poor perfor-
mance since subsequent changes in the environment may make
these myopic decisions not appropriate anymore. For instance, an
MC&C may repeatedly scan a high utility phenomenon (no matter
how many times it has been scanned before) and thus miss some
less important phenomena. Furthermore, a user’s data requirement
can be satisfied in different ways over multiple heartbeat intervals,
which implies that it needs to search over multiple system heart-
beats to find radars’ optimal scanning strategies and address po-
tential conflicts of available resources (sensing, computation, and
bandwidth) over multiple heartbeats. In addition, predictions about
future events [9] are useless in this optimization framework.

The focus of this paper is investigating the practicality of apply-
ing real-time distributed multi-step optimization approaches in a
real application involving complex resource allocation. We found
that a real-time distributed multi-step optimization approach is fea-
sible and it contributes to better performance. This paper proposes
a novel distributed resource allocation approach to address diverse
user preferences over multiple heartbeats. We introduce the con-
cept “goal” (or constraint) to represent end-users’ preferences on
radars’ scan strategies. Each goal specifies the region of a phe-
nomenon over multiple heartbeats and how well a user’s prefer-
ence is satisfied given radars’ scan strategies over multiple heart-
beats. Then the resource allocation problem can be formulated as
a continuous time constraint optimization problem. The goal based
formulation allows us to reason ahead about allocations based on
expected requirements of goals over multiple heartbeats and pre-
diction about future weather phenomena. Given that the strategy
space of each radar is continuous and the real-time requirement, it
is impractical to exhaustively search all the possible strategies. Al-
ternatively, each MC&C finds approximate local optimal solutions
employing a genetic algorithm. Different strategies are mapped
into chromosomes and genetic operators like mutation, selection,
and crossover are employed. A distributed asynchronous negoti-
ation model is used to coordinate the scan strategies of multiple
MC&Cs. Each MC&C always notifies its current multi-heartbeat
strategy to its neighbor MC&Cs. Based on the current strategies
of its neighbor MC&Cs, an MC&C proposes to change its strategy
and decides whether to make the change based on the marginal util-
ities of its neighbors’ strategy changes. This asynchronous negoti-
ation continues until the heartbeat deadline approaches. Simulation
results show that as compared to other mechanisms, the proposed
distributed model achieved the highest social welfare. We have also
verified the performance of our approach in the operational radar
testbed deployed in Oklahoma while it was responding to actual
severe weather events. These empirical results mirror the positive
results achieved in our simulation studies.

The remainder of this paper is organized as follows. Section 2
discusses related work. We next formalize the resource allocation
problem in Section 3. We then discuss the genetic algorithm for
finding each MC&C’s local optimal strategies. The distributed ne-
gotiation model is presented in Section 5. Section 6 reports simu-
lation results. Section 7 discusses the performance of our approach
in the real sensor system and Section 8 concludes this paper.

2. RELATED WORK
The development of decentralized optimization and coordination

techniques to achieve good system-wide performance is a funda-
mental challenge for practical distributed sensor networks, which
mainly comes from various constraints, e.g., realtime response,
limited communication and computational resources. While multi-
agent systems community has developed a variety of techniques
for distributed resource allocation in sensor networks [4, 8], these

approaches cannot be directly applied to our special domain with
complex user preferences.

The problem of decentralized coordination can be formulated
as a distributed constraint optimization problem (DCOP), which
makes it possible for us to use a wide range of existing algorithms
for DCOP, e.g., ADOPT [6]. However, these complete algorithms
cannot be directly applied to problem due to their limitations such
as high computational complexity and large size of exchanged mes-
sages. Furthermore, these algorithms are for one-step optimiza-
tion but our problem is a continuous optimization problem. While
there have been numerous approximate stochastic algorithms based
on entirely local computation for solving DCOPs [14], these algo-
rithms often converge to poor-quality solutions because agents typ-
ically communicate only their preferred state, failing to explicitly
communicate utility information [8]. Max-sum algorithm has re-
cently been applied to the sensor network domain (e.g., [12]), our
recent study [2] showed that the max-sum algorithm did not outper-
form the approach in [3] and had a much worse performance when
there were more overlapping radars.

Negotiation has been used in distributed sensor networks in the
past; however, previous techniques are not entirely appropriate for
our setting. In the argumentation-based approach [11], an initia-
tor attempts to recruit other sensors to scan a specific task. In
our domain, a per goal negotiation would not be feasible based
on time limitations. Contract-net based negotiation schemes [10]
in which agents make bids based on utility calculations face simi-
lar limitations. If the contract net protocol is adopted, every time
an MC&C’s neighbor changes its scan strategy, that MC&C must
perform potentially as many optimizations for marginal utility cal-
culations as the size of the powerset of the boundary goals belong-
ing to it. The similar problem exists while adopting combinatorial
auctions [1]. The negotiation model for single step optimizations
for the DCAS system [3] fails to capture users’ preferences over
multiple heartbeats and accordingly, may result in low social wel-
fare due to lack of reasoning about future actions. In addition, the
synchronous negotiation protocol in [3] may have bad performance
due to its lack of concurrency in real time optimization.

3. PROBLEM FORMULATION
This section formalizes the problem of optimizing resource allo-

cation which has observed phenomena as its input and scan com-
mands as its output. The following components are involved in
solving the meteorological control problem: goal generation, lo-
cal optimization that generates scan commands for each MC&C’s
radars, and negotiation which coordinates MC&Cs’ scan actions.

3.1 Goal Generation
In the current design, the DCAS system dynamically adapts radar

scans at 60 second intervals to sense the evolving weather and dis-
seminates information to users based on their changing and diverse
preferences for data. An NWS forecaster may analyze the verti-
cal structure of a storm to determine whether to issue a warning by
viewing a sector scan at multiple elevations, while an emergency
manager may require two radars to collaborate in order to pinpoint
the location of the most intense part of a storm for spotter deploy-
ment, and a researcher may require 360 degree scans at all ele-
vations to initialize a numerical weather prediction model. These
diverse information preferences require different radar scan strate-
gies. We use scan goals to formulate diverse user preferences and
phenomena regions over multiple heartbeats. A goal g specifies:

• Generation time Ts(g).
• Deadline Te(g). There could be a goal existing for only one

heartbeat, i.e., Te(g)=Ts(g). It is also possible that Te(g)−
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Ts(g) > 0, i.e., the satisfaction of the goal may involve scan
actions over multiple heartbeats.
• Scan area(s). A goal g is either to find new phenomena or to

find more details of an existing known phenomenon. For the
former case (e.g., 360◦ scan), the scan area will not change
over time. For the latter case, as a phenomenon moves over
time, the scan areas at different heartbeats may be different
which depends on the moving speed of a phenomenon and
how its shape is expected to change over time. Let A(g, t)
denote the scan area of goal t at heartbeat t∈ [Ts(g), Te(g)]
and such information can be gained by prediction [9]. A goal
may be updated later due to imprecise prediction. An area A
(or part of it) may fall within the coverage of a radar r, i.e.,
Ψ(A, r)=true.

• Utility calculation function Ug(s
Ts(g)→Te(g)
R ) which defines

how well the goal is satisfied based on radars R’s scan ac-
tions sTs(g)→Te(g)

R from heartbeat Ts(g) to Te(g).

In summary, goals specify 1) in what manner different kinds of
weather phenomena should be scanned by radars and 2) how well
different user groups are satisfied given radars’ scan strategies. A
goal generation rule specifies when the rule is triggered to generate
a new goal and how to set the properties of the new goal. A simple
example of goal generation rules is that each radar needs to do a
360◦ scan every 5 minutes (heartbeats).

Note that each MC&C generates goals individually. It’s possible
that two MC&Cs generate goals for the same phenomena which is
located on the overlapping area of the two MC&Cs. In such cas-
es, coordination mechanisms (Section 5) are used to resolve such
conflicts. When a goal is generated to find the details of a known
phenomenon, the goal will also specify its “regions” in the future
based on the prediction about the phenomenon’s moving speed and
change of its shape. Therefore, an MC&C may also update the
properties of an existing goal based on its new observations. This
update is important as prediction made at goal generation time may
not be accurate enough.

3.2 Goal Satisfaction
Let the set of MC&Cs be M=

{
M1, . . . ,M|M|

}
and the set

of radars be
{R1, . . . ,R|M|

}
, where Ri is the set of radars con-

trolled by MC&C Mi andRi∩Rj =∅. Each radar has its coverage
area and the coverage area of an MC&C includes the coverage areas
of all its radars. MC&C Mi is a neighbor of Mj if their coverage
areas overlap. Let NMi denote the set of neighbor MC&Cs of
Mi. Let Gti be the set of goals generated for Mi at the beginning of
heartbeat t, i.e., for any g∈Gti , Ts(g)= t. Accordingly, goals gen-
erated by all MC&Cs at heartbeat t is Gt=∪Mi∈MGti . Let Gt→t′i be
the set of goals generated for MC&C Mi from heartbeat t to heart-
beat t′, i.e., Gt→t′i =∪t≤t′′≤t′Gt′′i . A goal g is active at time t if
t∈ [Ts(g), Te(g)]. LetAGti be the set of active goals of MC&CMi

at heartbeat t, i.e., AGti = {g|g∈G0→t
i , Te(g) ≤ t}. Accordingly,

active goals for all MC&Cs at heartbeat t is AGt = ∪Mi∈MAGti .
Out of the set of goals in AGti , some are boundary goals BGti . A
goal g∈AGti is a boundary goal if there exits a radar r′ belonging
to another MC&C and one of goal g’s scan area from time t could
be partially covered by r′, i.e., Ψ(A(g, t′), r′) = true for some
r′∈Rj and t ≤ t′≤Te(g).

We assume that the set of end-users are K. Let wk(g) be the
weight associated with user k ∈ K for goal g. The user weight
wk(g) reflects 1) the relative priority of user k with respect to other
users and 2) the importance of goal g from user k’s perspective.
The values of wk(g) are set by high-level system user policies. A
radar’s scan action (strategy) can be defined to be the start and end

angles of the sector to be scanned by an individual radar for a fixed
interval of time (a heartbeat). Utility evaluation of a goal depends
on both scan quality and weight. Quality measures how well an
area is scanned, with quality depending on the amount of time a
radar spends sampling a voxel in space, the degree to which an
area is scanned in its (spatial) entirety, and the number of radars
observing an area.

Quality function: The quality Q(A, sr) of scanning an area A
using scan action sr by a single radar r can be defined as

Q(A, sr)=Fc(c(A, sr))×
[
βFd(d(r, A)) + (1− β)Fw(

wd(sr)

360
)
]

where wd(sr) is the size of sector sr , a(r,A) is the minimal angle
that would allow r to coverA, c(A, sr)= wd(sr)

a(r,A)
is the coverage of

A by sr , h(r, A) is the distance from r to geometric center of A,
hmax(r) is the range of radar r, d(r,A) = h(r,A)

hmax(r)
is the normal-

ized distance from r toA, and β is a tunable parameter. Fc captures
the effect on quality due to the percentage of the area covered. Fw
captures the effect of radar rotation speed on quality. Fd captures
the effects of the distance from the radar to the geometrical center
of the phenomenon area.

A scan area may be scanned by more than one radar in the same
heartbeat. Q(A, stR) is the maximum quality obtained for scan area
A over a set of radars R and their scan actions stR at time t. If the
phenomenon corresponding to the scan areaA is a pinpointing phe-
nomenon, Q(A, stRi

) is defined as Q(A, stR) =
∑
r∈RQ(A, str)

where str is the scan action for radar r at time t. Otherwise,Q(A, stR)
=maxr∈RQ(A, str).

We can get user k’s utility Ug(k, stR) of satisfying the goal g
given the scan actions stR by combining the weight component and
the quality component. Formally

Ug

(
k, s

t
R
)

=

{
δ(t−Ts(g))wk(g)Q(A(g, t), st

R) if Ts(g) ≤ t ≤ Te(g)
0 otherwise

where δ∈ (0.1] is a discount factor reflecting a user’s eagerness of
scanning a phenomenon earlier.

Let Ug(k, st→t
′

R ) be user k’s utility of satisfying goal g based on
a series of scan actions st→t

′
R = {stR, . . . , st

′
R} from t to t′. There

are multiple ways of defining Ug(k, st→t
′

R ), e.g., maxt≤q≤t′ Ug(k,
sqR), maxt≤q<t′(Ug(k, s

q
R)+Ug(k, s

q+1
R )), maxt≤p<q≤t′(Ug(k,

spR) +Ug(k, s
q+1
R )), or

∑
t≤q≤t′ Ug(k, s

q
R). Given actions st→t

′
R ,

the aggregate utility Ug(st→t
′

R ) for satisfying a goal g is the sum∑
k∈K Ug(k, s

t→t′
R ) of utilities of all users.

3.3 Formulation of the Optimization Problem
The objective of the optimization is to satisfy the set of goals
G0,G1, . . . ,G∞. At heartbeat t, MC&Cs need to determine opti-
mal radar scanning actions at t and later heartbeats for active goals
AGt. However, limited computational resources preclude that we
could compute the optimal actions from now to the infinite future.
Instead, we adopt the receding horizon control principle by focus-
ing on the optimal actions st→t+l−1

R in heartbeats of length l:

arg max
s

t→t+l−1
R

∑
g∈AGt

Ug(s
0→t−1
R ∪ st→t+l−1

R )

This formulation is in some sense “myopic” as, in fact, MC&Cs
need to consider what’s going to happen in the future while decid-
ing “optimal” actions at heartbeat t. As it is not possible to obtain
perfect information about future states, a guaranteed optimal so-
lution is not possible to obtain (even neglecting the computational
intractability nature of the problem at hand). Although the opti-
mization process at heartbeat t will output a schedule over multiple
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heartbeats, only the scan strategies at time t will be executed by
radars. At time t + 1, each MC&C updates its goal sets, possibly
generates new goals, and runs the optimization algorithm again.

4. LOCAL OPTIMIZATION OF EACH M-
C&C

This section discusses how an MC&C Mi searches scanning ac-
tions for its radarsRi given the set of active goalsAGti at heartbeat
t. The optimization problem of MC&C Mi at time t is to find the
best scan strategy st→t+l−1

Ri
for its radars. Formally,

arg max
s

t→t+l−1
Ri

∑
g∈AGt

i

Ug(s
t→t+l−1
Ri

∪ s0→t−1
Ri

∪ s0→t+l−1
R−i

)

where s0→t+l−1
R−i

are the strategies ofMi’s neighbor MC&Cs, which
can be known to Mi through information exchange - negotiation.

The search depth l should be no larger than maxg∈AGt
i
Te(g) and

setting search depth l involves a number of tradeoffs. With a larger
search depth l, Mi has a larger space to coordinate the scan strate-
gies of its radars. However, as only the scan strategy at time t will
be executed, the optimal strategy st→t+l−1

Ri
found at time t may

be not optimal in practice. Furthermore, the computational com-
plexity of searching for optimal strategies increases with the search
depth l. In addition, the prediction of the movement of observed
phenomena could be inaccurate. When search depth l is large, the
propagation of such inaccuracy could lead to poor performance of
the scan strategies.

Since the strategy space of each radar is continuous, we first dis-
cretize the radar’s strategy space such that the start and end angles
of each strategy can only be in {0, 5, 10, . . . , 360}.1 Then for each
goal g∈AGti and each radar r∈Ri such that Ψ(A(g, t′), r)=true
at t≤ t′ ≤ Te(g), generate the minimum sector that can cover the
region A(g, t′) and add the sector to the candidate strategy set St′r
of radar r. If St′r contains more than λ strategies, combine two
randomly selected strategies into one strategy and this process con-
tinues until |St′r | = λ. The maximum size of Mi’s strategy space
is |Ri|λl

. For ease of analysis, we assume that each strategy in St′r
has an ID ranging from 0 to |St′r |−1. Similarly, we give each radar
r ∈ Ri an ID ranging from 0 to |Ri| − 1.

The complexity of the optimization problem precludes an M-
C&C from using an exhaustive search to find its optimal solution.
Alternatively, we use a genetic algorithm (GA) to search the (near-
ly) best solution. The GA generates a sequence of populations as
the outcome of a search method. The individuals of the population
are scan strategies over multiple heartbeats. Each strategy com-
bination can be represented as a matrix of size |Ri| × l in which
column j represents radars’ scanning strategies at heartbeat t + j
and row i represents radar i’s scanning strategies from heartbeat
t to heartbeat t + l − 1. Let the matrix for a strategy combina-
tion be X . Then xi,j represents radar i’s scanning strategies from
heartbeat t+ j and it follows that xi,j ∈ [0, |St+ji | − 1].

An individual’s fitness value is determined by the utility of al-
l the goals AGti while all radars take strategies of the individual.
The evolution starts from a population of randomly generated in-
dividuals. In each generation, operators selection, crossover (re-
combining existing genetic materials in new ways) and mutation
(introducing new genetic materials by random modifications) are
used to form a new population. The new population is then used
in the next iteration of the algorithm. The algorithm terminates
when the local optimization deadline τ (e.g., 5 seconds) has been
1This does not have a substantial impact on the system since we
always scan a little wider than the edges of a phenomena anyway.

Algorithm 1: The Negotiation Algorithm for MC&C Mi

Let Θ ∈ {wstrategy,wproposal} represent the status of MC&CMi.
Let function GetTime() return the current time.
Let Ωstr /Ωmove be the queue to store other MC&Cs’ strategy
update/proposals.
Initialization:

a). Send goal setAGt
i to its neighbor MC&Cs (Ωstr = NMi);

b). Run the genetic algorithm and get optimal scanning strategies sRi
;

c). Send sRi
to all neighbor MC&Cs;

d). Set Θ = wstrategy and nowt = GetTime();
while optimization deadline has not expired do

if Θ=wstrategy and Ωstr 6= ∅ then
if (GetTime()− nowt) > ξ or Ωstr = NMi then

Run the genetic algorithm and get new optimal strategies s′Ri
;

if MC&CMi can gain positive marginal utility by using s′Ri

then
Send s′Ri

with its marginal utility to all neighbor MC&Cs;
Set Θ = wproposal, Ωmove = ∅,
nowt = GetTime();

else if Θ=wproposal and (GetTime()− nowt) > ξ then
if The marginal utility of MC&CMi by using s′Ri

is higher than its
neighbor MC&Cs’ marginal utility then

Set sRi
= s′Ri

, Ωstr = ∅;
Send s′Ri

to all neighbor MC&CsNMi;

Set Θ = wstrategy, nowt = GetTime();

reached, or the population is stable (e.g., 95% of the individuals
have the same highest fitness value). When the genetic algorithm
terminates, the chromosome that has the highest fitness is extracted
and the decoded strategies are the best strategies for the MC&C.

When each MC&C runs the local optimization algorithm sepa-
rately resulting in a scan strategy based on its local (partial) view
of the physical space, efficiency loss may occur. One such source
of quality degradation is the loss of the ability to cooperatively s-
can pinpointing phenomena on boundaries, which can be solved by
coordinating scans between MC&Cs and sharing resulting raw da-
ta. Another source of lessened quality are redundant scans which
can be alleviated by allowing MC&Cs to share abstract level infor-
mation regarding goals located in boundaries. The limitations of
the fully distributed optimization lead us to study the coordination
problem of distributed MC&Cs.

5. NEGOTIATION BASED COORDINATION
This section extends the negotiation model in [3] to accommo-

date 1) user’s complex preferences over multiple heartbeats and 2)
the need of concurrency during negotiation. In [3], all the MC&Cs
ignore end users’ preferences over multiple heartbeats and are only
maximizing the social welfare of a “single” heartbeat. According-
ly, the model in [3] may lead to poor performance due to its lack
of reasoning ahead. In [3], MC&Cs conduct synchronous negotia-
tion. That is, after an MC&C makes proposals to its neighbors, it
will respond to its neighbors only after it has received all responses
from its neighbors. While the synchronous protocol can guarantee
that the social welfare will improve after each round of negotiation,
it may be unreasonable for an MC&C to wait for responses from
its neighbors given the real time constraints and bounded computa-
tional resources.

Algorithm. 1 shows how the distributed negotiation is conducted
between MC&Cs at heartbeat t. For a boundary phenomenon, it is
possible that one MC&C observes it while another MC&C fails to
discover it. Before MC&Cs begin the main stages of negotiation,
each MC&C communicates with its neighbors MC&Cs to make
sure its boundary goals are also in the goal sets of other MC&Cs.
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initialize

optimize

wstrategy

wproposal

end

update

Figure 1: Finite state machine for distributed negotiation
Then each MC&C runs its local optimization algorithm (Section 4)
to generate its initial strategy over multiple heartbeats. Next each
MC&C shares its initial configuration with its neighbor MC&Cs.
Then the main stages of negotiation starts. The negotiation stops
when the heartbeat deadline (60 seconds) approaches.

Since an MC&C’s optimal strategy depends on its neighbor M-
C&Cs’ scan strategies. After one neighbor MC&C changes it-
s strategy, Mi’s optimal strategy sRi may be not optimal any-
more. Thus, Mi can run its local optimization algorithm again
to find its new optimal scan strategy s′Ri

. Mi’s marginal utility
UMi(s

′
Ri
, sRi) when switching to strategy s′Ri

is
∑
g∈AGt

i
Ug(s

′
Ri
∪

s0→t−1
Ri

∪ s0→t+l−1
R−i

)−∑g∈AGt
i
Ug(sRi ∪ s0→t−1

Ri
∪ s0→t+l−1
R−i

).
If UMi(s

′
Ri
, sRi) > 0, Mi may choose to use strategy s′Ri

.
Since it is possible that other MC&Cs change their strategies si-
multaneously,Mi’s new strategy s′Ri

may be not optimal any more
since the optimality of s′Ri

is based on the assumption that Mi’s
neighbor MC&Cs don’t change their strategies. To overcome the
efficiency loss due to concurrency, a synchronization mechanism
is used: An MC&C first proposes a strategy move by reporting it-
s new strategy as well as its marginal utility to its neighbors, and
then it changes its strategy if and only if its marginal utility is higher
than the marginal utilities of its neighbor MC&Cs whose proposed
moves are in conflict with the MC&C’s proposed move. Since M-
C&Cs operate in real-time, it is possible thatMi fails to receive the
proposal from one of its neighbor MC&Cs or it has to wait for a
long time before receiving all proposals. To improve concurrency,
we introduce a waiting deadline ξ > 0. MC&C Mi will decide
whether to make a move after the waiting deadline expires.

Assume that Mi received a message from Mj indicating that
Mj will change its strategy from sRj to s′Rj

. Mj’s move s′Rj
is

in conflict with Mi’s move s′Ri
if both moves will change the u-

tility of some active goals G ⊆ AGti . Let NMi(s
′
Ri

) be the set
of neighbor MC&Cs whose proposed moves are in conflict with
the Mi’s proposed move s′Ri

. If the marginal utility increase of
Mi’s proposal is higher than the marginal utility of any MC&C in
NMi(s

′
Ri

), MC&C Mi will change its strategy to s′Ri
. The com-

plexity of this conflict check for each MC&C is O(|M|). Note
that it is also possible that the utility of a goal set will increase
when multiple MC&Cs change their strategies simultaneously, no
matter whether their moves are in conflict with each other. Since an
MC&C’s changing its strategy will affect the utilities of its neigh-
bor MC&Cs, an MC&C’s making the optimal decision of whether
to switch to its new strategy s′Ri

may depend on other MC&Cs’
choice of whether to change to their strategies.

DEFINITION 1. (Move selection) Assume that MC&Cs’ current
strategies are sR1 , . . . , sR|M| , respectively. Assume that MC&Cs
are proposing to use new strategies s′R1 , . . . , s

′
R|M| , respective-

ly. The move selection problem is to find out the set of moves to
maximize the social welfare.

THEOREM 2. The move selection problem isNP-hard.

The theorem’s proof is a straightforward reduction from the max-
imum matching problem (omitted due to space limitations). Con-
sidering the high complexity of finding MC&Cs’ optimal decisions
of changing their strategies and the dynamic feature of the system,
we adopt the above conflict check approach which has a low com-
plexity since each MC&C only needs to consider the marginal util-
ities of its neighbor MC&Cs.

Figure 1 shows an MC&C’s finite state machine for the distribut-
ed negotiation protocol. After receiving data from radars, Mi runs
the local optimization algorithm to find its initial strategy. After
it sends its strategy to its neighbor MC&Cs, Mi is in the state
wstrategy, which implies that Mi is waiting for other MC&Cs
to report their current strategies. After Mi has received strategies
from all its neighbors or its waiting deadline ξ has reached, it com-
putes its new optimal strategy and notifies its neighbor MC&Cs.
Then its state is wproposal which implies that Mi has sent out it-
s move proposal and is waiting for other MC&Cs to report their
move proposals. If Mi’s marginal utility is higher than the oth-
er marginal utilities of conflicting move proposals it has received
within the waiting time, it will change its strategy and notify its
neighbor MC&Cs. Then its status will be changed to wstrategy.
During negotiation, after Mi decides whether to make a move, it
will wait for other MC&Cs’ strategy update. If the optimization
deadline is reached, the state is end and Mi sends out its current
scan commands to all the radars under its control.

There are several important control parameters in our approach
and we set the values for those control parameters through experi-
mental tuning. MC&CMi needs to decide its search depth for local
multi-step optimization. One obvious rule is that the search depth
l should be no larger than maxg∈AGt

i
Te(g). Although an MC&C

has a better chance to coordinate its future actions with a larger
search depth, having a large search depth brings several drawback-
s. First, the MC&C’s strategy space increases exponentially with l.
After generating a strategy over multiple heartbeats at heartbeat t,
the MC&C will run the optimization algorithm again at heartbeat
t + 1. That is, the strategy for future heartbeats generated at time
t may be abandoned later. Furthermore, as each MC&C has im-
perfect knowledge about future events due to inaccurate prediction
and about the strategies of other MC&Cs, the generated “optimal”
strategy over multiple heartbeats may not be optimal in practice.
We used a heuristic to decide the search depth for each MC&C by
considering a goal’s expected existence time. A goal g∈AGti will
exist for Te(g)− t+1 heartbeats starting from heartbeat t. The av-
erage existing time

∑
g∈AGt

i
(Te(g)− t+ 1)/|AGti| of active goals

AGti is chosen as the search depth. Simulation results show that
the heuristic achieved the highest utility compared to other arbi-
trary approaches (e.g., l = 1, l = maxg∈AGt

i
Te(g)) for setting the

search depth.
Two additionally important control parameters for each MC&C

are the time τ to run its local optimization and the waiting time ξ
during negotiation. With longer time, an MC&C can get a solu-
tion closer to the local optimal solution. However, an MC&C may
has a short time for negotiation if it spends too much time in local
optimization. During negotiation, an MC&C needs to decide how
long to wait for the messages from its neighbor MC&Cs. With
the increase of waiting time ξ, the negotiation is more synchronous
since an MC&C will have more knowledge about its neighbor M-
C&Cs before making a decision. We found through experiments
that it’s always better to allocate 6 seconds for each local optimiza-
tion. When τ � 6 seconds, the local optimization solution has
a low quality. If τ � 6 seconds, there is not much time to do
negotiation given 60 seconds heartbeat deadline. Furthermore, we
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found that it’s always better to set ξ ∼ 4 seconds. Therefore, M-
C&Cs may conduct 6 rounds of negotiation and we found that in
most cases, negotiation converges (i.e., no MC&C can find a better
strategy) in about 5 rounds of negotiation.

Our negotiation scheme has a number of features: 1) Each M-
C&C exchanges its scan plan (generated by local optimization)
over multiple heartbeats with neighbor MC&Cs. 2) To reduce the
utility loss due to concurrent strategy change, an MC&C changes
its strategy if it has the highest marginal utility than that of its
neighbor MC&Cs. 3) Negotiation is conducted asynchronously to
increase concurrency of MC&Cs’ strategy change. If we synchro-
nize the negotiation protocol by setting a long waiting time, we
can guarantee that the social welfare will monotonically increase
with the ongoing negotiation as in [3]. We make tradeoffs between
speeding up negotiation and guaranteeing monotonic increase of
social welfare by setting the value of waiting deadline ξ by consid-
ering factors such as the communication delay distribution. When
we set a long waiting deadline (i.e., there is no concurrency), the
protocol is similar to the LID-JESP algorithm [7] which makes use
of the distributed breakout algorithm (DBA) algorithm [13].

6. SIMULATION RESULTS
Evaluating the performance of the approach on the real radar sys-

tem is difficult and complex. To better quantify the benefits of our
approach, we turn to simulation results in more controlled settings.

6.1 Simulator
To determine how best to decentralize control, we have creat-

ed an abstract simulation of the actual DCAS system. The sim-
ulator consists of a number of components. Radars are clustered
into partitions, each of which has a single MC&C. Each MC&C
has a feature repository where it stores information regarding phe-
nomena in its spacial region, where each phenomenon represents
a weather event. Goals are generated following goal generation
rules given observed weather phenomena. The optimization func-
tion of each MC&C takes its scan goals and returns scans for each
of its radars. The simulator additionally contains a function which
abstractly simulates the mapping from physical events and scans
of the radars to what the MC&C eventually sees as the result of
those scans. Depending on the elevations scanned, the number of
radars scanning, the type of phenomena, and the speed of scan, it
assigns error values to the attributes of the phenomena within cer-
tain bounds. In this way, the MC&Cs do not see exactly what is
there but rather something slightly off.

The parameters of each phenomenon (e.g., speed, density), each
radar (e.g., radius), and each MC&C (e.g., the number of radars un-
der control) reflect the current design of the real system. Phenom-
ena may be either pinpointing or non-pinpointing. Goal generation
and utility calculation in the simulator are the same as that in the re-
al system. The radars have a range of approximately 30 kilometers
and the optimization has to finish in 60 seconds. The communi-
cation delay between MC&Cs is based on the data gathered from
the real system. The number of radars ranges between [8, 100] and
the number of radars controlled by each MC&C is ranged between
[4, 16]. Each radar can have at most λ = 8 candidate strategies at
any heartbeat which represent a wide range of strategies.

6.2 Benchmark approaches
Our distributed negotiation (DN) model was compared with

four other different approaches. Both the centralized single-step
optimization (CS) approach and centralized multi-step optimiza-
tion (CM) approach assume that there is a super MC&C control-
ling all the MC&Cs and the super MC&C runs the local optimiza-
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Figure 2: Ratio of social welfare and scale of the network.

tion algorithm to find optimal strategies for all MC&Cs’ radars.
The only difference between CS and CM is that CS makes one
heartbeat optimization while CM searches over multiple heart-
beats. For the fully distributed (FD) approach, MC&Cs optimize
the utilities of their separate goal sets and don’t communicate with
each other. FD searches strategies over multiple heartbeats.

6.3 Experimental settings
In our experiments, the simulator will model real phenomena

generation and different approaches may generate different set of
goals given their observations. Each approach will optimize its s-
can strategy based on its own goal set. Thus it is unfair to compare
the performance of different approaches based on their own goal
sets. Instead, we generate an oracle goal set based on the system’s
real phenomena. The social welfare of each approach is evaluat-
ed based on the actions generated by each approach and the set of
oracle goals generated by the system. For an experiment, we run
the system for multiple heartbeats (e.g., 200) and compute the av-
erage social welfare for each heartbeat, e.g., average social welfare
sw(DN) for the approach DN.

An extensive amount of stochastic simulations was carried out
for various resource allocation scenarios subjected to the following
variables: 1) the scale of each MC&C, i.e., how many radars are
controlled by an MC&C; 2) the density of phenomena, i.e., the
frequency of new phenomena entering the radar network; 3) the
speed of phenomena; and 4) the ratio of boundary goals. In the rest
of this section, we report some representee simulation results.

6.4 Observations

6.4.1 Scale of the sensor network
On average, DN achieved a much higher social welfare than al-

l other benchmark approaches. Figure 2 shows the ratios of the
social welfare of approaches FD, CM and DN to that of CS in
networks of different scales in which each MC&C controls 6 radars
([12, 2] implies 12 radars with 2 MC&Cs). We can see that 1) DN
achieved slightly lower social welfare than CM if there are a s-
mall number of radars (e.g., 12) and 2) DN achieved higher social
welfare other approaches if there are more than 12 radars and the
advantage increases with the scale of the network. This result is in-
tuitive since an MC&C’s strategy space increases with the number
of radars. Given the real time constraint, distributed optimization
with coordination may achieve better performance than centralized
optimization. For the two centralized approaches, CM achieved a
higher social welfare than CS since sw(CM)/sw(CS) is higher
than 1.

We can also see that the fully distributed approach FD achieved
much worse performance than other approaches due to lack of coor-
dination. One interesting observation from the experiments is that
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Figure 3: Average social welfare and phenomena density.

FD’s social welfare based on its own goal set is very high. Howev-
er, FD’s social welfare based on the oracle goal set is low, which is
partially due to belief propagation: if an MC&C has wrong belief
about the real phenomena, it may still have wrong (or even worse)
belief after it sends out scanning commands based on its old wrong
belief. Through coordination, MC&Cs will “talk” to each other and
accordingly, they may have a more accurate understanding of real
phenomena.

6.4.2 Density of phenomena and network structure
We found through simulation that the density of phenomena had

a large effect on the performance of different approaches. It is in-
tuitive since, with more phenomena, more goals will be generated
and the search space of the optimization problem increases. We use
the average number η of phenomena per radar at each heartbeat to
measure the density of phenomena. For our domain, an η in the
range of [0.5, 1] (respectively, [1, 3] and [3, 6]) is considered as low
(respectively, moderate and high). It can be found from Figure 3
that the advantage of DN over the other approaches increases with
the increase of the phenomena density. In addition, for different
phenomena densities, CM achieved a higher social welfare than
CS, which had a much better performance than FD.

One important objective of simulation is to investigate how the
performance of DN is affected by the network structure, i.e., the
number of radars controlled by each MC&C. Intuitively, if an M-
C&C has to control a large number of radars, it cannot find a good
solution given its heartbeat deadline. However, if each MC&C has
only a small number of radars, an MC&C can find a local optimal
solution but the global solution based on all MC&Cs’ local optimal
solutions may be much worse than the global optimal solution. Fig-
ure 4 shows how the performance of DN is affected by the number
of radars controlled by each MC&C in a network with 48 radars. It
can be found that 1) when the phenomena density is low, it is better
to allow each MC&C to control relatively more radars (e.g., 12,); 2)
when the phenomena density is medium, it is better to allow each
MC&C to control around 8 radars; and 3) when the phenomena
density is high, it is better to allow each MC&C to control a small
number radars (e.g., 4, 6).

6.4.3 Speed of phenomena and boundary goals
We also observed that the advantage of DN over the other ap-

proaches increases with the increase of the ratio of boundary goals
and moving speed of phenomena (figures omitted due to space lim-
itation). With more boundary goals, coordination between MC&Cs
becomes more important since it may improve the utilities of these
boundary goals by removing redundant scans and having multiple
radars to observe the same phenomenon. If a phenomenon moves
fast, multiple MC&Cs may need to coordinate with each other to
satisfy the goal existing for multiple heartbeats.
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Figure 5: Location of the 4 IP1 radar nodes in Oklahoma.

7. FIELD STUDY
We have implemented our approach on the IP1 Testbed, which

is located in southwestern Oklahoma in the heart of tornado al-
ley. Figure 5 shows the location and coverage area of the testbed.
The testbed consists of four mechanically steered parabolic dish
X-band radars atop small towers. The circles around KSAO, K-
CYR, KLWE, and KRSP show the 30 km coverage area of the IP1
radars. The nearest NEXRAD sites located near the IP1 testbed
are the radars at Twin Lakes (KTLX) and Frederick (KFDR) and
are shown here with 40 km and 60 km range rings. An interested
reader can refer to [5, 15] for the IP1 system architecture.

We evaluated our approach during the 2010 CASA Spring Ex-
periment from April 1st to June 15th. This time period corresponds
to a yearly maximum of severe storms and tornadic weather in our
testbed domain. We reran cases archived during this experiment pe-
riod from severe weather events using our system emulator which
simulates the behavior of the system in a non-closed loop fashion
- that is we can verify the behavior of the scan optimization, but
the supplied radar data is from the canned case, not from an actual
regeneration of data using, for example, a radar simulator. Using
this system emulation approach we verified the scanning behavior
of the goal-based multi-step optimization.

Figure 6 shows one example of the scanning pattern for each
radar from an emulated test case. On the left of Figure 6 shows
the scanning actions of radars using our approach and on the right
of Figure 6 shows radars’ scanning actions using the previous ap-
proach described in [3]. Each radar does a pie shaped sector scan,
the number of arcs on the edge denoting the number of elevation
angles in the scan. It can be found in Figure 6 that the two ap-
proaches very often, but not always generated different scanning
commands for the radars.

To further test goal-based multi-step optimization versus a base-
line functionality of the system we disabled the previous system’s
time-since-last-scanned scan optimization heuristic and reran test
cases where we compared this baseline system versus the fully
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Figure 6: Scanning pattern for each radar. This snapshot was
taken from data on May 19th 2010 22:44:29 (UTC).

functional goal-based multi-step optimization. We observed that
the myopic baseline configuration generally exhibited a much “greed-
ier” approach to scanning - often performing repeated scans of
the same phenomena while ignoring other scan requirements such
as satisfying user needs for regular low-level surveillance scan-
s. These results with real data verified our simulation studies and
showed that 1) goal based problem formulation more precisely mod-
els the needs of multiple end-users and 2) multi-step optimization
together with negotiation based coordination efficiently schedules
radars’ scanning actions over multiple heartbeats.

It has been observed that our approach is significantly better at
meeting the user specified “time-since-last-scan” requirements. In
addition, our new approach avoided redundant scanning importan-
t phenomena and found phenomena failed to be observed by the
old approach. Besides the numerical values that were obtained
through the analysis of the real-time scanning actions generated
by MC&Cs, we also got direct feedback from domain experts in-
forming us that because we were using predictions of the future
locations of phenomena we also were doing a better job of scan-
ning the “leading edges” of storm systems. This is an important
benefit because most of the interesting observables that lead to bet-
ter warning by humans are located in these areas.

8. CONCLUSION
This paper presents a distributed resource allocation model com-

bining heuristic search and asynchronous negotiation. In more de-
tail, our contributions to the state of the art include:

• We introduce the concept “goal” to model end-users’ prefer-
ences over multiple heartbeats and cast the complex sensing
resource allocation problem as a continuous time optimiza-
tion problem. The goal based formulation enhances modular-
ity and improves the adaptivity of our approach to changing
environments and user preferences. Each MC&C utilizes a
genetic algorithm to find its local optimal strategy over multi-
ple heartbeats given its neighbor MC&Cs’ current strategies.
• We extended the distributed negotiation model in [3] by al-

lowing MC&Cs to 1) exchange “plans” over multiple heart-
beats and 2) make tradeoffs regarding local optimization time,
negotiation time, and concurrency.
• We empirically show that our approach achieved better per-

formance than some benchmark approaches.
• We have applied our approach to an operational radar testbed

that is deployed in Oklahoma to observe severe weather events
and it has exhibited much better performance than previous
techniques.

Future research directions include improving the distributed re-
source allocation model. For instance, MC&Cs can make multi-
lateral agreement through mediation that allows neighboring M-

C&Cs to make moves concurrently. It is also possible that the nego-
tiation stops with a local optimal solution and it may be beneficial
to accept some poor agreements to help in the long run. Our on-
going research will also focus on applying this framework to other
large scale real-time optimization problems.
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ABSTRACT
This work introducesHuman-Agent Transfer(HAT), an algorithm
that combines transfer learning, learning from demonstration and
reinforcement learning to achieve rapid learning and high perfor-
mance in complex domains. Using experiments in a simulated
robot soccer domain, we show that human demonstrations trans-
ferred into a baseline policy for an agent and refined using rein-
forcement learning significantly improve both learning time and
policy performance. Our evaluation compares three algorithmic ap-
proaches to incorporating demonstration rule summaries into trans-
fer learning, and studies the impact of demonstration quality and
quantity, as well as the effect of combining demonstrationsfrom
multiple teachers. Our results show that all three transfermeth-
ods lead to statistically significant improvement in performance
over learning without demonstration. The best performancewas
achieved by combining the best demonstrations from two teachers.

Categories and Subject Descriptors
I.2.6 [Learning]: Miscellaneous

General Terms
Algorithms, Performance

Keywords
Reinforcement Learning, Learning from Demonstration, Human/Agent
Interaction, Transfer Learning

1. INTRODUCTION
Agent technologies for virtual agents and physical robots are

rapidly expanding in industrial and research fields, enabling greater
automation, increased levels of efficiency, and new applications.
However, existing systems are designed to provide niche solutions
to very specific problems and each system may require significant
effort to develop. The ability to acquire new behaviors through
learning is fundamentally important for the development ofgeneral-
purpose agent platforms that can be used for a variety of tasks.

Existing approaches to agent learning generally fall into two cat-
egories: independent learning through exploration and learning from
labeled training data. Agents often learn independently from ex-
ploration viaReinforcement learning(RL) [25]. While such tech-

Cite as: Integrating Reinforcement Learning with Human Demonstrations
of Varying Ability, Matthew E. Taylor, Halit Bener Suay, andSonia Cher-
nova,Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.),
May, 2–6, 2011, Taipei, Taiwan, pp. 617-624.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

niques have had great success in offline learning and software ap-
plications, the large amount of data and high exploration times they
require make them intractable for most real-world domains.

On the other end of the spectrum arelearning from demonstra-
tion (LfD) algorithms [1]. These approaches leverage the vast ex-
perience and task knowledge of a person to enable fast learning,
which is critical in real-world applications. However, human teach-
ers provide particularly noisy and suboptimal data due to differ-
ences in embodiment (e.g., degrees of freedom, action speed) and
limitations of human ability. As a result, final policy performance
achieved by these methods is limited by the quality of the dataset
and the performance of the teacher.

This paper proposes a novel approach: use RLtransfer learning
methods [28] to combine LfD and RL and achieve both fast learn-
ing and high performance in complex domains. In transfer learning,
knowledge from asource taskis used in atarget taskto speed up
learning. Equivalently, knowledge from a source agent is used to
speed up learning in a target agent. For instance, knowledgehas
been successfully transferred between agents that balancediffer-
ent length poles [19], that solve a series of mazes [5, 34], orthat
play different soccer tasks [29, 31, 32]. The key insight of transfer
learning is that previous knowledge can be effectively reused, even
if the source task and target task are not identical. This results in
substantially improved learning times because the agent nolonger
relies on an uninformed (arbitrary) prior.

In this work, we show that we can effectively transfer knowledge
from a human to an agent, even when they have different percep-
tions of state. Our method,Human-Agent Transfer(HAT): 1) allows
a human teacher to perform a series of demonstrations in a task, 2)
uses an existing transfer learning algorithm,Rule Transfer[27], to
learn rule-based summaries of the demonstration, and 3) integrates
the rule summaries into RL, biasing learning while also allowing
improvement over the transferred policy.

We perform empirical evaluation ofHAT in a simulated robot
soccer domain. We compare three algorithms for incorporating rule
summaries into reinforcement learning, and compare learning per-
formance for multiple demonstration source, quantity, andquality
conditions. Our findings show statistically significant improvement
in performance for all variants ofHAT over learning with no prior.
Additionally, we find that exposure even to suboptimal demonstra-
tion training data results in significant improvements overrandom
exploration, and combining demonstrations from multiple teachers
leads to the best performance.

2. BACKGROUND
This section provides background on the three key techniques

discussed in this paper: reinforcement learning, learningfrom demon-
strations, and transfer learning.
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2.1 Reinforcement Learning
Reinforcement learning is a common approach to agent learn-

ing from experience. We define reinforcement learning usingthe
standard notation of Markov decision processes (MDPs) [16]. At
every time step the agent observes its states ∈ S as a vector ofk
state variables such thats = 〈x1, x2, . . . , xk〉. The agent selects
an action from the set of available actionsA at every time step. An
MDP’s reward functionR : S×A 7→ R and (stochastic) transition
functionT : S×A 7→ S fully describe the system’s dynamics. The
agent will attempt to maximize the long-term reward determined by
the (initially unknown) reward and transition functions.

A learner chooses which action to take in a state via a policy,
π : S 7→ A. Policy π is modified by the learner over time to
improve performance, which is defined as the expected total re-
ward. Instead of learningπ directly, many RL algorithms instead
approximate the action-value function,Q : S × A 7→ R, which
maps state-action pairs to the expected real-valued return. In this
paper, agents learn using Sarsa [17, 20], a well known but relatively
simple temporal difference RL algorithm, which learns to estimate
Q(s, a). While some RL algorithms are more sample efficient than
Sarsa, this paper will focus on Sarsa for the sake of clarity.

Although RL approaches have enjoyed multiple past successes
(e.g., TDGammon [30], inverted Helicopter control [12], and agent
locomotion [18]), they frequently take substantial amounts of data
to learn a reasonable control policy. In many domains, collect-
ing such data may be slow, expensive, or infeasible, motivating the
need for ways of making RL algorithms more sample-efficient.

2.2 Learning from Demonstration
Learning from demonstrationresearch explores techniques for

learning a policy from examples, or demonstrations, provided by a
human teacher. LfD can be seen as a subset of Supervised Learn-
ing, in that the agent is presented with labeled training data and
learns an approximation to the function which produced the data.

Similar to reinforcement learning, learning from demonstration
can be defined in terms of the agent’s observed states ∈ S and ex-
ecutable actionsa ∈ A. Demonstrations are recorded as temporal
sequences oft state-action pairs {(s0, a0), ..., (st, at)}, and these
sequences typically only cover a small subset of all possible states
in a domain. The agent’s goal is to generalize from the demonstra-
tions and learn a policyπ : S 7→ A covering all states that imitates
the demonstrated behavior.

Many different algorithms for using demonstration data to learn
π have been proposed. Approaches vary by how demonstrations
are performed (e.g., teleoperation, teacher following, kinesthetic
teaching, external observation), the type of policy learning method
used (e.g., regression, classification, planning), and assumptions
about degree of demonstration noise and teacher interactivity [1].
Across these differences, LfD techniques possess a number of key
strengths. Most significantly, demonstration leverages the vast task
knowledge of the human teacher to significantly speed up learning
either by eliminating exploration entirely [6, 13], or by focusing
learning on the most relevant areas of the state space [22]. Demon-
stration also provides an intuitive programming interfacefor hu-
mans, opening possibilities for policy development to non-agents-
experts.

However, LfD algorithms are inherently limited by the quality
of the information provided by the human teacher. Algorithms typ-
ically assume the dataset to contain high quality demonstrations
performed by an expert. In reality, teacher demonstrationsmay be
ambiguous, unsuccessful, or suboptimal in certain areas ofthe state
space. A naïvely learned policy will likely perform poorly in such
areas [2]. To enable the agent to improve beyond the performance

of the teacher, learning from demonstration must be combined with
learning from experience.

Most similar to our approach is the work of Smart and Kaelbling,
which shows that human demonstration can be used to bootstrap
reinforcement learning in domains with sparse rewards by initializ-
ing the action-value function using the observed states, actions and
rewards [22]. In contrast to this approach, our work uses demon-
stration data to learn generalized rules, which are then used to bias
the reinforcement learning process.

2.3 Transfer Learning
The insight behindtransfer learning(TL) is that generalization

may occur not only within tasks, but alsoacross tasks, allowing an
agent to begin learning with an informative prior instead ofrelying
on random exploration.

Transfer learning methods for reinforcement learning can trans-
fer a variety of information between agents. However, many trans-
fer methods restrict what type of learning algorithm is usedby
both agents (for instance, some methods require temporal differ-
ence learning [29] or a particular function approximator [32] to be
used in both agents). However, when transferring from a human, it
is impossible to copy a human’s “value function” — both because
the human would likely be incapable of providing a complete and
consistent value function, and because the human would quickly
grow wary of evaluating a large number of state-action pairs.

This paper usesRule Transfer[27], a particularly appropriate
transfer method that is agnostic to the knowledge representation
of the source learner. The ability to transfer knowledge between
agents that have different state representations and/or actions is a
critical ability when considering transfer of knowledge between a
human and an agent. The following steps summarize Rule Transfer:

1a: Learn a policy (π : S 7→ A) in the source task.Any type of
reinforcement learning algorithm may be used.

1b: Generate samples from the learned policyAfter training
has finished, or during the final training episodes, the agent
records some number of interactions with the environment in
the form of(S,A) pairs while following the learned policy.

2: Learn a decision list (Ds : S 7→ A) that summarizes the
source policy. After the data is collected, a propositional
rule learner is used to summarize the collected data to ap-
proximate the learned policy by mapping states to actions.1

This decision list is used as a type of inter-lingua, allowing
the following step to be independent of the type of policy
learned (step 1a).

3: UseDt to bootstrap learning of an improved policy in the
target task. For instance, previous work [27] provided three
ways of leveraging this knowledge; two of these methods are
discussed later in Sections 3.1 and 3.2.

2.4 Additional Related Work
This section briefly summarizes three additional lines of related

work.
Within psychology,behavioral shaping[21] is a training proce-

dure that uses reinforcement to condition the desired behavior in
a human or animal. During training, the reward signal is initially
1Additionally, if the agents in the source and target task usedif-
ferent state representations or have different available actions, the
decision list can be translated via inter-task mappings [27, 29] (as
step 2b). For the current paper, this translation is not necessary, as
the source and target agents operate in the same task.
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used to reinforce any tendency towards the correct behavior, but is
gradually changed to reward successively more difficult elements
of the task. Shaping methods with human-controlled rewardshave
been successfully demonstrated in a variety of software agent ap-
plications [3, 7]. An alternate form of shaping is to change the task
over time, or construct a task sequence for an agent to train on [26,
36]. In contrast to shaping, LfD allows a human to demonstrate
complete behaviors, which may contain much more information
than a sequence of rewards or suggested tasks.

Most similar to our approach is the recent work by Knox and
Stone [9] which combines shaping with reinforcement learning.
Their TAMER [8] system learns to predict and maximize a reward
that is interactively provided by a human. The learned humanre-
ward is combined in various ways with Sarsa(λ), providing signif-
icant improvements. The primary difference betweenHAT and this
method is that we focus on leveraging human demonstration, rather
than estimating and integrating a human reinforcement signal.

The idea of transfer between a human and an agent is somewhat
similar to implicit imitation [15], in that one agent teaches another
how to act in a task, butHAT does not require the agents to have the
same (or very similar) representations.

Allowing for such shifts in representation gives additional flex-
ibility to an agent designer; past experience may be transferred
rather than discarded if a new representation is desired. Represen-
tation transfer is similar in spirit toHAT in that both the teacher and
the learner function in the same task, but very different techniques
are used since the human’s “value function” cannot be directly ex-
amined.

High-level adviceand suggestions have also been used to bias
agent learning. Such advice can provide a powerful learningtool
that speeds up learning by biasing the behavior of an agent and
reducing the policy search space. However, existing methods typi-
cally require either a significant user sophistication (e.g., the human
must use a specific programming language to provide advice [11])
or significant effort is needed to design a human interface (e.g.,
the learning agent must have natural language processing abilities
[10]). Allowing a teacher to demonstrate behaviors is preferable in
domains where demonstrating a policy is a more natural interaction
than providing such high-level advice.

3. METHODOLOGY
In this section we presentHAT, our approach to combining LfD

and RL. HAT consists of three steps, motivated by those used in
Rule Transfer:

Demonstration The agent performs the task under the teleoper-
ated control by a human teacher, or by executing an existing
suboptimal controller. During execution, the agent records
all state-action transitions. Multiple task executions may be
performed.

Policy Summarization HAT uses the state-action transition data
recorded during the Demonstration phase to derive rules sum-
marizing the policy. These rules are used to bootstrap au-
tonomous learning.

Independent Learning The agent learns independently in the task
via reinforcement learning, using the policy summary to bias
its learning. In this step, the agent must balance exploiting
the transferred rules with attempting to learn a policy that
outperforms the transferred rules.

In contrast to transfer learning,HAT assumes that either 1) the
demonstrations are executed on the same agent, in the same task,

as will be learned in the Independent Learning phase, or that2) any
differences between the agent or task in the demonstration phase
are small enough that they can be ignored in the independent learn-
ing phase. Instead of transferring between different tasks, HAT fo-
cuses on transferring between different agents with different inter-
nal representations. For instance, it is not possible to directly use
a human’s “value function” inside an agent because 1) the human’s
knowledge is not directly accessible and 2) the human has a differ-
ent state abstraction than the agent.

We next present three different ways thatHAT can use a decision
list to improve independent learning.

3.1 Value Bonus
The intuition behind theValue Bonusmethod [27] is similar to

that of shaping in that the summarized policy is used to add a re-
ward bonus to certain human-favored actions. When the agent
reaches a state and calculatesQ(s, a), the Q-value of the action
suggested by the summarized policy is given a constant bonus(B).
For the firstC episodes, the learner is forced to execute the ac-
tion suggested by the rule set. This is effectively changingthe ini-
tialization of the Q-value function, or, equivalently [33], providing
a shaping reward to the state-action pairs that are selectedby the
rules.

We useB = 10 andC = 100 to be consistent with past work [27];
the Q-value for the action chosen by the summarized policy will be
given a bonus of +10 and agents must execute the action chosenby
the summarized policy for the first 100 episodes.

3.2 Extra Action
TheExtra Actionmethod [27] augments the agent so that it can

select apseudo-action. When the agent selected this pseudo-action,
it executed the action suggested by the decision list. The agent may
either execute the action suggested by the transferred rules, or it
can execute one of the “base” MDP actions. Through exploration,
the RL agent can decide when it should 1) follow the transferred
rules by executing the pseudo-action or 2) execute a base MDP
action (e.g., the transferred rules are sub-optimal). Werethe agent
to always execute the pseudo-action, the agent would never learn
but would simply mimic the demonstrated policy.

As with the Value Bonus algorithm, the agent initially executes
the action suggested by the decision list, allowing it to estimate the
value of the decision list policy. We again set this period tobe 100
episodes (C = 100).

3.3 Probabilistic Policy Reuse
The third method used isProbabilistic Policy Reuse, based on

the π-reuse Exploration Strategy [4, 5]. In Probabilistic Policy
Reuse, the agent will reuse a policy with probabilityψ, explore
with probabilityǫ, and exploit the current value function with prob-
ability 1− ψ − ǫ. By decayingψ over time, the agent can initially
leverage the decision list, but then learn to improve on it ifpossi-
ble. Note that Probabilistic Policy Reuse is similar to the recent
TAMER+RL method #7 [9], where the agent tries to execute the ac-
tion suggested by the learned human shaping reward, rather than
follow a transferred policy.
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Figure 1: This diagram shows the distances and angles used to
construct the 13 state variables used for learning with 3 keepers
and 2 takers. Relevant objects are the 3 keepers (K) and the
two takers (T), both ordered by distance from the ball, and the
center of the field.

4. EXPERIMENTAL VALIDATION
This section first discusses Keepaway [24], a simulated robot

soccer domain and then explains the experimental methodology
used to evaluateHAT.

4.1 Keepaway
Keepawayis a domain with a continuous state space and signifi-

cant amounts of noise in the agent’s actions and sensors. Oneteam,
the keepers, attempts to maintain possession of the ball within a
20m× 20m region while another team, thetakers, attempts to steal
the ball or force it out of bounds. The simulator places the play-
ers at their initial positions at the start of each episode and ends an
episode when the ball leaves the play region or is taken away from
the keepers.

The keeper with the ball has the option to either pass the ballto
one of its two teammates or to hold the ball. In3 vs. 2 Keepaway
(3 keepers and 2 takers), the state is defined by 13 hand-selected
state variables (see Figure 1) as defined in [24]. The reward to the
learning algorithm is the number of time steps the ball remains in
play after an action is taken. The keepers learn in a constrained
policy space: they have the freedom to decide which action totake
only when in possession of the ball. Keepers not in possession
of the ball are required to execute theReceive macro-action in
which the player who can reach the ball the fastest goes to theball
and the remaining players follow a handcoded strategy to tryto get
open for a pass.

For policy learning, the Keepaway problem is mapped onto the
discrete-time, episodic RL framework. As a way of incorporat-
ing domain knowledge, the learners choose not from the simula-
tor’s primitive actions but from a set of higher-level macro-actions
implemented as part of the player [24]. These macro-actionscan
last more than one time step and the keepers have opportunities to
make decisions only when an on-going macro-action terminates.
Keepers can choose toHold (maintain possession),Pass1 (pass
to the closest teammate), andPass2 (pass to the further team-
mate). Agents then make decisions at discrete time steps (when
macro-actions are initiated and terminated).

Figure 2: This figure shows a screenshot of the visualizer used
for the human to demonstrate a policy in 3 vs. 2 Keepaway.
The human controls the keeper with the ball (shown as a hollow
white circle) by telling the agent when, and to whom, to pass.
When no input is received, the keeper with the ball executes the
Hold action, attempting to maintain possession of the ball.

To learn Keepaway with Sarsa, each keeper is controlled by a
separate agent. Many kinds of function approximation have been
successfully used to approximate an action-value functionin Keep-
away, but a Gaussian Radial Basis Function Approximation (RBF)
has been one of the most successful [23]. All weights in the RBF
function approximator are initially set to zero; every initial state-
action value is zero and the action-value function is uniform. Ex-
periments in this paper use the public versions 11.1.0 of theRoboCup
Soccer Server [14], and 0.6 of UT-Austin’s Keepaway players[23].

4.2 Experimental Setup
In the Demonstration phase ofHAT, Keepaway players in the

simulator are controlled by the teacher using the keyboard.This
allows a human to watch the visualization and instruct the keeper
with the ball to execute theHold, Pass1, orPass2 actions. Dur-
ing demonstration, we record all (s, a) pairs selected by the teacher.
It is worth noting that the human has a very different representation
of the state than the learning agent. Rather than observing a13
dimensional state vector like the RL agent, the human uses a visu-
alizer (Figure 2). It is therefore critical that whatever method used
to glean information about the human’s policy does not require the
agent and the human to have identical representations of state.

To be consistent with past work [23], our Sarsa learners use
α = 0.05, ǫ = 0.10, and RBF function approximation. After
conducting initial experiments with five values ofψ, we found that
ψ = 0.999 was at least as good as other possible settings. In the
Policy Summarization Phase, we use a simple propositional rule
learner to generate a decision list summarizing the policy (that is,
it learns to generalize which action is selected in every state). For
these experiments, we use JRip, as implemented in Weka [35].

Finally, when measuring speedup in RL tasks, there are many
possible metrics. In this paper, we measure the success ofHAT

along three related dimensions. The initial performance ofan agent
in a target task may be improved by transfer. Such ajumpstart
(relative to the initial performance of an agent learning without the
benefit of any prior information), suggests that transferred informa-
tion is immediately useful to the agent. In Keepaway, the jumpstart
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is measured as the average episode reward (corresponding tothe
average episode length in seconds), averaged over 1,000 episodes
without learning. The jumpstart is a particularly important metric
when learning is slow and/or expensive.

The final reward acquired by the algorithm at the end of the
learning process (at 30 simulator hours in this paper) indicates the
best performance achieved by the learner. This value is computed
by taking the average of the final 1,000 episodes to account for the
high degree of noise in the Keepaway domain.

The total rewardaccumulated by an agent (i.e., the area under
the learning curve) may also be improved. This metric measures
the ability of the agent to continue to learn after transfer,but is
heavily dependent on the length of the experiment. In Keepaway,
the total reward is the sum of the average episode durations at every
integral hour of training:X

t:0→n

(average episode reward at training hourt)

where the experiment lastsn hours and each average reward is
computed by using a sliding window over the past 1,000 episodes.2

5. EMPIRICAL EVALUATION
This section presents results showing thatHAT can effectively

use human demonstration to bootstrap RL in Keepaway agents.
To begin, we recorded a demonstration from a teacher (Subject

A) which lasted for 20 episodes (less than 3 minutes). Next, we
used JRip to summarize the policy with a decision list. The fol-
lowing rules were learned, wherestatek represents thekth state
variable, as defined in the keepaway task [23]:

if (state11 ≥ 74.84 andstate3 ≤ 5.99 and

state11 ≤ 76.26) → Action= 1

elseif (state11 ≥ 53.97 andstate4 ≤ 5.91 and

state0 ≥ 8.45 andstate8 ≤ 7.06) → Action= 1

elseif (state3 ≤ 4.84 andstate0 ≥ 7.33 and

state12 ≥ 43.66 andstate8 ≤ 5.57) → Action= 2

else → Action= 0

While not the focus of this work, we found it interesting thatthe
policy was able to be summarized with only four rules, obtaining
over 87% accuracy on when using stratified cross-validation.

Finally, agents are trained in 3 vs. 2 Keepaway without using
transfer rules (No Prior), using the Value Bonus, using the Ex-
tra Action, or using the Probabilistic Policy Reuse method.All
learning algorithms were executed for 30 simulator hours (proces-
sor running time of roughly 2.5 hours) to ensure convergence.

Figure 3 compares the performance of the four methods, aver-
aged over 10 independent trials. Using 20 episodes of transferred
data fromSubject Awith HAT can improve the jumpstart, the fi-
nal reward, and the cumulative reward. The horizontal line in the
figure shows the average duration of the teacher’s demonstration
episodes; all four of the RL-based learning methods improveupon
and outperform the human teacher. The performance of the differ-
ent algorithms is measured quantitatively in Table 1, wheresignifi-
cance is tested with a Student’s t-test.
2Recall that the reward in Keepaway is +1 per time step, where a
time step is a 10th of a simulator second. Thus, the reward forthe
first hour of training is always60 × 60 × 10 = 36000 — a met-
ric for the total reward over time must account for the rewardper
episodeand simply summing the total amount of reward accrued is
not appropriate.

 4

 6

 8

 10

 12

 14

 16

 0  5  10  15  20  25  30

E
pi

so
de

 D
ur

at
io

n 
(s

ec
on

ds
)

Training Time (simulator hours)

No Prior
Value Bonus
Extra Action

Probabilistic Policy Reuse
Teacher Demonstration

Figure 3: This graph summarizes performance of Sarsa learn-
ing in Keepaway using four different algorithms. One demon-
stration of 20 episodes was used for all threeHAT learners. Er-
ror bars show the standard error in the performance.

Method Jumpstart Final Total Reward

No Prior N/A 14.3 380
Value Bonus 0.57 15.1 401
Extra Action -0.29 16.0 407
Probabilistic Policy Reuse -0.30 15.2 411

Table 1: This table shows the jumpstart, final reward and total
reward metrics for Figure 3. Values in bold have statistically
significant differences in comparison to the No Prior method
(p < 0.05).

While the final reward performance of the all four methods is
very similar (only Extra Action has a statistically significant3 im-
provement over No Prior), the total reward accumulated by all three
algorithms is significantly higher than with No Prior learning. This
result is an indication that although the same final performance is
achieved in the long term because the learning algorithm is able to
learn the task in all cases, high performance is achievedfasterby
using a small number of demonstrations. This difference canbe
best observed by selecting an arbitrary threshold of episode dura-
tion and comparing the number of simulation hours each algorithm
takes to achieve this performance. In the case of a thresholdof 14
seconds, we see that No Prior learning takes 13.5 hours, compared
to 10.1, 8.57 and 7.9 hours for Value Bonus, Extra Action and Prob-
abilistic Policy Reuse respectively. These results show that trans-
ferring information viaHAT from the human results in significant
improvements over learning without prior knowledge.

Section 5.1 will explore how performance changes with differ-
ent types or amounts of demonstration, while Section 5.2 discusses
how teacher ability affects learning performance. In all further ex-
periments we use the Probabilistic Policy Reuse method as itwas
not dominated by either of the other two methods. Additionally, in
some trials with other methods we found that the learner could start
with a high jumpstart but fail to improve as much as other trials. We
posit this is due to becoming stuck in a local minimum. However,
becauseψ explicitly decays the effect from the rules, this phenom-
ena was never observed when using Probabilistic Policy Reuse.

3Throughout this paper, t-tests are used to calculate significance,
defined asp < 0.05.
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5.1 Comparison of Different Teachers
Above, we used a single demonstration data set to evaluate and

compare three algorithms for incorporating learned rules into rein-
forcement learning. In this section, we examine how demonstra-
tions from different people impact learning performance ofa sin-
gle algorithm, Probabilistic Policy Reuse. Specifically, we compare
three different teachers:

1. Subject A: This teacher has many years of research experi-
ence with the Keepaway task. (The same as Figure 3.)

2. Subject B: This teacher is new to Keepaway, but practiced for
approximately 100 games before recording demonstrations.

3. Subject C: This teacher is an expert in LfD, but is new to
Keepaway. The teacher practiced 10 games before recording
demonstrations.

Each teacher recorded 20 demonstration episodes while trying
to play Keepaway to the best of their ability. Figure 4 summarizes
the results and compares performance of using these three demon-
stration sets against learning the Keepaway task without a prior.
All reported results are averaged over 10 learning trials. Table 2
presents summary of the results, highlighting statistically signifi-
cant changes in bold.

Method Jumpstart Final Total Reward

No Prior N/A 14.3 380
Subject A -0.30 15.2 411
Subject B 3.35 15.7 423
Subject C 0.15 16.2 424

Table 2: This table shows the jumpstart, final reward and total
reward metrics for Figure 4, where all HAT methods use Prob-
abilistic Policy Reuse with 20 episodes of demonstrated play.
Values in bold have statistically significant differences in com-
parison to the No Prior method.

All three HAT experiments outperformed learning without a bias
from demonstration, with statistically significant improvements in
total reward. However, as in any game, different Keepaway players
have different strategies. While some prefer to keep the ball in one
location as long as possible, others pass frequently between keep-
ers. As a result, demonstrations from three different teachers led to
different learning curves. Demonstration data fromSubjects Aand
C resulted in a low jumpstart, whileSubject B’s demonstration gave
the learner a significant jumpstart early in the learning process. The
final reward also increased for all threeHAT trials, with statistically
significant results in the case ofSubjects Band C. These results
indicate thatHAT is robust to demonstrations from different people
with varying degrees of task expertise.

An important factor to consider with any algorithm that learns
from human input, is whether combining demonstrations fromtwo
or more different teachers helps the agent to learn faster, or whether
exposure to possibly conflicting demonstrations from different teach-
ers slows the learning process. In the following evaluationwe com-
pared five demonstration types:

1. Subject A (20): Set of the original 20 demonstrations by Sub-
ject A: average duration of 10.4 seconds/episode

2. Subject A (10): Set of 10 randomly selected demonstrations
by Subject A: average duration 7.5 seconds/episode

3. Subject C (20): Set of the original 20 demonstrations by Sub-
ject C : average duration of 11.3 seconds/episode
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Figure 4: This graph summarizes performance of no prior
learning and Probabilistic Policy Reuse learning using demon-
strations from three different teachers. Each teacher per-
formed demonstrations for 20 episodes. Error bars show the
standard error in performance across 10 trials.

4. Subjects A + C Best (20): The 10 best (longest) demonstra-
tion episodes each from Subjects A and C: average duration
of 17.2 and 18.0 seconds/episode, respectively

5. Subjects A + C Worst (20): The 10 worst (shortest) demon-
stration episodes each from Subjects A and C: average dura-
tion of 4.6 seconds/episode for both

This analysis provides insight about the impact of combining
demonstrations from multiple teachers (conditions 1 and 3 vs. 4
and 5) and the impact of demonstration quantity (condition 1vs. 2)
and quality (condition 4 vs. 5). Figure 5 presents a comparison of
the five learning conditions, and Table 3 summarizes the results.

Method Jumpstart Final Total Reward

Subject A (20) -0.30 15.2 411
Subject A (10) -2.23 15.8 407
Subject C (20) 0.15 16.2 424
Subjects A + C Best 2.15 15.7 431
Subjects A + C Worst 0.37 16.1 419

Table 3: This table shows the jumpstart, final reward and total
reward metrics for Figure 5, where all HAT methods use Prob-
abilistic Policy Reuse with 20 demonstrated episodes. Values in
bold have statistically significant differences in comparison to
the No Prior method (not shown).

With respect to learning from multiple teachers, results show
that combining data from different subjects leads to performance
as good as or better than learning from a single teacher. Condi-
tion Subjects A + C Bestperforms better than eitherSubject Aor
Subject Calone, and significantly outperforms all other methods
in the group, in large part due to the early lead it has due to its
high jumpstart. ConditionSubjects A + C Worstshows no statis-
tically significant change in performance between it and learning
from Subject Aor Subject Calone.4 This result is significant be-
cause it indicates that while quality is important, as shownby the
4Note that because we have few subjects, our claims of significance
are limited to results from demonstrations with the three subjects
tested. Future work will generalize our findings by considering
many more subjects.
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Figure 5: This graph summarizes performance of Probabilistic
Policy Reuse learning using five different demonstration sets.
Error bars show the standard error in performance across 10
trials.

difference betweenSubjects A + C BestandWorst, any demonstra-
tion is beneficial. The fact that the worst demonstrations still lead
to performance well aboveNo Prior learning is an indication that
exposure to any training data is better than random exploration.

In fact, quantity of demonstration may matter more than qual-
ity, as shown by the comparison of conditions 1 and 2. Reducing
the number of demonstrations by half resulted in a significant de-
crease in jumpstart. Although performance eventually recovered
to achieve a final reward comparable to that of the other methods,
achieving that result took longer and there is a statistically signifi-
cant difference between the total reward of the two conditions.

Most significantly, we highlight that all demonstration-based meth-
ods, regardless of data source, quantity or quality, resulted in statis-
tically significant performance improvements overNo Prior learn-
ing. This critical result indicates thatHAT learning can benefit from
variable degrees of demonstration quality. The algorithm does not
require the teacher to be a task expert and easily surpasses the per-
formance of the teacher. In the following section, we further ex-
plore the effects of suboptimal demonstrations.

5.2 Impact of Teacher Ability on Learning
In the above experiments, all three teachers demonstrated the

task to their best ability. In this evaluation, we alter the simula-
tion environment to make the teacher’s demonstrations inherently
suboptimal. Specifically, we compare three types of demonstration:

1. Subject B: Same as above: average duration 10.5 sec./episode
2. Subject B Fast: Simulator speed during training was increased

to approximately 5 times faster than real time: average dura-
tion 4.3 seconds/episode

3. Subject B Limited Actions: The teacher was limited to exe-
cuting only two actions,Hold andPass1, disallowing passes
to the further keeper: average duration 5.2 seconds/episode

The two test conditions are designed to handicap the teacherand re-
duce the quality of demonstrations, either by affecting reaction time
(Subject B Fast) or by providing the learning agent with demonstra-
tions of only a subset of the state/action space (Subject B Limited
Actions). The handicapping effects were successful, reducing the
average duration of the teacher’s demonstration episodes by more
than half.

Figure 6 presents a comparison of the three learning conditions
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Figure 6: This graph summarizes performance of Probabilistic
Policy Reuse learning using three sets of demonstrations from
Subject B recorded under different simulator conditions: nor-
mal, fast and with limited actions. Each demonstration set con-
sists of 20 episodes. Error bars show the standard error in per-
formance across 10 trials.

and Table 4 summarizes the results. Importantly, we see again that
poor teacher performance does not negatively impact the final per-
formance of the agent. The data further supports our earlierfind-
ings that in the long-term, Probabilistic Policy Reuse can learn the
task regardless of the initialization method, and there is no statis-
tically significant difference in final reward values between condi-
tions 1 and 2, and conditions 1 and 3. Statistically significant dif-
ferences are observed, however, in the rate of learning, both with
respect to jumpstart and total reward, indicating that suboptimal
demonstrations slow the learning process. However, even with the
added handicaps, learning from human data shows statistically sig-
nificant improvements overNo Prior learning.

Method Jumpstart Final Total Reward

Subject B 3.35 15.7 423
Limited Actions -1.26 16.0 404
Fast Demonstration -2.37 16.0 401

Table 4: This table shows the jumpstart, final reward and to-
tal reward metrics for Figure 6, where all HAT methods use
Probabilistic Policy Reuse. All demonstrations are 20 episodes,
recorded by Subject B. Values in bold have statistically signif-
icant differences in comparison to the No Prior method (not
shown).

6. FUTURE WORK AND CONCLUSION
This paper has introducedHAT, a novel method to combine learn-

ing from demonstration with reinforcement learning by leveraging
an existing transfer learning algorithm. Using empirical evaluation
in the Keepaway domain we showed that given training data from
just a few minutes of human demonstration,HAT can increase the
learning rate of the task by several simulation hours. We evaluated
three different variants which used different methods to bias learn-
ing with the human’s demonstration. All three methods performed
statistically significantly better than learning without demonstra-
tion. Probabilistic Policy Reuse consistently performed at least as
well as the other methods, likely because it explicitly balances ex-
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ploiting the human’s demonstration, exploring, and exploiting the
learned policy. Additional evaluation using demonstrations from
different teachers, combined demonstrations from multiple teach-
ers, and suboptimal demonstrations all showed thatHAT is robust
to variations in data quality and quantity. The best learning perfor-
mance was achieved by combining the best demonstrations from
two teachers.

One of the key strengths of this approach is its robustness. It
is able to take data of good or poor quality and use it well with-
out negative effects. This is very important when learning from
humans because it can naturally handle the noisy, suboptimal data
that usually occurs with human demonstration. Its ability to deal
with poor teachers opens up opportunities for non-expert users.

In order to better understandHAT and possible variants, the fol-
lowing questions should be explored in future work:

• Is it possible to identify the characteristics that make oneset
of demonstrations lead to better learning performance than
another? Can we identify what influences jumpstart (e.g.,
Subject B’s high jumpstart in Figure 4).

• Rather than performing 1-shot transfer, couldHAT be ex-
tended so that the learning agent and teacher could iterate be-
tween learning autonomously and providing additional demon-
strations?

• In this work, the human teacher and the learning agent had
different representations of state, and in one case had differ-
ent action sets. WillHAT still be useful if the teacher and
agent are performing different tasks? How similar does the
demonstrated task need to be to the autonomous learning task
for HAT to be effective?
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ABSTRACT
We consider a setting in which a principal seeks to induce
an adaptive agent to select a target action by providing in-
centives on one or more actions. The agent maintains a
belief about the value for each action—which may update
based on experience—and selects at each time step the ac-
tion with the maximal sum of value and associated incentive.
The principal observes the agent’s selection, but has no in-
formation about the agent’s current beliefs or belief update
process. For inducing the target action as soon as possible,
or as often as possible over a fixed time period, it is opti-
mal for a principal with a per-period budget to assign the
budget to the target action and wait for the agent to want
to make that choice. But with an across-period budget, no
algorithm can provide good performance on all instances
without knowledge of the agent’s update process, except in
the particular case in which the goal is to induce the agent
to select the target action once. We demonstrate ways to
overcome this strong negative result with knowledge about
the agent’s beliefs, by providing a tractable algorithm for
solving the offline problem when the principal has perfect
knowledge, and an analytical solution for an instance of the
problem in which partial knowledge is available.
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1. INTRODUCTION
Many situations arise in which a principal wishes to affect

the decisions of an agent as he learns to make decisions. For
example, a teacher wishes for a student to check answers. A
coach wishes for an athlete to adopt particular techniques.
A marketer wants a consumer to purchase a particular brand
of a product. In these examples, an agent’s belief about his
valuation for available actions may change with experience
through learning or other forms of belief updates. The stu-
dent may initially check answers but notice that this is time
consuming and stop before he becomes good at it. The ath-
lete may adopt and improve a nevertheless imperfect tech-
nique and keep with it. The consumer may purchase another
brand and develop a loyalty to that brand.

We consider problems in which the principal can provide
incentives to lead the agent to select a desired action. The
teacher can provide gold stars for students who check their
answers. The coach can spend effort on teaching a preferred
technique. The marketer can advertise or offer discounts
on a product. In some cases the provided incentives may
not only change the agent’s current selection, but also the
agent’s future selections because he learns that a particular
action has high intrinsic value.

We conceptualize this problem as incentive design for adap-
tive agents. An agent’s decision problem is assumed to be a
multi-armed bandit problem [9, 6]. The agent selects a sin-
gle action at each time step, and only its belief on the value
of that action may change. In addition to modeling learning
agents, this models sequential decision problems in which
an agent’s value for an action adapts over time; e.g., a new
toy loses appeal over time or becomes damaged, or a task is
completed and an action no longer has value.1 The princi-
pal can provide incentives to influence the agent’s behavior,
with the goal of inducing a desired action once or multiple
times. We insist that the incentives do not affect an agent’s
(intrinsic) belief on the value of each action, conditional on
actions taken.

In our main formulation, the principal has no information
about the agent’s beliefs on value. But we also consider

1We will sometimes use ‘learning’ to describe the behavior
of the agent in the sequel, but intend for such descriptions to
also apply to agents with more general adaptive processes.

627



a variant where the principal is informed. Without knowl-
edge, the problem is to use a limited budget to induce a
desired behavior even though incentives can have different
consequences when provided at different times. The use of
incentives is also somewhat limiting, in that we cannot force
the agent to select a particular action.

Our results. We consider two settings, one in which the
principal has a fixed budget at each time step and another
where the principal has a fixed budget across time steps. In
the case of a fixed budget at each time step, we show that the
quickest way for a principal to induce a target action once
is to assign the budget to this action and wait for the agent
to want to select the action. This is optimal for any update
process and even with complete knowledge of the update
process. Thus, it is optimal for Bayesian learners, as well
as heuristic learners, that fit within our general framework.
We think this is an interesting finding: the agent’s belief
update process is left unchanged until the point at which
the agent can be incentivized to select the target action.
This incentive scheme is also optimal for inducing the goal
action to be selected as many times as possible within a fixed
number of time periods.

In the case where the principal has a fixed budget across
time, the problem is further complicated because the princi-
pal needs to decide when to spend the budget. For inducing
the target once, assigning the entire budget to the target
action remains optimal even with knowledge of the update
process. Since no money is spent when the target is not
selected, this policy remains feasible for a fixed budget and
is therefore optimal for this more constrained problem. But
for inducing the goal multiple times, we show that without
knowledge of future values, no deterministic or even ran-
domized algorithm provides a bounded competitive ratio for
approximating the optimal offline solution, that is, the one
obtained when given knowledge of the entire belief sequence.
We show that a tractable algorithm exists for finding opti-
mal incentives in the offline problem, and demonstrate on
a particular instance of the problem how partial knowledge
about the update process and beliefs over values can be used
for finding effective incentives.

Related work. In terms of designing incentives to influ-
ence an agent’s behavior when the agent’s preferences are
unknown, this work is related to work by Zhang et al. [12,
13, 11] on environment design and policy teaching. Envi-
ronment design considers the problem of perturbing agent
decision problems in order to influence their behavior. Pol-
icy teaching considers the particular problem of trying to
influence the policy of an agent following a Markov Decision
Process by assigning rewards to states. In these papers the
agent is assumed to have a particular way of making deci-
sions and persistent preferences. This paper can be seen as
part of a larger agenda of online environment design, where
a principal aims to make limited changes to an environment
so as to influence the decision of agents while their valuations
are still changing, possibly due to learning.

We are not aware of any work on bandits problems that
considers a principal who through incentives seeks to induce
an adaptive agent to learn to select an action that is desired
by the principal.2 The most closely related work is by Stone
and Kraus [10] on ad hoc teams. In an ad hoc team, there

2Cavallo et al. [5], Bergemann and Välimäki [2] and Babaioff
et al. [1] study a distinct model of incentives in multi-armed

is a learner with values for actions that update based on
the empirical mean of observed values, and a teacher who
intervenes by taking actions, which lead the agent to make
another observation and update its beliefs. The goal is to
maximize the combined performance of the teacher and the
learner. The main finding is that it is never optimal to teach
the worst arm, notably because teaching this is costly and
the agent learns that this is the worst arm on its own at no
additional loss. On surface level, this seems similar to our
positive result on providing incentives on the target action:
our agent must learn on its own that the other actions are
not as good. However, our setting is quite different in that
we cannot directly demonstrate a particular action to the
agent but must intervene through incentives. Moreover, the
principal’s goal need not be aligned with that of the agent,
and is ignorant of the agent’s values or update process, which
can be arbitrary.

Brafman and Tennenholtz [4] consider a teaching setting
where a teacher can perform actions within a game to in-
fluence the behavior of a learner. However, in this setting
there are no incentives and for the most part there is no cost
to teaching.

Our problem is also somewhat similiar to the problem
of reward shaping within reinforcement learning, where the
goal is to adjust an agent’s reward feedback in order to
improve its performance in a complex environment [8, 7].
However, the assumptions we make are quite different. For
example, the agent is not programmable, its values are not
observed, and the shaping rewards are costly.

2. THE BASIC MODEL
We consider an agent with a set of actions K = {1, . . . , n}.

Let K−i = K \ {i}. We use discrete time t ∈ {1, 2, . . .},
and assume that the agent’s belief about his value for an
action at time t is dependent only on its state xi(t), which
represents the agent’s experience with action i prior to time
t. Let vi(xi(t)) denote the agent’s belief of the value of
action i at time t if selected. At each time step t, the agent
selects a particular action i, whose state transitions from
xi(t) to xi(t + 1), independently of time and the states of
other actions. This transition can be stochastic, and for
example can depend on the sequence of realized rewards
from experiences with a particular action. The states of
all other actions stay fixed, i.e., xj(t + 1) = xj(t), ∀j 6= i.
Throughout the paper, we find it notationally convenient to
refer to the state of action i after it has been selected k times
as xk

i , and the agent’s belief about its value as vi(x
k
i ).

The agent’s current belief can be an arbitrary function of
the state, and thus can represent a range of adaptive agent
behaviors. This includes, for example, an agent that se-
lects an action according to the empirical average of rewards
drawn so far, perhaps coupled with variance weighting to en-
courage exploration. To illustrate, let ri

1, . . . , ri
k denote the

realized rewards received from each of the first k selections
of action i. To encode an agent whose belief is the empiri-
cal average of rewards, let vi(x

k
i ) = (

Pk
j=1 r

i
j)/k for k ≥ 1.

bandit problems, from the mechanism design perspective.
Each arm is associated with a different agent, and agents
have private information about the rewards behind the arms.
The goal is to design truthful mechanisms that elicit this
information, and enable the center to utilize policies for se-
lecting which arm to pull next to (approximately) maximize
social welfare.
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To encode the belief of an agent making explore and exploit
tradeoffs, we can for example let

vi(x
k
i ) = d(xk

i ) + (

kX
j=1

ri
j)/k,

where d(xk
i ) is the expected variance in rewards received

from selecting action i and is decreasing in k. Similarly,
Bayesian learning can also be directly modeled.

We consider a principal who wishes for the agent to se-
lect a target action g. The principal can provide incen-
tives ∆(t) = (∆1(t), . . . ,∆n(t)) at each time t, where ∆(t)
can in general depend on any knowledge available to the
principal, such as the incentives provided and actions se-
lected prior to time t. The agent observes ∆(t) prior to
selecting his action at time t, and the selected actions are
observed by the principal. We assume that incentives are
not incorporated into the agent’s state, that is, the evolu-
tion of an agent’s beliefs are independent of the incentives
we offer, conditioned on the action the agent selects. We
let ∆ = (∆(1),∆(2), . . . ,∆(t), . . .) denote a sequence of in-
centive decisions, which are induced by an incentive policy.
Unless otherwise specified, we assume the principal has no
knowledge of the agent’s update process, and does not ob-
serve the realized rewards from the agent’s selections.

In each time period, the agent selects the action with the
maximal combined value using the following agent function:3

f(x(t),∆(t)) = argmax
i∈K

[vi(xi(t)) + ∆i(t)]. (1)

The agent is myopic with regard to the intervention of the
principal, in that the agent selects the action with the high-
est combined value without considering the effect of its ac-
tion on future incentive provisions. Equivalently, the agent
adopts a belief that the external incentive is exogeneous and
invariant to its own policy, and thus something that does not
need to be modeled. While myopic with respect to future
incentives, the agent’s choice can still reflect explore vs. ex-
ploit tradeoffs in its intrinsic value as explained above. How-
ever, by assuming that incentives are not incorporated into
agent’s state, we preclude models of learning in which an
agent ‘internalizes’ the incentives over time.

The online model. Our main analysis is carried out in an
online model of computation (see, e.g., [3]); for our purposes
an informal description suffices. An instance of our problem
specifies a sequence of belief value updates vi(x

0
i ), vi(x

1
i ), . . . ,

for each action i ∈ K and, optionally, a number of periods
R. We assume that the principal has no knowledge of these
values, and for the most part achieve incentive policies that
could not be improved even with full knowledge. Our goal
is to design algorithms with the same performance as the
optimal offline algorithm with full knowledge of the input.
As is usual, we will seek to compete in this sense with the
offline algorithm even if the next value of each action is
determined after each action of the algorithm in a way that is
adversarial and dependent on the history. The performance
is measured with respect to one of several objective criteria
that we define in the sequel.
3For simplicity of exposition, we assume that the agent
breaks ties in favor of the target action when there is a tie
but otherwise in an arbitrary way. We can replace this as-
sumption, which favors the target action, with any other
tie-breaking rule, and all our results would continue to hold.

3. PER-PERIOD BUDGET
We consider first a principal that has a fixed budget at

each time step. For example, consider a teacher with a limit
of giving two gold stars per period, a coach with a fixed
amount of time to demonstrate a preferred technique each
period, or a marketer with a cap on the amount of discount
that can be provided to a consumer across a set of prod-
ucts. For a per-period budget B > 0, we define the budget
constraint on ∆ as ∆i(t) ≤ B for all t and i ∈ K, and
require further that incentives are non-negative, such that
∆i(t) ≥ 0 for all actions i and times t. Note that the budget
constraint formulation assumes that incentives are provided
to the agent if and only if the agent selects the action with
incentives applied to that action. This captures scenarios
where incentives represent contracts (e.g., if you buy this
then I give you this incentive), and not to the case where
incentives are sunk costs (e.g., advertising dollars). Given
this, the principal can in principle assign the entire budget
to multiple arms if desired, in hopes that one of them is
selected.

To see the power of effective incentives, note that incen-
tives can sometimes induce an action to be selected forever
that would otherwise never be selected. Consider a case
with two actions, where initially the target action has value
2 and the non-target action has value 3. If either action is
chosen, its value updates to 10. Assume B = 2. Without
intervening in the first period the non-target action will be
chosen, its value will update to 10, and it will be chosen for-
ever even with incentives. However, by providing incentives
on the target action in the first period it will be induced
in that period and forever. The challenge is to design an
incentive policy that is successful for all update models and
even without knowledge of the update model. We consider
two objective criteria.

3.1 Induce once
Consider a principal who wishes to induce action g once

as soon as possible by providing effective incentives.

Problem 1 (Induce-Once). For a given instance and
a budget B, provide incentives to minimize the time t such
that xg(t) = x1

g.

If a solution does not exist, the minimum is infinity. Note
that for action g to be selected at time t it is necessary that
B ≥ maxi∈K−g [vi(xi(t)) − vg(xg(t))], at which point it is
sufficient to provide ∆g(t) = B. The Induce-Once problem
is thus identical to finding incentives that most quickly lead
the values of all other actions to drop below the inducible
threshold Tonce = B+vg(x0

g). For any threshold value T , we
define the following:

Definition 1. A threshold T for inducing action g is met
at time t if and only if vi(xi(t)) ≤ T for all i ∈ K−g.

At first glance, it may appear that providing incentives
to actions other than the target action g can be beneficial,
by leading an action with value higher than the threshold
to be selected and subsequently significantly drop in value,
and in particular, to below the inducible threshold. This
intuition turns out to be wrong! Any action above the in-
ducible threshold will in any case be selected by the agent
before action g until its value drops below the threshold,
even without intervention. Getting such an action to be se-
lected more quickly is possible through incentives, but this
does not lead to action g being selected any sooner.
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We formalize this observation as the ‘threshold lemma,’
which we will apply throughout this paper.

Lemma 1 (Threshold Lemma). Given a threshold T ,
let ki = min{k : vi(x

k
i ) ≤ T}, for all i ∈ K−g. Assume such

ki exist. Any incentive policy ∆ that assigns ∆i(t) = 0 for
all i ∈ K−g and ∆g(t) ≥ 0 at every time t has the following
properties:

(a) At any time t before the threshold is first met, xi(t) =
xmi

i satisfies mi ≤ ki for all i ∈ K−g.

(b) If the threshold is first met at time t, then xi(t) = xki
i

for all i ∈ K−g.

Proof. Consider part (a). It suffices to show that at any
time t before the threshold is first met, any action i ∈ K−g

with xi(t) = xki
i would not be selected at time t. Since

the threshold is not yet met at such a time t, there exists
j ∈ K−g such that j 6= i and vj(xj(t)) > T . Under ∆, action
i would not be selected at time t because vi(xi(t))+∆i(t) =

vi(x
ki
i ) ≤ T < vj(xj(t)) = vj(xj(t)) + ∆j(t), and so action

j is strictly preferred.
Now consider part (b). If the threshold is first met at time

t then exactly one action, say ` ∈ K−g, had been selected
k`− 1 times by period t− 1 and was selected in period t− 1
and every other action j ∈ K−g, j 6= ` had already been
selected at least kj times by period t − 1. By (a), these
other actions had been selected exactly kj times by period

t− 1 and hence xi(t) = xki
i for all i ∈ K−g in period t.

The threshold lemma shows that only providing incentives
to the target action ensures that no other action is selected
more times than needed before the threshold is met. Note
that it does not guarantee the threshold will be met; that
still needs to be shown for a particular incentive policy and
corresponding threshold.

We next introduce a simple incentive policy that is central
in our analysis. Its acronym hints at its guarantees.

Definition 2. The ‘only provide to target’ (OPT) incen-
tive policy assigns ∆g(t) = B and ∆i(t) = 0 for all i ∈ K−g

for every time t.

Note that in defining OPT we did not make any assump-
tions regarding its knowledge of current values or future up-
dates.

Theorem 1. In the online model and under a per-period
budget, OPT always provides the optimal offline solution to
Induce-Once.

Proof. Consider Tonce = vg(x0
g) + B and define ki =

min{k : vi(x
k
i ) ≤ Tonce} for all i ∈ K−g, and consider the

interesting case in which this exists for every action so that
a solution is not trivially precluded. The best possible so-
lution will induce the agent to select the goal action after
the necessary ki activations of each action i ∈ K−g. But
actions i ∈ K−g can be selected no more than ki times be-
fore the threshold is met by part (a) of the threshold lemma,
and thus the threshold must be met under OPT. By apply-
ing part (b) of the threshold lemma, OPT makes the fewest
selections of actions in K−g necessary to meet the thresh-
old, plus an additional necessary step to induce the target
action.

The key observation is that nothing the principal can do
will speed up the agent’s exploration of currently better ac-
tions. The principal can do worse than OPT however, e.g.,
by placing incentives on an action other than the target
whose value is below the threshold and whose value in the
state transitioned to is much higher.

3.2 Induce multiple times
In the motivating examples we consider, the principal may

want the agent to select the target action (e.g. check an-
swers, use a particular technique, or buy a product) more
than once. This leads to the next objective criterion.

Problem 2 (Induce-Multi). For a given instance, a
budget B, and a number of rounds R, provide incentives to
maximize m such that xg(R) = xm

g .

Let us first tackle the related problem of minimizing the
time to get m selections, for a given m. We know from
Theorem 1 that OPT is the optimal incentive policy for m =
1. Furthermore, for m ≥ 2, we know that OPT gets each
subsequent selection of action g most quickly from any state
configuration. However, this is not enough to conclude that
OPT is the optimal incentive policy for getting m selections,
because there may be other incentive policies that are slower
than OPT at getting the first selection but faster in getting
subsequent selections. While such incentive policies exist,
we use the threshold lemma to show that they can do no
better than OPT in minimizing the total amount of time
needed to get m selections:

Lemma 2. In the online model and under a per-period
budget, and for any fixed m > 1, OPT minimizes the time t
such that xg(t) = xm

g .

Proof. Let w = argmin0≤`<m vg(xi
g) and let Tmulti =

vg(xw
g ) + B. Let ki = min{k : vi(x

k
i ) ≤ Tmulti} for all

i ∈ K−g, and consider the case in which this exists for every
action so that a solution is not trivially precluded. The
best possible solution will induce the agent to select the
goal action the m-th time after the necessary ki activations
to each action i ∈ K−g. But actions i ∈ K−g can be selected
no more than ki times before the threshold is met by part (a)
of the threshold lemma, and thus the threshold must be met
under OPT. Consider the period in which the threshold is
first met. By applying part (b) of the threshold lemma, OPT
makes the fewest selections of actions in K−g necessary to
meet the threshold, and since only the target item is selected
thereafter until m selections are made, this completes the
proof.

By defining the threshold as the minimum value attained
by action g before m selections we can apply the same idea
as in the proof of Theorem 1. A fixed number of selections
must necessarily occur on the other actions, and once they
occur under OPT these actions will no longer be selected
again.

Theorem 2. In the online model and under a per-period
budget, OPT always provides the optimal offline solution to
Induce-Multi.

Proof. Let m denote the number of selections of the
target action in time R under OPT. Assume for contradic-
tion that there exist an incentive policy to induce the target
m′ > m times in R steps. But by Lemma 2, OPT must also
be able to induce the target action m′ times in the same
number or fewer time steps. This is a contradiction.
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4. FIXED ACROSS-PERIOD BUDGET
In this section, we consider a setting in which the principal

has a budget that is fixed over time, and must decide on how
to allocate that budget across time in order to induce the
target action g once or multiple times. Formally we define
the budget constraint on ∆ as

P∞
t=1 ∆i(t)(t) ≤ B, where i(t)

denotes the agent’s selection at time t. We still require that
incentives are non-negative, i.e., ∆i(t) ≥ 0 for all actions i
and times t.

This problem seems more difficult than the per-period
budget problem because the principal must now decide how
to split its budget across rounds. Providing too little in a
particular round can miss an opportunity given the current
state, whereas providing too much may make it difficult to
induce future selections of the target action. As we will
show, this turns out to be a nonissue if we wish to induce
the target action once, but prevents any online algorithm
from providing performance guarantees if we wish to induce
the target action multiple times.

4.1 Induce once
We first return to Induce-Once, that is, we have a prin-

cipal who wishes to induce action g once and as soon as
possible. However, now the incentive policies under consid-
eration have a fixed budget B across time.

Consider using OPT for this problem. OPT is optimal for
the per-period budget case when B is available each period.
Moreover, OPT in fact spends no money when the target is
not selected, and so remains feasible even for a fixed bud-
get across rounds and therefore optimal for this more con-
strained problem. The proof of this theorem is omitted as
it is essentially identical to the proof of Theorem 1.

Theorem 3. In the online model and under a fixed across-
period budget, OPT always provides the optimal offline so-
lution to Induce-Once.

4.2 Induce multiple times
Now consider the Induce-Multi problem with a principal

who wishes to induce the target action as many times as
possible in a fixed number of rounds R. OPT is no longer
optimal here because it may be beneficial to split the budget
with the aim of getting more selections of the target action.

Consider a setting with two actions and a total budget
of B = 1. Action 1 is the goal action. It may be that
v2(x0

2) = vg(x0
g) + B and v2 increases in future states. By

providing B on action g in the first period the goal is induced
once, compared to zero successes with any other policy. On
the other hand, suppose instead that v2(x0

2) = vg(x0
g) + ε,

some 0 < ε < B, and the value of both actions remains
constant in all states. By providing B on g in the first period
only one activation is achieved, whereas min(R, 1/ε) could
be achieved by providing ε on action g while budget remains
(and this can be made arbitrarily large by increasing R and
decreasing ε.)

In the online algorithms literature, an online algorithm
for a maximization problem is α-competitive if the ratio be-
tween the optimal offline solution and the algorithm’s solu-
tion is at most α for any given instance. Theorems 1 and 2
can be reformulated to state that under a per-period budget
OPT is 1-competitive for Induce-Once and Induce-Multi,
respectively. On the other hand, the above argument implies
that under an across-period budget there is no deterministic

online algorithm that provides a bounded competitive ratio
for the Induce-Multi problem.

Our next formal result strengthens the above observation;
we show that even a randomized algorithm cannot achieve a
bounded approximation ratio. When the algorithm is ran-
domized, the ‘game’ is as follows: we choose a randomized
algorithm, then the adversary chooses an input; the input
chosen by the adversary does not depend on the realization
of the algorithm’s randomness. The theorem holds even if
the algorithm is allowed to know the current values of the
actions at each time! In other words, this impossibility holds
even for algorithms that are significantly more powerful than
those we considered earlier.

Theorem 4. Under a fixed across-period budget there is
no randomized algorithm that provides a bounded competitive
ratio for Induce-Multi, even if the algorithm can see the
current values of the actions.

The proof appears in the appendix. This result implies
that it will be important to consider empirical performance
or average case analysis, for particular agent models, in order
to make progress.

4.3 Offline problem
As a counterpoint to Theorem 4, we consider the offline

case, in which the principal knows the agent’s value for any
state of the actions the agent may reach and that state tran-
sitions are deterministic. This corresponds to a situation in
which the agent is of known design, and that the principal
has full understanding of the dynamics within the agent’s
decision environment.

The question of interest is whether there exists a tractable
solution to this problem. An effective incentive policy would
need to figure out when to provide incentives and how to
split the budget across time periods, and a brute force com-
putation of the optimal incentive to provide at each time
step is too expensive.

Theorem 5. In the offline model and under a fixed across-
period budget, an optimal solution to Induce-Multi can be
found in polynomial time.

The proof involves the analysis of a nontrivial incentive
policy; we give the outline here and relegate the proof of the
key lemma to the appendix. To break down the problem, we
first consider finding fixed budget incentive policies to solve
the following subproblem.

Problem 3. Given t > 1 and m > 1, and a budget B,
find an incentive policy such that xg(t) = x`

g for ` ≥ m when
a solution exists.

Essentially, if we can find an incentive policy that can get
at least m selections in t rounds whenever possible for any
m > 1, we can fix t = R and do a binary search over m to
solve Induce-Multi.

To get m selections within t time steps it is necessary
that the agent selects the non-target actions no more than
t − m times. An effective incentive policy should provide
incentives on the target action when the other actions are
least desirable, regardless of the value of the target action.
This is the state in which it is cheapest to activate the target
action.

631



We define the relevant activation threshold by simulating
the agent function on actions K−g only for t − m periods
with no incentives, and computing

v = min
1≤t≤t+1−m

max
i∈K−g

vi(xi(t)). (2)

It is easy to see that this threshold, v, can be computed in
polynomial time.

Definition 3. The ‘only provide to target when cheap’
(OPTc) incentive policy assigns ∆i(t) = 0 for all i ∈ K un-
til the threshold T = v is met, where v is defined as in Equa-
tion (2). Let t′ denote the period in which the threshold is
first met. OPTc provides ∆g(t) = max{0, v− vg(xg(t))} for
t ≥ t′ while there is enough budget remaining and ∆g(t) = 0
otherwise. No incentives are ever provided to actions in
K−g.

Now, by using binary search, the following lemma is suf-
ficient to prove Theorem 5.

Lemma 3. In the offline model and under a fixed across-
period budget, OPTc solves Problem 3.

The proof of the lemma appears in the appendix. An in-
teresting aspect of OPTc is that it has much of the same
structure as OPT: the optimal incentive policy does not
modify the agent’s learning process until the point where
the agent can best be incentivized to select the target ac-
tion. The offline problem remains a problem about when
to provide incentives on the target action and not how to
intervene in the selection process on other actions.

4.4 Case study: induce a new action
Theorem 4 and Theorem 5 establish strong negative and

positive results at opposing ends of the information spec-
trum. In most realistic scenarios we expect the principal to
have some (but not full) knowledge of the agent’s update
process and reward distribution. Sticking with an across-
period budget and the objective of maximizing the number
of selections of the target arms within a fixed number of
rounds, we demonstrate how to utilize such knowledge to
find effective incentives for a particular problem of interest.

Consider a scenario in which there are two actions, one
whose value to the agent is fixed and another whose realized
rewards are drawn from a stationary distribution known to
the principal. Moreoever, assume the agent’s belief updates
based on the empirical average of rewards, and is initialized
by a draw from the same distribution (e.g., the agent gets an
initial sample). This scenario models an agent’s choice be-
tween an incumbent option (e.g., a known product, service,
or technique) and a new entrant option, where the princi-
pal wishes to entice the agent toward the new option by
providing appropriate incentives.

To be more concrete, let us consider a particular instance
of the problem. There are 2 rounds. The value of the incum-
bent option is fixed at 1, and the reward from selecting the
new option and his initial belief on its value are sampled uni-
formly from 0 to 1. The process reflects uncertainty about
the new option’s quality, and the agent’s updating beliefs
reflect his estimate of the new option’s value. The principal
has a budget of 1 to be spread across the rounds, and can
observe which action the agent selects but not the realized
rewards. The goal is to maximize the expected number of
selections of the new action.

In analyzing this problem, note that the agent’s decision
in the first period provides some information on the agent’s
value at the time, and thus, the distribution of possible val-
ues following the update. Furthermore, if the agent does not
select the new action in the first period, then no money is
spent and we can guarantee a selection in the second period.
Solving for the optimal incentive policy analytically, we get
the following fact:

Fact 1. The optimal incentive policy for this problem pro-
vides 4

9
to the new action in the first period and the remain-

ing budget in the second period. The expected number of
selections is 25

18
.

Proof (sketch). Let Ti represent an indicator variable
over whether the agent selects the new action in period i,
such that P (Ti) represents the probability of the selection
given the principal’s uncertainty over the agent’s current
value for the action and the provided incentive. Let α rep-
resent the incentive provided to the new action in the first
period. We wish to maximize the expected number of selec-
tions:

2P (T1)P (T2|T1) + P (T1)P (¬T2|T1) + P (¬T1)P (T2|¬T1)

= P (T1)[P (T2|T1) + 1] + P (¬T1)

= P (T1, T2) + 1

Here P (T1, T2) = P (1− α ≤ r0 ≤ 1, r0+r1
2
≥ α), where r0

represents the initial value on the new action and r1 repre-
sents the value from the first selection of the new action. By
integrating the probabillity density function of the uniform
distribution over the valid regions based on the value of α,
we have:

P (T1, T2) =

8>>><>>>:
α if α ≤ 1

3
.

− 9
2
α2 + 4α− 1

2
if 1

3
< α ≤ 1

2
.

− 5
2
α2 + 2α if 1

2
< α ≤ 2

3
.

2α2 − 4α+ 2 if 2
3
< α ≤ 1.

It is easy to check from here that the maximum is attained
in the second segment, with α = 4/9.

Intuitively, providing too much incentives in the first pe-
riod misses out on possible selections in the second period,
and providing too little in the first period may likewise miss
out on selections in the first period. Given this, 4/9 seems
like a good choice for α. However, it is surprising that the
optimal solution is not α = 1/2: it turns out that by pro-
viding slightly less incentives in the first period, there is
a higher chance (7/8 vs. 3/4) of getting selections in the
second period conditional on a selection in the first period,
because the value of the first draw must have been higher
and more incentives are left over. Even though the princi-
pal is slightly less likely to get a selection in the first period,
this helps to maximize the probability of getting a selec-
tion in both rounds, which we have shown is equivalent to
maximizing the expected number of selections.

We can also consider the same problem but with 3 rounds,
where the optimal incentive policy (obtained via simulation)
provides about 0.37 in the first period, 0.27 in the second
period if the new action is selected and 0.54 otherwise. It is
interesting to note the disparity in the amount of incentives
provided in the second period based on what happened in
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Induce-Once Induce-Multi

Per-period OPT optimal (Thm 1) OPT optimal (Thm 2)

Fixed OPT optimal (Thm 3) Unbounded ratio (Thm 4)

Table 1: Summary of our results in the online model
for the two objective criteria and different budget
models for the principal.

the first period. Since success in the first period indicates
a high draw in the first period and failure indicates a low
draw, the observation serves as an informative signal about
the amount of incentives required in the second period.

5. DISCUSSION
Table 1 summarizes our main results; rows correspond to

the assumption made on the budget and columns to the op-
timization problem. The most striking aspect is the relation
between the performance of OPT when one varies the as-
sumption on the budget between per-period and fixed, and
the problem between Induce-Once and Induce-Multi. As
long as one of these dimensions remains fixed OPT is still
optimal, but when we consider the harder variation in both
dimensions then even a randomized policy that knows the
current values cannot provide a bounded ratio!

Our incentive policy for the per-period budget case re-
quires no knowledge of the agent’s values or value update
process, nor the number of repetitions for which we wish
to induce the target, nor the time horizon over which the
target is to be induced; it is optimal even with this knowl-
edge. In this setting, it is not necessary for the principal
to learn about the agent, for example by drawing inferences
about the agent’s values and update process from observed
behavior of selected options. It is interesting, also, that the
principal is unable to usefully perturb the agent’s learning
process until the point at which his desired goal action can
be induced, and even if he knew the agent’s values or value
update process.

Interestingly, this is quite different in the across-period
budget setting, where progress will require knowledge of
an agent’s selection and learning process or learning by the
principal about the agent. The analytical approach demon-
strated for finding incentives to induce an agent to select
a new action uses both knowledge about the value update
process and inference on the distribution of current values
based on past decisions, and can be applied for rewards
drawn from different distributions and for different update
processes. Future work should seek to obtain tractable algo-
rithms for finding effective incentives given a known model
of agent behavior but private agent beliefs, and seek to gain
a better understanding of the structure of effective incentive
policies, on particular classes of problems.

In addition to variations on the budget constraint, one can
consider variations to the agent’s selection policy. For exam-
ple, the agent might select the action with highest value with
probability 1−ε, and select a random action with probability
ε. It is possible to show that in this case OPT is no longer
guaranteed to be optimal for a per-period budget, even with
respect to Induce-Once.4 It is also of interest to relax the
assumption on the independence of actions, and to consider

4Consider a case with three actions. The principal has a per-
period budget of 2. Action 1 is the target and has its value
fixed at 1. Action 2 is associated with the belief sequence

models with long-term learning in which the agent learns to
internalize external incentives and change its own intrinsic
value for future actions. Other objective criteria are also
of interest, for example a principal that wants to induce an
action followed by another action, in immediate succession.
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(v0
2 , v

1
2 , . . .) = (5, 0, 5, 5,. . . ), and action 3 is associated with

the belief sequence (v0
3 , v

1
3 , . . .) = (4, 0, 0, . . .). Here action 1

can be induced by a non-random action if and only if action
2 is induced exactly one, and action 3 is induced at least
once. For small ε, action 2 is most likely to be selected
first under OPT. This is undesirable, however, since any
random selection of action 2 henceforth will result in no
future selections of action 1. It is better to instead provide
incentives to action 3 in the first period (and apply OPT
thereafter), so that we try to ‘hold off’ on selecting action 2
until the belief on the value of action 3 has dropped.
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APPENDIX
A. PROOFS

A.1 Proof of Theorem 4
We assume without loss of generality that the budget size

is 1. Let k ∈ N; assume for contradiction that there is a ran-
domized online algorithm with a competitive ratio α (worst-
case ratio of number of activations of g in offline optimal to
expected number of activations of g in online algorithm over
all instances) smaller than k. Set ε = 1/(10k).

We consider a setting where there are just two actions, the
target action g and the non-target h. We design an infinite
family of inputs I0, I1, . . . , Ij , . . . Note that an input simply
specifies a number of rounds, and a sequence of values for
g and h. For all j ∈ N ∪ {0}, the sequence of values that
Ij assigns to g is all zeros, that is, vg(xt

g) = 0 for all t; the
inputs only differ on their values h. The sequence of values
vh(x0

h), vh(x1
h), . . . that Ij assigns to this action is

1, ε, ε2, . . . , εj , 2, 2, . . . , 2, . . .

We do not specify the number of rounds, as we can choose
it to be large enough for it not to be an issue.

Given a run of the algorithm on some input Ij , we refer
to the sequence of selections of action g while action h has
a value εp as phase p. Once h is selected we move to phase
p+1. Note that for each select of g in phase p the algorithm
has to invest εp of its budget.

Let Zj
p be a random variable that denotes the budget spent

by the algorithm within phase p given the input Ij , where
the randomness comes from the algorithm’s coin flips. The
crux of the proof is the following lemma.

Lemma 4. For every j ∈ N∪{0} and every p ∈ {0, . . . , j},
if the randomized online algorithm has competitive ratio smaller
than k then E[Zj

p] ≥ ε.
Proof. Assume for contradiction that this is not the

case, i.e., there is some j ∈ N ∪ {0} and p ∈ {0, . . . , j}
such that E[Zj

p] < ε. Up to phase p the algorithm cannot
distinguish between Ij and Ip (due to the online nature of
the model), hence it holds that E[Zp

p ] < ε, that is, the algo-
rithm spends less than ε in expectation in phase p given the
input Ip. It follows that the expected number of times g is
selected in phase p is smaller than ε/εp = 10p−1kp−1. Given
Ip, the algorithm will no longer be able to select g after
phase p (since then the value of h is then 2). We derive an
upper bound on the expected number of times the algorithm
selects g on Ip by generously allowing the algorithm spend
a budget of 1 in every phase p′ < p. The upper bound is
then

1 + 10k + · · ·+ 10p−1kp−1 + 10p−1kp−1 ≤ 3 · 10p−1kp−1.

On the other hand, the optimal offline solution on Ip selects
g 10pkp times, i.e., the ratio α is at least (10/3)k, in contra-
diction to the assumption that the algorithm’s competitive
ratio is smaller than k.

Now, consider input Ij∗ for some j∗ ∈ N, j∗ > 1/ε. By

Lemma 4 we have that E[Zj∗
p ] ≥ ε for all p ∈ {0, . . . , j∗}. It

follows from the linearity of expectation that

E

24 j∗X
p=0

Zj∗
p

35 =

j∗X
p=0

E[Zj∗
p ] >

1

ε
· ε = 1. (3)

However, since the total budget size is 1 the random vari-

able
Pj∗

p=0 Z
j∗
p must take values in [0, 1], and in particu-

lar E[
Pj∗

p=0 Z
j∗
p ] ≤ 1. This is a contradiction to Equa-

tion (3).

A.2 Proof of Lemma 3
We first establish that v, as defined in Equation (2), is the

threshold where it is cheapest to provide incentives to the
target over at most t−m periods of selecting actions other
than g. For this, let

v∗ = min
m−g

max
i∈K−g

vi(x
mi
i ) (4)

s.t.
X

i∈K−g

mi ≤ t−m

represent the lowest value of the highest action with up to
t−m selections of the non-target actions, and where m−g =
(m1, . . . ,mg−1,mg+1, . . . ,mn).

We want to establish that v = v∗. Indeed, clearly v∗ ≤ v
by definition. Suppose for contradiction that v > v∗. Let
m∗−g minimize the expression in Eq. (4). Consider running
the simulation used to define v for

P
i∈K−g

m∗i rounds, and

let `i denote the number of times that each action i ∈ K−g

is selected in this process.
If `i = m∗i for all i ∈ K−g then clearly v = v∗, since it is at-

tained in the final period of the simulation, and this is a con-
tradiction. Otherwise, and using the fact that

P
i∈K−g

`i =P
i∈K−g

m∗i , then there exists some j ∈ K−g such that

m∗j < `j . Note that,

vj(x
m∗

j

j ) ≤ v∗ < v, (5)

where the first inequality holds by definition of v∗ and the
second by assumption. Now there is some time t during the

simulation where xj(t) = x
m∗

j

j , and action j is selected. But
by definition of v the value of the action that is selected by
the agent must be at least v, in contradiction to (5). This
establishes v = v∗.

In order to complete the proof of the lemma, we now
know that OPTc uses v = v∗ as the threshold T . Let
ki = min{k : vi(x

k
i ) ≤ T} for all i ∈ K−g. By definition of

v∗,
P

i∈K−g
ki ≤ t −m. Note that OPTc satisfies the con-

ditions of the threshold lemma. Proceed by case analysis.
If the threshold is not met after t rounds then, by part (a)
of the threshold lemma, action g must have been selected at
least m times and the case is established. Otherwise, if the
threshold is met, it is met after at most t−m selections of
actions in K−g by part (b) of the threshold lemma. For any
incentive policy to get m selections in t rounds, it must have
provided at least max{0, v∗ − vg(x`

g)} to get selection num-
ber `+ 1 of action g, for each of ` ∈ {0, 1, . . . ,m− 1}. Since
OPTc spends no budget before the threshold is met and once
it is met it provides exactly max{0, v∗−vg(x`

g)} for selection
number `+1 of action g, for each of ` ∈ {0, 1, . . . , k−1}, then
OPTc will get at least m selections of action g whenever this
is possible under any incentive policy. This completes the
case, and the proof.
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ABSTRACT
We study a problem where a group of agents has to de-
cide how a joint reward should be shared among them. We
focus on settings where the share that each agent receives
depends on the subjective opinions of its peers concerning
that agent’s contribution to the group. To this end, we in-
troduce a mechanism to elicit and aggregate subjective opin-
ions as well as for determining agents’ shares. The intuition
behind the proposed mechanism is that each agent who be-
lieves that the others are telling the truth has its expected
share maximized to the extent that it is well-evaluated by its
peers and that it is truthfully reporting its opinions. Under
the assumptions that agents are Bayesian decision-makers
and that the underlying population is sufficiently large, we
show that our mechanism is incentive-compatible, budget-
balanced, and tractable. We also present strategies to make
this mechanism individually rational and fair.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems;
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics, Theory

Keywords
Fair division, Bayesian Truth Serum, Mechanism Design

1. INTRODUCTION
Understanding how agents can work together in order to

achieve some common goal is a central research topic in the
field of multiagent systems [15]. Questions that are typically
analyzed include how and which groups of agents should
form [13], how agents should coordinate their actions once
they have agreed to work together [4], how to ensure that
the group, once formed, does not disintegrate [2], and how
any joint rewards should be divided among the group mem-
bers [9]. It is this last question that we address in this paper.

Cite as: A Truth Serum for Sharing Rewards, Arthur Carvalho and Kate
Larson, Proc. of 10th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonenberg
and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 635-642.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Commonly called fair division, the problem of dividing
one or several goods among a set of agents, in a way that
satisfies a suitable fairness criterion, has been studied in
several literatures. In economics, the collective welfare ap-
proach is arguably the most influential application of the
economic analysis to fair division. It uses the concepts of
collective utility functions, in its cardinal interpretation, and
social welfare orderings, in its ordinal interpretation, for de-
ciding what makes a reasonable division [9]. In computer
science and, more specifically, artificial intelligence, the fair
division problem is traditionally studied in settings where
the underlying agents not only have preferences over alter-
native allocations of goods, but also actively participate in
computing an allocation [1].

In this work, we propose a novel game-theoretic model for
sharing a joint, homogeneous reward based on the idea of
subjective opinions. In detail, we consider scenarios where
a group has been formed and has accomplished a task for
which it is granted a reward, which must be shared among
the group members. After observing the individual contri-
butions of the peers in accomplishing the task, each agent is
asked to evaluate the others. Agents also provide predictions
about how their peers are evaluated. Thus, we consider two
kinds of subjective opinions when sharing the joint reward:
evaluations and predictions. These opinions are elicited and
aggregated by a central, trusted entity called the mecha-
nism, which is also responsible for sharing the reward based
exclusively on the received opinions.

The share received by each agent from the proposed mech-
anism has two major components. The first one reflects the
evaluations received by that agent. The second one is a
truth-telling score used to encourage agents to truthfully
report their opinions. For computing such scores, the mech-
anism uses the Bayesian truth serum method [12]. The intu-
ition behind the proposed mechanism is that each agent who
believes that the others are telling the truth has its expected
share maximized to the extent that it is well-evaluated and
that it is also telling the truth. Under the assumptions that
agents are Bayesian decision-makers and that the underlying
population is sufficiently large, we show that our mechanism
is incentive-compatible, budget-balanced, and tractable. We
also present strategies to make this mechanism individually
rational and fair.

Besides this introductory section, the rest of this paper is
organized as follows. In Section 2, we describe the model,
concepts used throughout the paper, and properties that we
wish our mechanism to exhibit. In Section 3, we introduce
our mechanism and prove that it satisfies interesting prop-
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erties. In Section 4, we empirically investigate the influence
of the model and mechanism’s parameters on agents’ shares.
In Section 5, we review the literature related to our work.
Finally, we conclude in Section 6.

2. MODEL AND BACKGROUND
A set of agents N = {1, . . . , n}, for n ≥ 3, has accom-

plished a task for which it is granted a reward V ∈ <+.
Every agent is assumed to want more of the reward. There-
fore, we can identify an agent’s share with its welfare. We
are interested in settings where the share of V that an agent
receives depends on the subjective opinions of its peers con-
cerning that agent’s contribution to the group.

We model the private information of an agent as n − 1
private signals that the agent receives from its peers. These
signals are direct assessments of the peers’ performance in
accomplishing the joint task, and we call them truthful eval-
uations. Formally, given a positive integer parameter M ,
for 1 ≤ M ≤ V , the signals observed by agent i are repre-
sented by the vector ti = (t1i , . . . , t

i−1
i , ti+1

i , . . . , tni ), where

tji ∈ {1, . . . ,M} represents the signal observed by agent i
coming from agent j. Thus, ti is the vector with the truth-
ful evaluations made by agent i regarding the contributions
of its peers in accomplishing the task. In this way, the pa-
rameter M represents the top possible evaluation that an
agent can give or receive, and we assume that its value is
common knowledge. For each agent j ∈ N , let ωj ∈ ∆M

(unit simplex in <M ) be an unknown parameter represent-
ing the distribution of the truthful evaluations for agent j.

Based on their truthful evaluations, agents can make pre-
dictions about how their peers are evaluated. The predic-
tions made by agent i are formally represented by the vector
ri = (r1i , . . . , r

i−1
i , ri+1

i , . . . , rn
i ), where agent i’s prediction

about the empirical distribution of evaluations received by

agent j is rj
i = (rj1

i , . . . , rjM

i ) ∈ ∆M , i.e., 0 ≤ rjk

i ≤ 1

and
∑M

k=1 r
jk

i = 1. Mathematically, rj
i is the expected dis-

tribution of truthful evaluations for agent j given agent i’s
truthful evaluation, i.e., rj

i = E[ωj |tji ].
To avoid a biased self-judgment, agents are neither asked

to make self-evaluations nor asked to make predictions about
their received evaluations. They are requested to report
their subjective opinions, namely, evaluations and predic-
tions. We make the following assumptions in our model:

1. Self-interestedness. Agents act to maximize their ex-
pected shares.

2. Common prior. ∀j ∈ N , there exists a common prior
distribution, p(ωj), over ωj .

3. Rationality. Every agent i, with truthful evaluation
tji , forms a posterior by applying Bayes’ rule to the

common prior p(ωj), i.e., p(ωj |tji ).
4. Stochastic relevance. ∀i, q, j ∈ N, p(ωj |tji ) = p(ωj |tjq)

if and only if tji = tjq.

5. Large population. The population of agents must be
sufficiently large so that a single evaluation for an agent
cannot significantly affect the empirical distribution of
evaluations received by that agent.

6. Independent signals. The signals observed by an agent
are independent of each other. Formally, given i, j, k ∈

N , and x, y ∈ {1, . . . ,M}, p(tji = x | tki = y) = p(tji =
x).

The first assumption means that agents are risk neutral
[7]. The second assumption means that agents have common
prior distributions over the distributions of the truthful eval-
uations for their peers. The third assumption means that
these priors are consistent with Bayesian updating. These
first three assumptions are traditional in both game the-
ory [11] and multiagent systems [15] literature, and they
essentially mean that agents are Bayesian decision-makers.
The fourth assumption means that different truthful evalua-
tions imply different posterior distributions, and vice-versa.
By far, the most stringent assumption is the requirement
of a large population. Later in this paper, we discuss the
implications of such assumption and how to circumvent it.
Finally, the last assumption implies that the truthful evalu-
ation of an agent for a peer does not influence that agent’s
truthful evaluation for other peer.

A consequence of self-interest is that agents may delib-
erately lie when reporting their evaluations and/or predic-
tions. For example, an agent may intentionally give all
other agents a low evaluation so that, in comparison, it
looks good and receives a greater share of V . Therefore,
we distinguish between the truthful evaluations made by
each agent i ∈ N , ti, and the evaluations that agent i re-
ports, xi = (x1

i , . . . , x
i−1
i , xi+1

i , . . . , xn
i ). Similarly, we distin-

guish between the truthful predictions made by each agent
i ∈ N , ri, and the predictions that agent i reports, yi =
(y1

i , . . . , y
i−1
i , yi+1

i , . . . , yn
i ).

We define the strategy of agent i, si = (xi,yi), to be its
reported opinions. Si is the set of strategies available to
agent i, and S = S1× . . .×Sn. We note that the parameter
M fully determines the strategies available to the agents.
Each vector s = (s1, . . . , sn) ∈ S is a strategy profile. As
customary, let the subscript “−i” denote a vector without
agent i’s component, e.g., s−i = (s1, . . . , si−1, si+1, . . . , sn).
If the opinions reported by agent i are equal to its truthful
opinions, i.e., xi = ti and yi = ri, then we say that agent
i’s strategy is truthful.

Opinions are elicited and aggregated by a central, trusted
entity called the mechanism, which is also responsible for
sharing the reward among the agents. This entity relies only
on the reported opinions when determining agents’ shares,
and so it has no additional information. Formally:

Definition 1 (Mechanism). A mechanism is a shar-
ing function, Γ : S → <n, which maps each strategy profile
to a vector of shares.

We denote the share of V given to agent i, when all the
reported opinions are s, by Γi(s). We use Γi when s is either
irrelevant or clear from the context. Throughout this paper,
we use the solution concept called Bayes-Nash equilibrium.

Definition 2 (Bayes-Nash equilibrium). We say
that the strategy profile s = (s1, . . . , sn) is a Bayes-Nash
equilibrium if for each agent i, and strategy s′i 6= si ∈ Si,
E [Γi(si, s−i)|ti, ri] ≥ E [Γi(s

′
i, s−i)|ti, ri].

In words, for each agent i ∈ N , si is the best response, in
an expected sense, that agent i has to s−i given its truth-
ful opinions (ti, ri). The expectation in taken with respect
to the posterior distributions. When the inequality in Def-
inition 2 holds strictly (with “>” instead of “≥”), then the
strategy profile s is called a strict Bayes-Nash equilibrium.
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2.1 Properties
There are several key properties we wish mechanisms to

have. We introduce them in this subsection.

Definition 3 (Fairness). Consider a strategy profile
s ∈ S in which the reported evaluation of every agent z for
agent i is paired up with agent z’s reported evaluation for
agent j, for i 6= j 6= z ∈ N , so that xi

z > xj
z. Further, the

evaluations of agent i and agent j for each other are paired
up, so that xi

j > xj
i . Then, we say that a mechanism is fair

if Γi(s) > Γj(s).

In words, if an agent unanimously receives better evalu-
ations than a peer, then that agent should also receive a
greater share of the joint reward than its peer.

Definition 4 (Budget Balance). A mechanism is
budget-balanced if ∀s ∈ S,∑n

i=1 Γi(s) = V .

In words, a budget-balanced mechanism allocates the en-
tire reward V back to the agents. As stated, this is a strong
definition because we do not put constraints on s, e.g., we
do not require s to be an equilibrium strategy profile.

Definition 5 (Individual Rationality). A mecha-
nism is individually rational if ∀i ∈ N, ∀s ∈ S,Γi(s) ≥ 0.

This condition requires the share received by each agent to
be greater than or equal to zero. In other words, all agents
are weakly better off participating in the mechanism than
not participating at all.

Definition 6 (Incentive Compatibility). A mecha-
nism is incentive-compatible if collective truth-telling is an
equilibrium strategy profile.

Since we are working with Bayes-Nash equilibrium, an
incentive-compatible mechanism implies that it is best, in
an expected sense, for each agent to tell the truth provided
that the others are also doing so.

Definition 7 (Tractability). A mechanism is trac-
table if it computes agents’ shares in polynomial time.

By no means do we argue that the properties defined in
this section are exhaustive. However, we believe that they
are among the most desirable ones in practical applications.

2.2 The Bayesian Truth Serum Method
Prelec [12] proposes an incentive-compatible scoring meth-

od, called the Bayesian Truth Serum (BTS), which works
on a single multiple-choice question with a finite number
of alternatives. Each responder is requested to endorse the
answer mostly likely to be true and to predict the empirical
distribution of the endorsed answers.

Responders are evaluated by the accuracy of their predic-
tions (how well they matched the empirical frequency) as
well as how surprisingly common their answers are. For ex-
ample, an answer endorsed by 50% of the population against
a predicted frequency of 25% is surprisingly common. The
responders who endorsed that answer should receive a high
score. If predictions averaged 75%, an answer endorsed by
50% of the population would be surprisingly uncommon and,
consequently, the responders who endorsed it would receive
a lower score. The surprisingly common criterion exploits

the false consensus effect to promote truthfulness, i.e., the
general tendency of responders to overestimate the degree
of agreement that the others have with them [14].

In our work, the BTS method is used exclusively as a
tool to promote truthfulness. This method is very conve-
nient because it does not require objective answers to score
opinions, i.e., it is possible to work with subjective infor-
mation, where an absolute truth is practically unknowable,
and still be able to reward truthfulness. Questions that are
considered in our work have the form: “What is the evalu-
ation deserved by agent j?”, where the possible answers are
values inside the set {1, . . . ,M}. For illustration purpose,
consider a question asking for the evaluation deserved by
agent j. Using the notation previously defined, let h(xj

i , k)
be a zero-one indicator function, i.e.,

h(xj
i , k) =

{
1 if xj

i = k,
0 otherwise.

The score returned by the BTS method to agent i, given
its reported evaluation xj

i and prediction yj
i , is calculated as

follows:

R(i, j) =

M∑

k=1

h(xj
i , k) ln

x̄k

ȳk
+

M∑

k=1

x̄k ln
(1− ε)yjk

i + ε
M

x̄k
, (1)

where x̄k is the average frequency of evaluation k, and ȳk is
the geometric average of the predicted frequencies of evalu-
ation k:

x̄k = (1− ε)

 1

n− 1

∑

q 6=j

h(xj
q, k)


 +

ε

M

ȳk = exp


 1

n− 1

∑

q 6=j

ln
(
(1− ε)yjk

q +
ε

M

)



and ε, for 0 < ε < 1, is a recalibration coefficient to adjust
predictions and averages away from 0/1 extreme values.

The BTS method has two major components. The first
one, called the information score, evaluates the evaluation
given by agent i to agent j according to the log-ratio of
its actual-to-predicted endorsement frequencies. An evalua-
tion scores high to the extent that it is more common than
collectively predicted. The second component, called the
prediction score, is a penalty proportional to the relative en-
tropy between the empirical distribution of evaluations for
agent j and agent i’s prediction of that distribution. For a
small ε, the best prediction score is attained when a reported
prediction matches the empirical distribution of evaluations.

It is interesting to note that Equation 1 is slightly different
from the original BTS method, which uses ε = 0. By using a
small recalibration coefficient, we can avoid problems related
to values that are not well-defined, e.g., ln(0) and ln(0/0).
Any distortion in incentives can be made arbitrarily small
by making ε sufficiently small. Under the assumptions made
in the beginning of this section, and using Equation 1 to
compute agents’ scores, the following theorems hold [12]:

Theorem 1. Collective truth-telling is a strict Bayes-Nash
equilibrium.

Theorem 2. The BTS method is zero-sum.
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Theorem 1 means that the strict best response of an agent,
in an expected sense, when everyone else is telling the truth
is also to tell the truth. Theorem 2 means that the sum
of the scores received by the agents is equal to zero, i.e.,∑

i6=j R(i, j) = 0. In what follows, we provide bounds for
the scores returned by the BTS method.

Lemma 1. ∀i 6= j, R(i, j) ∈ [−2 ln(M
ε

), ln(M
ε

)
]
.

Proof. We start by noting that:

0 <
ε

M
≤ x̄k, ȳk ≤ 1− ε+

ε

M
< 1.

Focusing first on the lower-bound, we analyze each part of
Equation 1 separately. Starting with the information score,
we have:

M∑

k=1

h(xj
i , k) ln

x̄k

ȳk
≥

M∑

k=1

h(xj
i , k) ln x̄k (2)

≥ ln
ε

M
,

where the inequalities follow, respectively, from the facts
that 0 < ȳk < 1, and ε

M
≤ x̄k < 1. Moving to the prediction

score, we have:

M∑

k=1

x̄k ln
(1− ε)yjk

i + ε
M

x̄k
≥

M∑

k=1

x̄k ln
ε

M
(3)

=
(
1− ε+

ε

M

)
ln

ε

M

≥ ln
ε

M
,

where the first inequality follows from the facts that 0 <

x̄k < 1 and (1 − ε)yjk

i ≥ 0. The second inequality follows
from the facts that ln(ε/M) < 0, and 0 <

(
1− ε+ ε

M

)
< 1.

Joining (2) and (3), we have:

R(i, j) ≥ 2 ln
ε

M

= −2 ln
M

ε
.

Focusing now on the upper-bound of Equation 1, we start
by analyzing the information score:

M∑

k=1

h(xj
i , k) ln

x̄k

ȳk
≤

M∑

k=1

h(xj
i , k) ln

1

ȳk
(4)

≤ ln
1
ε

M

= ln
M

ε
,

The inequalities follow from the fact that ε
M
≤ x̄k, ȳk < 1.

Moving to the prediction score, we note that its value is
always less than or equal to zero, because it can be seen
as the negative of the Kullback-Leibler divergence, which is
always greater than or equal to zero [3]. Thus, we have:

R(i, j) ≤ ln
M

ε
.

3. THE MECHANISM
In this section, we propose a mechanism for sharing re-

wards based on subjective opinions. It starts by requesting
both evaluations and predictions from the agents. For each
vector with evaluations, xi, the mechanism creates another
vector, χi = (χ1

i , . . . , χ
i−1
i , χi+1

i , . . . , χn
i ), by scaling the ele-

ments of xi so that they sum up to V . Mathematically,

∀i, j, χj
i = xj

i

(
V∑

q 6=i x
q
i

)
. (5)

This simple pre-processing step ensures that the sum of
the resulting shares is not orders of magnitude lower than
the reward V . The share received by each agent i ∈ N from
the mechanism has two major components. The first one,
χ̄i, reflects agent i’s received evaluations. It is calculated
by summing the scaled evaluations received by agent i, and
dividing the sum by n, i.e.,

χ̄i =

∑
j 6=i χ

i
j

n
. (6)

This simple idea of aggregating the scaled evaluations for
an agent by summing them and dividing by n helps to en-
sure important properties for the mechanism. The second
component of agent i’s share is a truth-telling score. The in-
tuition behind such scores is that agents who believe that the
others are telling the truth maximize their expected scores
by also telling the truth. The score of agent i, ζi, is calcu-
lated as follows:

ζi =

∑
j 6=i R(i, j)

n− 1
, (7)

where R(i, j) is defined in Equation 1. Agent i’s score is
then the arithmetic mean of results returned by the Bayesian
truth serum method, where each result is directly related to
an evaluation and a prediction reported by agent i. Finally,
the share of agent i is a linear combination of χ̄i and ζi, i.e.,

Γi = χ̄i + α ζi, (8)

where the constant α, for α > 0, fine-tunes the weight given
to the truth-telling score ζi. Its value has an important role
in ensuring desirable properties for the mechanism.

The intuition behind the proposed mechanism is that agents
who believe that the others are truthfully reporting have
their expected shares maximized to the extent that they are
well-evaluated and that they are also telling the truth. It
is interesting to note that despite the assumptions of prior
and posterior distributions, they are neither known nor re-
quested by the mechanism, only evaluations and predictions
are elicited from agents.

3.1 Numerical Example
A numerical example may clarify the mechanics of the pro-

posed mechanism. Consider six agents indexed by the letters
A,B,C,D,E, F, a joint reward V = 1000, and assume that
M = 2. The reported predictions and evaluations can be
seen, respectively, in Table 1 and Table 2.

In Table 1, each numeric cell can be interpreted as the
prediction made by the agent in the row about the percent-
age of agents that give the evaluation in the second row of
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Table 1: Numerical example: reported predictions.
A B C D E F

“1” “2” “1” “2” “1” “2” “1” “2” “1” “2” “1” “2”
A - - 0 1 0.4 0.6 0.2 0.8 1 0 0.2 0.8
B 0.8 0.2 - - 0.2 0.8 0.2 0.8 1 0 0.4 0.6
C 0.8 0.2 0 1 - - 0.4 0.6 1 0 0.4 0.6
D 0.8 0.2 0.2 0.8 0.6 0.4 - - 0.8 0.2 0.4 0.6
E 0.8 0.2 0 1 0.6 0.4 0.4 0.6 - - 0.4 0.6
F 0.8 0.2 0.8 0.2 0.6 0.4 0.4 0.6 0.8 0.2 - -

the cell’s column (“1” or “2”) to the agent in the first row
of the cell’s column. For example, the emphasized number
0.8 means that agent B predicts that 80% of the population
gives the evaluation 1 to agent A.

In Table 2, each numeric cell can be interpreted as the
evaluation given by the agent in the row to the agent in the
column. For example, the emphasized number 2 represents
xB

A , i.e., the evaluation given by agent A to agent B.
Using these evaluations and predictions, and the parame-

ters α = 100 and ε = 0.01, the mechanism returns the shares
shown in the last column of Table 3. The major components
of these shares are shown in the first columns. For illustra-
tion’s sake, consider the share received by agent F . To com-
pute the first component of ΓF , the mechanism aggregates
the scaled evaluations received by agent F (Equation 6):

χ̄F =
142.86 + 250.00 + 285.71 + 250.00 + 222.22

6
≈ 191.80.

The second component of ΓF is the arithmetic mean of
results returned by the BTS method, where each result is
directly related to an evaluation and a prediction submitted
by agent F (Equation 7):

ζF =
R(F,A) + R(F,B) + R(F,C) + R(F,D) + R(F,E)

5

≈ 0.58− 1.19− 0.18− 0.11− 0.11

5
≈ −0.21.

Finally, the share received by agent F from the mechanism
is a linear combination of χ̄F and ζF :

ΓF = χ̄F + α ζF

= 191.80 + 100× (−0.21)

= 170.80.

Table 2: Numerical example: reported evaluations.
A B C D E F

A - 2 2 1 1 1
B 1 - 2 2 1 2
C 1 2 - 1 1 2
D 1 2 2 - 1 2
E 2 2 1 2 - 2
F 2 2 1 2 1 -

Table 3: Numerical example: resulting shares.
χ̄i ζi Γi

A 144.18 0.05 149.18
B 215.61 -0.06 209.61
C 170.30 0.09 179.30
D 167.99 -0.02 165.99
E 110.12 0.15 125.12
F 191.80 -0.21 170.80

3.2 Properties
In this subsection, we show that the proposed mechanism

satisfies important properties.

Proposition 1. The mechanism is budget-balanced.

Proof. The sum of the shares received by the agents is
equal to:

n∑
i=1

(
χ̄i + α ζi

)
=

n∑
i=1

χ̄i + α

n∑
i=1

ζi

=

n∑
i=1

∑
j 6=i χ

i
j

n
+ α

n∑
i=1

∑
j 6=i R(i, j)

n− 1

=

n∑
j=1

∑
i6=j χ

i
j

n
+ α

n∑
j=1

∑
i 6=j R(i, j)

n− 1

= n

(
V

n

)
+

α

n− 1




n∑
j=1

∑

i 6=j

R(i, j)


 .

The last equality follows from the fact that the scaled
evaluations sum up to V (Equation 5). From Theorem 2, we
know that

∑
i6=j R(i, j) = 0, thus completing the proof.

Proposition 2. The mechanism is incentive-compatible.

Proof (Sketch). Due to space limitations, we only pro-
vide a sketch of the proof. Suppose that every peer of an
agent i ∈ N is truthfully reporting its opinions. We prove
that the strict best response for agent i, in an expected sense,
is also to tell the truth. We start by observing that the
share received by agent i (Equation 8) can be written as
c1 + c2

∑
j 6=i R(i, j), where c1 and c2 are positive constants,

from agent i’s point of view, because they do not depend
on the opinions reported by agent i. Due to the assumption
of independent signals (Assumption 6, Section 2), we can
restrict ourselves to find the strategy of agent i that maxi-
mizes E [c1 + c2R(i, j)] = c1 + c2E [R(i, j)], which in turn is
strictly maximized when agent i tells the truth (Theorem
1). Thus, the mechanism is incentive-compatible.
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Proposition 3. The mechanism is tractable.

Proof. The pre-processing step (Equation 5) is computed
in O(n2). Thereafter, for each agent i ∈ N , Equation 6
is computed in O(n), Equation 7 is computed in O(n2M)
(since Equation 1 can be computed in O(nM)), and Equa-
tion 8 is computed in O(1). Thus, the mechanism runs in
O(n3M) time.

Proposition 4. If M ≤ √n− 2 and α ≤ V

3Mn2 ln( M
ε )

,

then the mechanism is fair.

Proof. Consider a pair of agents i, j ∈ N and a strategy
profile s ∈ S where xi

j > xj
i and, for every other agent

z 6= i, j, xi
z > xj

z. For the mechanism to be considered fair,
its resulting shares must satisfy the following inequality:

Γi(s) > Γj(s) ≡ χ̄i + α ζi > χ̄j + α ζj

≡ α <
χ̄i − χ̄j

ζj − ζi
. (9)

In what follows, we compute a lower-bound for the above
fraction. Starting with the numerator, we have:

χ̄i − χ̄j =

∑
z 6=i,j

(
xi

z − xj
z

) (
V∑

q 6=z x
q
z

)
+ xi

j

(
V∑

q 6=j x
q
j

)

n

−
xj

i

(
V∑

q 6=i x
q
i

)

n

≥ V

n

(
n− 2

(n− 1)M
+

1

(n− 1)M
− M

(n− 1)

)

=
V

n

(
n− 2 + 1−M2

(n− 1)M

)

≥ V

n(n− 1)M

≥ V

n2M
.

The first inequality follows from the facts that for every
agent z 6= i, j, xi

z > xj
z and ∀i, j, xj

i ∈ {1, . . . ,M}. The
second inequality follows from the assumption that M ≤√
n− 2. Focusing on the denominator of the fraction in (9),

since ∀q ∈ N, ζq is the average of n − 1 results from the
BTS method, then the difference between ζj and ζi is always
less than or equal to the difference between the highest and
the lowest scores that can be returned by the BTS method
(Equation 1), which is equal to 3 ln

(
M
ε

)
according to Lemma

1. Thus, we conclude that if:

α ≤ V

3Mn2 ln
(

M
ε

) ,

and M ≤ √n− 2, then the proposed mechanism is fair.

Intuitively, this proposition means that the proposed mech-
anism can be made fair by reducing the influence of the
truth-telling scores on agents’ shares, so that these shares
will depend almost entirely on the reported evaluations.

Proposition 5. If α ≤ V

2Mn ln( M
ε )

, then the mechanism

is individually rational.

Proof. We start the proof by observing that ∀i ∈ N, χ̄i ≥
0 (Equation 6). Consequently, if agents’ scores are positive,
then their shares will also be positive. So, we restrict our-
selves to the scenario where truth-telling scores are negative.
Thus, for every agent i ∈ N , the following inequality must
be true when ζi < 0:

χ̄i + α ζi ≥ 0 ≡ χ̄i

−ζi
≥ α. (10)

In what follows, we compute a lower-bound for the frac-
tion in (10). Starting with the numerator, we have:

χ̄i =

∑
j 6=i x

i
j

(
V∑

q 6=j x
q
j

)

n

≥
∑

j 6=i x
i
j

(
V

M (n−1)

)

n

≥ V (n− 1)

M n(n− 1)

The inequalities follow from the fact ∀i, j, xj
i ∈ {1, . . . ,M}.

Focusing on the denominator of the fraction in (10), since ζi

is the average of n−1 results from the BTS method, we can
restrict ourselves to find the lowest negative score that can
be returned by the BTS method. From Lemma 1, we know
that this value is −2 ln

(
M
ε

)
. Thus, we conclude that if:

α ≤ V

2Mn ln
(

M
ε

) ,

then the proposed mechanism is individually rational.

Since agents’ scores can be negative, the above proposi-
tion means that the resulting shares can always be positive,
regardless the reported evaluations and predictions, if we
reduce the influence of these scores on agents’ shares.

4. EMPIRICAL EVALUATION
In this section, we report an empirical investigation of

the influence of the model and mechanism’s parameters on
agents’ shares. In all experiments reported here, agents’
truthful evaluations are drawn from the probability distri-
bution of the random variable H = dMBe, where B is Beta-
distributed with parameters α = β = 0.5, i.e., B has a
symmetric, U-shaped distribution. For creating a random
prediction, we use the empirical distribution of n− 1 evalu-
ations drawn from the probability distribution of H. Thus,
the experiments reflect scenarios where most of the agents
have extreme opinions. Lastly, agents always report their
opinions truthfully.

4.1 Parameter M

The parameterM defines the range of possible evaluations
that an agent can give or receive. To better understand
the influence of different values of M on agents’ shares, we
performed the following experiment. We shared the reward
V = 1000 among 100 agents using the proposed mechanism
and the following values for M : 2, 5, 7, 10, 25, 50, 75, 100. We
used the parameters α = 10 and ε = 10−4, and we observed
the mean and the standard deviation of the resulting shares
for different values of M . Figure 1 shows the results.
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Figure 1: Results of the experiment with different
values for M . Average shares are represented by
black squares, and standard deviations by gray lines.
The dotted line is used to facilitate visualization.

As can be seen in Figure 1, as M increases, the standard
deviation of the resulting shares also increases. Intuitively,
this happens because the reported evaluations become more
fine-grained, in that small differences between agents are rec-
ognized and specified by their peers, thus resulting in more
diverse shares. It is important to note that this increased ex-
pressivity may be burdensome for the agents since they will
have more possibilities to evaluate their peers, thus mak-
ing the evaluation process more challenging. We argue that
the underlying application may help to determine appropri-
ate settings for M . Since the mechanism is budget-balanced
and we used a fairly large population in this experiment, the
average share stayed constant for different values of M .

4.2 Parameter α

The parameter α of the proposed mechanism fine-tunes
the weight given to the truth-telling scores. To better under-
stand its influence on agents’ shares, we performed the fol-
lowing experiment. We shared the reward V = 1000 among
100 agents using the parameters M = 10, ε = 10−4, and
α ∈ {0.1, 1, 5, 10, 25, 50, 100, 500}. We ran this experiment
100 times. We observed the total number of unfair shares
and the total number of negative shares returned by the
mechanism for different values of α. An agent’s share is
considered unfair if that agent unanimously receives better
evaluations than a peer, but its share is smaller than the
peer’s share. Thus, a mechanism is fair if it does not return
unfair shares (see Definition 3). To compute the number of
unfair shares, we made a pairwise comparison in each sim-
ulation step in which each returned share was compared to
each other for determining whether the former was unfair or
not. Table 4 presents the results of this experiment.

Table 4: Results of the experiment with different
values for α.

α Unfair shares Negative shares
0.1 0 0
1 0 0
5 0 0
10 0 0
25 0 0
50 0 0
100 0 8
500 0 2543
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Figure 2: Results of the experiment with different
values for n. Black squares represent averages of the
sum of the shares, and gray lines represent standard
deviations. The dotted line is used to facilitate vi-
sualization.

According to Proposition 4 and 5, we need to set α <
2.9 × 10−4 to mathematically ensure that the mechanism
will be fair, and α < 0.044 to mathematically ensure that the
returned shares will always be greater than or equal to zero.
From Table 4, we note that even with much higher values
for α, the mechanism did not return a single unfair share in
this experiment. Further, the mechanism did not return a
single negative share for α ≤ 50. This discrepancy between
experiment and theory can be ascribed to the fact that the
bounds for α are calculated based on worst-case scenarios,
which are very unlikely to happen in practical applications.
This implies that it is possible to promote truthfulness by
using high values for α and still be able to obtain individual
rationality and fairness.

4.3 Parameter n

The most stringent assumption made in this work is that
the population of agents is large. This assumption is nec-
essary for the proposed mechanism to be able to use the
BTS method. We performed an experiment to investigate
how this mechanism behaves when dealing with populations
of different sizes. In detail, we studied how the size of the
population affects the budget of the mechanism. We shared
the reward V = 1000 using the parameters M = 10, α = 10,
ε = 10−4, and n ∈ {5, 10, 25, 50, 100, 150}. We executed the
experiment 100 times. At the end of each simulation step,
we computed the sum of the returned shares for each value
of n. At the end of the experiment, we computed the av-
erages and the standard deviations of these sums. Figure 2
shows the results.

As can be seen in Figure 2, the mechanism loses more
when n ≤ M . Intuitively, since there are few agents to en-
dorse a larger number of possible evaluations, the reported
evaluations are very often surprisingly common. This im-
plies higher truth-telling scores for the agents and, conse-
quently, greater shares. Alternatively, agents’ scores are
more balanced when n > M . Since there are more agents
than evaluations to be endorsed, the reported evaluations
are not very often surprisingly common. Consequently, the
average truth-telling score is not so high, and the mecha-
nism’s loss gradually decreases. An ANOVA test confirms
that n does indeed influence the resulting shares (ρ < 0.0001).
The standard deviation of the sum of the shares also de-
creases when n increases, thus supporting our claim that
the scores are more balanced.
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In conclusion, we note that a possible way to circumvent
the assumption of a large population is to reduce the num-
ber of possible evaluations, i.e., to reduce the value of the
parameter M . In this way, the influence of a single agent
on the empirical distributions of evaluations may be reduced
since these distributions will probably (but not necessarily)
be more balanced. We suggest that a good rule of thumb
is to use a value for the parameter M ≤ √n− 2, because
at this point the number of different evaluations seems to
be sufficiently smaller than the number of agents. Also, a
value for M satisfying this inequality helps to mathemati-
cally ensure fairness (Proposition 4). This rule has a strong
empirical support in our experiment because the loss taken
by the mechanism is negligible when the inequality is satis-
fied, i.e., for n = 100 and n = 150.

5. RELATED WORK
Fair division has long been studied in cooperative game

theory. The Shapley value [11] is a key concept used in this
field to distribute a joint surplus (or cost) among a set of
agents. Roughly speaking, the Shapley value assigns a share
to each agent equal to that agent’s marginal contribution to
the group. We note that sharing schemes based on marginal
contributions, like the Shapley value, are not appropriate in
our setting. The idea of marginal contribution is not objec-
tively defined in our model because individual contributions
are subjective information.

In the context of cooperative learning, Oakley et al. [10]
propose some guidelines to the effective design and manage-
ment of teams of students. Slightly different from our model,
each team member receives a common grade as the result of
a joint academic work. These grades are adjusted through
peer ratings (evaluations) to account for individual perfor-
mance. In detail, a team grade is weighted by the average
evaluation that a student receives to determine his or her fi-
nal grade. A total of 9 verbal evaluations are used, which are
later converted to values inside the set {0, 12.5, 25, ...100}.
Differently from our work, this rating scheme allows agents
to make self-evaluations. Further, it does not promote truth-
fulness. Kaufman et al. [6] discuss the problems that may
arise when using this rating system, e.g., inflated self-evalua-
tions and gender and racial bias. We believe that these prob-
lems may be even worse in our scenario because there is a
joint reward to be shared, and not a common team grade.

Hence, the BTS method is an important component of
our mechanism. We note that similar incentive-compatible
methods which would require less information from the agents
(i.e., only evaluations) could have been used (e.g., [8, 5]).
However, most of these methods are not budget-balanced,
which we believe is an important property in our setting.

6. CONCLUSION
In this paper, we proposed a game-theoretic model for

sharing a joint, homogeneous reward based on the idea of
subjective opinions. Each agent is asked to evaluate its peers
as well as to predict how they will be evaluated. We intro-
duced a mechanism to aggregate and use such opinions for
determining agents’ shares. The intuition behind the pro-
posed mechanism is that each agent who believes that the
others are telling the truth has its expected share maximized
to the extent that it is well-evaluated and that it is truthfully
reporting its opinions. Under the assumptions that agents

are Bayesian decision-makers and that the underlying popu-
lation of agents is sufficiently large, we showed that the pro-
posed mechanism is incentive-compatible, budget-balanced,
and tractable. We also presented strategies to make this
mechanism individually rational and fair.

We implicitly assumed that agents are not participating in
collusive agreements. However, there are many reasons why
an agent may lie to benefit a peer. For example, in exchange
for misreporting its evaluation, which may lead to a lower
share for itself, a liar agent may receive a side-payment from
the agent who benefits from the misreporting. Thus, an
exciting direction for future research work is to study which
kinds of collusive behavior may arise and how to avoid them.
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ABSTRACT
So far computer cannot satisfyingly solve many tasks that
are extremely easy for human, such as image recognition or
common sense reasoning. A partial solution is to delegate
algorithmically difficult computation task to human, called
human computation. The Game with a Purpose (GWAP),
in which computational task is transformed into a game,
is perhaps the most popular form of human computation.
A simplified adverse selection model for output-agreement/
simultaneous-verification GWAP was built, using the ESP
Game as example. The experiment results favored an ad-
verse selection model over an moral hazard model. We were
particularly interested in output quality of a GWAP affected
by how players are matched with each other, and proposed
capability-aligned matching (CAM) versus commonly-used
random matching. The analysis showed that when com-
pared with random mathcing, the CAM improved output
quality. The experiment confirmed conclusions drawed from
the analysis, and further pointed out that task-human match-
ing scheme was as important as human-human matching
scheme studied in this paper. The main contribution of this
paper is the analysis and empirical evaluation of human-
human matching scheme, showing that capability-aligned
matching can improve quality of GWAP.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Economics, Experimentation

Keywords
Game with a purpose, Adverse selection, Mechanism design

1. INTRODUCTION
The Game with a Purpose (GWAP) is a computer game

designed to perform computation tasks as a by-product [12].
It is targeted for algorithmically difficult problems that are
easy for human. Generally the GWAP are used for two

Cite as: Capability-Aligned Matching: Improving Quality of Games
with a Purpose, Che-Liang Chiou and Jane Yung-Jen Hsu, Proc. of 10th
Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6,
2011, Taipei, Taiwan, pp. 643-650.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

purposes: (1) Solve algorithmically difficult problems. (2)
Generate and/or annotate datasets for further research.

The ESP Game [11] is used as the primary example due to
two reasons. (1) Because the ESP Game is the first GWAP,
much of its design is widely used in many GWAP, such as
output agreement, simultaneous verification, and random
player matching. (2) From a game theory perspective, the
ESP Game presents a fundamental type of game: static
game. The analysis of the ESP Game is the basic for more
complicated games, say, repeated games.

The ESP Game is used to illustrate the poor quality prob-
lem of a class of GWAPs, the output-agreement/simultaneous-
verification games [12, 5].

1.1 Motivation
There are two orthogonal properties of outputs generated

by a GWAP: correctness and quality. This paper addressed
the quality of outputs. What is “correct” or “of good qual-
ity” depends on the nature of computation task; this paper
defined them in the context of the ESP Game.

The ESP Game is designed to annotate images, and out-
puts are labels. A label is correct to an image if it describes
the image. This paper defines a label is of good quality rel-
ative to another label based on their specificness. That is,
labels are ordered by an “is-a” relation. For example, “red”
is of better quality than “color” because red is a color but
not vice-versa.

Figure 1 shows the relationship between correctness and
quality. It is possible that a label is of good quality but incor-
rect to an image (the quadrant II). For example, “Lincoln”
is of better quality than “man” but incorrect to a photo of
Washington. Note: The correctness is bounded to an image,
but the quality is a relative relation among labels.

CorrectIncorrect

Good Quality

Poor Quality

III

III IV

Figure 1: The four quadrants of a label.

In the original paper of the ESP Game [11], it has been
shown that output labels are descriptions of the images, i.e.,
correct. In a later study [10], the Google’s implementation
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of the ESP Game, Google Image Labeler, is examined. It
is observed that players tend to answer generic labels such
“building” as opposed to “terraced house”, i.e., correct but
of poor quality.

Even worse, it has been found that output labels are pre-
dictable by a low entropy distribution. This means that
a computer without looking at the image can guess what la-
bels a player will output (this is exactly the cheating defined
in [11]). Given that image annotation is algorithmically dif-
ficult, the predictability of outputs suggests that players are
not properly motivated to outperform computers. Besides,
if output labels are computer predictable, why do we need
human in the course of computation?

To summarize, prior experiments have shown that output
labels are correct but of poor quality (quadrant IV). Google
apparently noticed this and implemented a variable scoring
scheme according to specificity of labels, rather than a flat-
rate scheme used in the original ESP Game. Many GWAP
might also suffer from the poor quality problem because they
share much of the same design of the ESP Game.

From a game theory perspective, the poor quality problem
stems from the use of coordination game in the ESP Game.
The focal points, also called Schelling point, of coordination
GWAP are “generic label” of the ESP Game. The poor
quality problem is equivalent to the existence of focal points.

The original ESP Game has implemented taboo words as
an instrument to improve output quality. This is how taboo
words work: When the ESP Game verifies a label, it is listed
on the taboo list. Eventually all labels in the quadrant IV
are in taboo list, and players can only output labels in the
quadrant I—correct and of good quality.

The main shortcoming of taboo words is inefficiency: Why
not simply motivate players to output quadrant I labels?

1.2 Overview of Proposed Solution
The capability-align matching (CAM) is proposed for solv-

ing the poor quality problem. Two types of of matching are
in the ESP Game. (1) Matching a player with another. (2)
Matching an image to a pair of players. The CAM is the
former.

The CAM matches players with similar if not identical
capability. On the other hand, the current implementation
of the ESP Game (intentionally) use random matching.

Note: A critical game-theoretical requirement of the CAM
is that which matching scheme is used is common knowledge
among players.

The CAM is implemented in a small-scale experiment.
The implemented method is called the Segmentation method,
which extracts capability information from demographic data.

2. RELATED WORK
The ESP Game, the first GWAP, is designed to anno-

tate images and is shown to be effective on generating label-
descriptions of an image [11]. This simple game demon-
strates that designing a game to use human to perform com-
putation task is possible. Since then, many of GWAP follow
its design.

Three designs of the ESP Game are relevant to modeling.
They are also widely used in many GWAP.

• Random player matching. When compared with the
CAM, it incurs poor quality output.

• Isolated players. This has a great strategical conse-

quence: the ESP Game is a static game.

• Output agreement/Simultaneous Verification. (For its
definition, see [12, 5].) It is equivalent to coordination
game.

In theory, the ESP Game is a static coordination game.
The following are overview of previous approaches dealt

that could be used to improve output quality.
Incentive provision. This approach tries to “manipu-

late”players through incentive [10, 6], either money or score.
Its goal is to implement a designer-chosen good quality out-
come. Nevertheless, in some cases incentive-provision along
might be ineffective. As shown by experiments [9], increased
financial incentive does not necessary increase quality. The
CAM can reduce the amount of incentive required for im-
plementing a good quality outcome.

Competition. This approach is based a game structure
called zero-sum games. The Search War [8] is a two-player
zero-sum game. The KKB [4] adds a zero-sum sub-game to
the ESP Game. Nevertheless, in theory competition does
not improve quality, at least in the sense of specificness,
but it does diversify output—when the equilibrium is mixed.
Zero-sum games often have only mixed equilibrium due to
their strictly competitive nature. The zero-sum game that
the Search War and the KKB use is called matching pennies,
which has only a unique mixed equilibrium.

Note: This paper uses “competition” in a strict game-
theoretic sense. There are GWAP [3] that are competitive
(in ordinary sense) but not zero-sum. These games are coor-
dination games, and players only compete for first proposing
the will-be-agreed output.

Community. This approach is loosely defined by the
use of social network or demographic data. It could be
used for drawing players from Facebook1, for annotating
your friends [1], or for improving output quality [7]. The
CAM may use communities for extract player’s capability
information, called the Segmentation method.

3. A SPECIAL THEORY OF CAPABILITY-
ALIGNED MATCHING

Here we present a special version of the theory of the
CAM. The general version of the theory is published in an-
other venue due to page limits [2].

The analysis of the one-shot ESP Game is carried out
by comparing the CAM in a hypothetical, ideal scenario
to the random matching so that the theoretical maximal
improvement of the CAM is derived. The hypothetical, ideal
scenario is referred to as the first-best model, in which a
computer has complete information of players’ capability.
The scenario of the random matching is referred to as the
second-best model, in which a computer has only incomplete
information of players’ capability.

The performance of an outcome is defined in three aspects.
These are used for comparing the first- to the second-best
model.

The first aspect considers the quality, or the “revenue”.
It is possible that a best quality outcome is too costly to
implement. The following results all condition on that there
is a sufficient “margin of profit” (revenue minus cost) so that
implementing a best quality outcome is in equilibrium.

1http://apps.new.facebook.com/fb_gwap/
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The second aspect considers the amount of incentive pro-
vision, or the “cost”. Given a particular outcome to be im-
plemented, this amount should be as little as possible.

The last aspect considers the agreement rate, or the “risk
of the business”. This probability is a measure of efficiency
of a game. The higher the agreement rate, the faster a cor-
rect label is produced. And why is that? The ESP Game
is like a Las Vegas algorithm due to the verifying by agree-
ment nature of it. It always produce correct labels, but its
computation time varies randomly (we do not know when a
pair of agents will agree).

3.1 The One-Shot ESP Game Model
We formulate a direct mechanism of the ESP Game, called

one-shot ESP Game, in a special setting. This model is
used for demonstrating the theory we will examine in exper-
iments.

The strategic interaction in GWAP between a computer
and players, in economics terminology, is a principal-agent
relation. A computer (as a principal) hires players (as agents)
to perform computation tasks. The following is the basic
setup:

Number of labels/types. n+ 1.
Index of labels/types. 0 ≤ k, l ≤ n. Note: Because k and

l may index either label or type, we use superscript for
labels, and subscript for types.

Set of labels. W = {wk | 0 ≤ k ≤ n}.
Qualities of labels. qk = αk+β for label wk where α and

β are real constants.
Agent (player). There are two agents, 1 and 2, indexed

by i 6= j ∈ {1, 2}. The term “agent” and “player” are
used interchangeably.

Agent’s output. wk,i denote output label of a type-Vk, in-
dex i agent. The index of player is often dropped be-
cause the ESP Game is symmetric, that is, wk.

Utility of agents. u(p) =
√
p. Let v = u−1 for the ease of

notation. Agents are assumed to be homogeneous so
that we will not be distracted from minor issues like
private information of agent’s utility function.

Reservation utility u > 0. Let v = v(u) for the ease of
notation.

Capability of an agent (type). Vk = {w0, . . . , wk}. In
the ESP Game, the capability of an agent is his vo-
cabulary of words he can use. The term “capability”
and “type” are used interchangeably.

Type space. V = {Vk | 0 ≤ k ≤ n}. The set of capabili-
ties, also referred to as “the type space”.

Distribution of types. µk = 1
2n Cn

k for type Vk. µk is the
proportion of type-Vk players. It is a binomial distri-
bution so that most agents have moderate capability
and few agents are at extreme.

Payoffs. The principal chooses the payoffs. In the first-best
model, payoffs may contingent on both output label
and type, denoted by p(·). In the second-best model,
payoffs are contingent on output label only, denoted
by pk. Let uk = u(pk) for the ease of notation.

The one-shot ESP Game is a ESP Game that a player
only outputs one label. It is played as follows:

0. The quality function q is given to the principal.
1. The principal chooses a payoff function p, and matches

two agents from a pool of agents.

2. The agents observe the payoff function, and then de-
cide whether to play (note that at this point, the agents
know what matching scheme is in charge).

(a) If any agent decides not to play, then the game
terminates; the principal receives 0, and the agents
both receive u.

(b) Otherwise, the game proceeds to the next step.

3. The agents simultaneously output a label wi.
4. (a) If the agents agree on w, i.e., w = w1 = w2, then

the agents win; the principal receives q(w)−p(w),
and the agents both receive u(p(w)).

(b) Otherwise, the agents lose; the principal and the
agents all receive 0.

Note: For the ease of notation, the payoff to the agents is
also written as

p(wk,1, wl,2) =

{
p(w) wk,1 = wl,2 = w

0 wk,1 6= wl,2,

or in the unit of utility u(wk,1, wl,2) = u(p(wk,1, wl,2)), and
the payoff to the principal

π(wk,1, wl,2) =

{
q(w)− p(w) wk,1 = wl,2 = w

0 wk,1 6= wl,2.

A cautious reader might wonder why the payoff of the
principal is not q(w)− 2p(w). The reason is the ease of no-
tation. Because only the relative order of q-value matters
in this thesis, q can be linearly scaled up arbitrarily, and
whether the principal receives q− p or q− 2p does not mat-
ter.

3.2 The First-Best Model
The first-best model is our benchmark; it is the best pos-

sible performance the CAM can achieve. In the first-best
model, the principal has complete information of capabili-
ties, and players are perfectly aligned, that is, k = l.

The payoff function p is subjected to two constraints due
to the rationality of agents.

Individual rationality.

u(wk,1, wk,2) ≥ u. (IR1)

Incentive compatibility.

wk,i ∈ arg max
w∈Vk,i

u(w,wk,j). (IC1)

The principal maximizes the average payoff

max
p,{w0,...,wn}

∑
0≤k≤n

µkπ(wk, wk) (P1)

subjected to (IR1) and (IC1).
Obviously, the maximization program is solved by

p(wk) =

{
v wk = wk

0 wk 6= wk.
(1)

That is, the agent is not paid unless he outputs a best quality
label he can think of. Under this payoff function, the output
label wk is, not surprisingly, the best quality output wk. It is
easy to check if this outcome satisfies (IR1) and (IC1). And
agents always agree in equilibrium because it is a symmetric
game.

So in the first-best model, the principal implements
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• Best quality outcome wk = wk,

• Using minimal incentive provision v,

• With perfect agreement rate equals to 1.

This too-good-to-be-true performance of first-best equilib-
rium shows the power of capability information in an ide-
alize scenario. Rarely can a real world game have 100%
complete capability information; there is always uncertainty
in practice.

3.3 The Second-Best Model
In the second-best model, the principal has incomplete

information; capabilities are private information of agents.
The principal thus can at best randomly match agents. Note:
This is usually called adverse selection in economics litera-
ture.

The Individual Rationality and Incentive Compatibility
constraints are rewritten to reflect the uncertainty of the
agents. Let Pr[w = w∗,j ] denote agent i’s belief that agent
j’s output is w

Pr[w = w∗,j ]
def
=

∑
0≤l≤n

µl1{w = wl,j}. (B)

Note: Agent inherits uncertainty from principal, who imple-
ments random matching.

Individual rationality.

Pr[wk = w∗]u(wk) ≥ u. (IR2)

Incentive compatibility.

Pr[wk = w∗]u(wk) ≥ Pr[wl = w∗]u
l (IC2)

where 0 ≤ l < k.

Collusion proofness. Here is one more constraint in the
second-best model than the first-best model to prevent
players collude.

Pr[wk = w∗]u(wk) ≥ Pr[wl = w∗]u
l + µku

l (CP)

where 0 ≤ l < k.

Note: For simplicity this paper assumes that only the
same type of agents can collude.

Note: Collusion is not the same as cheat defined in the
original paper of the ESP Game [11] which is the attempts
to fast agree on many images without looking at images.
Collusion means some players lower the output quality to-
gether, but they still look at images. In other words, when
players cheat, the output is incorrect (because they even
not look at images). When players collude, the output is
still correct, but of poor quality.

As in the first-best model, the principal maximizes its
average payoff

max
p,{w0,...,wn}

∑
0≤k,l≤n

µkµlπ(wk, wl) (P2)

subjected to (IR2), (IC2) and (CP).
The three constraints are divided into two groups: (IR2)

and (IC2), and (CP) alone. The best quality outcome is
wk = wk, and so Pr[wk = w∗,j ] = µk. Plug them into con-
straint groups. The first constraint group is solved by

u

µk
. (2)

The second constraint group is solved by

uk−1 +
µk−1

µk
uk−1. (3)

The maximization program (P2) is constrained by the max-
imum of the two

uk = max

{
u

µk
, uk−1 +

µk−1

µk
uk−1

}
.

The constraint groups are not chosen arbitrarily. They cor-
respond to the information rent and collusion-proof rent.

So in the second-best model, the principal implements

• Best quality outcome wk = wk,
• Using amount of incentives higher than that of the

first-best uk > u,
• With less than perfect agreement rate∑

0≤k≤n

µk Pr[wk = w∗] < 1.

Here the components of second-best “cost” are analyzed,
including information rent and collusion-proof rent.

Information rent. Observe that in the ESP Game, an
agent outputs a best quality label is equivalent to an agent
reveals his private information, type. Consider the first-best
cost u; the positive rent u/µk − u paid by the principal for
acquiring agent’s private information is called “information
rent” in economic literature.

Collusion-proof rent. When µ is non-decreasing, such
as when 0 ≤ l < k ≤ bn/2c, we have information rent inver-
sion u/µl > u/µk. Does this mean a good quality label wk

is paid less than a poor quality label wl? In fact, no. The
constraint group (3) implies that uk > uk−1, that is, the
principal always has to pay more to a good quality label.
We call this rent to maintain (CP) “collusion-proof rent”.

How much profit margin is it enough? Now we cal-
culate values of α, β for reference. For a best quality equi-
librium to be existed, we must have positive profit margin

qk − pk > 0

where

qk = αk + β,

and

pk = v

(
max

{
u

µk
, uk−1 +

µk−1

µk
uk−1

})
.

Let n = 4 and v = $0.01, then at least α ≈ $433.40, and
β ≈ $2.57. This means given that the agent’s reservation
utility equals to 1 cent, the qualities of labels must be worthy
of tens to thousands of dollars so that a best quality outcome
is still profitable after paying information rent and collusion-
proof rent (see table 1). For example, the quality of label
w4, q(w4), must be worthy of at least $1736.11 dollars to
the principal.

On the other hand, the agreement rate is so low (roughly
27.3%) that the expected cost of the principal, the money
which he actually pays, is approximately $12.94 dollars.

This example shows us how expansive and how inefficient
(in terms of agreement rate) to implement a best quality
equilibrium when the principal does not have capability in-
formation.

Example of signals. Here we prepare results for the ex-
periments. We considers two types of signal, “narrow” and
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k µk pk

0 6.25% 2.56
1 25.00% 4.00
2 37.50% 11.11
3 25.00% 69.44
4 6.25% 1736.11

Table 1: Payoff of labels in unit of dollar.

“lift”. Put loosely, the narrow signal is like reducing pop-
ulation variance, and the lift signal is like increasing pop-
ulation mean toward higher type. Note: Here we use the
n = 4, v = $0.01, α = $1000, β = $10 setup.

k µk µk|θnarrow µk|θlift
0 6.25% 0.00% 5.25%
1 25.00% 25.00% 25.00%
2 37.50% 50.00% 37.50%
3 25.00% 25.00% 25.00%
4 6.25% 0.00% 7.25%

Table 2: The narrow and lift signal.

Consider a signal θnarrow that shrinks the population by
only drawing from type-V1 to type-V3 (see the middle col-
umn of table 2). The expected payoff to the principal is
increased by about $217 dollars, from $536.66 dollars to
$753.45 dollars.

Consider a signal θlift that simply add 1% to µ4 and sub-
tract 1% from µ0 (see the rightmost column of table 2).
The expected payoff to the principal is increased by about
58 cents, from $536.66 dollars to $537.24 dollars.

3.4 Summary
The principal is facing an adverse selection problem when

the capability information is private, and have to pay in-
formation rent and collusion-proof rent for a good quality
outcome. In addition to these rents, the principal suffers
from lower agreement rate, that is, slower verification speed.
We can perceive these troubles when the principal lacks the
capability information as the“cost”of the random matching.

4. EXPERIMENT
A preliminary, small-scale experiment was conducted to

test the core concepts of the theory. The experiment also
demonstrated how the Segmentation method with narrow
and lift signal can be implemented use online communities.

The Segmentation method extracts capability information
from demographic data. The border of a demographic group
is very flexible, which could be as broad as a university, or as
tight as a zealous fan group. The CAM does not necessarily
have to ask players to fill in annoying survey forms; the
demographic data can be automatically crawled from social
network websites or online forums,

Note: There is another implementation of the CAM, called
the Bootstrapping method, detailed in [2].

4.1 Experiment Design
On choosing demographic data, the lessons will be learned

from the experiments are:

• The demographic group should be related to the con-
tent of the images, and

• The deeper the participation of an agent in this group,
the higher the capability he might have.

The experiment design featured:

• The one-shot ESP Game was played without any time
limit.

• Subjects were not rewarded by scores or any other in-
centives.

• Problem sets of images that were assumed to be asso-
ciated with signals were chosen.

• Subjects were actually played with robots (for reasons
stated below).

• The control and treatment group differed in:

– The matching scheme.
– The equilibrium strategy played by robots.

• The experiment only had between-subjects effect, but
no within-subjects effect (because each subject partic-
ipated only once).

In brief, the experiment design features: the one-shot ESP
Game, robots, and the Segmentation.

The detailed experimental process was:

1. Subjects were randomly put into either the control or
treatment group.

2. Subjects were asked to report their participation level
of online communities.

3. Subjects were informed the matching scheme (but ac-
tually played with a robot).

Control: Random matching.
Treatment: The CAM.

4. Subjects played 5 training images from each problem
set, in the same order. The robot’s output label was
displayed when subjects lost.

5. Subjects played 20 testing images, every four from each
problem set, in the same order. The robot’s output
label was not displayed when subjects lost.

6. Subjects filled in a post-hoc survey to assess the diffi-
culty of all problem set in absolute and relative scale.

Note: In training games and test games, no scores or any
other incentives were awarded when subjects won, and there
was no time limit.

4.2 Comments on the Experiment Design
To eliminate the effect of time preference, the one-shot

ESP Game, rather than the original ESP Game, was used
in the experiment. The time preference should be eliminated
because it has been shown to affect the output quality [6].

In addition to time preference, anything that might affect
subjects was eliminated, such as time limit and scores, so
that any difference in outcomes could only be explained by
matching schemes.

The use of robots, a necessary evil in small-scale experi-
ment, was because:

• It was unlikely to have aligned-capability subjects at
the same time, especially when the scale was small.

• To eliminate human variations as much as possible.
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The robots played equilibrium strategy, that is, pooling
when put into the control group, and separating when put
into the treatment group.

Only high type of robot was implemented. Otherwise,
one more factor (robot’s type) had to be added, along with
matching scheme. This would further divide subjects, re-
sulting in smaller groups that could not yield anything sta-
tistically significant.

In testing games, the robot’s labels were not displayed to
subjects when subjects lost as the original ESP Game, but in
testing games, in order to teach subjects who had had never
played the ESP Game, the robot’s labels were displayed.

The implemented one-shot ESP Game did not compare
labels literally. Instead, a list of synonyms and common
misspellings was built in for label comparison.

4.3 Signals and Problem Sets
Two narrow-and-lift signals were chosen. One was a sub-

ject’s participation level in a online community, and the
other was locality (the college where subjects were recruited).
Note: Although the experiment extracted these signals by
asking subjects, it was easy to crawl these signals automat-
ically.

For the online community signals, it was assumed that the
population was narrower when the community was smaller,
and the population was lifted higher when the participation
was deeper (assuming that participation level was positively
correlated to capability).

The online communities were Bulletin Board System (BBS)
boards:

• WoW / Exchange information of the World of War-
craft.

• Baseball / Discussions about baseball.

• OnePiece / Discussions about the manga One Piece.

For each online community, the participation of a subject
was categorized into 4 levels.

Level 0. None of the below.

Level 1. Had played the World of Warcraft, watched any of
Major League Baseball games, or read the One Piece,
respectively.

Level 2. Had read the respective BBS board.

Level 3. Had added the respective BBS board to his My
Favorite.

Three problem sets positively associated with online com-
munity signals were chosen, namely, WoW, MLB, and OP.
The MLB problem set were pictures of game characters of
the World of Warcraft. The MLB problem set were pictures
of Major League Baseball players. The OP problem set were
pictures of manga characters of the One Piece.

Two problem sets (positively and negatively) associated
with locality signal were chosen, namely, LO and FO. The
LO and FO problem set were images of local and foreign
celebrities and landmarks, respectively. It was assumed that
subjects were more capable to the LO problem set than FO;
this assumption would be verified.

The images of a problem set were carefully chosen that
their difficulty to subjects was assumed uniform, and so
variation of output quality within one problem set by one
subject was assumed random normal.

4.4 Subjects
In total, 26 subjects were recruited from National Taiwan

University (that means 104 labels per problem set). Table 3
shows the distribution of subject’s gender, age, and group.

Distribution

Gender Female 10
Male 16

Age 18–21 8
22–25 14
26–29 2
30–33 2

Group Control 12
Treatment 14

Table 3: The distribution of subject’s gender, age,
and group.

Table 4 shows the distribution of participation level. The
OnePiece board had the most dedicated subjects (level 2
and level 3).

To our surprise, the WoW board was “very unpopular”
among our subjects; 24 out of 26 subjects had had never
played the World of Warcraft. In fact, the “unpopularity”
of the World of Warcraft among subjects would cause the
regression to fail because only zero or one subject was in
levels above 1.

Participation Level BBS Board

WoW Baseball OnePiece

#0 24 17 7
#1 1 6 11
#2 0 2 4
#3 1 1 4

Table 4: The participation levels of online commu-
nities.

Table 5 shows the post-hoc survey result. The survey
asked subjects to evaluate the difficulty of each problem set
in absolute and relative (to other problem sets) scale.

No matter sorted by mean or median, the difficulty of
problem sets were: LO (easiest), OP, FO, MLB, and WoW
(hardest).

The fact that subjects felt LO was easier than FO ver-
ified our assumption that locality was a good measure of
capability to the LO and FO problem set.

WoW MLB OP LO FO

Absolute Median 5.00 5.00 3.00 2.00 4.00
Mean 4.70 4.35 2.96 2.61 3.91

Relative Median 5.00 4.00 2.00 2.00 3.00
Mean 4.48 3.70 2.13 1.70 3.00

Table 5: The absolute and relative difficulty of prob-
lem sets. The difficulty scales from 1 (easiest) to 5
(hardest).

Table 5 also helped us verify that participation levels were
indeed, as assumed to be, good measures of capability. Why
was that? The participation level was an objective measure
of capability, whereas the post-hoc survey was a subjective
assessment of difficulty. Although different by nature, they
demonstrated the same tendency: OP (most capable or eas-
iest), MLB, and WoW (least capable or hardest) no matter
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sorted by participation level or by subjective difficulty as-
sessment.

4.5 Experiment Results
For each problem set, 104 labels were collected, and man-

ually annotated. A label was annotated “of good quality”
if it was the name (including synonyms and common mis-
spellings) of a person, object, or building in the image, i.e.,
correct and specific.

Table 6 shows numbers of label annotated as of good qual-
ity, divided by numbers of label of that category. Note:
There were empty categories in the WoW problem set due
to the “unpopularity” of the World of Warcraft among sub-
jects.

A first observation was the trend that the ratio of good
quality labels increased when the “Group” or “Participation
Level” increased.

Problem Set Group Participation Level

#0 #1 #2 #3

WoW 0 0/44 0/ 4 0/ 0 0/ 0
1 2/52 0/ 0 0/ 0 4/ 4

MLB 0 6/28 4/12 0/ 4 2/ 4
1 12/36 7/12 4/ 4 1/ 4

OP 0 0/12 11/28 0/ 4 0/ 4
1 4/16 9/16 10/12 11/12

LO 0 30/48
1 44/56

FO 0 1/48
1 10/56

Table 6: The contingency table of output labels. In
the “Group” column, 0 is for the control and 1 for
the treatment. Note: The LO and FO problem set
did not have related participation levels.

The ratios of good quality labels were regressed against
matching scheme and participation level in a logit model.
Let i index over problem sets {WoW, MLB, OP, LO, FO }.
Let Pr[Yi = 1] denote the ratio of good quality labels, and
Xi the group (0 is for the control and 1 for the treatment),
and Zi the participation level. The logit model was

logit Pr[Yi = 1] = βi0 + βi1Xi + DUMMYiβi2Zi (4)

where DUMMYi was a dummy variable that equaled to 1
when i equaled to WoW, MLB, or OP; and 0 otherwise.

Table 7 shows the p-values of logit regressions. All were
statistically significant at least at the 0.05 significance level;
the null hypotheses βi1 = βi2 = 0 were rejected. That is,
matching schemes and capabilities (Xi, Zi) indeed affected
the good quality ratios Pr[Yi = 1].

p-value

WoW 0.0000***
MLB 0.0060**
OP 0.0000***
LO 0.0434*
FO 0.0027**

Table 7: The p-values of logit regressions. Signifi-
cance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘
’ 1.

Table 8 shows the predictive power of the logit models; the
rightmost column are p-values (β-values would be explained

later). For the MLB, OP, and FO problem set, matching
scheme Xi and capability Zi were statistically significant
predictors.

Note: The WoW and LO problem set presented interest-
ing results. See paragraphs below.

Estimate Std. Error z value Pr[> |z|]
WoW βi0 -26.6047 4380.2597 -0.01 0.9952

βi1 23.3858 4380.2598 0.01 0.9957
βi2 7.7057 2116.2887 0.00 0.9971

MLB βi0 -1.5753 0.4201 -3.75 0.0002***
βi1 1.0668 0.4638 2.30 0.0215*
βi2 0.6083 0.2714 2.24 0.0250*

OP βi0 -2.0770 0.4621 -4.50 0.0000***
βi1 1.5524 0.4643 3.34 0.0008***
βi2 0.7692 0.2393 3.22 0.0013**

LO βi0 0.5108 0.2981 1.71 0.0866.
βi1 0.7885 0.4415 1.79 0.0741.

FO βi0 -3.8501 1.0105 -3.81 0.0001***
βi1 2.3241 1.0691 2.17 0.0297*

Table 8: The summary of logit regression results.
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’
0.1 ‘ ’ 1.

WoW. Although the logit regression failed partially due
to the “unpopularity” effect (empty categories), the main
reason was that the WoW problem set was the hardest. In
fact, when the ratios were regressed against only capability
Zi,

logit Pr[YWoW = 1] = β̂0 + β̂2ZWoW,

the p-value was statistically significant, and capability was
statistically significant predictor (table 9). In other words,
the WoW problem set was so hard that the capability itself
dominated the outcomes, and so the matching scheme had
little effect on output quality.

Estimate Std. Error z value Pr[> |z|]
WoW β̂0 -4.0772 0.7562 -5.39 0.0000***

β̂2 2.3410 0.7657 3.06 0.0022**

Table 9: The logit regression on the WoW problem
set with only capability. Significance codes: 0 ‘***’
0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

LO. On the contrary to the WoW problem set, the prob-
lem of the LO problem set was too easy. The control-LO
category had good quality labels that were 30 times more
than the control-FO category (table 6). Given that con-
trol group subjects should output poor quality labels (and
they did in all problem sets except LO), the huge disparity
between the control-LO and control-FO category may be
explained by that subjects just could not think of any poor
quality label; the LO problem set was just too easy.

4.6 Predicted Good Quality Ratios
Table 10 shows the predicted ratios Pr[Yi = 1] from the

fitted β-values. Note: The predicted ratios of the WoW and
LO problem set were not predicted by statistically significant
predictors, and were listed only for reference.

Consistent trends in the MLB, OP, and FO (and also
WoW and LO) emerged:

• The ratios were higher when the participation levels
were higher.
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• The ratios of the treatment group (the CAM was used)
were higher than the ratios of the control group (the
random matching was used).
• The effect of matching scheme was greater than the

effect of capability (participation level). Lower par-
ticipation level treatment categories had higher ratios
than higher participation level control categories.

The last trend was particularly interesting: A less-capable
but properly-motivated player could output better quality
than a more-capable but less-motivated player.

Group Participation Level

#0 #1 #2 #3

WoW 0 0.0000 0.0000 0.0000 0.0297
1 0.0385 0.9889 1.0000 1.0000

MLB 0 0.1715 0.2755 0.4113 0.5621
1 0.3755 0.5249 0.6700 0.7886

OP 0 0.1114 0.2129 0.3685 0.5574
1 0.3718 0.5608 0.7338 0.8561

LO 0 0.6250
1 0.7857

FO 0 0.0208
1 0.1786

Table 10: The predicted ratios of good quality la-
bels. In the “Group” column, 0 is for the control
and 1 for the treatment.

4.7 Discussion
We had had observed:

• Potentially, a more capable player was more likely to
generate good quality labels.
• The CAM had improved quality of labels, given that

players had moderate capability.
• The effect of matching scheme on output quality was

greater than the effect of capability, for tasks that play-
ers had moderate capability.

From the observations, a limitation of the CAM was: When
difficulty of a task was extremely high or low, the capability
of players dominated the output quality, and the effect of
the CAM was negligible.

This limitation pointed out that matching the right task
to the right player was as important as matching the right
pair of players.

The experiment per se brought its own limitation. Sub-
jects were interacted with robots, not other subjects, and
there was only one type of robots. This experiment de-
sign restricted what we could conclude from data. The ex-
periment was more like testing if subjects would learn and
play the equilibrium strategy, and less like a user study of
the CAM. Despite the methodological imperfectness, the
promising results of this preliminary experiment showed that
the CAM is worthy of further investigation in larger-scale
experiments.

5. CONCLUSION
This paper proposes the capability-aligned matching (CAM)

for solving the poor quality problem that the output-agreement/
simultaneous-verification Games with a Purpose (GWAP)
would suffer from.

The analysis of an adverse selection model shows that the
CAM has two advantages over random matching. On cost

aspect, the information and collusion-proof rent, which are
used for increasing output quality, are reduced. On infor-
mational aspect, the agreement rate, which is the bounding
factor of verification speed, is increased.

This paper implements the Segmentation method, whose
source of capability information is demographic data, and
tests it in the experiments. The experiments suggest that
task-human matching is as important as human-human match-
ing.

All in all, the CAM is orthogonal to game rules, and
so could be seamlessly integrated into existing and future
output-agreement/simultaneous-verification GWAP for im-
proving output quality.
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ABSTRACT
Mechanism design studies how to design mechanisms that
result in good outcomes even when agents strategically re-
port their preferences. In traditional settings, it is assumed
that a mechanism can enforce payments to give an incen-
tive for agents to act honestly. However, in many Internet
application domains, introducing monetary transfers is im-
possible or undesirable. Also, in such highly anonymous
settings as the Internet, declaring preferences dishonestly is
not the only way to manipulate the mechanism. Often, it
is possible for an agent to pretend to be multiple agents
and submit multiple reports under different identifiers, e.g.,
by creating different e-mail addresses. The effect of such
false-name manipulations can be more serious in a mecha-
nism without monetary transfers, since submitting multiple
reports would have no risk.

In this paper, we present a case study in false-name-
proof mechanism design without money. In our basic set-
ting, agents are located on a real line, and the mechanism
must select the location of a public facility; the cost of an
agent is its distance to the facility. This setting is called
the facility location problem and can represent various sit-
uations where an agent’s preference is single-peaked. First,
we fully characterize the deterministic false-name-proof fa-
cility location mechanisms in this basic setting. By utilizing
this characterization, we show the tight bounds of the ap-
proximation ratios for two objective functions: social cost
and maximum cost. We then extend the results in two nat-
ural directions: a domain where a mechanism can be ran-
domized and a domain where agents are located in a tree.
Furthermore, we clarify the connections between false-name-
proofness and other related properties.
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1. INTRODUCTION

1.1 Background
Mechanism design has become an integral part of elec-

tronic commerce and a promising field for applying AI and
agent technologies. In particular, the celebrated Vickrey-
Clarke-Groves (VCG) mechanism for combinatorial auctions,
which is considered one crucial contribution of mechanism
design, has been applied to several domains. One of its
advantages is that it satisfies a property called strategy-
proofness; no agent ever benefits from misreporting her pref-
erence, regardless of the other agents’ strategies. The VCG
mechanism achieves this property by collecting an appropri-
ate amount of payment from each winner of the auction.

In several domains such as the Internet, however, imple-
menting payments is sometimes impossible mainly due to
security/banking issues. Moreover, there are several appli-
cation fields in which monetary transfers should not be intro-
duced due to ethical/legal considerations, including political
decision making or kidney exchanges. Thus, mechanisms
must be developed that satisfy strategy-proofness without
involving monetary transfers. Such mechanism design with-
out money is quite challenging and has attracted consider-
able attention among computer scientists (see [5, 10]).

Meanwhile, in such highly anonymous settings as the In-
ternet, reporting preference insincerely is not the only way to
manipulate a mechanism. Often, it is possible for an agent
to pretend to be multiple agents and participate in a mech-
anism multiple times by using different identifiers, e.g., by
creating different e-mail accounts. Since many Web applica-
tions require a valid e-mail address only, an agent can create
multiple e-mail address at practically no cost. Such strate-
gic behaviors called false-name manipulations have been dis-
cussed so far in the mechanism design field.

In environments in which payments can be made securely,
authenticating each identifier and collecting a participation
fee might discourage agents from using multiple identifiers.
Furthermore, in mechanisms with monetary transfers, adding
false identifiers is risky. For example, in an auction, the ma-
nipulator might have to pay a lot of money or buy unneces-
sary items by such false-name manipulation.

In contrast, such manipulations are more likely to occur
in a mechanism without monetary transfers, since submit-
ting multiple reports is less risky. For example, in voting,
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casting additional votes is unlikely to create disadvantages
for the manipulator. To the best of our knowledge, there
exist very few works on false-name manipulations in mecha-
nism design without money. One notable exception is a work
by Conitzer [4], which characterized anonymity-proof voting
rules (i.e., rules that satisfy false-name-proofness and volun-
tary participation). The obtained result is rather negative.
In essence, an anonymity-proof voting rule can take into
account voters’ preferences only when voters unanimously
prefers one candidate within two candidates that are chosen
at random. Furthermore, even if we only require strategy-
proofness, the Gibbard-Satterthwaite theorem states that
it is impossible to make a mechanism strategy-proof when
agents’ preferences are general (see [7]).

1.2 Our Results
In this paper, we present a case study in false-name-proof

mechanism design without money. Assuming that agents’
preferences are highly structured, we avoid falling into the
negative result in Conitzer [4], or in more general sense,
the Gibbard-Satterthwaite Theorem. We focus on facility
location problems and discuss how difficult it is to incentivize
agents to behave sincerely, even though they can use false
identifiers. This is the first work to deal with false-name
manipulations in facility location problems.

We discuss a facility location problem on a real line as a
basic setting and characterize deterministic false-name-proof
facility location mechanisms. Our characterization is in-
spired by Moulin’s characterization of strategy-proofness [6].
To simplify expositions and notations, we define the cost of
an agent as the distance between her location and a facility.
It is straightforward to extend this characterization to a do-
main with general single-peaked preferences. Additionally,
we establish the tight bounds of the approximation ratios
achieved by deterministic false-name-proof mechanisms for
two objective functions: social cost and maximum cost.

We then extend the results of the basic case in two fur-
ther directions. One is a domain of randomized mecha-
nisms, and the other is a facility location problem on a tree.
For randomized mechanisms, we show in Section 4.1 that
the left-right-middle mechanism, which was originally pro-
posed in Procaccia and Tennenholtz [8], satisfies false-name-
proofness. Furthermore, we show a lower bound of the ap-
proximation ratio for the social cost. On the other hand,
for the facility location problem on a tree, we characterize
deterministic false-name-proof mechanisms in Section 4.2.
Our characterization can be considered a refinement of the
result by Schummer and Vohra [9], in which they character-
ized deterministic strategy-proof mechanisms on a tree.

Furthermore, in Section 5, we clarified the connections be-
tween false-name-proofness and other related properties in
a facility location problem on a tree. We focused on popula-
tion monotonicity, group-strategyproofness, and anonymity-
proofness, which have been discussed in the literature of so-
cial choice and mechanism design. By utilizing our charac-
terization, we show that both population monotonicity and
anonymity-proofness are equivalent to false-name-proofness.
We also show that there exists a group-strategyproof mech-
anism which is not false-name-proof.

1.3 Related Works
Facility location problems have also been considered an

important famework of social choice due to the highly struc-

tured preferences of agents in the setting: single-peaked pref-
erences. There exist many application domains with such
single-peaked preferences. For example, in political deci-
sion making, an agent’s peak is her most preferred alter-
native. Moulin [6] characterized strategy-proof, Pareto effi-
cient, and anonymous facility location mechanisms on a real
line. Schummer and Vohra [9] extended Moulin’s results to
facility location problems on graphs.

Procaccia and Tennenholtz [8] presented a case study in
approximate mechanism design without money and estab-
lished tight bounds for the approximation ratio achieved by
strategy-proof facility location mechanisms on a real line.
They also proposed two extensions of facility location prob-
lems: a domain where two facilities must be located and a
domain where each agent owns multiple locations. Alon et
al. [1] discussed the maximum cost of strategy-proof facil-
ity location mechanisms on several network topologies. Guo
and Conitzer [5] is one of the most recent development of
approximate mechanism design without money for strategy-
proof resource allocations.

False-name manipulations have also been widely studied
in combinatorial auctions. Yokoo et al. [12] proposed a
condition where VCG becomes false-name-proof. Todo et
al. [11] characterized false-name-proof combinatorial auction
mechanisms. Besides combinatorial auctions, false-name-
proofness and its relatives have been discussed in other mech-
anism design fields, such as voting [4] and coalitional games [2].
In particular, Conitzer [4] proposed an extended property
called anonymity-proofness in voting and characterized
anonymity-proof voting rules.

2. PRELIMINARIES

2.1 Basic Model
In this paper, we deal with facility location problems in

which a mechanism locates one facility. Let n denote the
number of agents (identifiers) joining a mechanism and N
(|N | = n) the set of agents. Note that the number of agents
n is defined to be variable in N to discuss the change of the
number of agents joining a mechanism. Each agent i ∈ N
has a true location (or the most preferred location) xi on a
graph G. In this paper, we restrict our attention to peak-only
mechanisms, i.e., each agent reports only her most preferred
location. In a more general setting (e.g., voting), this can be
a quite strong restriction. However, in our setting, we can
assume any strategy-proof mechanism is peak-only, since the
peak location of each agent is her only private information.
The cost of an agent i is defined by the distance d(·, ·) be-
tween her true location and the location of a facility: if the
facility is located at y, the cost of agent i with location xi is
cost(xi, y) = d(xi, y). If a graph G is a real line, the distance
is defined as |xi − y|.

A (direct revelation, deterministic) facility location mech-
anism (or simply mechanism) is a function that maps a re-
ported location profile x = (x1, . . . , xn) by the set of agents
to a location of a facility y on a graph G. A mechanism
must locate a facility with respect to any number of agents
n, since we consider an environment where each agent may
use multiple identifiers (formally defined in Section 2.2). For
this reason, we define a mechanism f as a set of functions
(fn)n∈N, where each function fn is a mapping from a set
of location profiles reported by n identifiers to the graph.
For simplicity, we assume that a mechanism is anonymous,
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meaning that the obtained results are invariant under the
permutation of identifiers.

Definition 1 (Facility Location Mechanism). For
any natural number n ∈ N, a facility location mechanism f
assigns an outcome fn(x) to any reported location profile
x = (x1, . . . , xn) ∈ Gn:

f = (fn)n∈N, f
n : Gn → G.

In facility location problems, each agent reports her loca-
tion x′i, which is not necessarily her true location xi, to the
mechanism. However, in a strategy-proof mechanism, it is
guaranteed that each agent reports her true location xi to
the mechanism if she behaves to minimize her cost.

Definition 2 (Strategy-proofness). A mechanism
f is strategy-proof if ∀n ∈ N, ∀i ∈ N , ∀x−i, ∀xi, ∀x′i,
cost(xi, f(xi, x−i)) ≤ cost(xi, f(x′i, x−i)).

Here x−i denotes the reported location profile by agents
except i. That is, f(x′i, x−i) is the location of a facility when
agent i reports x′i and other agents report x−i. Definition 2
means that a mechanism is strategy-proof if for each agent,
reporting her true location is a dominant strategy; it mini-
mizes her cost regardless of the strategies of other agents.

Several strategy-proof mechanisms have been developed
for facility location problems. For a real line, one well-known
strategy-proof mechanism is the median mechanism, which
chooses the median location among the reported locations (if
the number of agents n is even, locates at the n/2-th smallest
location). To simplify the exposition and the notations, we
define a function med(·) that returns the median point for
a given profile of real numbers.

For the facility location problem on a real line, Moulin [6]
characterized strategy-proof mechanisms.

Theorem 1 (Moulin, 1980). A mechanism f is strategy-
proof, Pareto efficient, and anonymous if and only if for all
n ∈ N, there exist n− 1 real numbers αn

1 , αn
2 , . . . , αn

n−1 such
that for all reported location profile x = (x1, . . . , xn) ∈ Rn,

f(x) = med(x1, . . . , xn, αn
1 , . . . , αn

n−1). (1)

In the case of a real line, Pareto efficiency requires that a
facility be located at a point between the leftmost and right-
most locations among the reported locations. Theorem 1
means that any Pareto efficient, anonymous, and strategy-
proof mechanism can be represented by appropriately set-
ting the parameters in Eq. (1). Indeed, the median mecha-
nism is represented by setting these parameters as follows:

∀n ∈ N, ∀m ∈ {1, . . . , n− 1}, αn
m =

{
−∞ if m is odd

∞ if m is even.

Also, the leftmost mechanism, which locates a facility at
the smallest location among the reported locations, is rep-
resented by setting all parameters to −∞.

We focus on a worst case analysis to consider the perfor-
mance of the mechanisms. This analysis is commonly used
in the literature of (algorithmic) mechanism design, espe-
cially by computer scientists. We introduce two objective
functions: social cost and maximum cost. The social cost is
the sum of the costs of all agents. A solution minimizing
the social cost is also called a minisum solution. On the

other hand, the maximum cost is defined by the cost of the
agent whose cost is the highest among all agents. A solution
minimizing the maximum cost is also called a minimax so-
lution, which achieves an equitable location. We now define
the approximation ratios of a mechanism.

Definition 3 (Approximation Ratio). The approx-
imation ratios of a mechanism f for the social cost and the
maximum cost are defined as follows:

max
x

∑
i∈N cost(xi, f(x))

miny∈G

∑
i∈N cost(xi, y)

,

max
x

maxi∈N cost(xi, f(x))

miny∈G maxi∈N cost(xi, y)
.

2.2 False-name-proofness
In this subsection, we formalize false-name-proofness in

facility location problems. First, we introduce some nota-
tions for discussing false-name manipulations.

Let ϕi denote the set of identifiers used by agent i. This
is also the private information of agent i. Let xϕi denote
a location profile reported by a set of identifiers ϕi, and let
x−ϕi denote a location profile reported by identifiers except
for ϕi. In this definition, xϕi is considered a false-name
manipulation by i.

Definition 4 (False-name-proofness). A mechanism
f is false-name-proof if ∀n ∈ N, ∀i ∈ N , ∀x−ϕi , ∀xi, ∀ϕi,
∀xϕi , cost(xi, f(xi, x−ϕi)) ≤ cost(xi, f(xϕi , x−ϕi)).

In other words, a mechanism is false-name-proof if for each
agent, reporting her true location by using a single identifier
is a dominant strategy, even though she can use multiple
identifiers. The following example shows that the median
mechanism on a real line is not false-name-proof: an agent
can reduce her cost by using multiple identifiers.

Example 1. Consider the median mechanism on a real line
and N = {1, 2, 3}. Assume that x1 = 1, x2 = 2, and x3 =
3. If they report their locations truthfully, the mechanism
locates a facility at 2. However, if agent 1 adds two false
identifiers and reports xϕ1 = (1, 1, 1), the mechanism locates
a facility at 1. By this false-name manipulation, agent 1 can
strictly reduce her cost.

3. BASIC RESULTS

3.1 Characterization Theorem
Now we are ready to show our characterization theorem

of false-name-proof mechanisms on a real line. More pre-
cisely, we provide a necessary and sufficient condition for
a mechanism to be false-name-proof, Pareto efficient, and
anonymous. Lemmas 1 and 2 prove the theorem.

Theorem 2. A mechanism f is false-name-proof, Pareto
efficient, and anonymous if and only if there exists a real
number α such that for all n ∈ N and for all reported location
profiles x = (x1, . . . , xn) ∈ Rn,

f(x) = med(x1, . . . , xn, α, . . . , α︸ ︷︷ ︸
n−1

). (2)

Lemma 1. If a mechanism f satisfies Eq. (2), f is false-
name-proof, Pareto efficient, and anonymous.
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Proof. If f satisfies Eq. (2), it also satisfies Eq. (1).
Thus, f is Pareto efficient and anonymous. Therefore, we
now show that f is false-name-proof if it satisfies Eq. (2).

Let us discuss false-name manipulations by agent i and
show that no false-name manipulation reduces her cost. Let
lt(x−i) denote the leftmost location in a location profile x−i

reported by agents except i, and let rt(x−i) denote the right-
most location. If lt(x−i) ≤ α ≤ rt(x−i) holds, f always
locates a facility at α regardless of i’s strategy.

We prove that f is false-name-proof if α < lt(x−i). The
same argument can be applied if rt(x−i) < α from the sym-
metry. We show that agent i cannot reduce her cost by false-
name manipulations in each of the following three cases: (i)
xi ≤ α, (ii) α < xi ≤ lt(x−i), and (iii) lt(x−i) < xi.

Case (i) If i’s true location xi satisfies xi ≤ α, f locates a
facility at α if i reports truthfully. In this situation,
reporting xi′ > α by all false identifiers i′ ∈ ϕi are
the only false-name manipulations that affect the out-
come. However, by these manipulations, the outcome
becomes strictly further away from xi.

Case (ii) If xi satisfies α < xi ≤ lt(x−i), f locates a facility
at xi when agent i reports her true location. In this
case, agent i has no incentive to use false identifiers.

Case (iii) If xi satisfies lt(x−i) < xi, f locates a facility
at lt(x−i) if i reports truthfully. In this situation, re-
porting xi′ < lt(x−i) by all false identifiers i′ ∈ ϕi are
the only false-name manipulations that affect the out-
come. However, by these manipulations, the outcome
moves further away from xi.

Lemma 2. If a mechanism f is false-name-proof, Pareto
efficient, and anonymous, f satisfies Eq. (2).

Proof. Since false-name-proofness is a generalization of
strategy-proofness, if f is false-name-proof, Pareto efficient,
and anonymous, then for all n ∈ N, f has n− 1 parameters
αn

1 , αn
2 , . . . , αn

n−1 satisfying αn
1 ≤ . . . ≤ αn

n−1 and locates a
facility at the median point defined by Eq. (1) (from Theo-
rem 1). To prove this lemma, it suffices to show that there
exists α ∈ R such that for all n ≥ 2,

αn
1 = . . . = αn

n−1 = α. (3)

We prove this lemma by induction on n. For n = 2, Eq. (3)
obviously holds since there exists only one parameter α2

1.
We suppose that Eq. (3) holds for all n ≤ k and show that

it also holds for n = k + 1. Assuming αk
1 = . . . = αk

k−1 = α

holds, we prove αk+1
1 = . . . = αk+1

k = α also holds.

First, assume that α < αk+1
1 holds and derive a contradic-

tion. Now consider that a location profile x = (x1, . . . , xk)
such that α < x1 < . . . < xk < αk+1

1 holds. In this case,
the outcome of the mechanism f is f(x) = x1. If an agent
k whose location is the largest among all k agents adds an-
other identifier k′ and reports xϕk = (xk, xk), then the out-
come changes to f(xϕk , x−k) = xk. By this manipulation,
k’s cost decreases from xk − x1 to 0. This contradicts the
assumption of false-name-proofness. From symmetry, the
same argument can be applied to αk+1

k < α.
Next, assume that there exists j ∈ {1, . . . , k − 1} such

that αk+1
j ≤ α < αk+1

j+1 holds and derive a contradiction.
Consider a location profile x = (x1, . . . , xk) such that α <
x1 < . . . < xk < αk+1

j+1 . In this case, we have f(x) = x1. If

agent l = k − j (whose location is the (k − j)-th smallest
among the k agents) reports xϕl = (xl, xl), the outcome
becomes f(xϕl , x−l) = xl. By this manipulation, l’s cost
decreases from xl − x1 to 0. This contradicts false-name-
proofness. From symmetry, we can apply the same argument
to αk+1

j < α ≤ αk+1
j+1 .

Theorem 2 means that f is false-name-proof if and only
if it has a fixed parameter α regardless of the number of
agents and locates a facility based on the following rule.
Given a reported location profile x, f locates a facility at
α if α is between the smallest and largest locations among
the reported locations; otherwise, it locates at the closest
location to α among the reported locations.

Since we can obtain the leftmost and the rightmost mech-
anism by setting the parameter α to −∞ and ∞, respec-
tively, both mechanisms satisfy false-name-proofness. How-
ever, since the median mechanism cannot be represented in
this form, it does not satisfy false-name-proofness. In this
way, Theorem 2 allows us to easily verify if a mechanism
satisfies false-name-proofness.

One might think that a mechanism, which always locates
a facility at a pre-defined point regardless of the agents’
reports, satisfies false-name-proofness. This is true; there is
no incentive for agents to participate at all. Even though
it is false-name-proof, we cannot represent it in the form of
Theorem 2 because it is not Pareto efficient. However, it
is straightforward to obtain the following corollary that can
deal with such non-efficient mechanisms.

Corollary 1. A mechanism f is false-name-proof and
anonymous if and only if there exist three real numbers αL, α,
αR(αL ≤ α ≤ αR) such that for all n ∈ N and for all re-
ported location profiles x = (x1, . . . , xn) ∈ Rn,

f(x) = med(x1, . . . , xn, αL,

n−1︷ ︸︸ ︷
α, . . . , α, αR). (4)

The additional parameters αL and αR define the range of
the mechanism; the mechanism described in Corollary 1 al-
ways locates a facility in the range [αL, αR]. Indeed, Eq. (4)
can describe the above mechanism by defining the parame-
ters as αL = αR = α. Clearly, if we set these two parameters
as −∞ and ∞, respectively, we obtain Theorem 2.

Procaccia and Tennenholtz [8] extended the facility loca-
tion problem on a real line to a domain where each agent i
owns ωi locations xi = (xi,1, . . . , xi,ωi). The domain is still
single-peaked; when an agent hopes to minimize the sum of
distances to her locations, her peak is the median point of
her locations. As stated in Section 1.2, we can easily ap-
ply Theorem 2 to general single-peaked domains. Thus, we
obtain the following corollary.

Corollary 2. A mechanism f for the multiple locations
setting is false-name-proof, Pareto efficient, and anonymous
if and only if there exists a real number α such that for all
n ∈ N, for all ωi|i∈N , and for all reported location profiles
x = (x1, . . . ,xn) ∈ Rn,

f(x) = med(med(x1), . . . , med(xn),

n−1︷ ︸︸ ︷
α, . . . , α). (5)

Procaccia and Tennenholtz [8] developed a valuable mech-
anism, which creates ωi copies of the median of each agent i
and returns the median point among all copies. In their set-
ting, the number of locations ωi owned by agent i is public.
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Table 1: Summary of the approximation ra-
tios achieved by deterministic strategy-proof/false-
name-proof mechanisms on a real line. UB and LB
indicate upper and lower bounds. SP and FNP in-
dicate strategy-proof and false-name-proof.

SP FNP

Social Cost
UB: 1 UB: O(n) (Thm. 4)
LB: 1 LB: Ω(n) (Thm. 3)

Maximum Cost
UB: 2 ([8]) UB: 2
LB: 2 ([8]) LB: 2 (Thm. 5)

This means that the domain is not anonymous; a change of
agents’ location profiles affects the outcome. In contrast, we
deal with anonymous mechanisms in the above corollary by
assuming that ωi is the private information of i.

3.2 Approximation Ratios
In this subsection, we analyze the performance of false-

name-proof mechanisms from the viewpoint of approximate
mechanism design without money [8]. Table 1 summarizes
the results of this section. Our results, shown in the right-
most column, provide tight bounds of the approximation
ratios for both social and maximum costs.

3.2.1 Social Cost
We first consider social cost as an objective function and

show the lower bound of the approximation ratio achieved
by deterministic false-name-proof mechanisms for it in The-
orem 3. Theorem 4 shows that the lower bound is tight.

Theorem 3. Any deterministic false-name-proof mecha-
nism has an approximation ratio of Ω(n) for social cost.

Proof. First, consider a location profile x = (0, 1) and
assume that f(x) = y ∈ R. If y ̸= 0, then consider an-
other location profile x′ = (0, . . . , 0, 1) where |x′| = n. From
false-name-proofness, y′ = f(x′) must satisfy |y′| ≥ |y| =
cost(0, f(x)). In this case, the social cost with respect to
x′ becomes (n − 1)|y′| + |y′ − 1| ≥ (n − 1)|y| = (n − 1) ·
cost(0, f(x)), which depends on the number of agents n. If
y = 0, we can apply a similar argument by considering a
location profile x′ = (0, 1, . . . , 1).

Theorem 4. The leftmost mechanism has an approxima-
tion ratio of n − 1 for the social cost.

Proof. The leftmost mechanism is a false-name-proof
mechanism whose parameter α is defined as −∞. For any
reported location profile x, the approximation ratio of the
leftmost mechanism for the social cost with respect to x is
defined as

∑
i ̸=1 |xi − x1|/∑i̸=⌈n/2⌉ |xi − x⌈n/2⌉|. Here the

denominator is the social cost of the median mechanism that
has an approximation ratio of 1 for social cost. This ratio is
at most∑

i ̸=1 |xn − x1|∑
i=1,n |xi − x⌈n/2⌉| =

(n− 1)(xn − x1)

xn − x1
= n− 1,

and we have equality if x satisfies x1 < x2 = . . . = xn.

3.2.2 Maximum Cost
In contrast to Section 3.2.1, we consider maximum cost as

an objective function in this subsection. First, we show the
lower bound of an approximation ratio for maximum cost.

Theorem 5. Any deterministic false-name-proof mecha-
nism has an approximation ratio of at least 2 for maximum
cost.

The proof is straightforward. It was shown by Procaccia
and Tennenholtz [8] that any deterministic strategy-proof
mechanism has an approximation ratio of at least 2 for
maximum cost. Since false-name-proofness implies strategy-
proofness, the lower bound does not decrease if we require
false-name-proofness.

As stated in Section 3.1, the leftmost mechanism is false-
name-proof. Furthermore, the leftmost mechanism has an
approximation ratio of 2 for maximum cost by [8]. This
implies that the bound obtained in Theorem 5 is tight.

4. EXTENDED RESULTS
In Section 3, we showed a basic result on false-name-proof

mechanisms on a real line. We then extend the result in
two directions. In Section 4.1, we discuss the bound of ap-
proximation ratios achieved by randomized false-name-proof
mechanisms. In Section 4.2, we characterize deterministic
false-name-proof mechanisms on a tree.

4.1 Randomized Mechanisms
Our results shown in Section 3.2 suggest the difficulty of

designing a deterministic false-name-proof mechanism that
achieves good approximation ratios, even if the domain is
a real line. One natural approach to this problem is to use
randomized mechanisms, which return a probability distri-
bution over a real line for a given location profile. In this
subsection, we discuss whether allowing randomization en-
ables mechanisms to achieve better approximation ratios.

First, let us introduce a mechanism called left-right-middle,
which was developed by Procaccia and Tennenholtz [8].

Mechanism 1 (Left-Right-Middle). Given a location
profile x = (x1, . . . , xn), the left-right-middle mechanism lo-
cates a facility at x1 with probability 1/4, xn with probability
1/4, and (x1 + xn)/2 with probability 1/2.

Note that the cost of an agent is defined as the expected
distance from the location. Also, approximation ratios can
be redefined over a distribution. Now we confirm that the
left-right-middle mechanism is false-name-proof and calcu-
late the approximation ratio for social cost.

Theorem 6. The left-right-middle mechanism is false-
name-proof and has an approximation ratio of n/2 for social
cost.

Proof. First we show that the left-right-middle mecha-
nism is false-name-proof. The mechanism defines the out-
come depending only on the leftmost and rightmost loca-
tions. Thus, from a similar argument for strategy-proofness,
no agent can be better off by any false-name manipulations.

We now turn to proving that the left-right-middle mecha-
nism is n/2-approximation. For any reported location profile
x, the approximation ratio of the left-right-middle mecha-
nism for social cost with respect to x is defined as

1
4

∑
i |xi − x1|+ 1

4

∑
i |xi − xn|+ 1

2

∑
i |xi − x1+xn

2
|∑

i |xi − x⌈n/2⌉| .

This is at most
1
4
∑

i∈N (xi−x1)+ 1
4
∑

i∈N (xn−xi)+
1
2
∑

i∈N (xn− x1+xn
2 )∑

i=1,n |xi−x⌈n/2⌉|
=

n
2 (xn−x1)

xn−x1
= n

2
,
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and equality holds if x satisfies x1 < x2 = . . . = xn.

This shows us that with randomization, we can slightly
improve the social cost than with deterministic mechanisms,
e.g., the leftmost mechanism, when the number of agent n
is large. However, from an algorithmic point of view, the
performances of these mechanisms are essentially the same:
both have an approximation ratio of O(n) for social cost.
Thus, we next discuss if there exist randomized false-name-
proof mechanisms which have an essentially better approxi-
mation ratio for social cost. We show a lower bound of the
approximation ratio for social cost and answer the question.

Theorem 7. Any randomized false-name-proof mechanism
has an approximation ratio of Ω(n) for social cost.

Proof. Consider arbitrary randomized false-name-proof
mechanism f . Let x = (0, 1) be a location profile when
there are two agents and let P = f(x) be the outcome dis-
tribution over R. Intuitively, cost(0, P ) + cost(1, P ) ≥ 1
holds (formally proved in [8], Lemma 2.6). Thus, we assume
cost(1, P ) ≥ 1/2 without loss of generality.

Then, we consider the case with n agents 1, . . . , n and the
reported location profile x′ = (0, 1, . . . , 1). Let P ′ = f(x′)
be the outcome distribution. Since f is false-name-proof,
cost(1, P ′) ≥ cost(1, P ). Thus, the social cost is at least
(n − 1)/2. On the other hand, the optimal solution with
respect to the profile x′ is to locate a facility at 1, in which
the social cost is 1. Thus, the ratio is (n− 1)/2.

That is, even if randomization is allowed, the approxima-
tion ratio of a false-name-proof mechanism for social cost
ever depends on the number of agents n.

In contrast to social cost, we can obtain a tight bound
for maximum cost from the result of Procaccia and Tennen-
holtz [8]. They showed that the left-right-middle mechanism
achieves an optimal approximation ratio of 3/2 for maximum
cost. Furthermore, as shown in Theorem 6, the left-right-
middle is false-name-proof. Thus, the tight bound of the
approximation ratio for maximum cost is 3/2.

4.2 Location on a Tree
Several application domains of facility locations have much

more complicated structures, i.e., graph structure, than a
simple line. Thus, facility location problems on a graph are
natural extensions of the 1-dimensional case to such appli-
cation domains, as discussed in Section 3. One simple struc-
ture of graphs is a tree [1, 9]. Therefore, we characterize
deterministic false-name-proof mechanisms on a tree.

First, let us introduce additional notations. Let G be a
tree, which is a finite connected graph composed of the union
of a finite number of curves of finite length and contains no
cycle. Let L(G) ⊂ G be a set of leaves of G. For any
two points p, q ∈ G, let [p, q] denote the path between p, q.
Note that we can define a unique path [p, q] for all p, q since
G contains no cycle. Also, let d(p, q) denote the distance
between two points p, q, which is defined as the path-length
between the two points. When a facility is located at y ∈ G,
the cost of an agent i with true location xi ∈ G is defined
as cost(xi, y) = d(xi, y).

Although each agent still has a peak on the tree G, this
setting is no longer a single-peaked domain because we can-
not order all the points on the tree G according to any linear
order in which every agent has a single-peaked preference.

Thus, we cannot straightforwardly apply our result obtained
in Section 3.1 to this setting.

Let us introduce a well-known (group) strategy-proof mech-
anism, which is an generalization of the median mechanism
on a real line. We refer to it as the tree-median mechanism.

Mechanism 2 (Tree-Median). A tree-median mech-
anism on a tree G has a fixed parameter (root) β ∈ G and,
for all n and for all reported location profiles, starts from
β. As long as the current point has a subtree that contains
at least n/2 locations, it smoothly moves down this subtree.
When it reaches a point that does not have such a subtree,
locates a facility at this point.

As stated in Alon et al. [1], the tree-median mechanism
achieves the optimal approximation ratio for social cost.
However, obviously it is not false-name-proof, since it be-
haves in the same manner as the original median mechanism
when all agents are on a single path.

We then characterize false-name-proof mechanisms on a
tree. First, to simplify notations, let us define a Pareto
efficient set with respect to a given location profile.

Definition 5 (Pareto Efficient Set). For a tree G
and for a location profile x = (x1, . . . , xn) ∈ Gn, a set of
points PE(x) ⊆ G is said to be Pareto-efficient for x if ∀y ∈
PE(x), ∀y′ ∈ G, y′ does not dominate y for x.

Here, we say y′ ∈ G dominates y ∈ G for a location pro-
file x if ∀i ∈ N, d(xi, y) ≤ d(xi, y

′) and ∃j ∈ N, d(xj , y) <
d(xj , y

′). By using this notation, we define a class of mech-
anisms on a tree called Pareto-improving relocation rules.

Mechanism 3 (Pareto-Improving Relocation).
A mechanism f on a tree G is a Pareto-improving reloca-

tion rule if it has a fixed point β ∈ G such that for all n ∈ N
and for all reported location profiles x = (x1, . . . , xn) ∈ Gn,

f(x) = arg min
z∈PE(x)

d(z, β). (6)

Now we show our characterization theorem; a class of
false-name-proof, Pareto efficient, and anonymous mecha-
nisms consists exactly of Pareto-improving relocation rules.
It is shown separately in Lemmas 3 and 4.

Theorem 8. For any tree G, a mechanism f is false-
name-proof, Pareto efficient, and anonymous if and only if
it is a Pareto-improving relocation rule.

Lemma 3. If a mechanism f for a tree G is false-name-
proof, Pareto efficient, and anonymous, then it is a Pareto-
improving relocation rule.

Proof. Consider a deterministic mechanism f that is
false-name-proof, Pareto efficient, and anonymous. Since
f is deterministic, it returns a point with probability 1 for
a reported location profile. Now choose a location profile
xL that exactly contains every leaf L(G) of the tree G.
We then prove that f is a Pareto-improving relocation rule
with a parameter β = f(xL). More precisely, we show that
f(x) = arg minz∈PE(x) d(z, β) holds for the above β = f(xL)
and any location profile x.

First, we show that f(xL, x) = β holds for all x. Sup-
pose not; there exists at least one location profile x such
that f(xL, x) ̸= β. Here, let f(xL, x) indicate an outcome
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Figure 1: Sequence p1, p2, . . . , pk in the proof of
Lemma 3. Note that x = (x1, x2). False-name-
proofness implies f(x, p1, p2, . . . , pk) = f(x). However,
it contradicts Eq. (7).

location for an input location profile that is a joint of two
location profiles, xL and x. From Pareto efficiency, there
exists at least one location xL

i in the profile xL such that
d(xL

i , f(xL, x)) < d(xL
i , β). Thus, when xL is a true loca-

tion of the agents, agent i at xL
i can strictly reduce her cost

by reporting (xL
i , x) under false identifiers. This contradicts

the assumption that f is false-name-proof.
Next, let us show that

∀x such that β ∈ PE(x), f(x) = β. (7)

Suppose not; there exists at least one profile x such that
β ∈ PE(x) ∧ f(x) ̸= β. From Pareto efficiency, there exists
at least one location xi in the profile x such that d(xi, β) <
d(xi, f(x)). Thus, when x is a true location profile, agent i
at xi can strictly reduce her cost by reporting (xi, x

L). This
contradicts the assumption that f is false-name-proof.

Finally, let us show that

∀x such that β ̸∈ PE(x), f(x) = γ (8)

where γ = arg minz∈PE(x) d(z, β). Suppose not; there exists
at least one profile x such that β ̸∈ PE(x)∧ f(x) ̸= γ. From
Pareto efficiency, f(x) ∈ PE(x) holds. Then we can move
from γ toward β with distance d(γ, f(x))−ϵ and refer to the
point as p1. For this p1, there exists at least one location
xi such that ∀z ∈ [γ, p1], d(xi, z) < d(xi, f(x)). If f(x, p1) ∈
PE(x) \ f(x), there exists at least one agent who strictly
prefers f(x, p1) to f(x). She can reduce her cost by adding a
location p1 under a false identifier. Also, if f(x, p1) ∈ (γ, p1],
agent i at xi has an incentive to report (xi, p

1). Note that
(γ, p1] indicates a half-open interval. Thus, from false-name-
proofness, f(x, p1) = f(x) must hold.

If β ∈ (γ, p1], the above equation contradicts Eq. (7). If
β ̸∈ (γ, p1], we can construct a finite sequence of points
p1, p2, . . . , pk by applying the same argument (see Fig. 1)
and obtain β ∈ (γ, pk] ∧ f(x, p1, . . . , pk) = f(x) ̸= β. This
contradicts Eq. (7).

Lemma 4. If a mechanism f for a tree G is a Pareto-
improving relocation rule, then it is false-name-proof, Pareto
efficient, and anonymous.

Proof. Clearly, a Pareto-improving relocation rule is
Pareto efficient and anonymous. To prove this lemma, it
suffices to show that f is false-name-proof if it is a Pareto-
improving relocation rule.

From the definition, a Pareto-improving relocation rule f
has a fixed parameter β ∈ G. Let us fix a location profile
x−i and consider false-name manipulations by i. If β ∈
PE(x−i) holds, f always locates a facility at β regardless
of i’s strategy and satisfies false-name-proofness. Then we

focus on showing that no false-name manipulation strictly
reduces her cost when β ̸∈ PE(x−i) holds.

Let us define a point γ = arg minz∈PE(x−i) d(z, β). From
the definition of a Pareto-improving relocation rule, we have
f(xϕi , x−i) ∈ [γ, β] for any xϕi and f(xi, x−i) =
arg minz∈[γ,xi] d(z, β) for any xi. This means that f(xi, x−i)
is the closest point to xi in the range [γ, β]. Thus, we obtain
d(xi, f(xi, x−i)) ≤ d(xi, f(xϕi , x−i)) for any xi and xϕi .

Theorem 8 can be considered an extension of the result
by Schummer and Vohra [9], which characterized the class
of strategy-proof and Pareto efficient mechanisms on a tree.
Now let us introduce the relationship between these two
characterizations. We assume in this paper that mechanisms
are anonymous, while [9] did not. With the assumption of
anonymity, mechanisms characterized in [9] behave in the
same manner as those described in Eq. (1), when all agents
are on a single path. To achieve false-name-proofness when
all agents are on a single path, each “partial”mechanism de-
fined on each single path must be described in Eq. (2); for
any two leaves l1, l2 ∈ L(G), the path [l1, l2] has a fixed pa-
rameter αl1,l2 ∈ [l1, l2]. Here, as discussed in [9], these par-
tial mechanisms must be self-consistent in some way; they
must agree on the intersection of their paths. This consis-
tency requires that each parameter of each partial mecha-
nism must be defined as the closest point to a fixed β ∈ G
on the path, which is identical to Mechanism 3.

5. DISCUSSIONS
In the literature of social choice and mechanism design,

several properties have been introduced. In this section,
we clarify the connections between false-name-proofness and
three other properties in facility location problems on a tree.

5.1 Population Monotonicity
Population monotonicity in public goods environments

was originally identified in Ching and Thomson [3] Infor-
mally, population monotonicity requires that the arrival of a
new agents affects all agents initially present in the same di-
rection. However, with the assumption of Pareto efficiency,
we can define the property in a more restricted way:

Definition 6 (Population Monotonicity). A mech-
anism f is population monotonic if ∀n ∈ N, ∀x, ∀j ∈ N ,
∀i ̸= j, cost(xi, f(x)) ≥ cost(xi, f(x−j)).

This is somehow reminiscent of false-name-proofness. Both
deal with the change of the number of agents. The following
theorem shows the equivalence of these two properties.

Theorem 9. Under the assumptions of Pareto efficiency
and anonymity, a mechanism f is population monotonic if
and only if it is false-name-proof.

Proof. Ching and Thomson [3] gave a characterization
of population monotonic mechanisms under the assumption
of Pareto efficiency. Their characterization is identical to our
characterization of false-name-proofness (Theorem 8).

Note that without the assumption of Pareto efficiency,
false-name-proofness and population monotonicity do not
coincide even in the case of a real line. Consider the fol-
lowing mechanism for a real line: if n < 3, then locate a
facility at the point that is slightly smaller than the left-
most reported location, otherwise use the leftmost mecha-
nism. This mechanism is population monotonic, although it
is not false-name-proof (not even strategy-proof).
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5.2 Group-strategyproofness
Group-strategyproofness has been widely discussed in eco-

nomics. A mechanism is group-strategyproof if for any loca-
tion profile and any coalition of agents, there is no joint de-
viation of the coalition such that every agent in the coalition
strictly reduces her cost. For the connection to false-name-
proofness, we show the next theorem. For space reasons, we
omit the proof.

Theorem 10. Under the assumptions of Pareto efficiency
and anonymity, any false-name-proof mechanism f is group-
strategyproof.

It has been known that the tree-median mechanism is
group-strategyproof. However, as stated in Section 4.2, it
is not false-name-proof. In other words, the class of false-
name-proof mechanisms is a strict subset of the class of
group-strategyproof mechanisms under the assumptions of
Pareto efficiency and anonymity.

5.3 Anonymity-proofness
Anonymity-proofness, which was first proposed by

Conitzer [4], is an extension of false-name-proofness. First,
to define anonymity-proofness, we introduce the notion of
participation. A mechanism f satisfies participation if ∀n ∈
N, ∀i ∈ N , ∀x−i, ∀xi, cost(xi, f(xi, x−i)) ≤ cost(xi, f(x−i)).
That is, for each agent, it never hurts her to join the mech-
anism as long as she behaves sincerely.

Definition 7 (Anonymity-proofness). A mechanism
f is anonymity-proof if it is false-name-proof and satisfies
participation.

The next theorem shows the equivalence of anonymity-
proofness and false-name-proofness.

Theorem 11. Under the assumptions of Pareto efficiency
and anonymity, a mechanism f is anonymity-proof if and
only if f is false-name-proof.

Proof. From the definition of anonymity-proofness, f is
false-name-proof if it is anonymity-proof. To prove this the-
orem, it suffices to show that f satisfies participation if it
is false-name-proof. From Theorem 8, a false-name-proof f
is a Pareto-improving relocation rule; it has a parameter β.
Now let us fix the location profile x−i reported by agents
except i and focus on i’s strategy.

Let us define γ = arg minz∈PE(x−i) d(z, β). Note that
f(x−i) = γ holds from the definition of the Pareto-improving
relocation rule. If PE(xi, x−i)∩(γ, β] = ∅ holds, f always lo-
cates a facility at γ regardless whether agent i participates.
Thus, f satisfies participation.

If PE(xi, x−i) ∩ (γ, β] ̸= ∅ holds, we can find a point γ′

such that γ′ = arg minz∈PE(xi,x−i) d(z, β)∧γ′ ∈ (γ, xi]. Here

f(xi, x−i) = γ′ holds from the definition of Pareto-improving
relocation rule. Thus, we obtain cost(xi, f(x−i)) = d(xi, γ)
> d(xi, γ

′) > cost(xi, f(xi, x−i)), and f satisfies participa-
tion.

6. CONCLUSIONS AND FUTURE WORKS
In this paper, we presented a case study of false-name-

proof mechanism design without money by dealing with fa-
cility location problems. We first characterized determinis-
tic false-name-proof mechanisms on a real line and estab-
lished the tight bounds of approximation ratios. We then

discussed the approximation ratios achieved by randomized
false-name-proof mechanisms. Also, we characterized de-
terministic false-name-proof mechanisms on a tree. Fur-
thermore, we clarified the connections between false-name-
proofness and other related properties.

We outline our future direction of false-name-proof mech-
anism design without money. To the best of our knowl-
edge, there exists no work that discussed the effect of false-
name manipulations in private goods environments without
monetary transfers, e.g., resource allocations [5]. Intuitively,
false-name manipulations must become much more powerful
strategic behaviors in such environments. We would like to
find a solution to prevent false-name manipulations, eval-
uate it using techniques of approximate mechanism design
without money, and characterize the solutions.
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ABSTRACT
This paper studies the problem of majority-rule-based collective
decision-making where the agents’ preferences are represented by
CP-nets (Conditional Preference Networks). As there are exponen-
tially many alternatives, it is impractical to reason about the indi-
vidual full rankings over the alternative space and apply majority
rule directly. Most existing works either do not consider compu-
tational requirements, or depend on a strong assumption that the
agents have acyclic CP-nets that are compatible with a common or-
der on the variables. To this end, this paper proposes an efficient
SAT-based approach, called MajCP (Majority-rule-based collec-
tive decision-making with CP-nets), to compute the majority win-
ning alternatives. Our proposed approach only requires that each
agent submit a CP-net; the CP-net can be cyclic, and it does not
need to be any common structures among the agents’ CP-nets. The
experimental results presented in this paper demonstrate that the
proposed approach is computationally efficient. It offers several or-
ders of magnitude improvement in performance over a Brute-force
algorithm for large numbers of variables.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms, Design

Keywords
CP-nets; Voting; Preference aggregation; Majority rule

1. INTRODUCTION
Group decision making where a collective decision needs to be

derived from individual preferences has been an active area of re-
search [1]. In particular, various aggregation rules and voting pro-
cedures have been developed as group decision-making mecha-
nisms [9]. However, the decision-making process tends to become
much more complex when the attributes of the domain are inter-
dependent. As an example, a research group plan to order several
PCs and the group members need to decide on a standard group
PC configuration. The decisions are not independent, because, per-
haps, the preferred operating systems may depend on the given pro-
cessor type. For instance, “I prefer to choose WinXP operating

Cite as: Majority-rule-based preference aggregation on multi-attribute
domains with CP-nets, Minyi Li, Quoc Bao Vo and Ryszard Kowalczyk,
Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.), May,
2–6, 2011, Taipei, Taiwan, pp. 659-666.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

system rather than Linux if an Intel processor is given.” Hence,
we cannot decide on the issues separately. Moreover, in many
real world decision-making problems, the number of alternatives
is exponential in the number of domain variables. The prohibitive
size of such combinatorial domain makes it impractical to represent
preference relations explicitly.

In this paper, we investigate the theory of CP-nets as a formal
model for representing and reasoning with the agents’ preferences.
There are some preference relations can not be modelized by CP-
nets and its variants. For instance, Domshlak et al. [5] compare
compare the expressive power of soft constraints and CP-nets and
study several examples in which the preference relations can not
be represented by CP-nets. However, CP-nets are quite commonly
used and to some extent, representative of a variety of languages.
Moreover, CP-nets and its variants can be used to specify individual
preference relations in a relatively compact, intuitive, and struc-
tured manner, making it easier to encode human preferences and
supports the decision-making systems in real world applications.

In this paper, given that the individual preferences have been
elicited and represented as CP-nets, the problem of majority-rule-
based preference aggregation will be addressed. Recent work on
the complexity of computing dominance relations shows that dom-
inance testing1 for an arbitrary CP-net is PSPACE-complete [6].
However, computing the majority winning alternatives with mul-
tiple agents’ CP-nets may furthermore require dominance testing
on each pair of alternatives on each individual CP-net. For exam-
ple, having 10 binary variables, each involved agent would need to
compare

(210

2

)
= 523776 pairs of alternatives. This problem is

likely to be even harder than NP or coNP problems. The problem
of computing aggregation rules from a collection of CP-nets has
been studied in the literature, e.g.,[8, 10]. In particular, Lang and
Xia [8] consider decomposition with voting rules assuming that the
agents’ preferences can be represented with acyclic CP-nets being
compatible with a common order on the variables. However, such
an assumption is unlikely to be applicable in most real world appli-
cations [11]. Xia et al. [12] partially addressed this shortcoming by
introducing an order-independent sequential composition of voting
rules. In their framework, the profile is still required to be compat-
ible with some order on the variables, but this order is not specified
in the definition of the rule. Nevertheless, the domain restriction
by this order-independent sequential composition of voting rules
is still severe: there must exist some (unspecified) directed acyclic
graph that the profile is compatible with. Xia et al. [11] gener-
alize the earlier, more restrictive method, proposing an aggrega-
tion methodology that does not require any relationship among the

1A dominance testing, given an individual CP-net and two alterna-
tives o and o′, tests whether o is preferred to o′ according to the
preferences induced by that CP-net.
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agents’ CP-net structures. However, the performance of their algo-
rithm also depends on the consistency among the structures of the
agents’ CP-nets.

To this end, our paper addresses the above drawbacks, propos-
ing an efficient SAT-based approach, called MajCP (Majority-rule-
based collective decision-making with CP-nets), to compute the
majority winning alternatives. The proposed approach allows the
agents to have different preferential independence structures, and
enables us to aggregate preferences when the agents’ CP-nets are
cyclic. With multiple agents’ CP-nets as input, it first reduces the
problem into an extended SAT (Boolean satisfiability problem) for
cardinality constraints, such that the set of possible winners can
be obtained by computing the models of the corresponding SAT.
Then the set of majority winners is the subset of the possible win-
ners after filtering out those that are majority-dominated by some
alternative. The proposed approach reduces the search space and
is computationally efficient. According to the experimental evalu-
ation, it offers several orders of magnitude improvement in perfor-
mance over a brute-force algorithm for large numbers of variables.

The paper is structured as follows. We provide background in-
formation about CP-nets and majority rule in Section 2. In Section
3, we study a hypercube-wise composition of majority rule and an-
alyze its incompatibility with the original majority preferences by
several examples. After that, we present our proposed approach for
computing the winning alternatives in Section 4 and the experimen-
tal results in Section 5. Finally, we discuss about the concluding
remarks in Section 6.

2. BACKGROUND

2.1 CP-nets overview
Let V = {X1, . . . , Xn} be a set of n variables. For each Xi ∈

V, D (Xi) is the value domain of Xi. A variable Xi is binary
if D (Xi) = {xi, x̄i}. If {xi, x̄i} is the binary domain of Xi,
then xi = ¬x̄i; x̄i = ¬xi. If X =

{
Xi1 , . . . , Xip

}
⊆ V, with

i1 < · · · < ip, then D (X) denotes D (Xi1) × · · · × D
(
Xip

)
.

The assignments of variable values to X are denoted by x, x′ etc.,
and represented by concatenating the values of the variables. For
instance, if X = {X1, X2, X3}, an assignment x = x1x̄2x3 as-
signs x1 to X1, x̄2 to X2 and x3 to X3. If X = V, x is a com-
plete assignment; otherwise x is called a partial assignment. For
an assignment x, we denote by x [Xi] the value xi ∈ D (Xi) as-
signed to variable Xi by that assignment; and x [W] denotes the
assignment of the variable values w ∈ D (W) assigned to the set
of variables W ⊆ X by that assignment. We also allow logical
operations between the value assignments to binary variables. For
instance, x1x̄2 = x1 ∧ x̄2 = (X1 = x1) ∧ (X2 = x̄2). That is,
x1 is T rue and x2 is F alse. If p = x1x̄2 and q = x3, then
p∨ q = (x1x̄2)∨ x3 = ((X1 = x1) ∧ (X2 = x̄2))∨ (X3 = x3).

Let {X, Y, Z} be a partition of the set of variables V and � a
preference relation over D (V). X is conditionally preferentially
independent of Y given Z if and only if, for all x, x′ ∈ D (X),
y, y′ ∈ D (Y) and z ∈ D (Z):

xyz � x′yz iff xy′z � x′y′z

A CP-net N [3] over a set of variables V = {X1, . . . , Xn} is
an annotated directed graph G over X1, . . . , Xn, in which nodes
stand for the problem variables. Each node Xi is annotated with
a conditional preference table CP T (Xi), which associates a to-
tal order �Xi|u with each instantiation u of Xi’s parents P a (Xi).
For instance, let V = {X1, X2, X3}, all three variables are binary-
valued. Assume that the preference of a given agent over 2V can

be defined by a CP-net, whose structural part is the directed graph
G = {(X1, X2) , (X2, X3) , (X1, X3)}. Then the agent’s prefer-
ence over the values of X1 is unconditional, preference over the
values of X2 (resp. X3) is conditioned on the value of X1 (resp.
the context of X1 and X2). The conditional preference statements
contained in the CPTs are written with the following notation, e.g.
x1x̄2 : x3 � x̄3 means that if x1 is T rue and x2 is F alse, then
the agent prefers X3 = x3 to X3 = x̄3.

In this paper, we assume that each agent Aj’s preference is cap-
tured by a binary-valued (possibly cyclic) CP-net Nj and the or-
dering �Xi|u

Aj
, u ∈ D (P aj (Xi)), expressed in the CPTs of the

network is total. As such, conditional expressions of indifference
are not allowed, and an agent will not be indifferent between two
alternatives. However, as the preference relation induced from a
CP-net is generally not complete, two alternatives can be incompa-
rable for an agent.

2.2 Majority rule
In classical social choice theory, majority rule is one of the most

well known aggregation rule for collective decision-making. It is a
binary decision rule that selects one of two alternatives, based on
which has more than half of the votes. The semantics of majority
voting in the context of CP-nets has been provided by Rossi et al.
[10]:

DEFINITION 1 (MAJORITY SEMANTICS). Given two alterna-
tives o and o′, let S�, S≺, SZ be the sets of agents who say, respec-
tively, that o � o′, o ≺ o′, and o Z o′ (incomparable). We say that
o majority-dominates o′ (written as o �maj o′) if and only if there
is a majority of agents who prefer o to o′ (i.e., |S�| > |S≺|+ |SZ|).
Two alternatives o and o′ are majority-incomparable (written as
o Zmaj o′) if they are not ordered in either way.

In order to determine the winning alternatives according to ma-
jority rule, the Condorcet method has usually been used 2. The
following definitions of the Condorcet winner and weak Condorcet
winner are adapted from the standard social choice literature [1]:

DEFINITION 2 (CONDORCET WINNER). An alternative o is
a Condorcet winner if and only if it majority-dominates every other
alternative in a pair-wise matchup: ∀o′ ∈ O and o′ , o, o �maj

o′.

DEFINITION 3 (WEAK CONDORCET WINNER). An alterna-
tive o is a weak Condorcet winner if and only if it majority-dominates
or is incomparable to every other alternative in a pair-wise matchup:
∀o′ ∈ O and o′ , o, o �maj o′ or o Zmaj o′.

When the Condorcet winner exists, it is unique. A Condorcet
winner is also a weak Condorcet winner, while the reverse does not
hold: a weak Condorcet winner is not necessarily a Condorcet win-
ner. In majority-rule based group decision-making, it is possible
for a paradox to form, in which collective preferences can be cyclic
(i.e. not transitive), even if the preferences of individual agents are
not. For instance, it is possible that there are alternatives o1, o2, and
o3 such that a majority prefers o1 to o2, another majority prefers o2
to o3, and yet another majority prefers o3 to o1. The requirement
of majority rule then provides no Condorcet winner. Consequently,
the set of majority winning alternatives can be empty. Also, there
can be more than one weak Condorcet winner when the number
of agents is even or the individual preferences are incomplete (i.e.
2There are also some other aggregation methods which do not
comply with the Condorcet criterion, e.g., approval voting, Borda
count, plurality voting, etc..
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partial order). Note that the set of weak Condorcet winners are
majority-incomparable to each other.

Rossi et al. [10] study the computational complexity of a brute-
force algorithm for aggregating preference based on majority rule.
Suppose that there are a set of m agents making decisions over a
set of n binary variables. To test whether an alternative is a winner
we need to compare the given alternative with all other alterna-
tives (2n) in all CP-nets (m). Recall that computing the majority-
dominance relation between a pair of alternatives require individ-
ual dominance testing on each agent’s CP-net, which is PSPACE-
complete. Moreover, finding the set of majority winners is even
more challenging. We need to compare all alternatives (2n) to all
other alternatives (2n) in all CP-nets(m). Consequently, it is im-
practical to use pair-wise comparison over the alternative space di-
rectly.

3. H-COMPOSITION OF MAJORITY RULES
Instead of applying voting directly over the alternative space, Xia

et al. [11] propose a hypercube-wise composition (H-composition)
of local voting rules. An H-composition of local rules is defined as
the following two steps. First, the set of all possible alternatives are
represented as a hypercube, and alternatives that differ on only one
variable are neighbours on this hypercube as discussed in [4]. Then
an induced graph is generated by applying local rules to each pair
of neighbours on this hypercube. In the second step, a choice set is
selected based on the induced graph as the set of winners. Accord-
ing to the representation in [11], we apply majority rule between
each pair of neighbours and obtain the following majority induced
graph:

DEFINITION 4 (MAJORITY INDUCED GRAPH). Given a col-
lection of CP-nets N = {N1, . . . ,Nm}, the majority induced graph,
denoted by G = (O, E), is defined by the following edges between
alternatives. For each variable Xi, any two alternatives o, o′ ∈ O
that differ only on the value of Xi, let there be a directed edge
o → o′ if a majority of agents prefer o to o′; there be a directed
edge o′ → o if a majority of agents prefer o′ to o. If o and o′

are majority-incomparable, G does not contain any edge between
o and o′.

For any two alternative o, o′ ∈ O that differ only on the value
of Xi, o [Xi] = xi and o′ [Xi] = x̄i, let W = V − {Xi} and
w = o [W] (= o′ [W]). Whether or not there is a directed edge
o → o′ (resp. o′ → o) can be computed directly from the condi-
tional preference table CP Tj(Xi) of each agent Aj’s CP-net Nj .
Because for each agent Aj , Nj |= o � o′ (resp. Nj |= o′ � o) if
and only if xi �Xi|w

Aj
x̄i (resp. x̄i �Xi|w

Aj
xi). Note that a pair of

neighbours o and o′ are incomparable if and only if the number of
agents is even and the number of agents who prefer o to o′ is equal
to the number of agents who prefer o′ to o.

The dominance relations in G are then induced by the directed
paths between alternatives [11]:

DEFINITION 5 (GRAPH DOMINANCE). Given a collection of
CP-nets N = {N1, . . . ,Nm}, let G = (O, E) be the majority
induced graph. For any o, o′ ∈ O, we say that o dominates o′ in G,
denoted by o �G o′ if and only if: i) there is a directed path from o
to o′, and ii) there is no directed path from o′ to o.

According to Xia et al. [11], the transitive closure�G of E spec-
ifies the minimum preorder such that if there is a directed path from
o to o′ in G then o �G o′. �G is the strict order induced by �G :
o �G o′ if and only if o �G o′ and o′ �G o. Based on the induced
graph, a choice set function is then defined, which always chooses
the following alternatives as winners.

(a) A1 (b) A2 (c) A3

(d) Majority induced graph

Figure 1: Illustration for Proposition 1

DEFINITION 6 (GRAPH WINNER). Let G = (O, E) be the
majority induced graph for a collection of CP-nets
N = {N1, . . . ,Nm}, we say,

• an alternative is a global Condorcet winner (GCW), if it dom-
inates all other alternatives in G;

• an alternative is a local Condorcet winner (LCW), if it dom-
inates all its neighbours in G;

• an alternative is a weak local Condorcet winner (wLCW), if
it dominates or is incomparable to all its neighbours in G.

When the global Condorcet winner (GCW) exists, it is unique.
A GCW is also a local Condorcet winner (LCW), while the reverse
does not hold: a LCW is not necessarily a GCW. Similarily, a LCW
is also a weak local Condorcet winner (wLCW), while a wLCW is
not necessarily a LCW.

However, we emphise here that GCW, LCW and wLCW in G are
different from the meaning of a (weak) Condorcet winner (Defini-
tion 2 and 3), which refers to a majority winner in pair-wise elec-
tion. In the following section, we analyze the relation between the
preferences derived from a majority induced graph G and the orig-
inal majority preferences among the agents.

PROPOSITION 1. Majority-domination �maj does not follow
from graph domination �G .

PROOF. To prove this proposition, we need to prove that given
a collection of CP-nets N = {N1, . . . ,Nm}, the majority induced
graph G = (O, E) and a pair of alternatives o, o′ ∈ O and o , o′,
it may be the case that o �G o′ but o �maj o′. Consider an ex-
ample of 3 agents making decision over 2 binary domain variables.
The agents’ CP-nets, their partial order over the alternative space
and the majority induced graph are depicted in Figure 1. Accord-
ing to the majority induced graph (see Figure 1(d)), there is a di-
rected path from outcome x1x2 to x̄1x̄2 and no directed path from
x̄1x̄2 to x1x2, i.e. x1x2 �G x̄1x̄2. However, for both A1 and A2,
these two alternatives are incomparable (see Figure 1(a) and Fig-
ure 1(b)), and thus, x̄1x̄2 and x1x2 are majority-incomparable, i.e.
x̄1x̄2 Zmaj x1x2. Consequently, in this example, x1x2 �G x̄1x̄2
but x1x2 �maj x̄1x̄2.

PROPOSITION 2. The preference relation �G derived from the
majority induced graph does not preserve the strict majority pref-
erence relation �maj .

PROOF. To prove this proposition, we need to prove that given
a collection of CP-nets N = {N1, . . . ,Nm}, the majority induced
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(a) A1

(b) A2

(c) A3

(d) Majority induced graph

Figure 2: Illustration for Propositions 2 and 3

graph G = (O, E) and a pair of alternatives o, o′ ∈ O and o , o′,
it may be the case that o �maj o′ but o �G o′. Consider the agents’
CP-nets, their partial order over the alternative space and the corre-
sponding majority induced graph depicted in Figure 2. According
to the majority induced graph Figure. 2(d), there is no directed path
from alternative x̄1x̄2x3 to alternative x1x2x3, i.e. x̄1x̄2x3 �G
x1x2x3. However, both A1 and A2 preferred x̄1x̄2x3 to x1x2x3
(see Figure 2(a) and Figure 2(b)), and thus x̄1x̄2x3 �maj x1x2x3.
Consequently, in this example, x̄1x̄2x3 �maj x1x2x3 but
x̄1x̄2x3 �G x1x2x3.

As �G does not preserve the strict majority preference �maj , a
(weak) local Condorcet winner that dominates or is incomparable
to all it neighbours may still be majority-dominated by some alter-
native, and thus is not guaranteed to be a weak Condorcet winner.

COROLLARY 1. A (weak) local Condorcet winner is not neces-
sarily a weak Condorcet winner.

Consider the example in Figure 2. Alternative x1x2x3 is a LCW
as it dominates all its neighbours (x1x2x̄3, x1x̄2x3 and x̄1x2x3)
in the majority induced graph (see Figure 2(d)). However, it is
majority-dominated by another alternative x̄1x̄2x3 because both
A1 (Figure 2(a)) and A2 (Figure 2(b)) preferred x̄1x̄2x3 to x1x2x3
and thus is not a (weak) Condorcet winner.

Now we are interested in whether or not the (weak) local Con-
dorcet winners set is guaranteed to be a non-majority-dominated
set, i.e. the alternatives in this set can only be majority-dominated
by some alternative in this set but not by any other alternatives out-

(a) A1

(b) A2

(c) A3

(d) Majority induced graph

Figure 3: Illustration for Proposition 4

side this set. Unfortunately, the following proposition gives a neg-
ative answer to this question.

PROPOSITION 3. A (weak) local Condorcet winner can be
majority-dominated by an alternative outside the set of (weak) local
Condorcet winners, even though it is not majority-dominated by
any other (weak) local Condorcet winner.

PROOF. Consider the example in Figure 2, there are only two
LCWs x1x2x3 and x̄1x̄2x̄3 and x1x2x3 Zmaj x̄1x̄2x̄3: they are
incomparable for both A2 (see Figure 2(b)) and A3 (see Figure 2(c)).
However, as we mentioned before, x1x2x3 is majority-dominated
by alternative x̄1x̄2x3, which is not a LCW or wLCW.

Finally, we are interested in the following question: whether
a global Condorcet winner that dominates every other alternative
in the majority induced graph, is guaranteed to be non-majority-
dominated, i.e. a (weak) Condorcet winner.

PROPOSITION 4. A global Condorcet winner is not necessarily
a (weak) Condorcet winner.

PROOF. Consider the agents’ CP-nets, their preference ordering
over the alternative space and the corresponding majority induced
graph in Figure 3. In this example, there is a unique global Con-
dorcet winner x1x2x3 in G: there is a directed path from x1x2x3
to every other alternative and no incoming edges to x1x2x3 (see
Figure 3(d)). However, this global Condorcet winner x1x2x3 is
majority-dominated by x̄1x̄2x̄3 (x̄1x̄2x̄3 �maj x1x2x3), because
two agents (A1 and A2) prefer x̄1x̄2x̄3 to x1x2x3 (see Figure 3(a)
and Figure 3(b)).
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Proposition 4 further shows that the strict preference relation
�G derived from the majority induced graph might be conflict-
ing with the original majority preference relation �maj . For in-
stance, for the example in Figure 3, x1x2x3 �G x̄1x̄2x̄3, however,
x1x2x3 ≺maj x̄1x̄2x̄3.

From the above, it become clear that the majority induced graph
may not always represent the majority preferences properly. In par-
ticular, a winners in the majority induced graph, i.e., a GCW, LCW
or wLCW winner is not necessarily a (weak) Condorcet winner.
However, we observe that a (weak) Condorcet winner must be a
wLCW.

THEOREM 1. Let G = (O, E) be the majority induced graph
for a collection of CP-nets N = {N1, . . . ,Nm}. Then a (weak)
Condorcet winner is also a weak local Condorcet winner in G.

PROOF. Suppose a (weak) Condorcet winner o is not a wLCW,
then there exist at least one neighbour o′ in G such that o′ →
o ∈ E. That means, there is a majority of agents prefers o′ to
o (o′ �maj o), contradicting the fact that o is a (weak) Con-
dorcet winner. Thus, a (weak) Condorcet winner must also be a
wLCW.

A (weak) Condorcet winner must be a wLCW, while the reverse
does not hold: a wLCW is not necessarily a (weak) Condorcet win-
ner. Nonetheless, this relation provides us a more efficient way to
compute the majority winners among a large alternative space: first
compute the set of wLCWs, and then compute the set of majority
winners by filtering out those that are majority-dominated by some
alternative.

REMARK. Here the notions of majority induced graph coincides
with the definitions in [11] when the number of agents is odd, and
differ only in the presence of incomparability between neighbours
when the number of agents is even. According to [11], when a
pair of neighbours o and o′ are majority-incomparable, G contains
directed edges both from o to o′ and o′ to o. However, their def-
inition may exclude the weak Condorcet winners when the num-
ber of agents is even. For instance, if a weak Condorcet winner is
majority-incomparable to one of its neighbours, then it is not con-
sidered to be a wLCW (nor a GCW or LCW) according to their
definition.

4. COMPUTE THE (WEAK) CONDORCET
WINNER

In this section, we present our proposed approach, MajCP
(majority-rule-based collective decision-making with CP-nets), for
computing the majority winning alternatives. The proposed ap-
proach includes the following two steps. First, we compute the
set of wLCWs via a reduction to an extended SAT (Boolean sat-
isfiability problem) for cardinality constraints (See Algorithm 1).
Then, in the second step, the set of (weak) Condorcet winners can
be obtained by filtering out those that are majority-dominated by
some alternative.

Assume m agents A = {A1, . . . , Am} are making decisions
over a set of n variables V = {X1, . . . , Xn}. The preference of
each agent Aj is captured by a (possibly cyclic) binary-valued CP-
netNj and let N = {N1, . . . ,Nm}. We first reduce the problem of
computing the set of wLCWs into a corresponding SAT problem.
The variables in our reduction consist of the variables in the agents’
CP-nets. Firstly, we generate a set of optimality constraints that a
wLCW must satisfy according to majority rule. For each variable
Xi, each agent Aj’s has a conditional preference table CP Tj (Xi)

stating the conditional preference on the values of variable Xi with
each instantiation of Xi’s parents P aj (Xi). We separate these
condition entries in CP Tj (Xi) into the following two categories.

• The set of parent context in which agent Aj prefers xi to x̄i:
Uxi�x̄i

Aj
=
{

u ∈ D (P aj (Xi)) | xi �Xi|u
Aj

x̄i

}
.

• The set of parent context in which agent Aj prefers x̄i to xi:
Ux̄i�xi

Aj
=
{

u ∈ D (P aj (Xi)) | x̄i �Xi|u
Aj

xi

}
.

Let P i
j =

∨
u∈Uxi�x̄i

Aj

u (resp. P̄ i
j =

∨
u∈Ux̄i�xi

Aj

u), i.e., the disjunc-

tion of the condition part of the entry whose conclusion is xi � x̄i

(resp. x̄i � xi) in the CP Tj (Xi) of agent Aj (line 14–20). Note
that if agent Aj has unconditional preference over a variable Xi,
P aj (Xi) = ∅ and xi �Xi

Aj
x̄i (resp. x̄i �Xi

Aj
xi), that means the

condition P i
j (resp. P̄ i

j ) is always T rue and P̄ i
j (resp. P i

j ) is always

F alse (line 7–11). Thus, xi �
Xi|P i

j

Aj
x̄i (resp. x̄i �

Xi|P̄ i
j

Aj
xi).

For each individual agent Aj , Uxi�x̄i
Aj

and Ux̄i�xi
Aj

are comple-

mentary, and thus P i
j = ¬P̄ i

j (resp. P̄ i
j = ¬P i

j ). For any setting
w = D (W) (W = V − {Xi}) that satisfies P i

j (resp. P̄ i
j ), then

xiw �Aj x̄iw (resp. x̄iw �Aj xiw).
Given a directed graph G = (O, E), for any two alternatives

o, o′ ∈ O that differ only on the value of Xi: o [Xi] = xi and
o′ [Xi] = x̄i. Let q = (m + 1)/2 (m is the total number of
agents) (line 1). There is an directed edge o → o′ (resp. o′ → o)
in G if and only if, for the setting w = o [W] (= o′ [W]) and
W = V − {Xi}, there exist a set of at least q agents, denoted
by S (S ⊆ N), each agent Aj ∈ S has the following conditional
(unconditional) preference xi �Xi|w

Aj
x̄i (resp. x̄i �Xi|w

Aj
xi), i.e.,

w satisfies
∧

Aj∈S
P i

j (resp.
∧

Aj∈S
P̄ i

j ). Furthermore, there will be a

set of
(

m
q

)
distinct q-subsets of agents that satisfies this majority

requirement, denoted by C. Consequently, if the setting w satisfies∨
S∈C

( ∧
Aj∈S

P i
j

)
(resp.

∨
S∈C

( ∧
Aj∈S

P̄ i
j

)
), then there is an directed edge

o → o′ (resp. o′ → o), and thus o �G o′ (resp. o′ �G o). For the
purpose of explanation, we reason directly with cardinality formu-
las, which has been widely explored in CSPs and SAT (cardinality
constraints), see e.g., [2] and [7]. For each variable Xi, let Fi and
F ′i be the following cardinality formula respectively (line 24):

Fi = [≥ q]
(
P i

1 , . . . , P i
m

)
(1)

F ′i = [≥ q]
(
P̄ i

1 , . . . , P̄ i
m

)
(2)

Such that Fi (resp. F ′i ) is T rue when at least q formulas among
P i

1 , . . . , P i
m (resp. P̄ i

1 , . . . , P̄ i
m) are T rue. Note that the cardi-

nality formula Fi (resp. F ′i ) is logically equivalent to the classical
propositional formula

∨
S∈C

( ∧
Aj∈S

P i
j

)
(resp.

∨
S∈C

( ∧
Aj∈S

P̄ i
j

)
).

Given an directed graph G = (O, E), let o, o′ ∈ O be two
alternatives that differ only on the value of a variable Xi, o [Xi] =
xi and o′ [Xi] = x̄i. Let w = o [W] (= o′ [W]) and W = V −
{Xi}. If the setting w satisfies Fi (resp. F ′i ), then there is an
directed edge o → o′ (resp. o′ → o). Consequently, the wLCWs
must satisfy the following optimality constraints for each variable
Xi (line 25).

DEFINITION 7 (OPTIMALITY CONSTRAINTS). Given a col-
lection of CP-nets N = {N1, . . . ,Nm}, for each variable Xi, the
majority-optimality constraint ϕi to the value of Xi is:

ϕi = (Fi ⇒ xi) ∧ (F ′i ⇒ x̄i) (3)
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Algorithm 1: MajCP
Input: N, a set of CP-nets of the agents;
Output: CW , a set of (weak) Condorcet winners

q ← (m + 1)/2 where m is the total number of agents;1
ϕ← T rue;2
foreach Xi ∈ V do3

list, list′ ← ∅;4
foreachNj ∈ N do5

if P aj (Xi) = ∅ then6

if xi �Xi
Aj

x̄i then7
P i

j ← T rue; P̄ i
j ← F alse;8

else9
P̄ i

j ← T rue; P i
j ← F alse;10

end11

else12
P i

j ← F alse; P̄ i
j ← F alse;13

foreach cp-statement ∈ CP Tj (Xi) do14
if u ∈ Uxi�x̄i

Aj
then15

P i
j ← P i

j ∨ u16
else17

P̄ i
j ← P̄ i

j ∨ u18
end19

end20

end21

add P i
j to list; add P̄ i

j to list′;22

end23
Fi ← [≥ q] list; F ′i ← [≥ q] list′;24
ϕi ← (Fi ⇒ xi) ∧ (F ′i ⇒ x̄i);25
ϕ← ϕ ∧ ϕi26

end27
graphW inners← the models of ϕ;28
CW ← optimalityCheck(graphW inners);29
return CW ;30

Note that if there is an odd number of agents, F ′i = ¬Fi and the
above constraint ϕi can be simplified to:

ϕi = (Fi ⇔ xi)

Finally, let ϕ be the conjunction of all ϕi (one for each variable)
(line 26):

ϕ =
∧

Xi∈V

ϕi (4)

THEOREM 2. Let G = (O, E) be the majority induced graph
for a collection of CP-nets N = {N1, . . . ,Nm}. An alternative o
is a weak local Condorcet winner if and only if it satisfies the above
SAT ϕ.

PROOF. (Soundness) Let o be an alternative that satisfies ϕ. For
every neighbour o′ of o that differs on the value of a single variable
Xi ∈ V, as o satisfies ϕi = (Fi ⇒ xi) ∧ (F ′i ⇒ x̄i), then either
there is an directed edge o→ o′ or there is no edge between o and
o′. According to Definition 6, o is a wLCW.
(Completeness) Assume first that there is at least one wLCW o, and
suppose that o does not satisfy ϕ. Then there exists at least one op-
timality constraint ϕi = (Fi ⇒ xi) ∧ (F ′i ⇒ x̄i) that o does not
satisfy. As Fi and F ′i are mutually exclusive, and for the sake of

simplicity we assume that o does not satisfy Fi ⇒ xi. An im-
plication is unsatisfied only when the hypothesis is T rue and the
conclusion is F alse. That is, o satisfies Fi yet o [Xi] = x̄i. Let
o′ be a neighbour of o, o [W] = o′ [W] (W = V − {Xi}) and
o′ [Xi] = xi. Then, o′ satisfy Fi ⇒ xi. There must be an edge
o′ → o in G and thus o′ �G o, contradicting the fact that o is a
wLCW. Hence, the above SAT ϕ must be satisfied by all the alter-
natives that are wLCWs.

As such, we reduce the problem of computing wLCWs into a
SAT problem and the set of wLCWs can be obtained by comput-
ing the models of the corresponding SAT (line 28). Recall that a
wLCW is not necessarily a weak Condorcet winner. In the second
step, we need to test the majority optimality of each wLCW (i.e. a
model of the corresponding SAT) by comparing it to all other alter-
natives and filtering out those that are majority-dominated by some
alternative (line 29).

THEOREM 3 (COMPLEXITY). Given a collection of m CP-
nets N = {N1, . . . ,Nm}, if ∀Nj ∈ N, the node in-degree is
bounded by a constant, then translating the problem of comput-
ing weak local Condorcet winners into a corresponding extended
SAT problem for cardinality constraints is polynomial.

PROOF. Assume there are n variables and the number of par-
ents of a node in the dependency graph of each agent is bounded
by a constant d. In order to translate the problem of computing wL-
CWs into the corresponding SAT problem ϕ, we need to generate
a majority-optimality constraint ϕi for each variable Xi. For each
variable Xi, we need to check each Nj’s conditional preference
table CP Tj (Xi). The number of cp-statements in CP Tj (Xi)
is exponential in the number of parents of Xi in the dependency
graph of a Nj . Since we assume that node in-degree is bounded
by a constant d, the exponential is still a constant (i.e. 2d) and the
number of variables included in the condition entry of every cp-
statement is also bounded by d. Thus, the running time of transla-
tion is O(n ·m · 2d · d).

THEOREM 4 (COMPLEXITY). Given a collection of m CP-
nets N = {N1, . . . ,Nm}, if ∀Nj ∈ N, the node in-degree is
bounded by a constant, then i) checking whether an alternative is a
weak local Condorcet winner is polynomial; and, ii) finding the set
of weak local Condorcet winners is NP-complete.

PROOF. Based on Theorem 2, to check whether an alternative
o is a wLCW we just need to check whether o is a model of the
corresponding extended SAT problem ϕ, that is, whether o satisfies
the optimality constraint ϕi = (Fi ⇒ xi) ∧ (F ′i ⇒ x̄i) of each
variable Xi. The constraint Fi ⇒ xi (resp. F ′i ⇒ x̄i) is satisfied
if and only if the condition Fi (resp. F ′i ) is F alse or the conclu-
sion xi (resp. x̄i) is T rue. For instance, if o assigns x̄i to Xi, o
satisfies F ′i ⇒ x̄i. Thus, o satisfies ϕi if and only if o also satisfies
Fi ⇒ xi. Also, as o [Xi] = x̄i, o satisfies Fi ⇒ xi if and only
if Fi is evaluated to F alse. Checking the truth value of Fi can be
done by counting the elements in the list of Fi that is evaluated to
T rue: if there are fewer than (m + 1)/2 formulas are evaluated
to T rue then Fi is evaluated to F alse. Suppose there are n vari-
ables and node in-degree is bounded by a constant d. Then there
are m formulas listed in Fi and each formula is a disjunction of at
most 2d conjunctions of at most d literals. Consequently, the run-
ning time of checking whether an alternative is a model of ϕ is thus
O(n ·m · 2d · d).

Regarding the problem of finding the set of wLCWs. As we
already show that testing whether an alternative is a wLCW (i.e.
is a model of ϕ) is polynomial, the problem of finding the set of
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(a) CP-net of A1 (b) CP-net of A2 (c) CP-net of A3 (d) CP-net of A4

Figure 4: CP-nets of the agents

wLCWs (i.e. the models of ϕ) is in NP. To show hardness, we
reduce 3-SAT to our problem: given a 3-CNF formula F , for each
clause (x1 ∨ x2 ∨ x3) ∈ F , we construct the optimality constraint:
≥ 2 [x̄1, x̄2] ⇒ x3. Any satisfying assignment of the original 3-
CNF formula, at lease one of x1, x2 and x3 is true. If x1 or x2 are
T rue, then the condition of the optimality constraint is not satisfied
and thus the optimality constraint is satisfied. If x1 and x2 are both
F alse, then x3 is T rue, which satisfies the optimality constraint as
this is the preferred value of a majority of agents. Hence, any model
of the original 3-CNF formula is an optimal assignment of the set
of optimality constraints. The argument reverses: any wLCW is
also a model.

We emphise here that the above complexity is for testing or finding
the wLCWs rather than the (weak) Condorcet winners in Defini-
tion 2 and 3. As we show in Section 3 (Corollary 1), a wLCW is
not necessarily a weak Condorcet winner. To find out the set of
weak Condorcet winners, we still need to filter out from the set of
wLCWs those candidates that are majority-dominated by some al-
ternative. This checking is required even when there exists only one
wLCW. Consequently, the complexity for finding the set of weak
Condorcet winner remains PSPACE complete.

EXAMPLE. Now, we demonstrate the execution of the proposed ap-
proach with an example. Assume four agents A = {A1, A2, A3, A4}
making decision over a set of four Boolean variables X1, X2, X3
and X4.Consider the agents’ CP-nets depicted in Figure 4. We first
generate a set of majority-optimality constraints that a wLCW must
satisfy. For variable X1, we refer to each agent Aj’s conditional
preference table CP Tj (X1):
A1: Ux1�x̄1

A1
= {x2x4, x̄2x̄4} and Ux̄1�x1

A1
= {x2x̄4, x̄2x4}, thus

P 1
1 = x2x4 ∨ x̄2x̄4 and P̄ 1

1 = x2x̄4 ∨ x̄2x4;
A2: the preference over variable X1 is unconditional, x1 �X1

A2
x̄1,

thus P 1
2 = T rue and P̄ 1

2 = F alse;
A3: the preference over variable X1 is unconditional, x1 �X1

A3
x̄1,

thus P 1
3 = T rue and P̄ 1

3 = F alse;
A4: Ux1�x̄1

A4
= {x2x̄4} and Ux̄1�x1

A4
= {x2x4, x̄2x4, x̄2x̄4}, thus

P 1
4 = x2x̄4 and P̄ 1

4 = x2x4 ∨ x̄2x4 ∨ x̄2x̄4.
Consequently, F1 = [≥ 3]

(
P 1

1 , P 1
2 , P 1

3 , P 1
4
)

and F ′1 = [≥
3]
(
P̄ 1

1 , P̄ 1
2 , P̄ 1

3 , P̄ 1
4
)

. F1 can be simplified to (x2 ∨ x̄4). F ′1 is un-
satisfiable and evaluated to F alse, because two formulas P̄ 1

2 and
P̄ 1

3 out of four in the formula list of F ′i are F alse. Hence, the win-
ning alternative must satisfy the following optimality constraint for
variable X1: ϕ1 = (x2 ∨ x̄4 ⇒ x1) ∧ (F alse⇒ x̄1). An im-
plication is unsatisfied only when the hypothesis is T rue and the
conclusion is F alse, thus F alse⇒ x̄1 is always T rue and ϕ1 can
be simplified to ϕ1 = x2 ∨ x̄4 ⇒ x1.

Similarly, we obtained the following optimality constraints (sim-
plified form of the cardinality constraints) for variable X2, X3 and
X4:
X2: ϕ2 = (x̄1x3x4 ⇒ x2) ∧ (x1x̄3 ∨ x1x̄4 ∨ x̄3x̄4 ⇒ x̄2);
X3: ϕ3 = (x̄1x̄2 ⇒ x3) ∧ (x1x̄2 ⇒ x̄3);
X3: ϕ4 = x̄4;
Consequently, we obtain the following SAT:
ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 = (x2 ∨ x̄4 ⇒ x1) ∧ (x̄1x3x4 ⇒ x2) ∧
(x1x̄3 ∨ x1x̄4 ∨ x̄3x̄4 ⇒ x̄2)∧(x̄1x̄2 ⇒ x3)∧(x1x̄2 ⇒ x̄3)∧x̄4

The above SAT has only one satisfied assignment x1x̄2x̄3x̄4. Af-
ter checking the majority optimality of x1x̄2x̄3x̄4, it is also a weak
Condorcet winner in this example.

5. EXPERIMENT
In this section, we present the experimental results regarding the

execution time of the proposed approach. We compare the perfor-
mance of the proposed MajCP approach to a Brute-force al-
gorithm, which runs a direct election over the alternative space. In
these experiments, the numbers of agents are 5 and 15 respectively,
and we vary the numbers of variables from 2 to 10. The number of
parents of a variable in the agents’ CP-nets is bounded by 6. For
each number of agents and each number of variables, we generate
5,000 random examples of the agents’ CP-nets.

The log-scale plots in Figure 5 show the average execution times
of the Brute-force algorithm and the proposed MajCP ap-
proach in the case of 5 agents and 15 agents, respectively. It demon-
strates that the proposed MajCP approach is much more efficient
than the Brute-force algorithm. In general, for large numbers
of variables, it offers several orders of magnitude improvement in
performance over the Brute-force algorithm both for 5 agents
and 15 agents. For instance, when there are 10 variables, the ex-
ecution time of MajCP is reduced by more than three orders of
magnitude as compared to Brute-force algorithm. We fur-
ther test 100 cases for 11 variables and 5 agents (resp. 11 vari-
ables and 15 agents), which shows that the execution time of the
Brute-force algorithm is on average more than 5000 seconds
(resp. 9000 seconds). On the other hand, the proposed MajCP ap-
proach can produce the majority winners in about 10 seconds (resp.
15 seconds). Note that when there exist wLCWs (1 or more), the
proposed MajCP approach still need to test the majority-optimality
of the wLCWs by comparing each wLCW to all other alternatives.
However, when there are no wLCWs, the proposed approach can
return the result quickly by only solving the corresponding SAT
problem. For instance, given 15 agents and 10 variables, when
there does not exists any wLCWs, the proposed approach returns
the results within 0.04 seconds. Table 1 provides the probability
that there exists no wLCWs for the given agents’ preferences in
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Figure 5: Average execution time comparison (Log scale plot)

those experiments.

Table 1: The percentage of cases when there are no wLCWs

Agents Variables
2 4 6 8 10

5 4.71% 12.73% 19.67% 22.11% 24.51%
15 5.44 % 15.99% 22.22% 25.42% 27.94%

6. CONCLUSION AND FUTURE WORK
In this paper, we have introduced an efficient approach to com-

pute the set of winning alternatives from a collection of CP-nets
based on majority rule. Unlike previous work where the agents’
preferences are required to satisfy some restrictive conditions on
the dependence graph (such as the existence of a common acyclic
graph to all the agents), the proposed approach allows the agents to
have different preferential independence structures and also works
on cyclic CP-nets. It first computes a set of weak local Condorcet
winners (wLCWs) by reduces the problem into an extended SAT
(Boolean satisfiability problem) for cardinality constraints. Then
the set of majority winning alternatives is a subset of wLCWs after
filtering out those are majority-dominated by some alternative. The
proposed approach reduces the size of search space and is compu-
tationally efficient.

Future research can extend the proposed approach to compute
the winners of other aggregation rules. Another extension would
be to investigate techniques to aggregate preferences that are repre-
sented by more powerful variants such as TCP-nets and UCP-nets.
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ABSTRACT
The dynamic formation of coalitions is a well-known area of
interest in multi-agent systems (MAS). Coalitions can help
self-interested agents to successfully cooperate and coordi-
nate in a mutually beneficial manner. Moreover, the organi-
zation provided by coalitions is particularly helpful for large-
scale MAS. In this paper we present a distributed approach
for coalition emergence in large-scale MAS. In particular,
we focus on MAS with agents interacting over complex net-
works since they provide a realistic model of the nowadays
interconnected world (e.g. social networks). Our experi-
ments show the effectiveness of our coalition emergence ap-
proach in achieving full cooperation over different complex
networks. Furthermore, they provide a clear picture of the
strong influence the topology has on coalition emergence.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms
Algorithms,Experimentation

Keywords
cooperation, coalition emergence, consensus, MAS

1. INTRODUCTION
Achieving cooperation and coordination in multi-agent

systems is a challenging issue [10]. These becomes even more
difficult to accomplish when dealing with self-interested agents.
Cooperation among self-interested agents is often hindered
by social dilemmas [9]. In these dilemmas, agents must de-
cide between a (short-term) individual benefit or a (long-
term) group benefit. Individual decisions (self-interested),
besides providing only momentary benefits, are detrimen-
tal if many agents take them (e.g. if many individuals try
to download the same file at the same time, their down-
load speed suffers greatly). Instead, group decisions (social)
can result in a mutually beneficial cooperation that holds
over time [17]. In MAS, examples of social dilemmas can be

Cite as: Emerging Cooperation on Complex Networks, Salazar,
Rodriguez-Aguilar, Arcos, Peleteiro,Burguillo-Rial, Proc. of 10th Int.
Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011,
Taipei, Taiwan, pp. 669-676.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

often observed in frequency spectrum assignation, load bal-
ancing, packet/message congestion, bandwidth allocation,
etc. Therefore, mechanisms that promote the emergence
and maintenance of cooperation for self-interested agents is
an area of interest [7].

The emergence of cooperation is often studied in the con-
text of the Prisoner’s Dilemma (PD) theoretical framework
[2]. This has been specially useful for understanding the role
of local interactions and the maintenance of cooperation [16,
13, 11]. Moreover, these studies have been successfully ap-
plied to existing applications (e.g. Peer-to-Peer (P2P) sys-
tems [8]). Nonetheless, in P2P and many other complex
systems, the problems relating to social dilemmas still exist.

To prevent social dilemmas and promote cooperation, Ax-
elrod proposed a tribute/tax model [3]. According to this
model, cooperation is achieved when agents form coalitions
around some emerging leaders. To maintain their coali-
tions, leaders charge their agents some tribute/tax. In other
words, leaders extort other agents with some pay in favor of
a benefit (e.g. guaranteed cooperation, protection against
cheaters). This is a clear example of the known tradeoff be-
tween the benefits vs. the costs of collaboration (e.g. taxes)
[18].

Axelrod’s model has been successfully adopted to help
agents, on grid topologies, cooperate when using a spatial
version on the PD [5]. However, whether cooperation is still
possible on actual-world topologies via a tribute/tax model,
such as the one described by Axelrod [3], remains unex-
plored. Complex networks provide a more realistic model
of the topological features found in many nature, social and
technological networks (e.g. social networks, the Internet,
ecological populations) [1, 19]. Furthermore, it is known
that they can influence emergence [15].

The main contribution of this paper is the design of a
mechanism to emerge and sustain full and profitable coop-
eration, via a single super-coalition, but with a low collab-
oration cost (tax). Specially, since we found that: a) the
coalition strategies employed by [5] cannot accomplish full
cooperation on complex network topologies; and b) that the
notion of tribute (having leader agents setting taxes) is un-
fair for the population as a whole. Therefore, our proposed
approach contributes with: i) a set of coalition strategies
that promote a profitable cooperation on complex networks;
and ii) a consensus mechanism that allows coalition mem-
bers themselves (instead of leaders) to reach a convention
over the fair price to pay to be part of a coalition. Thus,
unlike Axelrod’s model, agents in our approach are no longer
subject to leader extortion. Overall, this results in an ap-
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proach fair and profitable for all agents.
Moreover, we show that our approach has a high degree

of resilience against the leader’s failure. This is important,
because if a leader fails, its whole coalition collapses, halting
the cooperative behavior (i.e. leaders induce a single-point
of failure). However, in our approach after the leader fails,
agents promptly emerge a new coalition.

The paper is organized as follows. Section 2 briefly de-
scribes the base model and presents its evaluation on differ-
ent complex networks. Next, in section 3 we propose and
evaluate both a new set of coalition strategies and our con-
sensus mechanism. Finally, in section 4 we draw some con-
clusions.

2. A BASE COALITION FRAMEWORK
The purpose of this section is twofold. Firstly, section

2.1 introduces the base mechanism for coalition emergence
that we subsequently extend (in section 3) to support coop-
eration over complex networks. Secondly, in section 2.2 we
empirically analyze the performance of the base mechanism
over complex networks.

2.1 The Base Approach
In this section we summarize the model for coalition for-

mation that we extend in this paper. The model is thor-
oughly described in [5], and it is based on Axelrod’s model
for the emergence of political actors described in [3]. The
main motivation of the Axelrod’s model in [3] is to promote
cooperation by increasing the organization level of a multi-
agent system. This is accomplished through the emergence
of some leading agents that command coalitions of previ-
ously independent agents. Each agent within a coalition co-
operates with its leader agent. Moreover, the leader also im-
poses the strategic behavior to follow against members and
non-members of the coalition. Consequently, notice that the
emergence of a single coalition guarantees full cooperation
between all agents.

The model in [5] considers an agent population using a
grid as its interaction topology. The interaction between
agents is modeled as an n-person game, i.e. n agents inter-
acting simultaneously, where each game is a spatial version
of the Iterated Prisoner’s Dilemma (IPD) [13] that takes into
account each agent’s number of neighbors. Every agent must
decide whether to behave as a defector or cooperator during
each round of the game, and they are payed according to the
payoff matrix depicted in table 1. Therefore, in an attempt
to maximize their individual payoffs, agents must also decide
whether to join or leave a coalition, or switch to another one.
To summarize, the model is composed of: (1) a role model
describing the roles each agent may take on (independent,
coalition member, and leader); (2) a game-based interaction
model describing how agents interact (spatial IPD); (3) a
collection of interaction strategies for the roles that agents
play; and (4) a collection of coalition strategies for the roles
that agents play.

First, the role model considers that each agent can play
one out of three mutually exclusive roles:

• An independent agent decides its own interaction strat-
egy (whether to cooperate or defect) during each game.
It decides its next action using a probabilistic Tit-
for-Tat (pTFT) strategy [5]. Unlike classical TFT
[4], a pTFT strategy stochastically imitates the action

Agent j
C D

Agent i
C (3,3) (0,5)
D (5,0) (1,1)

Table 1: Prisoner’s Dilemma Payoff Matrix

played by the majority of an agent’s neighbors in a pre-
vious round. Additionally, it has coalition strategies to
decide whether to join or not a coalition.

• A coalition member agent leaves the decisions regard-
ing its interaction strategy to its coalition leader. How-
ever, it still has coalition strategies to decide whether
to leave the coalition (to either switch to a better one
or in favor of independence) or stay in it. Moreover, a
coalition member must pay some tax to its leader for
the right to remain in the coalition. This tax serves as
a guarantee for cooperation within the coalition.

• A coalition leader agent decides the interaction strat-
egy for the whole coalition. Leaders impose that all the
agents within a coalition cooperate between them, but
defect when interacting with agents outside the coali-
tion. A leader cannot disband its coalition. However,
it must decide the taxes that its coalition members
must pay to remain in the coalition. Notice that by
applying a tax percentage to its coalition members, a
leader increases its own income. A leader’s income de-
pends on: the amount of tax, the number of agents
in the coalition, and the income of coalition mem-
bers. Therefore, although choosing high taxes may
lead to more short-term revenues, it may also lead to
bankruptcy of coalition members, and hence to the
collapse of the coalition (as observed in [3]).

Now we turn our attention to the actual coalition strate-
gies employed by agents to decide whether to join, leave,
or switch coalitions. These decisions mainly depend on the
agents’ payoffs when compared with their neighbors, and on
their commitments. The notion of commitment, introduced
in [3], reinforces cooperation between agents with previous
cooperative interactions. In what follows, we abstract the
coalition strategies presented in [5] as a collection of quali-
tative, role-based strategies:

Independent agent decision-making

1. Join coalition (worst agents). If my payoff is the worst
in my neighborhood then join my best (payoff-wise)
neighbor’s coalition (request to form one if needed).

2. Join coalition (moderate agents). If my payoff is av-
erage in my neighborhood and I am committed to my
best neighbor then join its coalition (request to form
one if needed).

Coalition member decision-making

3. Leave coalition (isolated agents). If I am isolated (con-
nection wise) from my coalition then leave it.

4. Strengthen coalition (satisfied agents). If my payoff is
good then increase my commitment with my leader.
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5. Coalition switch (worst agents). If my payoff is the
worst in my neighborhood and the agent with the
best payoff in my neighborhood is not my leader then
switch to the best agent coalition.

6. Coalition switch (unsatisfied agents). If the agent with
the best payoff in my neighborhood is not my leader
and I have some commitment with this best agent
then switch to its coalition.

7. Leave coalition (unsatisfied agents). If my commit-
ment to the leader is low and the agent with the best
payoff in my neighborhood is not my leader and this
best agent is independent then leave my coalition.

The strategies above allow agents to decide how to be-
have with respect to coalitions. Firstly, only independent
agents that are not obtaining good payoffs consider joining
a coalition (strategies 1 and 2). Secondly, an agent obtain-
ing good payoffs in its coalition, strengthens its commit-
ment to the leader (strategy 4). Otherwise, an agent that
performs poorly switches from its current coalition (strat-
egy 5), whereas an agent that does not perform poorly but
is unhappy with its leader may also either switch coalition
(strategy 6) or simply leave the coalition (strategy 7) looking
for potentially better coalitions.

Moreover, the model allows some exploration regarding
interaction and coalition strategies by the introduction of a
mutation probability. Mutation may randomly change ei-
ther the action that independent agents choose to play dur-
ing interactions, the decisions of agents regarding whether
to leave a coalition or not, and the taxes charged by leaders.
Therefore, mutation adds exploration to the strategic behav-
ior of independent agents, coalition members, and leaders.

2.2 Coalition Formation over Complex Net-
works

As stated above, the approach proposed in [5] was suc-
cessful in helping agents achieve full cooperation (or close
to it) on grids. However, grid or grid-like topologies may
not model the connectivity/topology that a MAS applica-
tion may find in a more realistic environment (e.g. P2P,
social networks). It has been argued that complex networks
provide a more realistic model of the topological features
found in many nature, social and technological networks [1,
14] (i.e. computer networks, social networks). Therefore,
complex networks provide actual-world topologies where we
can evaluate if the coalition formation results exhibited on
the grid topology hold. Hence, in this section we aim at eval-
uating this coalition formation approach (hereafter referred
to as the base approach) on actual-world topologies.

To that end, we ran a series of simulations of the base
approach over different complex networks. The networks
that we employed along with the results are described and
discussed in the following subsections.

2.2.1 Network Topologies
This paper’s experiments focus on small-world and scale-

free networks since these type of networks are the ones that
best model the most common networks appearing in soci-
eties and nature.
Small-world: These networks present the small-world phe-
nomenon, in which nodes have small neighborhoods, and yet
it is possible to reach any other node in a small number of
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Figure 1: Coalitions in small-world topologies

hops. This type of networks are highly-clustered (i.e. have a

high clustering coefficient). Formally, we note them as W k,p
V ,

where V is the number of nodes, k the average connectivity,
i.e., the average size of the node’s neighborhood, and p the
re-wiring probability. We used the Watts & Strogatz model
[19] to generate these networks.
Scale-free: These networks are characterized by having a
few nodes acting as highly-connected hubs, while the rest
of them have a low connectivity degree. Scale-free networks
are low-clustered networks. Formally we note them as Sk,−γV ,
where V is the number of nodes and its degree distribution
is given by P (k) ∼ k−γ , i.e. the probability P (k) that a
node in the network connects with k other nodes is roughly
proportional to k−γ . We used the Barabasi-Albert algorithm
[1] to generate these networks.

2.2.2 Experimental Settings
The settings described in this section are also those that

will be employed in the rest of this paper (unless other-
wise indicated). Each experiment consisted of 50 discrete
event simulations, each one running up to 20000 time steps
(ticks). Each simulation ran with 1000 agents over either
a small-world or scale-free underlying topology. Moreover,
all the metrics of the simulations were aggregated using the
inter-quartile mean (IQM). The experiments used a muta-
tion probability of 0.05 (the same reported in [5]).

In all simulations, interaction topologies were generated
by setting the following parameters: W 10,0.1

1000 in small-world
networks and S10,−3

1000 in scale-free networks. The clustering
coefficients of the topologies are high (0.492) and low (0.056)
respectively. Notice that a new interaction topology is gen-
erated per simulation.

2.2.3 Experimental Results
The purpose of first experiments was to determine whether

or not the base approach is influenced by the underlying
topology. To analyze the results we observed : i) the num-
ber of coalitions and independent agents (the closer to a
single super-coalition, the higher the cooperation); ii) each
agents’ payoff with respect to its maximum payoff (the co-
operation reward × the number of neighbors) and taxes;
and iii) the topology of the leaders’ neighborhoods. In gen-
eral, the experiments showed that the behavior of the base
coalition formation algorithm is strongly dependent on the
network topology as we discuss next.
Small-World. Firstly, we observed that in MAS with a
small-world connectivity (see figure 1), multiple coalitions
emerged (∼ 60). This fragmented population is quite a con-
trast with respect to the grid results, where a single coalition
emerged given enough time. Moreover, figure 1 also shows
that, at any given time step, around 5% of the population
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Figure 2: Coalitions in scale-free.

remains independent. However, the ceaseless spikes exhib-
ited by the plots of both agents in coalitions and indepen-
dent agents, indicate that agents are continuously leaving
and joining coalitions. In other words, coalitions are rather
unstable because their members continuously change.

With respect to the payoffs, figure 3 shows that the aver-
age payoff of an agent in a coalition is significantly low (∼ 20
% of the maximum). Specially when compared with the ∼
99% (of the maximum) obtained in the grid simulations (in
[5]). The reasons behind this lower payoff are two-fold: 1)
a fragmented population; and 2) very high taxes imposed by
leaders. The former means that as a result of multiple coali-
tions and independent agents, it is very likely for agents in
a coalition to interact (play) with agents outside their coali-
tion (for which their strategy is an automatic defect). The
latter occurs because leaders are not pushed to decrease their
taxes. In particular, leaders charge their coalition members
a ∼ 44% of their total payoffs. That fact that agents settle
on paying such high taxes greatly differs from the results
obtained on grids, where low tax values (< 1% of the total
payoff) were reached.
Scale-free. The results over scale-free topologies (depicted
in figure 2) show that agents promptly gravitate towards a
single leader, thus forming a single super-coalition. However,
not all agents join the coalition (∼ 18% of the population,
namely ∼ 180 agents, remain independent). Moreover, fig-
ure 2 exhibits the same kind of instability exhibited by the
small-world case (illustrated by the ceaseless spikes).

Interestingly, agents on this topology receive a higher pay-
off (∼ 50% of the maximum payoff) than on small-world
topologies, but still far from the 99% obtained in grids . This
occurs because a highly populated single coalition amounts
to a very high level of cooperation (i.e. ∼ 80% of the agents
cooperate with each other). Nonetheless, once again, like
in the small-world case, the agents in the coalition also pay
very high taxes (∼ 44% of their total payoff).

Moreover, an in-depth analysis of the simulations showed
that the agents that became leaders had an interesting char-
acteristic in common. They tend to be the agents with
higher connectivity (i.e. they have more neighbors). Hence,
the hubs (in particular the highly connected ones, although
not necessarily the most connected ones) usually emerge as
leaders. Consequently, this is also the reason why a single
leader can emerge, since the considerable high number of
neighbors that hub agents have with respect to the rest of
agents (∼20 vs. ∼150) puts them in an excellent influence
position. Moreover, the relatively low number of hub agents
means that only a few agents compete between themselves
to become a leader, thus it is easier for one of them to dom-
inate others.

In contrast, the neighborhoods under small-world topolo-
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gies are very similar 1 (on average each agent has ∼ 10 neigh-
bors) and thus all agents have more or less the same level
of influence. Hence, this explains why multiple coalitions
coexist (agents start with similar levels of influence).
Summary. Overall, the main drawbacks of the base model
are: its sensitivity towards the topology and the coalitions’
instability. The first one may be solved by analyzing and
revising the base decision making logic (i.e. the coalition
strategies), whereas the second issue is harder. The insta-
bility exhibited by coalitions mainly occurs because the high
mutation (0.05) prompts the agents to leave their coalitions
(as stated above). However, for large coalitions to appear,
high mutation is necessary on both grid (as argued in [5])
and complex network topologies. In other words, mutation
is both detrimental and crucial for the coalition formation
process. Hence, adjusting mutation is challenging when we
want to minimize the instability without affecting coalition
emergence.

In the next section we focus on improving cooperation
mainly by solving or minimizing the above-mentioned draw-
backs.

3. IMPROVING COOPERATION
The aim of this section is to study how to maximize coop-

eration amongst agents ( and consequently improving their
payoffs). To that end, the base approach needs to be re-
vised and extended to address the drawbacks identified in
the previous section.

Specifically, along this section we focus on: a) achieving
full cooperation by emerging a single super-coalition (avoid-
ing a fragmented population); b) sustaining the single coali-
tion through time by minimizing coalition instability; and c)
lowering the taxes needed to maintain the coalition. More-
over, all of these needs to occur regardless of the underlying
topology. However, notice that although a single coalition
promotes cooperation and is beneficial for the agents’ pay-
offs, a single leader becomes a potential single-point of fail-
ure, making the MAS vulnerable. Therefore, we also commit
to an additional objective: d) the promptly re-emergence of
a coalition if the leader fails.

3.1 Topology Influence
The experimental results in section 2.2 showed that the

base coalition formation approach is considerably sensitive
to the MAS underlying topology. In particular, we observed
that the topology influences the structure of coalitions (frag-

1because of the small-world phenomenon, see [19]
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mented population vs. single coalition). However, the topol-
ogy also influences other aspects of emergence, i.e. the emer-
gence time. Hence, the purpose of this subsection is to per-
form a sensitivity analysis of the decision making process
(described in subsection 2.1) with respect to the topology.

3.1.1 Influence on Coalition Structures
The most noticeable topological effect observed during

the previous experiments was the fragmented population.
Specifically, in small-world topologies agents form multiple,
different coalitions, which are detrimental to their total pay-
offs. Therefore, in what follows we aim to promote the emer-
gence of a single coalition.

To understand why multiple coalitions emerged instead
of a single one, we must first explain how we expected the
base approach to behave. Initially, regardless of the topol-
ogy, agents organize in small coalitions. Then, agents were
expected to leave their coalitions in favor of independence or
better coalitions if their payoffs were not sufficient. In other
words, by continuously joining and leaving coalitions, agents
were expected to incrementally move towards larger coali-
tions (under the principle that the larger the coalition the
higher the payoff) until only a single one remained. However,
as the experiments demonstrated in subsection 2.2.3, this
behavior does not occur on small-world topologies. Hence,
the join and/or leave coalition strategies do not behave as
needed.

We determined that the shortcoming stems from join coali-
tion strategies instead of leave coalition strategies. Our rea-
soning is that because of high mutation some agents will
always leave their coalitions, thus the fault occurs when
they (re-)join them. That is to say, in small-world topolo-
gies the join strategies are not moving the agents towards a
larger coalition, and instead they keep the population frag-
mented. Specifically, this occurs because the combination of
the small-world’s inherent high clustering, the commitment
notion, and join coalition strategy 2, prompt each agent to
rejoin the coalition they just left (i.e. most agents never
truly leave their coalitions).

We re-ran the experiments to verify if the join coalition
strategy 2 truly halts the emergence of a single coalition. As
expected, we confirmed that without this strategy, agents
on small-world topologies are capable of emerging a single
super-coalition. Moreover, interestingly enough we found
that agents in the single coalition have the additional advan-
tage of paying a significantly low tax (∼5% of the agent’s
total payoff instead of ∼44%). The reason behind such low
taxes is very reasonable. The fact that every agent can
potentially become a leader (as discussed in section 2.2.3)
drives a fierce competition between leaders to charge lower
taxes (akin to a price war). Overall, low taxes translate onto
higher payoffs for coalition agents (∼90 % of the maximum),
which is our main objective. Nonetheless, the instability of
coalitions is still present and is accountable in lower average
payoff obtained by the non-leader agents when compared to
the coalition agents (see figure 3).

Nevertheless, the removal of join coalition strategy 2 is
detrimental to scale-free topologies. Because of the highly
connected hubs in scale-free networks, a single coalition promptly
emerges. However, the low clustering of scale-free networks
causes agents that recently became independent to remain
independent for longer periods of time. This considerably
increases the coalition’s instability (around one third of the

agents are independent at any given point in time). Basi-
cally, without a strategy to force agents into a coalition (such
as join coalition strategy 2), the number of agents leaving a
coalition is higher than the number of agents joining one. In
other words, scale-free suffers the full-blown effect of muta-
tion.

To summarize, we reaffirmed the fact that the effect of
the coalition decision making process varies depending on
the network topology. However, since agents are not capa-
ble of identifying the underlying topology where they inter-
act, creating specific strategies for each topology is unrealis-
tic. Nonetheless, when join strategy 2 is removed, coalition
emergence is relatively similar in both small-world and scale-
free, since only single coalition emerges. This is important
because now only one drawback remains for both topologies:
instability (although to a much higher degree in scale-free).
Therefore, the remaining objective is to minimize instability,
which is the focus of subsection 3.2.

3.1.2 Influence on Emergence Time
In the previous subsection we determined that a single

coalition can emerge regardless of the topology. However,
we did not mention that the time required for this single
coalition emergence varies depending on the topology. In
particular, we observed that agents in small-world require a
longer time to group up unto a single coalition (4000 time
steps) with respect to the agents on scale-free (< 500 time
steps). This time disparity is once again a product of the
strong influence that hub agents have over the rest of agents.
Thus, in this section we aim to speed-up the coalition emer-
gence process on both topologies.

In the base approach, the switch and leave coalition strate-
gies (3,5,6, and 7) are expected to improve coalition emer-
gence time, since they prompt agents to leave their coalitions
in search for better ones. However, the leave strategies tar-
geting unsatisfied agents (6 and 7) are hardly ever employed.
Therefore, we propose to replace them with the by far more
aggressive disband coalition strategy. With this strategy,
leaders of unprofitable coalitions may disband their coali-
tions and free multiple unsatisfied agents in just a single
time step. This can be regarded as the dual of strategies
6 and 7, since instead of each agent leaving its leader, the
leader leaves all its agents.

8. Disband coalition (unsatisfied leader). If I am a leader
and I am not satisfied with my payoff then disband
my coalition.

Algorithm 1, stands for the resulting coalition decision
making process. Notice that after removing the join and
leave strategies (strategies 2,6, and 7), none of the remain-
ing strategies employ the notion of commitment employed in
Axelrod’s tribute model [3]. Thus, the strengthen coalition
strategy (strategy 4) was also removed. That is to say, com-
mitment between agents is not actually needed for coalition
emergence. We re-ran the simulations to verify the speed-up
provided by algorithm 1.

The results showed that by employing the disband strat-
egy a single coalition emerges ∼ 12.5 % faster (than when
employing strategies 6 and 7) in a small-world topology.
Moreover, it speeds up the emergence on scale-free by∼ 50%.

Overall, we have simplified the agents’ coalition decision
making algorithm. Therefore, we can now turn our attention
to our remaining drawback: coalition instability.
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Algorithm 1 CoalitionDecisionMaking

if (myRole = INDEPENDENT ) then
/∗ Strategy 1 ∗/
joinCoalitionWhenWorst(best neighbor);

end if
if (myRole = COALITION MEMBER) then

/∗ Strategy 3 ∗/
leaveCoalitionWhenIsolated();
/∗ Strategy 5 ∗/
switchCoalitionWhenWorst(best neighbor);

end if
if (myRole = LEADER) then

/∗ Strategy 8 ∗/
disbandCoalitionWhenBad();

end if
mutation(pmutation);

3.2 A Consensus Mechanism for Stable Coali-
tions

After section 3.1 the only issue remaining that prevents
full cooperation is coalition instability. Therefore, in what
follows we propose to extend the coalition formation ap-
proach (in algorithm 1) to endow it with capabilities to min-
imize instability. However, to accomplish this we must first
understand exactly what we are trying to minimize.

3.2.1 Rebellion vs. Mutation
Along this paper we have found that mutation is both a

nuisance and a crucial factor for the coalition formation pro-
cess. However, when analyzing its effects, we realized that
the “mutation” employed by the base approach is actually a
merge of two different concepts: classic mutation (a random
change in the agents’ properties) and rebellion. The former,
has been well studied in the literature [12] and affects agents’
actions to play and/or the taxes to charge, whereas the lat-
ter is the probability of an agent to become a rebel (leaving
its coalition). Thus, in the base approach when mutation oc-
curs in an agent, it randomly changes its actions and taxes,
and it prompts the agent to leave its coalition (if applica-
ble). That is to say, both random changes and rebellion
occur concurrently. Nonetheless, rebellion (achieved by mu-
tation in previous experiments) is the actual factor that is
crucial for the coalition formation process. Hence, it must
be treated as a separate entity if we want to minimize the
instability resulting from it.

The importance of a rebellion capability is not hard to un-
derstand. We have discussed before that larger and stronger
coalitions emerge when agents leave their current one to join
others. However, the leave or switch coalition strategies do
not activate that frequently, and it is actually the rebellion
probability the factor that often drives agents to leave their
coalitions. This is akin to the not always logical real-life
rebellion, e.g. humans may rebel from a social group with-
out actually knowing if there is something better somewhere
else. However, as the instability in all previous experiments
shows, continuous/constant rebellion is detrimental to agent
coalitions. Thus, we propose that, to minimize instability,
agents need to adjust their rebelliousness according to their
needs (e.g. their payoffs).

3.2.2 The Consensus Mechanism
Rebellion is necessary during the coalition formation pro-

Algorithm 2 The new coalition formation algorithm em-
ployed by each agent

1: interactWithNeighbors();
2: if (myRole 6= LEADER) then
3: spread(〈[tax,prebellion],payoff〉,pspreading);
4: [tax,prebellion]←select(spreadings);
5: innovate([tax,prebellion],pinnovation);
6: end if
7: coalitionDecisionMaking();
8: if (myRole = COALITION MEMBER)

& (tax<leader.getTax()) then
9: leaveCoalition(prebellion);

10: end if

cess. Nonetheless, it induces instability once a single coali-
tion emerges. Therefore, agent rebelliousness needs to be
controlled by the agents themselves accordingly (i.e. only
rebel when necessary). Not only that, since agents are dis-
tributed entities, rebellion must be controlled distributedly.

However, if we intend for rebellion to only occur when nec-
essary, we firstly require to give rebellion a motive within the
agent, i.e. why should an agent rebel? That is to say, rebel-
lion needs to be dependent on some other property or char-
acteristic of the agents. In the coalition formation process,
dissatisfaction with respect to the taxes to pay provides a
very logical and reasonable motive for rebellion. Therefore,
we propose that an agent may only rebel once its coalition
leader is charging more taxes than what the agent is willing
to pay. Nevertheless, in both the base approach and in al-
gorithm 1 the agents pay the taxes that the leader charges
unconditionally. Hence, to relate taxes and rebellion the
agents need to have the notion of how much they are will-
ing to pay, i.e. a tax threshold. Moreover, like the rebellion
probability, this tax threshold should also be decided by the
agents themselves.

In human culture rebellion often occurs as a social move-
ment. Individuals are more likely to rebel if their peers are
rebelling, or are more likely to be satisfied with their taxes if
their neighbors are satisfied. In other words, rebellion can be
regarded as a collective decision. To that end we propose to
employ a collective adaptive approach to reach a consensus
about the rebellion probability and tax threshold. This pro-
posed collective approach, inspired on the social contagion
phenomenon [6], is designed to collectively emerge conven-
tions/consensus about properties common to the agents of
a MAS. Under this approach agents with good properties
(ones that help them improve their payoffs) are more likely
to spread them to other agents. For the coalition formation
scenario, agents attempt to spread their rebellion probabil-
ity and tax threshold. For instance, an agent spreading that
its tax threshold and rebellion resulted in a high payoff, is
likely to persuade other agents to adopt that threshold and
rebellion.

Algorithm 2 outlines to the coalition formation algorithm
designed to achieve full cooperation and closely maximize
the individual agents’ payoff on complex networks. The con-
sensus mechanism is included in lines 2-6. Each non-leader
agent firstly attempts to spread, with probability pspreading,
its rebellion and tax threshold using its payoff as an evalua-
tion metric. This is followed by each agent having to decide
which of all the incoming spreadings to take (line 4). In our
case, an agents always takes the incoming spreading with
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Figure 4: Coalition evolution with consensus on
small-world topologies.
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Figure 5: Coalition evolution with consensus on
scale-free topologies.

highest payoff (elitist selection). Finally, the rebellion prob-
ability and threshold are randomly changed with probability
pinnovation (line 5).

3.2.3 Sustaining Cooperation
To evaluate the new capacity embedded into the agents,

we ran experiments using a moderated spreading probability
(0.2) and a low innovation rate (8×10−4). Additionally, the
rebellion probability and tax threshold take on values in the
range (0,1).

In general, the experimental results showed that with al-
gorithm 2 most agents in the MAS receive high payoffs.
Specifically, for both topologies a stable single super coali-
tion emerges with a leader that charges low taxes.

The experiments on small-world topologies (depicted in
figure 4) show that initially (less than 50 time steps) agents
arrange themselves in different coalitions (∼ 80), which promptly
start to disappear into a single coalition. Specifically, the
single leader emerges in just ∼ 1100 time steps, and around
time step 2000 most agents (∼ 99.5%) are already part of
the single super-coalition. In other words, a single stable
coalition arises such that, almost no agent leaves (very low
number), and where agents have a high payoff (∼ 93% of the
maximum, as shown in figure 3). Moreover, the time needed
to emerge such coalition is faster than before (∼ 60% faster,
see subsection 3.1.2). These results are achieved through
the emergence of low tax values (∼ 2.5% of the total pay-
off) together with an extremely high rebellious capacity (∼
55%). This combination translates to the lemma: “low taxes
or rebellion!”, which the leaders are forced to comply.

Regarding scale-free topologies (see figure 5), a single coali-
tion is achieved faster than before (in less than 200 time
steps vs. ∼ 300). What is more, the coalition now is com-
pletely stable (very unusual for an agent to leave it) and the
taxes (∼20% of the agent’s total payoff) are lower than when
employing the base approach or just algorithm 1 (∼ 44% in
both cases). When comparing with small-world, observe
that the process is similar (an initial peak in the number
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Figure 6: Fault resilience on small-world topologies.
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Figure 7: Fault resilience on scale-free topologies.

of coalitions that then decreases into a single coalition) but
much faster (10 times faster).

Finally, although full cooperation is closely achieved, it
comes with an associated cost: extra communication. The
spreadings sent by agents represent additional messages.
Nonetheless, to emerge a single coalition each agent in a
scale-free topology needs to send only ∼ 4 messages, while
an agent in a small-world topology needs ∼ 40 messages.

3.2.4 Fault Resilience
Notice that, in actual (real-world) environments, our co-

operation scheme has an associated risk: the existence of a
single leader. If the leader agent becomes a target of mali-
cious attacks or fails by chance, all the agents in the coali-
tion will immediately become independent. Therefore, the
experiments in this section were designed to evaluate the
resilience of our approach to such failures.

To that end we repeated the experiments in the previ-
ous section, but now attacking the leader once the single
coalition is stable. Specifically, after 4000 time steps (once
a single coalition has emerged and proven to be stable) we
completely removed the leader agent from the MAS to sim-
ulate the leader’s failure.

Figures 6 and 7 depict how agents react after the leader
is taken down. In general, observe that the response is sim-
ilar for both topologies. After the leader disappears and
all agents become independent, multiple coalitions begin to
emerge. However, these coalitions do not last very long (less
than 50 time steps) and rapidly start to disband so their
members can join a single super-coalition. The peaks in the
small-world and scale-free number of coalitions plots depicts
this transition. The single super-coalition emergence occurs
faster because agents already have some good estimations
of the tax threshold and rebellion probability (i.e. they are
not searching for these values from scratch). Furthermore,
once again agents on scale-free are quicker to emerge a sin-
gle coalition than the small-world ones (< 100 against < 600
time steps). When compared with the previous experiments
(figures 4 and 5), emergence is twice as fast on scale-free and
four times faster on small-world.
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Overall, the experiments show that coalition emergence
with a consensus mechanism is resilient against leader fail-
ures, which was also one of our main objectives (mentioned
at the beginning of this section).

4. CONCLUSIONS
In this paper we confirmed that coalitions indeed facilitate

cooperation between self-interest agents. However, we found
that the coalition formation process is considerably sensitive
to the MAS topology. In particular, to the complex network
topologies that model actual-world environments.

To that end we proposed a new distributed, lightweight
and efficient coalition emergence approach. We showed that
agents on complex network topologies employing this ap-
proach can achieve full cooperation by grouping into a single
super-coalition. Moreover, agents in this super-coalition can
maintain cooperation over time in exchange of some signif-
icantly low tax, which is agreed by the agents themselves
(thus increasing their overall profits). Hence, closely maxi-
mizing their payoffs.

In our experiments, we determined that rebellion is a
crucial factor for coalition emergence. Through rebellion,
smaller and unprofitable coalitions disappear so that big-
ger ones can rise. Moreover, the agent population can use
rebellion to pressure leaders to decrease their taxes. Con-
sequently, increasing competitiveness among leading agents.
This contrasts with Axelrod’s model [3], where leaders were
the ones who pressured the population to the point of ex-
tortion. Overall, our proposed approach results in a faster
single-coalition emergence and in lower taxes for the popu-
lation as a whole. Nonetheless, the emergence time and the
taxes still vary depending on the topology.

On the one hand, the lowly-clustered, with highly-connected
hubs, structure of scale-free topologies gives hub agents an
inherent advantage over the rest of the population. Specifi-
cally, hub agents can promptly emerge as leaders, dominat-
ing the population and getting away with somewhat higher
taxes. On the other hand, in the highly clustered small-
world topologies, any agent has the potential to become a
leader, thus sparking a fiercer and longer (time-wise) price
war, which results in much lower taxes.

Furthermore, we determined that commitment to either
other agents or leaders (and employed in [3] and [5] ) is
not essential for coalition formation and maintenance. Even
without commitment, a single coalition can emerge and be
sustained over time as long as the agents are satisfied with
their leaders, which is likely to occur since a leader is always
under the threat of rebellion when misbehaving.

Finally, even though it is known that employing a leader
based super-coalition introduces a single point of failure into
the MAS, our proposed approach is resilient against leader
failures (e.g. DOS attacks, disappearance, removal). How-
ever, we plan to study how multiple coalition could emerge
when the population is divided by goals.
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role of clustering on the emergence of efficient social
conventions. In IJCAI 2005, pages 965–970, 2005.

[16] F. Schweitzer, L. Behera, and H. Muehlenbein.
Evolution of cooperation in a spatial prisoner’s
dilemma. Advances in Complex systems,
5(2–3):269–299, 2002.

[17] O. Shehory and S. Kraus. Coalition formation among
autonomous agents: Strategies and complexity. In
C. Castelfranchi and J. P. Muller, editors, From
Reaction to Cognition, number 1, pages 57–72, 1995.

[18] K. Tanimoto. Coalition formation interacted with
transitional state of environment. In Systems, Man
and Cybernetics 2002, volume 6, pages 6–9, 2002.

[19] D. J. Watts and S. H. Strogatz. Collective dynamics of
’small-world’ networks. Nature, 393:440–442, 1998.

676



An Investigation of the Vulnerabilities of Scale Invariant
Dynamics in Large Teams

Robin Glinton, Paul Scerri, Katia Sycara
Robotics Institute, Carnegie Mellon University

5000 Forbes Ave.
Pittsburgh, PA

rglinton, pscerri, katia@cs.cmu.edu

ABSTRACT
Large heterogeneous teams in a variety of applications must make
joint decisions using large volumes of noisy and uncertain data. Of-
ten not all team members have access to a sensor, relying instead on
information shared by peers to make decisions. These sensors can
become permanently corrupted through hardware failure or as a re-
sult of the actions of a malicious adversary. Previous work showed
that when the trust between agents was tuned to a specific value the
resulting dynamics of the system had a property called scale invari-
ance which led to agents reaching highly accurate conclusion with
little communication. In this paper we show that these dynamics
also leave the system vulnerable to most agents coming to incorrect
conclusions as a result of small amounts of anomalous information
maliciously injected in the system. We conduct an analysis that
shows that the efficiency of scale invariant dynamics is due to the
fact that large number of agents can come to correct conclusions
when the difference between the percentage of agents holding con-
flicting opinions is relatively small. Although this allows the sys-
tem to come to correct conclusions quickly, it also means that it
would be easy for an attacker with specific knowledge to tip the
balance. We explore different methods for selecting which agents
are Byzantine and when attacks are launched informed by the anal-
ysis. Our study reveals global system properties that can be used to
predict when and where in the network the system is most vulnera-
ble to attack. We use the results of this study to design an algorithm
used by agents to effectively attack the network, informed by local
estimates of the global properties revealed by our investigation.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms
Algorithms, Theory, Experimentation

Keywords
Emergent behavior, Self-organisation, Distributed problem solving

1. INTRODUCTION
Cite as: An Investigation of the Vulnerabilities of Scale Invariant Dynam-
ics in Large Teams, R. Glinton, P. Scerri and K. Sycara, Proc. of 10th
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei,
Taiwan, pp. 677-684.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1 In the near future, large heterogeneous teams of robots, agents,
and people will be utilized to solve problems in a variety of ap-
plications including search and rescue and the military. The sheer
size of such teams will mean that the amount of data collected by
the team will be overwhelming for its constituents. For this reason,
team members will need to share concise information abstractions
to maintain shared situational awareness.

The physics of communication, along with environmental con-
straints, will require team members to communicate via a point to
point associates network. This will in turn lead to complex infor-
mation dynamics and emergent phenomena, which in turn leads to
unpredictability.

This paper shows that small amounts of anomolous information
introduced to such a belief sharing system can cause errors on a
system-wide scale due to the intrinsic dynamics of the system. This
could potentially be exploited by a malicious agent attempting to
disrupt such a system. Both analytical and empirical evidence is
provided to support this assertion.

Previous attempts to describe the vulnerabilities of complex net-
worked system primarily focus on finding vulnerabilities in the net-
work topology without consideration of the dynamics of the pro-
cess taking place on the network [1]. In this work, the dynamics
on the network have a dramatic impact on the vulnerability of the
system. Studies which have considered how to influence network
dynamics of a complex system include [2]. These all focus on a
single type of information spread whereas here we can have con-
flicting data that fundamentally changes the dynamics and intro-
duces new vulnerabilities due to the way information is fused on
the network.

It was recently shown that a team of agents could tune their local
trust such that the frequency distribution of cascades of changes in
belief followed a power law [3]. When the team was tuned like
this, the team’s ability to rapidly reach correct conclusions despite
noisy data and limited communications was shown to be dramati-
cally higher. However, in this paper we show that when a system is
tuned like that, it also becomes extremely vulnerable to malicious
attack.

We conduct an analysis to show that for a system exhibiting scale
invariant dynamics, a single anomalous sensor reading could result
in a number of agents on the order of the size of the system com-
ing to the incorrect conclusion. The analysis compares the rate at
which the probability that an agent is on the edge of coming to a
correct conclusion, called the percolation probability, increases rel-
ative to the same probability for an incorrect conclusion. The anal-

1This research has been sponsored in part by AFOSR
FA95500810356.
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ysis reveals that these two numbers remain close until the agents
in the system converge. Although this difference is biased towards
correct conclusions, the analysis shows that this difference is small
enough for a few anomalous sensor readings to push large numbers
of agents towards incorrect conclusions.

To confirm the predictions of the analysis we empirically ex-
plore the effect of injecting a single incorrect sensor reading into
the system on the correctness of conclusions reached by agents in
the system. We show empirically by exhaustively searching tra-
jectories of system execution that there is always a point in that
trajectory where injecting a single sensor reading can lead to sys-
tem wide incorrect conclusions. We further show that an adversary
could mount an effective attack on the system if the adversary had
global knowledge of the distance of the system from the percolation
threshold for the incorrect conclusion.

Figure 1: Belief sharing system exhibiting scale invariant dy-
namics is vulnerable to a small percentage of Byzantine agents.

Just as complex systems can be attacked from external sources,
it is also possible for attacks to originate from within. Thus it is
necessary to understand the potential vulnerabilities of such a sys-
tem to threats from within. To this end we study the vulnerability of
the agents within the system to reaching incorrect conclusions as a
result of the action of Byzantine agents within the system. Specifi-
cally, we study mechanisms for picking the most vulnerable points
in the network for attack by Byzantine agents. We explore Several
different mechanisms for selecting which nodes are Byzantine, us-
ing methods typically employed in the study of the vulnerabilities
in network topologies to network disintegration. The study reveals
that the most effective method is that which selects the nodes with
the maximum number of neighbors. Finally, our study shows that
as the number of Byzantine agents in the network increases, the
trust range between agents that results in a scale invariant distribu-
tion of cascades is no longer optimal. As the number of byzantine
agents increases the optimal value of trust is lowered slightly with
the agents becoming slightly more conservative to account for the
misinformation circulating in the system.

In a large distributed system it is unlikely that an adversary would
have access to the global network state or topology, thus it is de-
sirable to study whether an effective attack on the system could
be launched using only local knowledge of the network state and
topology. To investigate the feasibility of a practical attack we de-

veloped a local algorithm, inspired by [4], where Byzantine agents
use knowledge of the local connectivity and a local estimate of the
percolation threshold to decide when and where to focus an attack.
We found that such an attack is as effective, in reducing the number
of agents that come to a correct conclusion, as an attack mounted
with full knowledge of the system state and network topology.

The remainder of this paper is organized as follows: Section 2
gives an overview of the model of a belief sharing system used to
study emergent vulnerabilities. Section 3 presents an analysis that
reveals a vulnerability of such a system to small amounts of anoma-
lous information introduced by an adversary. Section 4 empirically
explores the vulnerability of the system to spoofed sensor readings
introduced by an adversary with global system knowledge. Section
5 empirically explores the vulnerability of the system to Byzantine
agents with detailed knowledge of the network topology and state.
Section 6 explores the feasibility of effective attacks based on par-
tial knowledge of the system. Section 7 presents the related work
and Section 8 presents conclusions and future work.

2. MODEL
In this section, we formally describe the underlying model used

in the remainder of the paper. A cooperative team of agents, A =
{a1, . . . , a|A|} are connected by a network, G = (A,E) where E
is the set of links in G which connect the agents in A. An agent
ai may only communicate directly with another agent aj ∈ Nai

if ∃ei,j ∈ E where we refer to the set Nai as its neighbors. The
average number of neighbors that the agents in G have is defined
as < d > where < d >=

P
i |Nai

|
|A| .

Sensors, S = {s1, . . . , s|S|} provide noisy observations to the
team. Only one agent can directly see the output of each sensor.
The sensors return binary observations about some fact b from the
set {true, false}. We refer to the probability that a sensor s will
return a correct observation as its reliability rs. The reliability of a
sensor is known to the agent that receives observations from it.

In the remainder of this paper, unless otherwise specified, |A| =
1000 , |S| = |A|/20 and rs = 0.55∀s.

A key assumption of the model is that it is infeasible for agents
to communicate actual sensor observations to one another and that
they may only communicate whether they currently believe the fact
to be true, false or if they are undecided, unknown.

Each agent ai uses either an observation received from a sensor
or conclusions about b communicated by neighbors to form a belief
Pai(b → true) about b. A new observation is incorporated into
the current belief to form a new belief P ′ai

(b → true) using an
expression of Bayes’ Rule with cp as the conditional probability
that the neighbors conclusion is correct. In this model cp acts as a
measure of the trust between agents.

An agent will come to a conclusion about the truth of the fact
and communicate this conclusion to neighbors if its belief in that
conclusion exceeds a fixed threshold. The details of the belief up-
date calculation and thresholding were taken from [3]. When an
agent comes to a conclusion and communicates with neighbors, the
neighbors may then come to a conclusion and communicate. This
chain of conclusion formation is called a cascade. Previous work
showed that agent conclusions are most accurate when the prob-
ability P (c) that c agents change their belief during a cascade is
given by P (c) ∝ c−3/2. The most important metric used in this
paper is Ta, the number of agents in the network coming to the
correct conclusion. We define the system under study to be vulner-
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able if there are small sets of Byzantine agents â, subset â ⊂ |A|
such that Ta and |â| is greatly reduced. Another objective is to
find times at which the system is most vulnerable to the injection
of anomalous sensor readings and agent conclusions.

3. THEORY OF SCALE INVARIANT VUL-
NERABILITY

In this section we conduct an analysis that reveals a vulnerability
to attack in systems which exhibit scale invariant dynamics. Such
systems have been shown to enable very accurate and efficient be-
lief fusion using very little communication. We would like to lever-
age this efficiency to design practical information fusion systems.
However, first it is necessary to understand potential vulnerabilities
of such a system to adversarial action. To this end we analyze the
difference in the rate at which agents in the system reach correct
conclusion (called the percolation probability for that conclusion)
relative to the rate at which they approach incorrect conclusions.
Our, analysis reveals that although agents overwhelmingly reach
correct conclusions at a higher rate, the difference to the rate at
which they near incorrect conclusions is small. This suggest that
when the majority of agents are close to making a decision, a single
anomalous sensor reading could offset this balance causing a large
percentage of agents to reach the incorrect conclusion instead.

Previous work [5] showed that the probability of a large cascade
disseminating a conclusion system wide is given by:

X
k̂t

X
ŝt

β(k̂t, β(ĝt))P (k̂t | ŝt)P (ĝt | ŝt)β(ŝt) (1)

This occurs when the percolation probability for that conclusion
exceeds a threshold called the percolation threshold.

The vector k̂t = [k0, k1, . . . , kt] gives the sequence of the sizes
of avalanches that occurred over time. Similarly the vector ĝt gives
the sequence of false avalanches that occurred. (Note for the model
presented in this paper, only a single cascade per time step is pos-
sible). Finally the vector ŝt = [s0, s1, . . . , st] gives the sequence
of sensor readings input to the system up until time t. The terms in
Equation 1 are as follows: The term β(ŝt) gives the probability of a
specific sequence of sensor readings input to the system, P (k̂t | ŝt)
and P (ĝt | ŝt) give the probability of a resulting sequence of cas-
cade sizes of correct and incorrect conclusions respectively. Finally
β(ĝt, k̂t) gives the probability that a random agent in the network
will be touched by a net number of correct cascades such that it is
one correct communication from a neighbor away from reaching
the correct conclusion.

Starting with Equation 1 we show that the difference between
the probability of a large cascade of correct conclusions and a large
cascade of incorrect conclusions is small just before a large cas-
cade of correct conclusions occurs, revealing a vulnerability in the
system. To facilitate ease of computation we simplify Equation 1
by observing that the scale invariant distribution is heavy tailed,
meaning that the probability of a cascade of size 1 is close to 1.
It is then reasonable to assume that before a large cascade occurs,
all cascades are of size 1. Under this assumption, given a specific
sequence of sensor readings ŝt, all of the probability mass of the
cascade sequence distribution P (k̂t | ŝt) collapses to a single pos-
sible sequence of cascades. With this simplification Equation 1 is
reduced to Equation 2:

Figure 2: The percolation probability for incorrect informa-
tion stays near that for correct information until just before the
threshold is exceeded.

X
k̂t

X
ŝt

β(k̂t, ĝt)β(ŝt) (2)

All three terms of this equation are binomially distributed. We
can further simplify computation using this expression by recog-
nizing that a binomial distribution can be approximated by a nor-
mal distribution. The first term in the equation which gives the
probability of the difference between the number of competing cas-
cades that reached the agent is then normally distributed with mean
µ = nT−nF

|A| and standard deviation σ = nT
|A|

1
1−|A| + nT

|A|
1

1−|A| .
Where nT and nF give the number of correct sensor readings and
incorrect sensor readings in the the sequence ŝt. The probability
of a net number of false cascades touching the agent is obtained by
simply switching the nT and the nF in the normal distribution.

With this substitution it is easy to numerically integrate Equation
2, to give the percolation probability for correct and incorrect cas-
cades. The result of this computation is shown in Figure 2. The
x-axis of this figure gives the timestep and the y-axis gives the per-
colation probability. For the random network the calculation was
conducted for, the percolation threshold that would result in a large
cascade is .33. In the figure it is evident that the percolation proba-
bility for a correct cascade reaches this threshold first. However, at
this point the percolation probability for the large incorrect cascade
is 0.25. This difference corresponds to less than 5% of the agents
in the system. For the system under study with |A| = 1000, this
is less than 50 agents. This estimate is a maximum because the
analysis was predicated on only avalanches of size 1 occuring and
the assumption of a loop free network. In practice relaxing either
of these conditions would reduce the number of agents necessary
to upset the balance and cause a large cascade of incorrect informa-
tion.

The conclusion is that relatively few sensor readings or a small
number of Byzantine agents could potentially cause a system on
the verge of large numbers of agents reaching the correct conclu-
sion to have the exact opposite occur. Furthermore, this result sug-
gests that the system is particularly vulnerable near the percolation
threshold. Although the curves in Figure 2 are even closer together
at lower percolation probabilities, additional Byzantine agents or
anomalous sensor readings would be required to drive the system
closer to the percolation threshold. For example at iteration 300
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an additional 150 agents would need to be influenced to drive the
system to the percolation probability for a cascade of incorrect con-
clusions. Figure 4 illustrates the vulnerability. As the agents in the
system near a correct conclusion, there is a smaller group of agents
on the edge of an incorrect conclusion. A single anomalous sensor
correction can set off a large cascade among such agents leading to
large numbers of agents coming to incorrect conclusions.

4. BYZANTINE SENSORS
In this section we investigate the vulnerability of a system ex-

hibiting scale invariant dynamics of belief exchange to small amounts
of anomalous sensor readings introduced to sensors by a malicious
attacker. The results of this section show that for all of the network
topologies with the exception of Small World, there was always a
point in time at which injecting a spurious sensor reading would re-
sult in large numbers of agents reaching the incorrect conclusions.
In addition, experiments reveal that an adversary with knowledge
of the number of agents in the system 1 communication from a
neighbor away from reaching a correct conclusion could use this
information to decide the best times to introduce spurious sensor
readings into the network for maximum impact on the conclusions
reached by agents with minimal intervention.

We conducted experiments to explore this potential system vul-
nerability. In the first experiment we test if an adversary with total
knowledge of the system, including all of the possible trajectories
of the system dynamics could cause the agents in the system to
adopt the wrong conclusions. In this experiment we exhaustively
search trajectories of the system simulation for points where intro-
ducing a single incorrect sensor reading will result in a cascade for
which greater than half of the agents in the system incorporate the
incorrect sensor reading into their belief. The exact procedure for
searching the system trajectories is as follows. First, a snapshot of
the system is taken where the current belief state of all of the agents
is recorded. Next, we exhaustively consider what would happen if
incorrect sensor readings were introduced to every permutation of
two sensors in the system. For each such permutation, the resulting
cascades, if any, are allowed to propagate until the system quiesces.
The agents are then restored to their states before the introduction
of the incorrect readings before the next permutation is explored.
If a large cascade does not result, the agents are returned to their
previous belief state and the system is allowed to evolve as if the
intervention did not occurr. The entire procedure is then repeated.

In this experiment we recorded the number of large cascades that
occurred as a result of malicious intervention during 10 rounds of
the above procedure, where each round consists of 100 steps, where
each step consists of the permutation search discussed above. The
parameter values used during this experiment were |A| = 1000,
|S| = 1/20|A|, sr = 0.55, and < d >= 4. The results of the ex-
periment are given by Figure 3. The x-axis gives cp and the y-axis
gives the number of rounds out of 10 in which greater than 50% of
the agents incorporated the incorrect information artificially intro-
duced to the sensors.

The plot shows that during almost every round, there is a point
in the system trajectory where introducing incorrect information at
the sensors would have resulted in a large cascade, propagating this
incorrect information to more than half the agents in the system.
This only occurs for rounds when the value of cp approaches the
value which results in scale invariant dynamics. This suggests that
an omniscient agent could almost always cause the agents in the
system to come to the incorrect conclusion. This of course is not

Figure 3: Cascades resulting from malicious intervention at
sensors.

practical and in the next experiment we investigate what informa-
tion could be used by a malicious actor to mount a practical attack
on the system.

The preceding experiment showed us that there is almost always
a point in the trajectory of the system where the system is extremely
vulnerable to malicious intervention using a small amount of misin-
formation. However, the experiment did not tell us anything about
when the system is most vulnerable. Specifically, the experiment
did not reveal what properties of the system could be used by a
malicious actor to decide when to inject misinformation at the sen-
sors. We hypothesize, due to the results of Section 3 that the sys-
tem would be most vulnerable to such an attack when the system
is on the edge of making a decision. That is when the agents are
approaching a percolation threshold for a large correct avalanche.

The percolation threshold in this case is a network specific prob-
ability that a randomly selected agent requires a single communi-
cation from a neighbor to come to a conclusion. We conducted an
experiment to test this hypothesis. In this experiment we simulated
1000 runs of the system and injected a single incorrect reading at a
randomly chosen sensor using two methods to decide when to in-
ject the reading. In the first method we simply randomly selected
the time-step at which to inject the incorrect sensor reading. In the
second method the reading was injected when the percolation prob-
ability was at the percolation threshold. We repeated this for each
network topology under study. The results are given in Table 5.

Network Random success rate Percolation success rate
SF 0% 95%
R 0% 63%

SW 0.03% 83%

Figure 5: The effect of using the percolation probability of the
network to decide when to attack the network compared to ran-
dom attack.

5. BYZANTINE AGENTS
In this section we investigate the vulnerability of a belief sharing

system exhibiting scale invariant dynamics to attacks on, or mal-
function of the agents that exchange fused information within the
system. We experiment with three methods for selecting Byzantine
nodes, all based on global knowledge of the network topology.
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Figure 4: A single incorrect sensor reading introduced by an adversary can percolate through the network causing widespread
incorrect conclusions.

The analysis of Section 3 revealed that changing the decisions
of a relatively small number of agents in the system could dramat-
ically reduce the number of agents reaching the correct conlusion.
This suggests that a small number of Byzantine agents could influ-
ence the conclusions of the majority of the agents in the system by
sharing incorrect information or noise.

In this section we analyze this assertion by empirically exploring
the vulnerability of the system to the action of malicious or mal-
functioning agents. Specifically we analyze the effect of malicious
agents in the system on the performance of the system as measured
by the the number of agents in the system that reach the correct
conclusion. We investigated two types of Byzantine agents. The
first type of Byzantine agents we investigated pathologically share
incorrect information. The second type shares random information.
Both types of agent simply ignore any information received from
neighbors or sensors.

One of the key results of this section is that a relatively small
number of Byzantine agents dramatically reduces the number of
agents that reach a correct conclusion over all network types. In
addition, we find that the trust value that results in scale invariant
dynamics is no longer optimal when a small number of Byzantine
agents are present.

5.1 Byzantine agent selection
Three different methods of selecting which nodes in the simu-

lation would be Byzantine were used in experiments. In the first
method, nodes are simply drawn at random from a uniform dis-
tribution over all of the nodes in the system. The second method
which we call the maximum influence method is a modified version
of the method due to Kleinberg [6]. Using this method, a node is se-
lected by the number of nodes that would be infected by a cascade
starting at that node. We call this a nodes influence number. The
nodes with the highest influence numbers are selected. To calculate
the influence number of nodeQ each node is initially marked unin-
fected. Next nodeQ communicates with its neighbors. When these
neighbors receive this communication they draw a real number in
the range [0, 1] from a uniform distribution. If this number exceeds
a threshold, the node marks itself and communicates with neigh-
bors otherwise it does nothing. When all communication ceases,
the influence number of Q is the number of nodes in the network
marked infected.

The third method of Byzantine node selection picks the nodes
with the largest number of neighbors, this is called the max node
method. Figure 6 shows the node that would most likely be selected

Figure 6: Three methods used for selecting Byzantine nodes.

first in a particular graph structure. The max node method picks
the node that simply has the highest fanout while the max influence
method is biased towards the node with the most pathways to the
other nodes in the network.

5.2 Byzantine agent experiments
First we conducted an experiment to investigate the result on sys-

tem performance of Byzantine nodes which pathologically share
incorrect information with neighbors. In the experiment, we in-
vestigated how system performance as measured by the number of
agents reaching the correct conclusion, changed as the number of
Byzantine nodes in the system was varied. Experimental parame-
ters are as follows: The number of Byzantine nodes in the system
was varied from 0-10% of |A| in increments of 1%. All remaining
graphs in this section were produced using the parameter values
|A| = 1000, |S| = 50, rc = 0.2, and rs = 0.55, and < d >= 4.
We also varied the structure of the communication network used by
the agents. The results are given by Figures 7 and 8. In Figure 7 the
x-axis gives the number of Byzantine agents out of 1000. The y-
axis gives x the number of agents out of 1000 that come to the cor-
rect conclusion. Each curve represents a different network topology
including Random, Scale Free, and Small Worlds networks. The
leftmost plot shows the results when Byzantine nodes are selected
at random, the middle plot shows the results for nodes selected us-
ing the maximum influence method, and the leftmost plot shows
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the results when nodes that have the largest number of neighbors
are selected.

The first trend evident across all of the communication networks
is that with a relatively small percentage of Byzantine nodes, the
number of agents that comes to the correct conclusion drops dra-
matically. In fact with 10% of the nodes in the system, only the
Scale-Free network has greater than half the agents in the network
reaching the correct conclusion. The theoretical limit, due to Lam-
port [7], says that agents in a network can reach a correct consensus
with a maximum of 33% of the nodes as Byzantine. The system
under study requires less than 10% of the agents to be Byzantine,
to prevent a correct consensus in the truth of the fact being moni-
tored. Also all networks are most vulnerable when nodes with the
maximum number of neighbors are chosen.

For the ScaleFree network, the trend of the vulnerability of this
system with respect to the way nodes are selected for the injection
of misinformation, reflects the known results for the vulnerability
of the ScaleFree network to the removal of nodes. The ScaleFree
network proves most robust of all of the networks when Byzantine
nodes are selected at random, with 60% of the agents reaching the
correct conclusion with 10% of the nodes Byzantine. Conversely,
the ScaleFree network is most vulnerable when the nodes with the
largest number of neighbors are selected. In this case, with only
1% of the nodes Byzantine, less than 10% of the agents in the net-
work come to the correct conclusion. This can be explained by
the extremely skewed distribution of the number of neighbors that
each nodes has in a scale free network. A Scale Free network has
a long tailed distribution, with a few nodes, called hubs, having a
large number of neighbors and the remainder of the nodes having
relatively few neighbors. When nodes are selected at random, their
is a low likelihood that the hubs will be selected and the fused in-
formation originating at the hubs overwhelms that spread by the
Byzantine nodes. Conversely, the hubs have a disproportionately
large effect on the network spreading misinformation widely when
they are Byzantine.

The second trend evident across all of the networks is that for the
Random network topology, there is a distinct threshold in the num-
ber of Byzantine nodes beyond which the number of agents that
reach the correct conclusion drops suddenly and dramatically. This
threshold is 6% of the agents for both the random agent selection
and selection for agents with the maximum number of neighbors.
This threshold drops to 4% when the maximum influence method
is used for node selection.

All network topologies perform about the same for the maximum
influence method of selecting nodes to be Byzantine. This sug-
gests that the specific dynamics of this system have a large effect
on the which nodes are vulnerable within the system. Otherwise
the generic influence spreading, which is dependent on the static
topology of the network itself, would be much more effective at
means of picking Byzantine nodes to cause the maximum number
of nodes to come to the incorrect conclusion.

The network with the Small Worlds topology shows a linear drop
in the number of agents reaching the correct conclusion with in-
creasing numbers of Byzantine agents.

Over all for a system with these dynamics, the Scale Free net-
work topology would be the best choice. It is least vulnerable to all
attacks except attacks on the hubs. Since the hubs in the network
are relatively few, they would take a relatively small amount of
computational resources within a system to monitor for intrusion.
Furthermore, an attacker would need a large amount of information

about the topology of the network to select nodes for attack effec-
tively. Below its vulnerability threshold, the random network is the
least vulnerable, and would be the best choice of network topol-
ogy in a secure environment where an attacker could only select
relatively few nodes to attack.

Figure 8 shows how the value of cp which results in the largest
number of agents reaching the correct conclusion, and hence which
associated system dynamics as discussed in Section 2 are least vul-
nerable, as the number of Byzantine nodes in the system changes.
The x-axis of the figure gives the number of Byzantine agents out
of 1000 in the system. The y-axis gives the center of mass of cp.
The center of mass is the mean value of cp over simulation runs
weighted by the number of agents that reach the correct conclusion
for that value of cp. The center of mass is defined mathematically
as
P

i
cpi∗nTi

nTi
, where nTi is the number of agents that reached the

correct conclusion for simulation run i. The most notable trend in
Figure 8 is that for the network with the Random topology there is
a distinct shift of the trust value cp that gives the best performance,
away from the value that results in scale invariant dynamics.

The high level conclusion of this Section is that the scale invari-
ant dynamics that were previously showed to lead to high accuracy
in the conclusions of agents, leaves the system vulnerable to inter-
vention by a small number of Byzantine nodes. This means that a
system utilizing scale invariant dynamics, or that intrinsically had
such dynamics would either need to operate in a very secure envi-
ronment, or explicitly have a mechanism to detect the presence of
Byzantine nodes.

6. ATTACKS WITH LIMITED INFORMA-
TION

In previous sections experiments have shown that an adversary
could dramatically reduce the accuracy of agent’s conclusions us-
ing global system knowledge. However, in practice, it is more
likely that an adversary would have only partial knowledge of the
system. To investigate the vulnerability of the system to attacks
based on partial system knowledge, we developed an algorithm
used by Byzantine agents to attack the system using only local in-
formation about the system. In sections4 and 5 we found that the
system was most vulnerable at times when close to the percolation
threshold in agent decisions. We also found that most networks
exhibiting scale invariant dynamics were most vulnerable at nodes
with many neighbors. For this reason, the Byzantine agents ex-
ecuting our attack strategy use local estimates of the percolation
threshold in the network to decide when to attack and knowledge
of the local network topology to decide where to attack.

The details of the algorithm are as follows. The Byzantine agent
draws a random number in the range [1, |A|] from a uniform proba-
bility distribution. If this number falls below a threshold, which we
call the activity threshold, the agent continues to operate normally,
fusing conclusions of neighbors and communicating the resulting
conclusion. This threshold is intended to ensure that only a pre-
selected percentage of the Byzantine agents in the system are ac-
tive at any time. If the random number drawn by the agent exceeds
the activity threshold, the agent estimates the distance of the agent
and it’s neighbors from the percolation threshold. The knowledge
of the percolation threshold suggests that the attacker would have
knowledge of the high level topology of the network (e.g. Ran-
dom vs. Scale Free) but not specific details of the connectivity in
the network. If this estimate is within a given distance from the
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Figure 7: The effect of Byzantine nodes on the correctness of the conclusions of agents across the three methods for selecting Byzan-
tine nodes.

Figure 8: The effect of Byzantine nodes on the cp that gives best performance.

percolation threshold for the network, the agent then sends several
incorrect conclusions to its neighbor that has the highest number of
network links.

We conducted an experiment to test the efficacy of this algo-
rithm over a range of networks. The parameters used are the same
as those for previous sections. The activity threshold is varied
between 0.05 and 0.30 (effectively varying the number of active
Byzantine agents between 5% and 30%. This is plotted against the
average number of agents that reach the correct conclusion. This
plot is shown in Figure 9. The plot shows that relatively few agents

Figure 9: The effect of Byzantine nodes using only local knowl-
edge of the system on the accuracy of the conclusions reached
by agents in the network.

using the algorithm, dramatically reduce the number of agents in
the system reaching correct conclusions over a range of network
topologies.

7. RELATED WORK

There have been several studies conducted to investigate models
whose dynamics are governed by cascades on complex networks.
These include models of fads[8, 9], rumors [10], gossip[11], forest
fires [12], and diseases[13, 14]. Common to all of these models
is that the dynamics are governed by the spreading of a single in-
fluence. In contrast, our model investigates competing influences
which significantly alters the dynamics of a system.

In [15], Parunak presents a model of the collective convergence
of agents to a cognitive state. This model is similar to ours in
that it does include multiple states that agents can converge to and
hence competition between states. Parunak focuses on studying the
macroscopic performance of the system. We build upon Parunak’s
investigation by analyzing the dynamics of the system directly and
investigating the relationship between the dynamics and the perfor-
mance of the system.

A number of studies have investigated the impact of Byzantine
nodes on the performance of a distributed system and mechanisms
for coping with their presence [16],[17],[18]. We extend these stud-
ies by investigating how the efficacy of Byzantine agents are im-
pacted by the dynamics of a system exhibiting scale invariance in
belief exchange.

Previous work has extensively explored methods for picking net-
work nodes that are most vulnerable to fracturing the structure of
the network [1], [19]. This paper considers the impact of many of
the metrics discussed in this body of work on information dynamics
on a network by using them for the placement of agents that spread
misinformation on a belief sharing network.

Recently there has been significant interest in social networks
[20], [21] and the impact of those networks on performance of a
group. For example, Xu looked at the impact of networks on rout-
ing information to a specific agent [22]. Kleinberg, looked at the
impact of the network on the performance of decentralized search
algorithms [6], when a single agent has information valuable to the
system. We build on both of these contributions by investigating
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the case when a large percentage of the agents in the team are both
sources and sinks for information, which fundamentally changes
the dynamics of information exchange in the system.

8. CONCLUSIONS AND FUTURE WORK
When information exchange between agents exhibits scale in-

variant dynamics, the speed and reliability with which the team can
converge to correct conclusions, despite noisy data and highly lim-
ited communication is dramatically increased. Before, this property
can be leveraged to design efficient information fusion, we need to
understand the vulnerability of the system to malicious interven-
tion. In this work we found that scale invariant dynamics make a
system susceptible to the presence of Byzantine agents and sensors.
We showed analytically that when the agents in the system are near
to a correct conclusion, they are simultaneously near to coming to
an incorrect conclusion. This leaves the system vulnerable to small
amounts of anomalous information and small number of Byzantine
agents. We found that Byzantine agents were most effective at re-
ducing the accuracy of the conclusions of other agents when placed
at high degree nodes in the network. We further found that attacks
were most effective when launched when the network is close to
a percolation threshold in the decisions of agents. In future work,
we propose to extend the model to capture additional features of
information sharing, including beliefs of several variables and a
richer communication model, while maintaining the mathematical
simplicity that allows the types of detailed analysis above. We also
intend to simulate features that are harder to model mathematically,
such as the ways mobile sensors might be redeployed based on
initial conclusions and how other coordination activities can influ-
ence belief convergence. Finally we intend to develop mechanisms
for detecting Byzantine or malfunctioning agents and mitigating
their impact on system performance informed by the algorithm de-
scribed in this work.
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ABSTRACT
We study the phenomenon of evolution of cooperation in
a society of self-interested agents using repeated games in
graphs. A repeated game in a graph is a multiple round
game, where, in each round, an agent gains payoff by playing
a game with its neighbors and updates its action (state) by
using the actions and/or payoffs of its neighbors. The inter-
action model between the agents is a two-player, two-action
(cooperate and defect) Prisoner’s Dilemma (PD) game (a
prototypical model for interaction between self-interested
agents). The conventional wisdom is that the presence of
network structure enhances cooperation and current models
use multiagent simulation to show evolution of cooperation.
However, these results are based on particular combination
of interaction game, network model and state update rules
(e.g., PD game on a grid with imitate your best neighbor
rule leads to evolution of cooperation). The state-of-the-
art lacks a comprehensive picture of the dependence of the
emergence of cooperation on model parameters like network
topology, interaction game, state update rules and initial
fraction of cooperators. We perform a thorough study of the
phenomenon of evolution of cooperation using (a) a set of
popular categories of networks, namely, grid, random net-
works, scale-free networks, and small-world networks and
(b) a set of cognitively motivated update rules. Our sim-
ulation results show that the evolution of cooperation in
networked systems is quite nuanced and depends on the
combination of network type, update rules and the initial
fraction of cooperating agents. We also provide an analysis
to support our simulation results.
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1. INTRODUCTION
The emergence of cooperation in a system of interacting

self-interested agents has been studied in social science [3],
evolutionary biology [13] and physics [18]. Examples of evo-
lution of cooperation can be seen in natural systems includ-
ing cellular structures like RNA [20], microbial organisms [6],
animals [17], and humans [2]. The interaction model is
a Prisoners’ Dilemma (PD) game, which is a well-known
game-theoretical model to study social dilemma situations
among rational, self-interested, utility maximizing agents.
Each player has two actions (or strategies): cooperate and
defect. Defect is a dominant action, i.e., the payoff for play-
ing defect is higher irrespective of the opponent’s action.
Thus, in the one-shot version, both players should always
choose to defect, which is the only Nash equilibrium of the
game. However, the equilibrium is not Pareto-efficient, i.e.,
both players would be better off by choosing to cooperate.
Hence, a social dilemma arises. This contradicts the ob-
served phenomenon of cooperation in human experiments.
Repeated interaction was shown to be one of the factors for
evolution of cooperation in two-agent PD games [3]. How-
ever, in multiagent interaction, evolutionary game theory
has shown that in a big (or infinite) population, if players
have repeated random encounters, a population of cooper-
ators cannot resist invasion by defectors, and thus coop-
eration cannot survive. Defection is the only evolutionary
stable strategy. Subsequently, it was shown that if the inter-
action between the players has a network structure, cooper-
ation emerges and can be sustained. This phenomenon was
initially shown (via multiagent simulations) for grids [13]
and later for scale-free networks [16] or graphs with adap-
tive topology [22]. In this paper, we perform simulation
studies to critically examine the following question: Under
what conditions does cooperation emerge in a network of in-
teracting agents?

A repeated PD game proceeds in multiple rounds. In each
round, an agent plays the game with all its neighbors and
earns the aggregate payoff of all the games. The agent uses
the payoff of its neighbors (including self) to decide the ac-
tion for the next round. Nowak and May [13] used this model
to show evolution of cooperation in a system of agents or-
ganized in a grid and used imitate-best-neighbor as a deter-
ministic update rule. Subsequent work showed emergence of
cooperation with the agents organized according to different
network structure and using different update rules (see [16],
and [18] for a review). However, these results are based on
particular combination of interaction game, network model,
and state update rules. The state-of-the art lacks a compre-
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hensive picture of the dependence of the emergence of coop-
eration on the model parameters like the network topology,
the update rules and the initial fraction of cooperators.

Our motivation for studying evolution of cooperation is
two-fold. First, we want to understand the reasons behind
evolution of cooperation in self-interested agents in natural
systems. The complementary sociological question of emer-
gence of conflict in a society of humans can also be studied in
the same framework [11]. The second motivation comes from
the design of autonomous artificial multiagent societies (e.g.,
an autonomous robot colony operating on extra-planetary
surfaces). Social dilemma situations where an individual
robot objective is in conflict with the social objective may
arise and it is impractical for a designer to foresee every
possible situation. An alternate way is to design protocols
that ensure cooperation among the agents in social dilemma
situations. In this paper, we will not concern ourselves with
the applications aspect. We will perform simulation stud-
ies to characterize the parameters and provide basic under-
standing of situations under which cooperation emerges in
a multiagent society.

For the multiagent society, we assume simple agents that
are myopic, of bounded rationality, organized according to
a graph with fixed topology and repeatedly play a PD game
with each other. We study evolution of cooperation using
(a) a set of popular categories of networks, namely, grids,
random, scale-free, and small-world networks and (b) a set
of cognitively motivated state (or action) update rules. The
rules we use are both deterministic and stochastic in na-
ture. Cooperation is said to evolve in a society if the initial
fraction of cooperators is lower than the final fraction of co-
operators. We show by simulation that the phenomenon of
evolution of cooperation is quite nuanced and depends on
the graph topology, the initial fraction of cooperators, and
the state update rule. In particular, we show that using
the imitate-best-neighbor rule (as used in [13]), cooperation
evolves in grids or scale-free networks for d > 0.3 but not
in random or small-world networks (where d is the initial
fraction of cooperators). We also show that the stochas-
tic update rule used in [16] works only for scale-free net-
works and not for other types. This is significant because it
shows that using the same update rule may not work across
all network topologies. The update rules that show uni-
form performance irrespective of the network topology are
(a) imitate the best action in your neighborhood (BS) and
(b) win stay, lose shift (WSLS). BS ensures emergence of
cooperation for d ≥ 0.6, whereas WSLS ensures evolution of
cooperation for d ≤ 0.5. Moreover, for a given network type
WSLS leads to the same final fraction of cooperators irre-
spective of the initial fraction. Although WSLS was shown
to be a winning strategy update rule in two-player games,
to the best of our knowledge, this rule has not been used
in multiplayer repeated games. We believe that our charac-
terization of the conditions under which cooperation evolves
gives a more complete picture about emergence of cooper-
ation for repeatedly interacting networked agents. This is
the primary contribution of our work.

This paper is organized as follows: In Section 2, we dis-
cuss the relevant literature and in Section 3, we define our
mathematical model including the network structures and
state update rules used in the paper. In Section 4, we de-
scribe our simulation setup and in Section 5 we present our
findings. In Section 6 we present our conclusions and outline

future research directions.

2. RELATED WORK
The literature on using repeated games for studying evo-

lution of cooperation among self-interested agents, can be
classified according to the the number of players, interaction
game model, and the interaction structure of the players.
Game play can be between two players or between multi-
ple players. In the multiagent setting, the agents may form
an unstructured population where players randomly inter-
act with each other or there may be structured interaction
between them. For structured interaction, the interaction
network may be of fixed or variable topology [22]. Both PD
and the snowdrift game [7] has been used as the interaction
model between agents, although (arguably) the PD game is
more popular. For two-player games Axelrod first showed
in a computer tournament that state update rules that rely
on reciprocal altruism, such as tit-for-tat, where a player
starts with cooperation and then imitates its opponent, can
lead to the evolution of cooperation [2]. Similar results have
been obtained for win-stay, lose-shift [12]. In this work, we
concentrate on repeated PD games in population of agents
whose interaction network has a fixed topology. Therefore
we will restrict our review to repeated PD games in graphs.

Nowak and May [13] first demonstrated that cooperation
evolves for memoryless agents playing repeated PD game
with their 8 neighbors in a two-dimensional grid. The up-
date rule used was deterministic imitate-best-neighbor. They
show that cooperation evolves over a wide range of payoff
parameters and the final fraction of cooperators is indepen-
dent of the initial fraction. They also note that cooperators
and defectors exist in clusters (or patterns) and the pat-
terns are unstable against small random perturbations [10].
Subsequent research has tried to replicate the evolution of
cooperation in different networks and using different update
rules [16, 19, 5, 1]. A comprehensive review on evolutionary
games in graphs including repeated games in graphs is given
in [18].

Santos et al. [16] investigate the influence of Barábasi-
Albert scale-free networks on cooperative behavior in com-
parison to complete, single-scale and random scale-free net-
works and show a clear rise in the final fraction of coop-
erators with the heterogeneity of the degrees. The update
rule is a stochastic imitation rule (rule SA in Section 3).
Tang et al. [5] demonstrates that there exist optimal values
of the average degree for each kind of network leading to the
best cooperation level. They test random, Barábasi-Albert
scale-free, and Newman-Watts small-world graphs under a
stochastic update rule that depends on the normalized pay-
off difference to a randomly chosen neighbor. They show via
simulation that there is an optimal degree for cooperation in
each network which is quite constant over a certain range of
T (payoff for defecting when the opponent cooperates). Co-
operation is highest for small average degrees ranging from
3 to 8. However, this is only done for an initial fraction of
0.5, a stochastic update rule, and 10 different realizations of
the particular graph. The results on evolution of coopera-
tion have been usually obtained on different networks using
a particular state update rule. The concern that changing
the state update rule may affect the evolution of coopera-
tion has not been addressed in the literature. Therefore,
we study the evolution of cooperation across a variety of
networks with different update rules.
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There has also been work on repeated PD games in graphs
with variable topology [22, 8]. In [22], the initial graph is
assumed to be a random network and the agents are allowed
to (stochastically) break links with their neighbors playing
defect and form a new link with their neighbor’s neighbor.
The authors show that this boosts cooperation in the society.
In this paper, we do not consider variable graph topology. A
study similar to ours can be done for networks with variable
topology and we keep this as a future work.

3. PROBLEM MODEL

3.1 Network Models
The agent interactions can be encoded as an undirected

graph G = (V,E) where V = {v1, v2, . . . , vn} are a set of n
nodes (or agents) and E ⊆ V ×V is a set of edges. The graph
topology is fixed throughout the game. Two agents vi and vj

are neighbors if (vi, vj) ∈ E. N (i) = {vj |(vi, vj) ∈ E} ⊂ V
is the set of vi’s neighbors and |N (i)| is the degree of node
vi. N+(i) = N (i) ∪ {vi}.
We use four different graph types for the simulations:
Scale-free network: In a scale-free graph, the distribution of
node degree follow a power law, Nd ∝ d−γ , where Nd is the
number of nodes of degree d and γ > 0 is a constant (typ-
ically γ ∈ [2, 3]). We use the Barabási-Albert model with
average degree 4 [4].
Small-world network: A small-world graph shows a high
clustering coefficient (as defined in [21]) and a short aver-
age path length. We use the Watts-Strogatz model with
average degree 4 [21]. First, a ring is built and each node
is connected to the 2 neighboring sites on each side. Then,
links are randomly released and reconnected to other nodes.
We set the rewiring probability to 0.2, which leads to an
average degree of roughly 4.
Random network: A network where a link between nodes is
set with a predefined probability p. The probability that
a vertex vi has ki neighbors follows a binomial distribu-
tion B(n − 1, p). For large n and p ≤ 0.05 the degree
distribution can be approximated by a Poisson distribution

Prob(ki = k) = exp(λ)· λk

k!
with λ = n·p. We set p = 0.05 to

ensure connectedness. The clustering coefficient is usually
low.
Grid: A grid is a two-dimensional lattice where each inner
player has 4 neighbors, each boundary player 3 and each
corner player 2. The clustering coefficient is 0.

3.2 Repeated PD Games in Networks
A PD game is a two-player game where each agent has

two actions, Ab={cooperate(1), defect(0)}. The payoffs for
two players are symmetric with the payoff matrix entries

1 0
1 R S
0 T P

For a PD, T > P > R > S holds and for repeated PD
games T + S < 2R. We assume R = 1, P = 0.1, S = 0 with
the incentive to defect T being the only parameter.

In a repeated PD game in a network, there are n-players
that form the nodes of the graph and the game proceeds in

rounds. Each round has two phases: (a) In the game playing
phase the players play the PD game with all their neighbors
with a fixed strategy and compute their total payoff. (b) In
the strategy update phase, each player updates its strategies
according to the same action update rule. Such a rule might
be a function of the neighbors’ states, payoffs and/or the
agent’s own state and payoff. In our model the action update
rule is synchronous.

Let si(t) denote the state of player i at round t. The total
payoff, pi(t), is the sum of the payoffs of the separate games
in player i’s neighborhood N (i):

pi(t) =
X

j∈Ni

[Rsi(t)sj(t) + T (1− si(t))sj(t)+

S(1− sj(t))si(t) + P (1− si(t))(1− sj(t))]

3.3 State Update Rules and Convergence
In each round, the agents update their states according to

a common state update rule. The rules that we use can be
classified along two axes: innovative or non-innovative and
deterministic or stochastic. Rules that use states already ex-
isting in the neighborhood are non-innovative (e.g., imitate-
best-neighbor or imitate-best-strategy) whereas rules that
can switch to a strategy not in their neighborhood are called
innovative rules (e.g., win-stay, lose-shift). We use the fol-
lowing rules:

Imitate-best-neighbor (IB): Each agent imitates the action
of the wealthiest agent (including itself) in the next round. If
two or more players have the same payoff, the agent chooses
randomly between them. The state update for agent i can
be formalized as

si(t) = sj(t− 1) where j = arg max
k∈N+(i)

(pk(t− 1))

Imitate-best-strategy (BS): An agent copies the strategy that
accumulates the highest payoff in its neighborhood. Each
agent sums up the payoff of all cooperating as well as the
payoff of all defecting neighbors including itself.
Let agent i play strategy s1 in round t − 1 and have qi

neighbors. We denote its neighbors playing strategy s1 and
i itself by G1, where |G1| = n1. The neighbors playing s2 are
denoted by G2, where |G2| = n2. It holds that G1 ∪ G2 =
N+

i and n1 + n2 = qi + 1. Let w be the probability of
switching. The update rule in any round t is as follows:

w =

(
1 if

P
i∈G1

pt−1(i) <
P

k∈G2
pt−1(k)

0 otherwise

Win-stay, lose-shift (WSLS): In a multiplayer setting, a
strategy is maintained only if the current payoff p is at least
as high as in the former round. We need to introduce a
short-term (one-round) memory in order to calculate the
payoff difference. In our case, there are only two possible
strategies s1 and s2. In any round t the update rule is

w =

(
1 if pt−1 < pt−2

0 if pt−1 ≥ pt−2

Stochastic imitate-best-neighbor (stIB): This rule represents
a stochastic version of the IB rule. Each agent i picks the
best neighbor j in N+(i) and imitates its strategy with
a probability w depending on the payoff difference ∆pi,j :
w = 1/(1 + exp(−β∆pi,j)). In test runs, β = 0.75 gives a

687



t = x

4

2

2 2

2

4

4.8

>3.6

>3.6 ≥ 3

≥ 3

1≤p≤3 1≤p≤3

3

3

0.4

2.6

2.6

2.6 2.6

1.4≤p≤2.61≤p≤2

p≤2

1≤p≤2

p≤2

1.4≤p≤2.6

t = x+1 t = x+2

4

4

2

2

2.6 2.62.6

2.5≤p≤3.7

2.5≤p≤3.7

p≤2 p≤2

2≤p≤3

2≤p≤3

Figure 1: A typical oscillatory state with the IB rule. Green nodes represent cooperators, black defectors,
the number in a node corresponds to its payoff p. We only display relevant part of the grid. The state of
period x will be repeated in period x+ 3.

reasonable trade-off between the payoff difference and the
probability to switch.
Stochastic imitate-best-strategy (stBS): The strategy that
yields a higher payoff in a neighborhood is imitated with
probability of its total payoff divided by the total payoff in
the neighborhood. Otherwise, the player keeps its current
strategy.
Stochastic win-stay, lose-shift (stWSLS): If a player’s pay-
off deteriorates in round t, the player will switch strategies
with a probability w depending on the difference of its cur-
rent and last payoff ∆pt−1,t: w = 1/(1 + exp(−β∆pt−1,t))
with β = 0.75.
Stochastic imitate-random-neighbor (SA): The rule is de-
scribed and used in [16]: for each i, one neighbor j among
all ki neighbors is picked at random. Only if pj > pi, i im-
itates j’s strategy with probability (pj − pi)/k>D>, where
k> = max(ki, kj) and D> = min(T, 1)−max(S, 0).

The stochastic rules that we use are counterparts of our
deterministic rules (except for the SA rule, taken from [16]).
The deterministic IB rule is taken from [13] and the WSLS is
taken from [12]. These rules are simple heuristics that have
been shown to be used by humans for decision making under
certain circumstances. Note that we have not used the best
response strategy because for our model it always leads to
evolution of defection among all agents. The imitating rules
also have an evolutionary biology interpretation. Instead of
a player updating its state, we can say that in each round,
neighbors are competing against each other for occupying
the empty node in their middle. The player with highest
payoff, i.e., fittest player wins and its strategy gets replicated
(with some probability in stochastic updates).

Steady States: Since our repeated game model is a dynam-
ical system and we will use simulations to study the evolu-
tion of cooperation it is important to understand the conver-
gence properties of the system to design appropriate stop-
ping criterion for simulations. Note that the all-cooperate
and all-defect solutions are trivial steady states for all the
state update rules. For deterministic rules, a steady state is
reached if the concatenated strategy vector (state vector) of
all agents repeats itself st = st−1. For our system, we can
show that we may not reach a steady state. Figure 1 shows
a simple example demonstrating that oscillations can occur
in a repeated PD game in grids. Figure 1, shows the part
of a grid network where players will keep changing strate-
gies. For some boundary nodes we give ranges for their pay-

off. As long as these payoff requirements are fulfilled, we do
not have to consider any further players. Simple calculation
shows that the system will oscillate.

For stochastic rules, the notion of convergence is different
as the state vector represents the realization of the current
probability to cooperate of each player. Thus, in the strict
sense, this probability has to stay within a certain range
for each player over time to ensure convergence. From our
results we see that this does not happen as the current prob-
ability in a particular round t does not depend on the one
of the round t− 1, but on the realization of this probability.
A more simple criterion could be that running averages of
fc for each player do not change much.

4. SETUP OF THE SIMULATIONS
We test three deterministic and four stochastic update

rules on four different networks: scale-free, small-world, grid
and random networks. Three stochastic rules are counter-
parts of the deterministic versions, the fourth comes from
the literature. We call the combination of a particular up-
date rule, graph and initial fraction of cooperators a setting.
For each setting, we perform 100 runs, each with a different
realization of the graph if there is a stochastic component
in the setup (except for grids, where there is no stochastic
component). We compute the average final fraction of coop-
erators, fc, over all the runs and also compute the standard
deviation over the final fraction of cooperators, σ. For all
the results that we present σ is quite low except where we
explicitly mention. For a given initial fraction of coopera-
tors, each player is randomly assigned the action cooperate
or defect such that the ratio of total number of cooperators
to defectors is equal to the given fraction.

Stopping criterion for simulations: For deterministic rules,
we simulate for a maximum of t = 500 rounds. If the simu-
lation converges, we take the last state as final result. If not,
we average over the last five rounds. For stochastic update
rules, we simulate over t = 5000 rounds and average over
the last 100 rounds. The number of rounds to average over
was heuristically determined after finding that the deviation
over the last few runs usually is very low.

We use values of (T ∈ {1.1, 1.2}) for most of our simula-
tions, except for grids. Higher values of T will give rise to
more defection. We test several initial fractions of cooper-
ators d (d ∈ {0.1, 0.3, 0.5, 0.7, 0.9}). In some cases we test
additional values in order to determine more exact thresh-
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olds or to point out differences between certain settings.
In forming our graphs we ensure that all of them are con-

nected. We simulate on graphs with 750 and 1000 nodes.
The IB rule in random networks is the only setting where we
find the scaling of a network to change results for fc, because
the average degree changes with the number of nodes and the
number of neighbors matters in imitating rules. Therefore,
simulations of this setting have be to made with caution and
be tested for different levels of n and p. In all other settings,
differences in fc between n = 750 and n = 1000 are smaller
than 5%. Research about the influence of the average degree
states that an increasing average degree usually leads to less
cooperation [14].

5. SIMULATION RESULTS
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Figure 2: In a grid where the dotted link does not
exist, the defector only yields a payoff of 2.5 and co-
operation will spread until it reaches state (b) with
fc = 84% after 5 rounds. Adding only one link to (a)
and therefore increasing the clustering coefficient in-
creases the defector’s payoff to 3.7 and leads to 100%
defection after 3 rounds (T = 1.2).

We want to have a general insight about conditions under
which there is evolution of cooperation, i.e., the final fraction
of cooperators fc is higher than the initial fraction d. Table
1 gives the general findings. Most of the literature focuses
on whether cooperation emerges at all (by looking at the
final fraction of cooperators), whereas we want to focus on
the relation of the final fraction of cooperators to the ini-
tial fraction, which has not received much attention so far.
Comparing the obtained results of T = 1.1 and T = 1.2,
there is hardly any difference except for random networks.
We will come back to this issue in 5.4. Thus, we only display
results for T = 1.2 in Figure 3. In grids, there is no differ-
ence for the IB rule, because the interaction structure is very
simple. Possible constellations of payoffs and strategies are
very limited and stay the same for these two levels of T . If
we set T = 1.3 in grids, one new constellation that helps
defectors at the first glance actually leads to the collapse
of bigger clusters of defectors and therefore to higher final
fractions of cooperators. From simulations we see that this
development abruptly ends starting from T = 1.4, where
defectors are better off in most constellations and fc drops
drastically.

5.1 Scale-Free Networks
In scale-free networks, all the state-update rules that we

study show emergence of cooperation for different ranges of
the initial fraction of cooperators. From Figure 3, we see

that the IB rule leads to evolution of cooperation for both
deterministic and stochastic versions. For the deterministic
IB rule, we further observe, that even though most of the
runs converge, there is a large standard deviation σ = 0.15
to 0.46. This is because the distribution of fc is bimodal: ei-
ther fc drops to zero or reaches very high values. Averaging
over 100 runs gives the obtained high levels. It has already
been pointed out that the important factor for cooperation
or defection in scale-free networks is the behavior of high-
degree nodes [16]. If a high degree node defects it can exploit
all linked cooperators and gain a high payoff. Imitating the
best, all its neighbors will switch to defection. From this
state onwards it is not likely that defectors find a wealthier
cooperator as cooperators surrounded by defectors do not
obtain payoffs. Additionally, a high-degree node still accu-
mulates relatively high payoffs even for defect-defect links
because of sheer number. In simulations where we apply
a normalization of payoffs by the number of neighbors a
drastic drop of fc is observed and there is no evolution of
cooperation. Another indicator revealing the importance of
the heterogeneity in degrees is that we find the highest de-
gree node cooperating in 100% of the runs with high final
levels and defecting in all runs with a very low final per-
centage of cooperators. If there are cooperators in the cases
with low fc, they usually occur in a cluster around a wealthy
cooperator.

For the SA rule used by Santos et al [15], we find a higher
final fraction of cooperators than with any IB rule in scale-
free networks. Like the deterministic IB rule, in this case,
the standard deviation σ is very high, but unlike the IB
rule the distribution is not bimodal. Although the SA rule
performs well for scale-free networks, it does not lead to any
cooperation in grids and random networks and only small
to levels in small-world graphs.

5.2 Grids
In grids we find high cooperation rates with the IB rule.

A closer look at the dynamics shows that clustering is the
crucial factor for the success of cooperators in grids as al-
ready pointed out in [13]. A cluster of cooperators is a set of
cooperating nodes that are connected to each other. Bound-
ary players of clusters of cooperators are the nodes that are
also linked to defectors. In settings with low values of T ,
a 2 × 2 cluster of cooperators already leads to propagation
of cooperation through the whole network. There are sev-
eral possibilities for defectors to survive, e.g., in corners, in
a line of 4 players or in several spatial structures. However,
too big clusters of defectors become unstable at low levels of
T . For clusters of cooperators, the well-defined interaction
with defecting neighbors originating from the typical grid
structure, is helpful as defectors cannot exploit cooperators
in the middle of clusters. Cooperators on the boundary will
not turn into defectors as long as the neighboring defector
has less than four cooperating neighbors. The cooperator in
the middle of the cluster is the wealthiest player and backs
up the boundary cooperators.

However, note that the stochastic IB rule does not lead
to cooperation in grids. The success of cooperators depends
on the formation of clusters. However, cooperators in the
middle of clusters may randomly turn into defectors. A sin-
gle defector surrounded by only cooperators can turn all its
neighbors into defectors. The above intuition is also true
for the SA rule and hence it does not lead to cooperation.
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Table 1: Summary of the evolution of cooperation with different update rules and networks. Yes denotes
that there is evolution of cooperation with the range of the initial fraction of cooperators d for cooperation
to emerge given in parentheses. Thresholds for d are indicative and not exact.

Rule/Graph Scale-free Small-world Grid Random
IB yes (d > 0.3) no yes (0.3 ≤ d < 0.9) no
BS yes (d ≥ 0.6)

WSLS yes (d ≤ 0.5) yes (d ≤ 0.7)
stIB yes (d > 0.5) yes (d > 0.5) no no
stBS yes (d > 0.5) yes (d > 0.2) yes (d > 0.2) yes (d > 0.7)

stWSLS yes (d < 0.45) yes (d < 0.5) yes (d < 0.45) yes (d < 0.65)
SA yes no no no

However, for the BS rule, a single defector surrounded by
cooperators cannot destroy the cluster and so the stochas-
tic BS rule leads to evolution of cooperation for d ≥ 0.2.
In fact, the stochastic version outperforms the deterministic
BS rule. The propagation of defection by single defectors
can also account for the fact that we do not find evolution
of cooperation in grids with IB for a very high initial frac-
tion of cooperators (d = 0.9). Defectors most likely do not
appear in clusters and can therefore exploit all cooperating
neighbors at once, which gives them a high payoff and leads
to defection in their neighborhoods.

5.3 Small-World Networks
In Table 1 we see that there hardly is emergence of co-

operation in small-world networks with the IB rule. This
is especially interesting because the main graph features as
the average degree and its standard deviation are almost
the same as in grids, where the IB rule leads to coopera-
tion. To discover reasons for the differences we have to look
at the clustering coefficient c. c is very high in small-worlds
(c ≈ 27%) in comparison to grids, where c = 0. We have seen
before that well-defined boundaries between groups of coop-
erators and defectors in grids help to propagate cooperation.
The Watts-Strogatz model constructs a small-world graph
starting from a ring. The rewiring process creates shortcuts
between different neighborhoods and can turn inner players
into boundary players if the shortcut links them to defec-
tors. Thus, some small clusters of cooperators that would
have grown in grids cannot grow in small-worlds. Figure 2
gives an example how a slightly higher clustering coefficient
leads to fc = 0 instead of fc = 84% for c = 0.

The final fraction of cooperators usually slightly drops
from the initial fraction in small-worlds. Even if fc increases
slightly over the starting point for medium levels of d, we
do not consider this as evolution of cooperation because the
standard deviation ranges from 0.04 to 0.16. The stochastic
BS rule yields 100% cooperation with small initial fractions
and turns out to be the most successful rule in small-worlds.
Starting from a medium level of d, the deterministic version
leads to evolution of cooperation, too. The deterministic and
the stochastic WSLS yield a medium level of cooperation.

5.4 Random Networks
Random networks are the only network where simulations

with T = 1.1 and T = 1.2 yield different results. How-
ever, we do not consider results for T = 1.1 to be reliable
because of high standard deviations and low convergence
rates. Therefore, we discuss the results for T = 1.2 which
show 100% convergence and a lower σ.

The WSLS rule yields the highest levels of cooperation
in random graphs compared to other networks. The IB rule
hardly leads to cooperation in random networks. The results
for the BS rule are drastic, as fc turns out to be either 0 or
1. We see from the simulation results that the jump occurs
between d = 0.55 and d = 0.6. We will give the explanation
in the discussion of the BS rule. The stochastic version yields
the best result for random graphs.

5.5 The Imitate-Best-Strategy Rule
In all settings, we find that the BS rule does not lead to

evolution of cooperation for any initial fraction, d ≤ 0.5,
whereas it takes place for all d ≥ 0.6. This phenomenon is
extraordinarily strong in random networks, where the final
fraction of cooperators, fc jumps from 0 to 1. Further sim-
ulations indicate that there is a threshold for the evolution
of cooperation that occurs between d = 0.55 and d = 0.65.

We now estimate analytically the threshold value of the
parameter d for cooperation to emerge in scale-free graphs,
small-worlds, and grids, under some simplifying assump-
tions. In our model, each player i has 4 neighbors on av-
erage. Let x be the fraction of cooperating neighbors of a
node i and let each neighbor in N (i) have 4 neighbors with y
the fraction of cooperators in their neighborhoods (i’s two-
step neighborhood) a constant (but need not be the same
as x). We assume that x is representative of the whole net-
work, i.e., the fraction of cooperators in the network at that
round is x. Since the average degree is 4, we assume that
x can take the values 0, 0.25, 0.5, 0.75, 1. Recall that in this
rule, a player decides which strategy to take according to
the wealthiest strategy in its neighborhood. In general, i
will cooperate if

x(yR+ (1− y)S) > (1− x)(yT + (1− y)P ) (1)

which is 0.56(0.55) for x = y and T = 1.2(1.1). From Equa-
tion 1, we also find that i will always prefer to play defect
for x ≤ 0.5 (irrespective of the value of y). However, for
x = 0.75, i will play cooperate in every case where y ≥ 0.25
(which is very likely, as x is representative of the whole net-
work). Thus, from this simple analysis, we predict a thresh-
old value of d = 0.55 for cooperation to emerge. Note that
the argument above accounts for a simple average-case be-
cause it assumes the degree of each node to be 4 and an
even distribution of cooperators in all two-step neighbor-
hoods. As the actual x and y for a given neighborhood can
differ from the average we find our simulation threshold to
be slightly different from the predicted value of d = 0.55.

For random networks also, any agent i will cooperate if
Equation 1 holds, i.e., an agent i will cooperate for x ≥ 0.56
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when x = y and T = 1.2. Since the average degree is not
4 the calculation of the values of x for which cooperation
emerges is more complicated for x 6= y. Note, that the
number of cooperators in i’s neighborhood follows a binomial
distribution #coop ∼ bin(n − 1, d). Using Equation 1, for
a given x, we can calculate the value of y required for i to
be cooperating. Thereafter using the binomial distribution,
we can compute the probability that such a fraction y will
exist in i’s two-neighborhood. For example, if x = 0.47, y
should be ≥ 0.58. However the probability that y ≥ 0.58
is equal to 0.046. Thus it is unlikely for agent i to play
cooperate. However, for any x ≥ 0.56 cooperation is very
likely. For example, for x = 0.61, y should be more than 0.47
and the probability for y ≥ 0.47 is 0.93. Thus, in this case
also a threshold value of d = 0.56 would ensure cooperation,
which is in good agreement with our simulations.

5.6 The Win-Stay, Lose-Shift Rule
Although the WSLS rule was shown to perform very well

in two-agent settings it has not been investigated in multi-
player settings. An interesting aspect of WSLS is that for
every network, it leads to the same fc irrespective of the ini-
tial d. However, the actual value of fc reached depends on
the type of network. Another surprising aspect is that WSLS
always leads to evolution of cooperation, if d ≤ 0.5 and is
the only strategy to do so across all the types of networks
studied. We note that the update for an agent depends on
the own payoff over time and therefore indirectly on strat-
egy distributions of the neighbors. Furthermore, the rule is
innovative, such that defectors surrounded by defectors are
still able to change to cooperation, which is never possible
in imitating rules. We found examples of how parts of a
network can easily turn from all-defection to all-cooperation
and vice versa in several time steps only.

We note that for the WSLS strategy most of the simula-
tions do not converge. For the deterministic WSLS, we do
not find convergence except in random networks for T = 1.2,
where all runs converge (usually within 20 rounds). How-
ever, even though the runs do not converge, the standard
deviation usually is lower than 0.016. Thus, we can have
reasonable confidence about the correctness of our findings.
We note that this update rule is especially helpful in systems
where one does not have an influence on the initial fraction
of cooperators but wants to ensure a medium level of coop-
eration. The stochastic WSLS yields slightly higher levels
of cooperation in grids, scale-free, and small-world networks
and here also the final fraction of cooperators is constant
(independent of the initial fraction). Here, the standard de-
viation is lower than 0.01.

6. CONCLUSIONS
In this paper, we performed a comprehensive simulation

study of the phenomenon of evolution of cooperation in self-
interested multiagent societies. Our research shows that
general statements on evolution of cooperation in networked
multiagent systems cannot be made. The emergence of co-
operation depends on the type of network, the state update
rule, and the initial fraction of cooperators. We find a high
dependency of final results on the initial fraction especially
in imitating, non-innovative rules. We observe that the evo-
lution phenomenon do not depend on the size of the network
as long as the network is large enough to show its typical
properties and crucial network parameters do not change

with the number of nodes. Our main findings are as follows:

• In scale-free networks, almost all the state update rules
lead to evolution of cooperation. However, the deter-
ministic imitation rule and stochastic imitation rule
of [16] perform better.

• For small-world networks stochastic BS performs best.

• For grids the deterministic IB performs the best and
most stochastic rules (except stochastic BS) do not
perform well.

• For random networks WSLS performs the best.

• WSLS gives the interesting result that for every type
of network we studied, the final fraction of cooperators
reaches a constant value. Further, this is the only rule
that ensures evolution of cooperation for low initial
fraction of cooperators. This result holds across all
types of networks.

• The BS rule also has the interesting property of sup-
porting evolution of cooperation above a threshold value
of initial fraction of cooperators across all networks.

We also find that stochastic versions of deterministic rules
usually perform slightly better. The final results still highly
depend on the network: e.g., rules that work very well in
scale-free graphs do not have to be successful in grids. Fur-
thermore, results for different stochastic rules can vary greatly
in the same setting. In most cases we find them to yield sim-
ilar results as the deterministic versions.

Future Work: In this paper we have considered the PD
game as an interaction model with a fixed topology of in-
teraction. An important future direction of research is to
relax the assumption of fixed topology. Although versions
of this problem has been studied [22], there is no restriction
placed on the topology of the graph, except that it remains
connected. An interesting extension would be to study the
evolution of cooperation in variable topology graph where
the statistical properties of the graph is maintained (i.e., a
scale-free graph remains scale-free). Another future research
agenda is to give a broad understanding of rules and net-
works for emergence of cooperation in the Snowdrift game.
A first glance at pilot simulations also shows different be-
havior for different settings [9].

From the theoretical perspective there are a few inter-
esting directions that can be pursued. The results obtained
from WSLS seem to indicate some universal underlying phe-
nomenon for the rule. Theoretical understanding of why
there is a uniform final fraction of cooperators for WSLS
in a given type of network is an important research direc-
tion. Moreover, here we have prescribed rules and tried to
analyze whether the rules lead to evolution of cooperation.
Designing a rule that guarantees a certain level of cooper-
ation irrespective of the network topology is an important
problem that we wish to pursue.
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Figure 3: Final fraction of cooperators for T = 1.2,
n = 750 and four different networks: scale-free,
small-world, grid and random networks (in this or-
der). Evolution of cooperation occurs where the fi-
nal fraction is above the dotted black line.
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ABSTRACT
We analyze and extend a recently proposed model of linguis-
tic diffusion in social networks, to analytically derive time to
convergence, and to account for the innovation phase of lexi-
cal dynamics in networks. Our new model, the degree-biased
voter model with innovation, shows that the probability of
existence of a norm is inversely related to innovation prob-
ability. When the innovation rate in the population is low,
variants that become norms are due to a peripheral member
with high probability. As the innovation rate increases, the
fraction of time that the norm is a peripheral-introduced
variant and the total time for which a norm exists at all
in the population decrease. These results align with his-
torical observations of rapid increase and generalization of
slang words, technical terms, and new common expressions
at times of cultural change in some languages.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences

General Terms
Algorithms, Experimentation, Theory

Keywords
Social Simulation, Lexical Innovation, Norms, Degree-biased
Voter Model

1. INTRODUCTION
Multiagent modeling and analysis is being increasingly

applied to the study of language change [1; 3, e.g.]. In
this view, a language is seen as an emergent phenomenon
from the interactions between a population of communicat-
ing agents, and change in language is driven by linguistic
factors, such as frequency of use, and social factors like social
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Systems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.),
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Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

network structure and popularity. Computational modeling
is especially relevant with respect to language change; it pro-
vides tools to explore the large-scale consequences of small
incremental changes that are typically studied empirically
at the individual level or the level of small communities.

One of the foundational questions in this respect is, how
do linguistic norms emerge, and how do they change? Re-
cently, Fagyal et al. [9] proposed a model, known as the
degree-biased voter model (DBVM), to study the role of
network structure and popularity in the spread of linguistic
variants. They showed that the DBVM brings together in
one model two separate factors in the emergence of linguis-
tic norms: the role of network positions, in particular the
contribution of central and peripheral agents referred to as
hubs and loners, and the role of popularity in determining
which linguistic variants are preferentially copied and prop-
agated. These factors had been separately attested to in the
empirical sociolinguistic literature [5; 16; 18; 19, e.g.], but
never combined into a model of norm emergence before.

However, their model left some important questions un-
addressed:

• From an analytical perspective, how long does it take
for a norm to emerge, i.e., what is the time to conver-
gence?

• From a sociolinguistic perspective, their model does
not address the innovation phase of the dynamics. Who
creates the new variants that go on to become norms?

The first question is relevant in that the time to convergence
is directly related to the time it takes to switch between
norms, which would allow to investigate cycles of fashion
and fad quantitatively. The second question is important
for understanding diffusion dynamics at times of increased
cultural contact when the innovation rate, for instance in the
lexicon via borrowing or other means, is particularly high.

In the present work, we analyze the DBVM to derive time
to convergence in terms of the size of the network. We
also introduce an extension to the model to include inno-
vation, and we numerically address the question of which
network positions have an advantage in terms of generating
new norms. Languages tend to be stable for long periods,
and then change in bursts (typically triggered by large-scale
social change). Our analysis and extension here, therefore,
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combine to present a more complete model of linguistic dy-
namics. The extended model shows that in situations where
the innovation rate is high, there tend to be multiple vari-
ants in competition in the network, and the period of time
for which norms exist is lower. Further, many peripheral
variants become the norm in the network. This behavior is
congruent with qualitative observations of certain types of
lexical change in French and possibly in other languages.

The rest of this paper is organized as follows: first we pro-
vide some linguistic context and a description of the DBVM,
then we analyze the model to derive expressions for time to
convergence. This is followed by a discussion of the DBVM
dynamics, which we extend to include a parameter for in-
novation. We present some simulations to analyze this ex-
tended model, and show that at low innovation rates loners,
i.e., peripheral agents who might influence others but do not
listen to anyone else in the network, are more likely to pro-
duce the variants that later become norms in the network.
As the innovation rate increases, however, both the fraction
of time that the norm is a peripheral-introduced variant and
the total time for which a norm exists at all in the popu-
lation decrease. We discuss the relevance of this model to
changes in French in the 19th Century.

2. THE DEGREE-BIASED VOTER MODEL
The importance of the social network in language change

has been recognized for a long time. Bloomfield first sug-
gested a thought experiment, where “every time any speaker
uttered a sentence, an arrow were drawn into the chart
pointing from his dot to the dot representing each one of his
hearers. At the end of a given period of time, say seventy
years, this chart would show us the density of communica-
tion within the community” [4, p. 46]. He hypothesized that
these “lines of communication” and “the relative prestige of
social groups”were the two main conditioning factors of “the
spread of linguistic features” [4, p. 345].

Since then several researchers have studied the role of so-
cial networks in language change, by mapping out specific
networks and recording the spread of linguistic variants and
emergence of norms over these networks [7, 8, 15, 18, 19,
27]. Theorizing has focused on the roles of central “hubs” or
“leaders” and peripheral “loners” or “lames” in the diffusion
process.

These and other studies have resulted in two competing
models of language change: Labov’s and Eckert’s work has
supported the so-called two-step flow of influence model [14].
This model says that the centrally-connected leaders are re-
sponsible for introducing new variants into the local net-
work, and that they themselves are primarily influenced by
other leaders. On the other hand, work by the Milroys sup-
ports the weak-tie model of influence [11, 12]. In this model,
it is the loosely-connected peripherals who introduce new
variants into the local network, which they are able to do
because they are relatively free from the regulatory influence
of the local leaders, and more in touch with outsiders.

These models are at odds with each other because they
posit different roles for the central and peripheral members
of the network: hubs are considered agents of innovation in
one, and conservative regulators in the other; peripherals
are considered barely involved in the linguistic life of the
network in one, and sources of novel variants in the other.
The question then arises, how can these seemingly mutually
contradictory explanations be reconciled?

Fagyal et al. proposed the degree-biased voter model to
answer this question [9]. In this model, each node in the
network (corresponding to an agent) is initialized with one
variant of a linguistic variable. A variant can be phonetic,
such as a flapped or fully released /t/ in the word “mittens”
(number of variants, v = 2), or it can be a stylistic or con-
textual variant of a lexical item such as the French voiture as
‘véhicule’, ‘char’, ‘tacot’, or ‘bagnole’ (v = 4), etc. Further,
edges in the network are directed, and an edge from node A
to node B is interpreted to mean that A can copy B.

Once the simulation starts, at each time step, an agent
copies a neighbor’s variant with probability proportional to
the neighbor’s in-degree (the number of edges pointing to
the neighbor). Thus, the probability that neighbor i will be
chosen to copy from is,

P (i) =
kiniP
j k

in
j

, ∀i, j ∈ N (1)

where kini is the in-degree of neighbor i, and N is a set
consisting of all the neighbors of the current node. Note that
the sum in the denominator is taken over all the neighbors
of the node.

They showed that on a scale-free network with a small
number of loners, this model results in the rapid emergence
of norms, where nearly all the agents are in the same state
(except the loners initialized in a different state). Loners re-
main fixed in their initial states because they have no links
pointing to another agent (meaning they do not copy any-
one else), but can still influence the dynamics within the
network because they have (a very small number of) links
pointing to them (meaning others can copy them). The
presence of these loners makes the system a driven, or out-
of-equilibrium, system. Thus the norms, while stable for
long periods, will eventually be replaced by other norms, as
some of the agents stochastically copy one of the loners in a
different state, and this new variant gets propagated through
the network. Interestingly, they showed that norms do not
appear if degree-biasing is not present, which implies that
norms emerge only when the system is close to equilibrium.

Their model points to a resolution of the debate over the
two competing models of language change formulated by
linguists by suggesting that both interpretations can be seen
as valid at different instants of observation of the stochastic
process of linguistic diffusion. Hubs essentially fulfill the
roles of enforcing norms, but they also rapidly spread new
variants when they themselves change their state. Loners
tend to hold on to their variants, which then sometimes
stochastically work their way up to the hubs because of short
path lengths in a scale-free network, and thereby trigger
changes in norms.

In this paper, we make this analysis more quantitative by
analytically deriving the time-scale of norm emergence, as
we now do.

3. ANALYZING THE DBVM
For analysis, we simplify the model slightly, by considering

a system of N nodes connected through undirected links.
We indicate with k the degree of each node and with nk the
fraction of nodes with degree k. We suppose that the degree
distribution is a power law with exponent ν.

We also assume that the network is perfectly uncorrelated
(a Molloy-Reed network [20]), which means that the proba-
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bility of an edge between any two nodes is given by,

P (edge xy) =
kxky
N2

.

Thus, the probability that node x copies node y in the
DBVM is given by,

P (x copies y) = P (edge xy)
kβyP

j P (edge xj)kβj
,

=

kxky
N2 kβy

kx
N2

P
j kjk

β
j

,

=
kβ+1
yP
j k

β+1
j

,

where the summation is over all the nodes in the network.
The coefficient β is the weight of the node. When β =
0 we obtain the standard voter model [23, 24], and when

β = 1, we obtain the canonical DBVM. Now,
P
j k

β+1
j =

N
P
k k

β+1nk, where nk is the fraction of nodes of degree k.

We define µβ+1 =
P
k k

β+1nk as momentum of order β + 1.
Therefore,

P (x copies y) =
kβ+1
y

Nµβ+1
. (2)

We further assume that a node can have one of only two
variants or states (i.e., v = 2), which we denote with +1
(state up) or -1 (state down). We indicate with ρk (corre-
spondingly, 1-ρk) the fraction of nodes with degree k in state
up (state down). At each iteration a node is chosen and one
of its neighbours is picked up: if the states of the two nodes
are different the first node copies the state of the second one
with a probability based on the degree of the second one.
The probability for a node with degree k and state down to
switch state can be shown to be given by:

Rk(ρk) = nk(1− ρk)
X
j

jβ+1njρj
µβ+1

= nk(1− ρk)ωβ+1 (3)

where ωβ+1 is called the weighted magnetization. Corre-
spondingly, the probability for a node with degree k and
state up to switch is given by:

Lk(ρk) = nkρk
X
j

jβ+1nj(1− ρj)
µβ+1

= nkρk(1− ωβ+1). (4)

From now on we concentrate on the DBVM, which mean
we assume β = 1 in what follows. The state of the system
is defined at every time by the vector ρ = (ρ1, ρ2, · · · , ρk)
representing the fraction of nodes with degree k and state
+1. We indicate with P (ρ, t) the probability that the system
at time t is in the configuration ρ. At each time step, the
fraction ρk can change by a quantity δk = 1

Nnk
representing

the fact that one of the nodes has switched state. Indicating
with δt = 1/N , the time evolution of the system is ruled by:

P (ρ, t+ δt) = P (ρ, t) +
X
k

Lk(ρk + δk)P (ρk + δk, t)

+
X
k

Rk(ρk − δk)P (ρk − δk, t)

−
X
k

(Rk(ρk) + L(ρk))P (ρk, t)

(5)

where P (ρk ± δk, t) indicates the configuration differing for
the state of one node with degree k, the first two sums in the
right hand side indicate the system is reaching the configu-
ration ρ, while the last one indicates the departure from the
configuration. Making a Taylor expansion with respect δk
of equation (5) till the second order, we obtain the Fokker-
Planck equation for the system:

δt
∂P (ρ, t)

∂t
=
X
k

1

Nnk

∂

∂ρk
((L(ρk)−R(ρk))P (ρk, t))

+
X
k

1

2(Nnk)2
∂2

∂ρ2
k

((L(ρk) +R(ρk))P (ρk, t))

(6)

The coefficients in the sums of (6) can be expressed in terms
of the quantities ρk, nk and ω2 as:

(Rk(ρk)− Lk(ρk)) = nk(ω2 − ρk)

(Rk(ρk) + Lk(ρk)) = nk(ρk + ω2 − 2ρkω2)
(7)

Moreover we notice that since δ2k/δt = 1/(Nn2
k), the second

term in (6) is sub-leading and can be ignored, giving:

∂P (ρ, t)

∂t
=
X
k

(ω2 − ρk)P (ρk, t) (8)

We use equation (8) to evaluate the time-evolution of the
average value (on the ensemble of all the possible configura-
tions ρ) of ω2 (indicated as 〈ω2〉):

〈ω2〉 =

Z X
k

k2nkρk
µ2

P (ρ, t)dρ

d〈ω2〉
dt

=

Z X
k

k2nkρk
µ2

dP (ρ, t)

dt
dρ

=
X
k,k′

Z
k2nkρk
µ2

∂((ρ′k − ω2)P (ρ, t))

∂ρ′k
dρ

= −
Z X

k,k′

k2nk((ρk − ω2)P (ρ, t))

µ2

∂ρk
∂ρ′k

dρ

= 〈ω2〉 − 〈ω2〉 = 0

(9)

where we have integrated by parts and exploited the fact
that the derivative term ∂ρk

∂ρ′
k

= δ(k, k′), i.e., it is null when

k 6= k′ and equal to 1 otherwise. The result implies that
the average weighted magnetization is conserved for a fixed
initial condition on the distribution ρ. The existence of
a conserved quantity, in our case ω2, determines the exit
probability, the probability of reaching a consensus state
[24]. Moreover we notice that the conservation of the aver-
age weighted magnetization determines the evolution of the
density ρk:

〈ρk〉 =

Z
ρkP (ρk, t)dρ

d〈ρk〉
dt

=

Z
ρk
dP (ρ, t)

dt
dρ

=

Z
ρk
∂((ρk − ω2)P (ρ, t))

∂ρk
dρ

= 〈ω2〉 − 〈ρk〉

(10)

that has as solution:

〈ρk(t)〉 = 〈ω2〉 − (〈ω2〉 − ρk(0))e−t (11)
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Figure 1: A simulation to show time to convergence
for varying network sizes. We ran 100 independent
trials for each network size, and the dots show the
convergence time on each trial. The solid line shows
the average convergence time. The dashed line plots
y = 75x, which shows a very good fit with the numer-
ically determined average convergence time.

meaning that immediately all the ρk reach the common value
〈ω2〉. These last two results (9,11) (the weighted magnetiza-
tion conservation and the time behaviour of 〈ρk〉) are valid
for a generic value of β. The consensus time T (ρ), the time
at which all the nodes in the system have the same state, can
be easily evaluated using the adjoint of the Fokker Planck
equation (6):X
k

(ω2 − ρk)
∂T (ρ)

∂ρk
+

1

N

X
k

(ω2 + ρk − 2ω2ρk)
∂2T (ρ)

∂ρ2
k

= −1

(12)
Since ρk ' ω2 the first sum in (12) is null and can be elimi-
nated. Moreover we can apply a change of variable:

∂

∂ρk
=
∂ω2

∂ρk

∂

∂ω2
=
k2nk
µ2

∂

∂ω2
(13)

and then equation (12) can be rewritten as:

−1 =
∂2T

∂ω2
2

(
X
k

k4nk
Nµ2

2

ω2(ω2 − 1)) (14)

The equation can be easily solved in terms of ω2:

T (ω2) = N
µ2

2

µ4

»
(1− ω2) ln(

1

1− ω2
) + ω2 ln(

1

ω2
)

–
(15)

.
The time of consensus depends on the initial randomness

in the distribution of state through ω2, a finite term, and
the size of network N explicitly and through the momenta.
The size dependence is a function of both the exponent of
the degree distribution and the momenta considered. The
consensus time is a function of the momenta of the degree
distribution and depends both on the exponent of the degree
distribution ν and on the weight β. We consider 2 ≤ ν < 3,

the maximum degree being kmax = N
1

ν−1 , and for a generic
m-momentum it follows that :

µm ∼

8><>:
N

m
ν−1−1 m > ν − 1,

logN m = ν − 1,

0(1) m < ν − 1.

(16)

The exponents of the momenta appearing in (15) are 2 and
4, which are larger than ν − 1. Using (16), thus,

T (ω2) ' constant (17)

meaning that the time to convergence is constant in the size
of the network. Note that in this analysis, one time step
is taken to involve N node updates. If we count each node
update as a time step, then we expect a linear relationship
between the size of the network and the time to convergence.

We verify the result numerically by generating random
scale-free networks (without loners) with varying N and
ν = 2.5, and measuring the time to convergence. This is
shown in fig. 1 where we plot the time to convergence for
100 independent trials for each network size. The network
size was varied from 1000 to 10000 in steps of 1000. The
convergence time for each run is plotted with a dot, and the
average for each network size is shown with squares joined
by a solid line. We see that a linear function, as expected,
provides a good fit to the data.

4. MODELING INNOVATION
The DBVM assumes that the population begins with a

set of variants, and no new variants are introduced after
that. This raises the question, where do the original variants
come from? One possibility is that for a given linguistic
feature, only a few variants are possible, and they are found
very quickly, leaving no room for further innovation of that
feature. In this case, it is safe to say that all variants exist
“from the beginning” in the population. This is not the
case in certain instances of lexical change, where new words
and near-synonyms for the same concept are not limited in
numbers.

The other approach, then, is to say that some form of in-
novation is always occurring. In this case, there would be
no reason to believe that only peripherals (or some other
subgroup) innovate. We assume, instead, that anyone can
innovate, at any time (though the innovation rate might be
low). This view is close to the position adopted by Baxter et
al., with their Utterance Selection Model [2], where nobody
produces exactly the same utterance every time. In their
model innovation can be understood as being due to ran-
dom variation in speech production, or due to noise in the
communication channel. In our model, however, we are in-
terested in discrete innovation, i.e., we are modeling change
in the lexicon, which may be triggered by external circum-
stances, such as the need for new words with the spread
of new technologies, or increased contact between different
speech communities.

It has been suggested, for instance, that in times of ac-
celerated cultural change quite a few new items with new
meaning as well as new items with near-synonymous mean-
ings to existing words can enter the lexicon. Such lexical
innovations can come from two sources. The first means of
lexical enrichment that can lead to lexical inflation over time
is borrowing, which can arise even in situations of relatively
superficial cultural contact (see Thomason and Kauffman’s
borrowing scale [26]). The second way is a specific type of
language-internal innovation and borrowing process, called
argots, jargons, and taboo [13, p. 420]. This second type
seems to be the most appropriate analogy to consider with
our innovation and diffusion model.

So the question we now ask is, during periods of high inno-
vation rate, what sorts of norms will emerge in a population?
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Figure 2: In the R-MAT algorithm, the adjacency
matrix is recursively divided into quarters, and each
quarter has a probability (a, b, c, d) associated with it.
Starting with an empty matrix, we choose quarters
recursively according to these probabilities until we
get to a single cell, whereupon we set that cell to 1
to indicate a link.

We extend the DBVM to try to answer this question, by in-
troducing a parameter p, the probability for innovation. In
this model, a node can copy a neighbor chosen with probabil-
ity proportional to the neighbors degree, as before, or, with
probability p, introduce a new variant into the language.

We study the above question by keeping track of the source
of each new variant, so that when we see a norm emerge in
the population, we can tell which agent introduced it in the
population. More precisely, we evaluate the probability that
a variant that becomes a norm was introduced by a periph-
eral agent (or equivalently, by a non-peripheral agent).

5. THE DBVM WITH INNOVATION
In this extended model, we assume that there are v pos-

sible initial variants of a certain linguistic feature. To ini-
tialize the model, we assign a uniformly randomly chosen
variant to each agent in the network at time t = 0. At
each time step after that, we choose one of the agents uni-
formly randomly. This agent updates its variant by copying
one of its neighbors with probability (1− p), where p is the
innovation rate. With probability p, therefore, the agent
introduces a new variant into the population. Variants are
numbered starting with 1.

We keep a running count of the number of agents with
each variant in the network. If one of the variants is in
use by more than 90% of the population, we say that that
variant has become the norm. Note that this means there
can be periods when there is no norm in the population.

We also keep track of which agent introduced a particular
variant, which will allow us to estimate the probability of
variants generated by a particular class of nodes (e.g., loners)
to become the norm in the network.

5.1 Generating the interaction network
Following Fagyal et al. [9], we generate the interaction

network using the R-MAT algorithm [6]. R-MAT, which
stands for Recursive MATrix, works by creating a set of
nested communities in the network. The algorithm operates
on the adjacency matrix of the network. An adjacency ma-
trix describes a network as follows: if agent x is influenced
by agent y in the social network (i.e. there is a link from
x to y), then we place a 1 at row x and column y of the
adjacency matrix, otherwise we place a 0 at that location.

The R-MAT algorithm uses four parameters, (a, b, c, d),
which correspond to four quarters of the adjacency matrix,
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Figure 3: Indegree distribution of a network with
900 nodes and 7561 edges, generated by R-MAT.

as shown in fig. 2. We start with an adjacency matrix filled
with zeroes. We then choose a quarter of the matrix with
probability corresponding to its parameter. We chose the
parameters a = 0.5, b = 0.1, c = 0.1, and d = 0.3. These
parameters mean, for example, that half the time we choose
the upper left quarter of the matrix. We then treat the
chosen quarter as a new matrix, divide it into quarters, and
again choose one quarter with the same set of probability
parameters. This process is repeated recursively until we
end up with a single cell, whereupon we set the value at
that cell to 1. Again, following Fagyal et al. [9], we created
a network with 900 nodes and added links to the adjacency
matrix 9000 times, which resulted in 7561 unique links.

Another advantage of using the R-MAT algorithm is that
it automatically results in a small number of loners (∼5%
of the nodes), which avoids having to artificially choose a
small number of peripheral nodes to designate as loners. The
generated network has a heavy-tailed power-law-like degree
distribution, as shown in fig. 3, and the behavior of the
DBVM on these networks is similar to its behavior on scale-
free networks.

6. SIMULATIONS
A single time step of the model corresponds to a single

agent updating its variant, either by copying a neighbor or
by innovating. Note that if an agent chooses to copy a neigh-
bor, its variant may not actually change, because the chosen
neighbor’s variant might be the same as the agent’s own.

Each simulation is run for 40 million time steps. We al-
ways start with v = 8 initial variants. The choice of number
of initial variants is arbitrary; the qualitative dynamics are
the same for other (small) values of v. Once the simula-
tion starts, agents introduce new variants in the population
with innovation rate p. We count the number of individuals
for each variant in the population every ten thousand time
steps. If a particular variant is being used by more than
90% of the population, we say that it is the norm. We mark
this on the graph by a single point for that variant number
at that timestep.

Figure 4 shows norms when the innovation rate, p =
0.0001. We see that nearly all the time, the norm is one
of the original eight variants (which are numbered from 1 to
8). Very rarely, a new variant (with number greater than 8)
becomes the norm.

Figure 4 suggests that if we observe a variant as the norm
in a population, it is due to a peripheral member, with high
probability. The next simulation increases the innovation
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Figure 4: Norms are primarily the variants held
by peripheral members, when the innovation rate
is 0.0001.

rate by an order of magnitude, i.e., p = 0.001 now. The
result is shown in figure 5. We see that, in this case, norms
are much more evenly split between the original variants and
innovative variants. This shows that probability of a non-
peripheral-introduced variant becoming the norm depends
on the innovation rate. In other words, if we observe a norm
in a network, the statistical answer to “who introduced this
into the population?” depends on the rate at which innova-
tions are being introduced into the population as a whole.
To get a more precise picture, we did a number of runs for
various values of p, varying it from 0.0001 to 0.01. The
results are shown in figure 6.

We did a ten runs for each value of p. Figure 6 shows two
curves. The dashed line is the average fraction of the total
simulation time for which a norm exists in the population.
We call this the norm time. The norm time varies from one
run to another because, even though the network is the same
every time1, the initial state of all the nodes is set randomly.
The solid line shows the fraction of the norm time for which
the norm was a variant introduced into the population by a
loner. We call this the loner fraction. The error bars show
one standard deviation.

Note that while the total number of variants generated
over the span of the simulation is quite large, there are rel-
atively few variants circulating in the network at any given
time. The lifetime of an innovation is quite short because
new variants are lost with high probability as nodes re-copy
an existing variant from another node after they generate
an innovation.

There are a few interesting things to note in figure 6. One
is that as the innovation rate increases, the fraction of time
that the norm is a peripheral-introduced variant decreases
and correspondingly the fraction of time that the norm is
a non-peripheral-introduced variant (1 - loner fraction, not
shown in figure 6) increases. Second, at the same time, the
fraction of the total time for which a norm exists at all in the
population decreases with increasing innovation rate. When
the innovation rate is 0.01, i.e. when an agent innovates
only with a one in hundred probability, no norms appear in
the population. This means that agents have to be rather
conservative if norms are to exist at all. Third, we can use
the fraction of time that a norm exists at all in the popu-

1Since we use only one network, the values we have com-
puted are network-specific, but the qualitative results are
the same across different network instantiations.

 1

 10

 100

 1000

 10000

 100000

 1e+07  2e+07  3e+07

No
rm

 v
ar

ia
nt

Time

Figure 5: Norms are relatively equally divided be-
tween peripheral and non-peripheral variants when
the innovation rate is 0.001.

lation as an index to determine innovation rate, and thus
the probability that the norm is due to a peripheral mem-
ber. This means that even if we do not know the rate at
which innovations are being introduced into the population
(and empirically, we can’t), we can still estimate the prob-
ability that a norm is due to an innovation introduced by a
peripheral.

As the innovation rate increases, the loner fraction de-
creases, which means that it becomes more and more likely
that an innovation introduced by someone other than a loner
can become the norm. The loner fraction drops below 0.5
when the innovation rate is approximately 0.002 in this sim-
ulation. At this point, it becomes more likely that an in-
novation introduced by a non-loner will become the norm,
than that an innovation introduced by a loner will become
the norm. Note that for this value of the innovation rate
(and above this value), the norm time has dropped to about
25% or less. Thus, for variants introduced by non-loners to
be more likely to become the norm, the innovation rate must
be so high that norms only exist in the population for brief
intervals.

7. LEXICAL INFLATION IN FRENCH
These findings seem to align with certain types of lexico-

semantic change, such as lexical inflation, in natural lan-
guages. The following examples will focus on lexical change
in French, which corresponds to one of the best known and
described examples of this type of change in modern Eu-
ropean languages. Lexical inflation is a process by which
lexical items with the same meaning and similar stylistic
use tend to accumulate and persist in the lexicon over time
[21, p. 155], [10, p. 118]. There is general consensus among
linguists that the lexicon resists the inclusion of too many
perfect synonyms, i.e. lexical items duplicating the same
meaning, but partial or near-synonyms can be quite numer-
ous. While theoretical models of near-synonymy are still
debated (see [25]), their practical implications have been
observed for many years.

Parallel to new near-synonyms entering the language, old
lexical items also need to persist for lexical inflation to occur.
As Posner [21, p. 155] notes with respect to lexical inflation
in French: “Most words that have outlived their time are
not consigned to the dustbin, but to the attic, whence they
can be taken out, dusted down, and brought back into use
for special occasion.” In other words, words do not neces-
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Figure 6: The dashed line shows the fraction of the
total time for which a norm existed in the popula-
tion, which we call “norm time”, against innovation
rate. We see that the norm time becomes essen-
tially zero when the innovation rate is close to 0.01.
The solid line shows the fraction of norm time for
which the norm was a variant introduced by a loner
(or one of the original variants, which are held on
to only by loners after the first norm emerges). We
call this the “loner fraction”.

sarily disappear; just become more peripheral in the lexicon.
Word-loss has indisputably characterized French, and other
languages, historically. An especially large number of words
were lost from French during the early modern period. Verb
forms, such as gésir (to lie) and quérir (to seek) that, al-
though not particularly frequent, had particularly irregular
conjugations led to the replacement of these verbs by reg-
ular forms (coucher (to lie), chercher (to seek)). However,
it has also been argued that since at least the late 18th-
century the overall picture seems to be that of lexical in-
flation: “the number of different words (types) occurring in
texts has not ceased to grow, even though for some individ-
ual words the number of instances (tokens) has regressed.”
[21, p. 155]. The question is: what possible mechanisms, if
any, might have motivated this type of inverse relationship
between type-frequency and token-frequency?

Furthermore, as near-synonyms tended to accumulate and
persist in the lexicon starting from the late 18th-century,
historians of French also noticed that the use of many pre-
viously peripheral and/or specialized lexical items became
generalized. Casting his net of spoken lexical forms much
wider than dictionaries of his time, Lazare Sainéan [22],
among others, left literary usage behind to analyze an im-
pressive array of fringe vocabulary spoken by the early 20th-
century Parisian society’s have-nots. He studied the jar-
gon of solders, butchers, sailors, shoemakers, printers, and
other corporations, as well as the secret terms, or argots, of
thieves, beggars, prostitutes, pimps, and professional gam-
blers. Together with the terms of his times’ entertainment
industry, the Parisian cabarets, Sainéan also listed the mean-
ing and stylistic connotations of terms handed down from
child language and dialectal borrowings, or provincialisms.
This wide variety of lexical items studied in their histor-
ical context lead him to one general conclusion: “Having
followed the evolution of the language of criminals until the
19th-century, I came to the conclusion that the last traces of

this idiom (whose sole reason to exist was its secrecy) have
blended into modern-day working-class Parisian French. [...]
This modern argot led to a unified idiom spoken by millions
of Parisians and French people.” [22, VII-VIII]. The sole
reason for this “penetration of jargon into ‘the vulgar’ (i.e.,
working-class spoken French)”, according to Sainéan, was
the result of more frequent and “infinitely more easy” con-
tact between different segments of French society.

Analogies between the dynamics of our computational model
and the above story of lexical innovations in industrial-age
Paris are suggestive. Increased innovation and large-scale
spread of slang words and group-specific technical terms are
first noticed in French in the modern era, i.e. starting from
the late 18th-century when task-oriented labor divisions and
technological advances in the manufacturing sector bring in
close and regular contact members of traditionally tight-knit
communities in close-reach from each other (i.e., small in
diameter and showing high clustering). Marked by flagrant
social inequalities (i.e., possibly of scale-free degree distribu-
tion), these networks could have been prominent sites of the
type of innovation and distribution dynamics exhibited in
our general model. The question whether the (inverse) re-
lationship between increased type-frequency and decreased
token-frequency is indeed governed by the same statistical
dynamics as the innovation rate increase vs. norm-time de-
crease in our model remains to be investigated empirically
in very large written and spoken language corpora. What
we hope to have accomplished in this paper is a more precise
formulation of the next series of hypotheses to be tested on
lexical inflation in French and other languages.

8. CONCLUSION
In this paper, we have analyzed and extended a model of

linguistic innovation and diffusion in social networks. We
have shown how to derive the time to convergence in the
degree-biased voter model. Our analysis follows the tech-
nique of Sood and Redner [24] of grouping nodes by degree
to derive the Fokker-Planck equation for the system. From
this we derive the adjoint equation, and the expression for
convergence time follows. It turns out that time to con-
vergence in the DBVM is simply linear in the size of the
network, when time is measured as the number of updates,
which we confirmed with a simulation.

The previous model is analogous to stable sedentary so-
cieties where there are a small number of variants for any
linguistic variable. However, as is well-attested in histori-
cal linguistics, during periods of accelerated cultural change,
languages must adapt to a greater number of innovations, es-
pecially in the lexicon. We model this situation by including
a probability of innovation into the DBVM. We did simula-
tions to qualitatively understand the nature of this extended
model, and saw that as innovation rate increases, the dura-
tion of norms decreases, as is indeed the case historically.
We also discovered that the probability of loner or periph-
eral variants becoming the norm tends to be substantially
higher than non-loner variants. This has also been empiri-
cally noted, in 19th-century French for example, which saw a
large number of terms from argots and jargons being incor-
porated into the mainstream. Our approach suggests that
a simple stochastic model might account for a great deal of
this change.

We do not, however, claim that the above are the only rea-
sons for linguistic change, or that simple stochastic models
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can account for all the variation observed empirically. There
are a number of essential sociolinguistic factors left out by
our model, including effects of gender, age, and social iden-
tity. Our goal is to model these factors incrementally, in
order to make sure that the effects of each new factor are
fully examined before including them in the model.

We end this paper by underscoring the importance of com-
putational modeling in sociolinguistics. Language is a very
complex adaptive system. The dynamics of large-scale in-
teractions and long-terms change are, we believe, impossible
to understand fully without a rigorous mathematical theory
and computational tools [17] that allow linguists to experi-
ment with factors identified in small-scale empirical studies
in sociolinguistics.
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ABSTRACT 

Large scale agent-based simulations typically face a trade-off 

between the level of detail in the representation of each agent and 

the scalability seen as the number of agents that can be simulated 

with the computing resources available. In this paper, we aim at 

bypassing this trade-off by considering that the level of detail is 

itself a parameter that can be adapted automatically and 

dynamically during the simulation, taking into account elements 

such as user focus, or specific events. We introduce a framework 

for such a methodology, and detail its deployment within an 

existing simulator dedicated to the simulation of urban 

infrastructures. We evaluate the approach experimentally along 

two criteria: (1) the impact of our methodology on the resources 

(CPU use), and (2) an estimate of the dissimilarity between the 

two modes of simulation, i.e. with and without applying our 

methodology. Initial experiments show that a major gain in CPU 

time can be obtained for a very limited loss of consistency. 

Categories and Subject Descriptors 

D.3.3 [Artificial Intelligence]: Distributed Artificial Intelligence 

– Multiagent systems 

General Terms 

Algorithms, , Performance, Experimentation. 

Keywords 

Agent-based simulations – Simulation techniques – Tools and 

environments – Level of Detail. 

1. INTRODUCTION 
Agent-based simulation of credible actors in large-scale urban 

environments is a growing research domain, with numerous 

applications ranging from security to crisis management, 

entertainment, urban planning and virtual training. Those 

simulations share broadly speaking the same high-level goal: 

provide a powerful analytical tool which can animate a large 

number of individuals, with complex, credible – sometimes 

realistic – behavior, within a large world. Ideally, they would 

work in real time in a continuous space, on a standard machine 

and with intensive and rich interactions with one or several users. 

However, simulating hundreds of thousands of individual agents 

within a very large environment like an airport, a crowded train 

station or a whole megacity, with credible behaviors, requires 

important computational power. This is mainly due to the 

complexity of the microscopic models used for instance for 

navigation, or decision processes that result in large states and 

actions spaces. Indeed, most of them require that each agent 

perceive its environment, update its internal variables, choose the 

most appropriate action and eventually communicate and learn. 

Reducing the complexity of the underlying algorithms is then a 

significant challenge. 

A similar issue has already been tackled by the field of computer 

graphics, where Level of Detail (LOD) techniques have been 

investigated [1] in order to find a good balance between visual 

credibility and computational requirements. Those techniques 

tend to adapt the complexity of the 3D models based on the 

viewpoint of the observer. Our approach proposes a similar idea 

adapted to the agent models. 

In this paper, we define an agent model as a computational 

abstraction of the behavior or the cognitive capabilities of a 

synthetic actor. Thus, this definition either applies to the processes 

and behaviors dealing with navigation, decisions, emotions, 

communication or social interactions. All those models take as 

input a representation of the agent being driven and a 

representation of its environment, and output an action or a 

modification of the internal state. 

We present here a novel approach of dynamic LOD for large scale 

simulations, which can apply to all agent models. Moreover, 

instead of using predefined LOD levels, our approach is able to 

determine by itself the most suitable representation level for each 

agent, regarding the simulation context, in real time and within a 

continuous environment. To do so, we first introduce the generic 

notions of dynamic change of representation and spatial 

aggregation. Then, we define a concrete sub-problem and we 

evaluate the approach experimentally along two criteria: the 

impact of our methodology on the computational resources, and 

an estimate of the dissimilarity between a full microscopic 

simulation and a simulation with our methodology. Finally we 

discuss the results obtained and propose enhancements for future 

works. 

2. RELATED WORK 
Generating realistic behavior for virtual humans has been the 

subject of numerous studies in various communities. Systems like 

SOAR [11], ACT-R [3], ICARUS [2] or LIDA [19] are excellent 

examples of cognitive architectures that provide a complex 

modeling of extremely advanced human reasoning capabilities at 

microscopic scale, based on studies about human memory, 

problem solving and skill acquisition [4]. However, though these 

systems are applicable in scenes with a reasonable number of 
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actors, they are inefficient to handle applications involving large 

populations of virtual humans on a standard computer. This 

limitation is also a disadvantage to the use of multi-agent 

platforms such as Cougaar [8], JADE [17] and ZEUS [26] which 

offer specific architectures able to distribute the virtual entities on 

different machines depending on the required computational load. 

Attempts have been made to increase the number of simulated 

entities on a single computer by tuning the update time length 

given to each agent. To reach the amount of 200.000 vehicles 

simulated as individual autonomous agents with specific action 

selection mechanisms, SUMO [23] uses discrete calculation time 

steps of 1 second. Similarly, the crowd simulation proposed in 

[18] reduces the update times of non-visible agents and adapts 

their behavior to more simplified but less accurate microscopic 

agent models. Finally, the Process Manager described in [10] 

dynamically chooses between several AI update processes – full, 

time-sliced, postponed or replaced with simplified behavior – 

depending on the needs in computational resources. While those 

systems share the same philosophy, the first one sacrifices its real-

time component for the benefit of an accurate result whereas the 

others elected to decrease the realism of the simulation to 

maintain its believability. 

Some systems are able to simulate a very large number of agents 

using only macroscopic models. Crowd Patches [9] can handle up 

to 3.700 actors by dividing the world into small convex areas 

where agents can navigate, and using offline computed paths and 

animations stored within each patch to steer them. Other 

approaches have been attempted through the simultaneous use of 

macroscopic and microscopic models to define the individual 

behaviors of each agent. Thus, YaQ [25] uses offline predefined 

macroscopic paths across the world to steer up to 35.000 

pedestrians using various microscopic algorithms, depending on 

their position: potential fields on significant areas, Craig 

Reynolds’s seeking behavior on lower interest spots and linear 

steering toward their destination without collisions on 

unimportant regions. Similarly, Continuum Crowds [7] represents 

agents as particles which are subjected to three fields – one for 

their destination, one for their speed and one for their discomfort 

caused by the proximity of other agents – that guide them to their 

destination. Thereby, those systems combine global path planning 

and local collision avoidance within a single global steering 

model. However, they focus on navigation issues and are not 

easily transposed to other levels of behavior models such as ones 

dealing with decisions or emotions. Moreover, they do not 

provide the expected level of interactivity. 

Some approaches also exploit the principle of simultaneous use of 

microscopic and macroscopic models, but choose to partition the 

environment and implement a model type for each zone. [22] 

describes a top-down approach for simulating pedestrians within a 

large city, which uses high level flows and distributions models to 

steer non-visible agents along a network of nodes that describe the 

accessible areas of a city, and a microscopic collision avoidance 

model with speed adjustment for visible actors. Similarly, the 

systems presented in [20] and [21] simulate vehicles navigating in 

a static predesigned world. The entities use a macroscopic model 

based on the flow theory for low interest areas without crossroads, 

and a microscopic multi-agent car-following model for high 

interest areas. Those architectures can handle several thousand 

agents with high consistency level and offer a good interactivity 

with the agents’ behavior within both macroscopic and 

microscopic areas. But they require a preprocessed environment 

and predefined transition functions between the agent models. 

A last approach, IVE [16], is of particular interest to our work, 

since it is one that introduces level of detail techniques on human 

decision and behavior. This framework utilizes a hierarchical 

reactive planning mechanism to control the agents, which uses a 

tree structure. Those agents are placed within a 2D world that is 

split into atomic cells which are hierarchically organized within a 

topology tree. Each level of this topology tree is linked to one of 

the behavioral tree, defining accessible LOD ranks. Thus, IVE can 

adapt the level of detail of the simulation in order to simplify the 

behaviors of the unobserved agents – and then reduce the 

computational needs – hence dealing with more than 10.000 

agents simultaneously. But it requires the use of a discrete 

hierarchical world statically linked with the tree structure used by 

the decision process. 

The field of multi-agent systems is not the only one to be relevant 

in the context of this study. Thus, Multi-Resolution Modeling 

(MRM), which is the joint execution of different models of the 

same phenomenon within the same simulation or across several 

heterogeneous systems, provides several relevant approaches. In 

selective viewing [12], only the most detailed model is executed, 

and all other ones are emulated by selecting information, or views, 

from the representation of the most detailed model. In aggregation 

/ disaggregation techniques, one model is executed at a given 

time, but instead of being the most detailed one like in selective 

viewing, the choice of the model depends on the user needs. This 

approach has several variants, such as full disaggregation [15], 

partial disaggregation [6], playboxes [14] and pseudo-

disaggregation [13]. Variable Resolution Modeling allows the 

construction of families of models which support dynamic 

changes in resolution [12] by introducing constraints during their 

creation, such as the standardization of all the parameters in a 

dictionary, the creation of a hierarchical structure for the variables 

or the definition of calibration rules between models. 

Multiple Representation Entities [5] is a final example from the 

MRM field which is of particular interest here. It uses concurrent 

representations to ensure simulation consistency and reduce 

computation costs. Its approach is to maintain, at all time, all 

representations through all available models of a given 

phenomenon, using appropriate mapping functions to translate 

changes between two representations. The goal is to permit 

constant interactions between all the representations, to avoid loss 

of resources or time when scaling from one model to another. This 

approach is a powerful way to deal with complex MRM, which 

offers a remedy for the weakness of aggregation / disaggregation 

methods and requires lower resources than simultaneous 

execution of multiple models. But it only gives mathematical 

requirements for mapping functions, through the use of attributes 

dependency graphs. Also, it does not identify the representation at 

any level nor relationships between representations. 

3. DYNAMIC LEVEL OF DETAIL FOR 

AGENT MODELS 
Our approach aims to mix the philosophy of graphical level of 

detail with the use of multiple agent models at different 

resolutions. The goal is to simulate precisely the behavior of 

actors in areas of high level of interest with microscopic models 

and to simulate less precisely but more economically (resource-
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wise) behavior of actors located elsewhere with macroscopic 

models. 

Several criteria have motivated the choice of using multiple 

models. Firstly, it allows the capture of all the aspects of a given 

phenomenon. Indeed, low resolution models allow a better overall 

understanding, by focusing on the big picture rather than on the 

details, whereas high resolution models give an accurate 

comprehension of a specific phenomenon and tend to simulate 

reality. Secondly, such a choice allows the finding of a good 

balance between computing resources and simulation properties, 

such as realism, coherence and complexity. Indeed, although high 

resolution models are very accurate for modeling individual 

behaviors, they often have high computational and memory needs. 

On the other hand, low resolution models can save resources but 

tend to give less accurate results. Mixing both types of models can 

hopefully lead to the best of both worlds. Finally, using multi 

models helps design systems by mimicking the human reasoning 

ability – which already works at different levels of understanding 

– and simplifies the calibration of the models by allowing the use 

of available data matching at least one of the implemented 

models. 

However, this fundamental choice leads to several challenges 

which can be classified along two axes. The first one relates to the 

models themselves. One must define the way they will be used (a 

model at a time, one model per areas of interest, all models 

simultaneously, etc…) and the way they will interact, using some 

of the Multi Resolution Modeling methods described above. The 

second axis relates to the physical agents. One must define how to 

manage a continuous 3D environment with complex moving 

agents, and how the physical position of the agents will have an 

impact on the model used. 

3.1 Dynamic change of representation 
This chapter focuses on the scalability aspect of the implemented 

agent models. It attempts to provide an efficient method for 

navigating dynamically from one model to another. The primary 

decision made is the choice of the aggregation / disaggregation 

technique to define how the models are used. This way, several 

agents are aggregated into a group of agents, then several groups 

are aggregated into a crowd, and finally several crowds are 

aggregated into a flow. The different agent models (agent, group, 

crowd and flow) are linked to each aggregation / disaggregation 

step. 

Let    be an agent model. The representation of an agent    in 

   at time   is denoted by    (        ) and is the vector of 

inner attributes of    required by    to operate. The number of 

such attributes is denoted by |  |. Then: 

   (        )  

(

 

     ( )

     ( )

 
    |  |

( ))

  

Let    be another agent model. We assume that    is more 

abstract than   , which also means that the representation level of 

   is higher than the one of   . Finally, let 

  *             + be a set of N agents, driven by the model 

  . The goal is to find the aggregation function     able to 

transform the representation of   in    at time  , into the 

representation of the aggregate    controlled by the model    at 

the same time: 

   (       )  (   (        )       (        ))
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    |  |
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As is, such function is difficult to define – or to learn – because it 

attempts to aggregate parameters which are a priori not 

semantically connected, such as the velocity of the agents and 

their thirst level. Our approach is to split     into several sub 

functions, each operating on parameters with a similar meaning, 

therefore likely to share a common dynamic. In this end, we 

classify each agent’s attributes in two categories, physical and 

psychological, and several subcategories, like physical traits, 

resources or spatial data for the first group and emotions, internal 

variables or knowledge for the second. Then, we partition the 

representation of the agents in each model. The goal is then to 

find the aggregation sub functions corresponding to each class of 

attributes, which guarantees the consistency of the models and 

allows a future disaggregation. 

The notion of consistency is central in such an approach because 

it symbolizes the amount of essential information lost during the 

aggregation / disaggregation process and is linked to the global 

coherence of the simulation. A relevant definition of consistency 

between a high level model   and a low level model    has been 

given in [12] by the comparison between the projected state of an 

aggregate of high level entities which have followed  , and the 

projected state of the same aggregate initially controlled by   .  

The projection symbolizes that only a part of the final states is 

relevant to define the consistency. Our approach uses this notion 

to determine which kind of sub function fits best with which class 

of attributes. Thus, machine learning techniques would allow the 

system to find the best sub function for each attributes class 

between two agent models among a group of predefined operators 

such as SUM, MIN, MAX, MEDIAN or MEAN, by optimizing 

the consistency of both models. 

In parallel to the definition of the aggregation sub functions, we 

must find the associated disaggregation operator,       , which 

aims to recreate   from    at time    with respect to the evolution 

of    between   and   . To do so, we define memory functions 

whose goal is to save data at aggregation time to facilitate the 

disaggregation process: 

   (       )  (   (        )       (        ))

 (

     ( )       ( )

   
    |  |

( )      |  |
( )

) 

      ,   (        
 )     (       )-     (       

 ) 

There is a strong link between an aggregation function, its 

opposite disaggregation operator and the associated memory 

function. As an example, let us consider the resources of an agent. 

An intuitive aggregation operator would be the SUM as we may 

consider that a group of agents disposes of the sum of the 

resources of each individual. In this case, the memory function 

would be, for each resource attribute, a RATIO operator between 

the initial amount of the aggregated agent and the amount of the 

aggregate. Then, the disaggregation function would be a simple 

MULTIPLY between the new amount of the aggregate and the 
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memory of the agent, plus a random distribution of surplus 

between the agents. 

Finally, such method allows our approach to tune the memory 

consumption by controlling the quantity of data stored by the 

memory functions for each aggregated agents. Thus, gradual 

forgetting methods can be implemented, which keeps all the data 

of    (       ) just after the aggregation, then creates a 

statistical distribution for each attribute among all the aggregated 

agents after a predefined period of time and finally erase all stored 

data if the agents have been aggregated after a long period. In this 

last case, random attributes are generated for the disaggregation 

process. 

3.2 Spatial aggregation 
This section focuses on the spatial aggregation of agents and 

addresses the issue of finding which agents should be aggregated 

to form a representation at a less detailed level. The philosophy 

employed here is to consider a group of humans as a set of 

individuals with similar psychological profiles and a common 

physical space. 

To this end, two distances are defined based on the two main 

attributes classes defined before: a spatial distance   , and a 

psychological distance   . The first one can be a trivial Euclidean 

distance or a more complex computation taking into account the 

physical path between the two agents. The second distance 

represents how two actors share the same thoughts (for example 

the same goal, the same dominant emotion or the same desire). It 

can be the norm between the vectors of psychological attributes or 

the similarity between the long term goals chosen by the agent. 

Those distances are combined to define the affinity between two 

agents    and   . 

   (      )   ,  (      )   (      )- 

This affinity must be a continuous positive function, strictly 

decreasing as    or     increase. It represents the connection 

between two agents within the simulation, only based on their 

individual states. Their environment is taken into account with the 

definition of events. Those symbolize points of particular 

attention which require the creation of an area of high level of 

interest to increase the overall consistency of the simulation. 

Thus, the observer’s point of view, an accident or an evacuation 

can lead to the creation of simulation events. Let   
*             + be a set of M events generated by the 

simulation. The link between an agent and an event is 

characterized by a new pair of distances similar to those defined 

above. Although the meaning of the physical distance remains the 

same as the one between two agents, the signification of the 

psychological one is a bit different, and symbolizes how an actor 

is sensitive to the event. For example, if we consider an agent 

collapsing in the street, we can assume the impact of this event to 

be higher on a doctor walking nearby than on a child or an 

employee in a hurry. Those distances are combined to define the 

affinity between two agents    and    and an event     : 

{
  (          )     

 
,  (     )    (     )-
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Finally, we can define the link between the two agents    and    

and  : 

   (         )     
  ,   -

,   (          )- 

This link is finally used to define the aggregation utility between 

two agents    and   . This utility guides the choice of which 

agents to aggregate because they are close in their representation 

space and are not of interest for the simulation. 

   (      )    ,   (      )     (         )- 

The computation of the aggregation utilities between the agents 

leads to the creation of an aggregation graph, which vertices are 

the agents in the simulation. An edge of the graph is created when 

the value of the aggregation utility is greater than a given 

threshold. The weight of the edge is set to the value of the utility. 

Figure 1.A shows agents symbolized by circles with different 

colors representing their psychological states. The corresponding 

graph is shown in Figure 1.B. This structure allows optimizing the 

repartition of the agents within the created groups – Figure 1.C – 

with the use of specific graph algorithms. 

 

Figure 1: Example of spatial aggregation, with agents on the 

ground (A) used to create an aggregation graph (B) finally 

leading to the formation of groups (C). 

 

The disaggregation of an aggregate    proceeds of the same idea, 

although it just take into accounts the events defined in the 

simulation. Thus, we can define an affinity between    and an 

event     , then the affinity between    and  , and finally the 

disaggregation utility which guides the choice of which aggregate 

to split because its representation grain is too coarse for the area 

of interest where it stands: 

   (      )   ,  (      )   (      )- 

   (     )     
  ,   -

,   (      )- 

      (  )    ,   (    )- 

3.3 Implementation in SE-* 
A large part of our approach has been implemented and evaluated 

within SE-*, a Thales proprietary multi-agent simulation. This 

system is a synthetic environment engine, designed to be highly 

scalable and capable of modeling complex adaptive behaviors, 

low-level navigation and interactions with the environment. Each 

agent has a motivational tree containing predefined attributes, 

internal variables, motivations and behaviors. A hierarchical plan 

is created from these different motivations and from the Smart 

Objects the agent may use. Currently, SE-* can animate up to 

20,000 agents driven by more than 20 motivations within a 

complex environment. 
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This simulator has been used to test our approach on several 

scenarios. Due to the complexity of the model described above 

and its large number of parameters, we decided to focus on a sub 

problem for this first experiment, mostly by reducing the 

scalability of the agent models. The main simplification is the 

definition of two representation levels – individual and group – 

and the use of the same microscopic navigation and decision 

model for both levels. Thus, we assume that a group of a small 

number of agents perceive and act like a single actor. Then, we 

classify the attributes of the model into 3 physical categories 

(physical traits, resources and spatial data) and 3 psychological 

ones (motivations, internal variables and psychological traits). 

Finally, because our approach does not implement yet any 

automated learning mechanism for finding the aggregation 

operators, we defined them by hand. Thus, we use a simple 

MEAN operator for all the categories except for the resources 

which are aggregated using a SUM operator. The associated 

disaggregation and memory operators were also designed by 

hand. 

To compute the affinity between two agents    and   , we 

implemented a basic Euclidian distance as    and we set     as 

being equal to zero if the agents have the same short-term goal, 

one if not. The affinity function is then defined as follow: 

   (      )  
 

   (      )
     (      )

  (    )    
  

 

The affinity between two agents    and    and an event      is 

defined similarly, except for    which is always zero, 

symbolizing the fact that the agents are always affected by the 

events of the simulation. The aggregation utility between two 

agents    and    is then defined as follows: 

   (      )  
   (      )

   (        )      
  

Considering that    is always zero, the definition of the 

disaggregation utility for an aggregate    proceeds of the same 

idea: 

      (  )     (    )  
 

   (    )      
  

4. EXPERIMENTAL EVALUATION 
 We designed 3 scenarios to evaluate our approach. Two 

of them take place in a subway station initially empty, including 

various objects such as ATMs, ticket vending machines, beverage 

dispensers and ticket barriers, and the last one occurs in a large 

city. In each scenario, the agents are driven by a dozen different 

motivations, such as going to work, drinking, destroying a 

machine, repairing a broken machine or fleeing. 

Two subway stations have been designed for the two first 

scenarios, which share the same 3D model but have specific 

locations for the objects. Details are shown in Figure 2 and Figure 

3. When entering the station, each agent aims to take the train and 

has random physical and psychological traits as well as 30% 

chance to own a ticket and another 30% chance to start with a 

small amount of money. To achieve its initial goal, and according 

to its inner attributes, an agent will have to get some cash at the 

ATM, buy a ticket, get a drink or directly go through the ticket 

barriers to the train doors. The first station contains 4 entries, 4 

train doors, 8 ATMs (in green on the figures), 8 ticket vending 

machines (in yellow), 12 ticket barriers (in white), 12 exit barriers 

(in dark red) and 7 beverage dispensers (in red). In the second 

one, 4 ATMs were swapped with 4 ticket vending machines in 

order to see if a modification in the topology has an impact on the 

performances. 

 

Figure 2: Top view of the first test subway station. 

 

 

Figure 3: View of a part of the first test subway station. 

The last scenario takes place in an entire city which includes the 

subway station, shown in Figure 4. The 3D mesh is larger and 

allows the simulation of thousands of agents. However, it does not 

contain any smart objects with which to interact. Thus, the agents 

only walk from entry points to exit gates without colliding, which 

is a typical navigation task. 

 

Figure 4: View of the test city. 

Each scenario was run twice – one as a fully microscopic 

simulation without any LOD process and one with our dynamic 

aggregation method activated. The goal was to compare both runs 

to calculate both the CPU gain and the behavioral consistency. 

For the first criterion, we stored the total amount of time needed 

by the simulation to compute 60 frames within one second. For 

the second one, we aimed to find an estimate of the behavioral 
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distance between both runs. Thus, we used as objective abstract 

criterion: the number of uses of each object, from the start of the 

simulation to the measure time. Those cumulative values, taken 

every second, symbolize the throughput of each machine within 

the station. Because we already assume that the aggregation 

process has an impact on the simulation that is unavoidable and 

that may be significant, we choose to avoid using exact statistical 

hypothesis tests, such as Mann-Whitney’s. Instead we defined, for 

each object, a local dissimilarity as the difference of the temporal 

means between the cumulative values obtained at both runs. 

Finally, we defined a global behavioral dissimilarity indicator as 

the mean of all the variations found for all objects. Let   ( ) be 

the cumulative number of uses of object   at time   during the 

microscopic simulation, and   
 ( ) the cumulative uses of the 

same object at the same time during the simulation using our 

dynamic aggregation method. Then: 

              
 

        
∑ {

∑ ,  ( )    
 ( )- 
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}

        

   

 

Because it does not have any smart object to interact with, only 

the CPU gain was computed for the city scenario. For each 

scenario, we changed the maximum number of agents within the 

simulation and the maximum number of entities allowed inside an 

aggregate in order to study the impact of those parameters on the 

results. Finally, each experimentation has been run 5 times during 

30 minutes on an Intel Core 2 Duo 2.26 GHz laptop with a 

memory of 2 Go. The results showed are the mean of the 5 runs. 

Table 1: Experimentation results on both subway stations 

varying max group size and max number of entities. 

Entities 

Max 

Group 

Size 

CPU Gain (%) Dissimilarity (%) 

1st 

Station 

2nd 

Station 

1st 

Station 

2nd 

Station 

100 5 43,4 43,0 3 5,4 

100 10 47,5 45,9 7,1 6,9 

100 15 50,3 46,5 10,9 8,3 

100 20 49,4 46,9 9,9 7,6 

100 25 50,5 47,6 8,7 9,7 

300 5 59,9 56,7 4,9 6,3 

300 10 66,7 60 4,5 5,5 

300 15 67,9 65,6 7,5 8,5 

300 20 67,7 66,2 5,7 6,3 

300 25 69 66,9 8,6 7,1 

500 5 61,5 56,8 21,5 20,1 

500 10 67,4 64,5 19 19,1 

500 15 69,6 67,2 18,7 18,4 

500 20 70,7 66,5 17,2 17,5 

500 25 72,6 69,1 14,2 16,2 

1000 5 57,33 53,8 35,41 36,1 

1000 10 63,97 59,4 33,68 32,4 

1000 15 66,52 58,7 33,85 32,3 

1000 20 67,79 60,7 31,51 31,4 

1000 25 68,79 61,3 32,6 31,4 

 

The results of the experimentation done on the first station are 

shown in Table 1. It appears that, for a given maximum number of 

agents within the station, the CPU gain is very encouraging 

(between 40% and 70% is saved) and logically increases with the 

maximum size of each aggregate. On the other hand, the 

behavioral dissimilarity appears to be acceptable (3-10% range for 

simulation inconsistency) for a maximum of 100 and 300 agents 

in the station. However, it becomes unsatisfactory (14 to 36% 

inconsistency) if the station is filled with 500 or 1000 agents. 

Moreover, there is no clear pattern in the dynamics of the 

behavioral dissimilarity as a function of the group size. 

Table 1 also shows the results obtained when running the tests on 

the second station. The evolution of the CPU gain is the same as 

the one observed in the first experiment. However, the behavioral 

dissimilarity seems to be globally better at 300 agents even if it 

remains in the same range. Like before, it is difficult to detect a 

clear trend concerning this second criterion. 

Table 2: Experimentation results for the city environment. 

Entities 
Max 

Group Size 
CPU Gain (%) 

Aggregation 

Cost (%) 

10.000 5 38,0 5,3 

10.000 10 48,0 7,1 

10.000 15 54,2 8,7 

10.000 20 56,0 9,0 

10.000 25 54,5 8,8 

 

The CPU gain observed in the city simulation is shown in Table 2. 

Like above, the CPU gain increases with the maximum size of 

each aggregate. This test demonstrates that the cost of the 

additional computations required by our approach (the 

Aggregation Cost) is limited and indeed remains much smaller 

than the total computation gain, even with a high number of 

agents. However, all the tests highlight a non linear variation of 

the CPU gain according to the group size. This can be explained 

by the actual number of agents within each aggregate during a 

simulation run. According to our observations, this number is 

generally between 10 and 15 agents, which coincides with the 

slowdown in growth of the CPU gain after a maximum of 15 

agents per aggregate. The main explanation for this result lies in 

the choice of the psychological distance and the aggregation 

utility threshold. Because the first one is focused on the agents’ 

short-term goal, it is sometimes too specific and greatly limits the 

size of the groups. The second one has been set high enough to 

trigger an aggregation if and only if both physical and 

psychological distances are low. Because of what has been said 

before, this induces the agents to be grouped only if they are also 

physically close enough. Finally, those fixed parameters lead to 

the small group sizes observed in our simulations. 

The results of the two subway scenarios highlight an important 

variation of the behavioral dissimilarity between the 

experimentations involving a small number of entities – 100 and 

300 – within the station, and those dealing with 500 to 1000 

agents. Again, our observations showed that this difference is the 

direct result of the overcrowding of the station which becomes a 

key phenomenon when it contains more than 500 microscopic 

entities. In this situation, agents trying to pass the ticket barriers 

are colliding with the ones queuing at the ATMs and the ticket 

vending machines. The time required to access the objects is 

greatly increasing. Some agents even leave the station because 

they get upset to wait so long to use the machines or because they 

get stressed by the crowd. This situation does not appear during 

macroscopic simulations, because the aggregation itself greatly 

reduces the perceived density of agents in the station. Hence, our 

approach is not able to simulate properly specific microscopic 
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phenomena because the aggregation process is too coarse by 

grouping several entities into one agents and applying to it a 

microscopic agent model. 

5. DISCUSSION AND FUTURE WORK 
In this paper, we presented a novel approach of dynamic level of 

detail (LOD) for large scale simulations, which breaks from the 

general habit of using a single level of representation. Instead, we 

proposed the use of behavioral LOD and we introduced the 

notions of dynamic change of representation and spatial 

aggregation. Hence, our approach can be applied to various 

models governing agent behavior, dealing for example with 

navigation, decision, or emotions. Moreover, it is able to 

determine by itself the most suitable representation level for each 

agent, regarding the simulation context. 

The results detailed in section 4 show an encouraging CPU gain 

between the microscopic simulation and the one implementing 

LOD techniques, even on experimentations involving a high 

number of agents. Moreover, this gain leads to an acceptable 

behavioral dissimilarity when the number of entities within the 

station does not lead to crowded situations. 

 

Figure 5: Evolution of CPU gain and simulation consistency 

for a maximum of 300 agents within each station. 

 

However, when microscopic phenomena such as a very high 

density of agents are observed, the behavioral distance increases 

significantly. Thus, this result highlights two shortcomings of our 

current approach. The first one is the consequence of the 

assumptions made for the experimentations, where the same agent 

model has been used on each representation level. Doing so 

implies that the physical area of an aggregate to be equal to the 

one of an individual agent. This remark brings forward the need 

for a group model taking into account, at the minimum, a surface, 

a density and deformation factor. Of course, using a more 

complex model with specific group actions, knowledge and 

detailed internal state might help designing a more realistic 

simulation. 

The second shortcoming of our approach results from the fact that 

the aggregation process, by merging several entities into a single 

one, may be too coarse in some situations. Although it may lead to 

visual inconsistencies, it can also create a strong behavioral 

difference between a model and another with a lower level of 

representation. A solution would be to use an intermediate level 

between several entities and an aggregate: the mesoscopic level 

[24]. The idea is to assume that, among the two main attributes 

categories defined in chapter 3.1 – physical and psychological – 

the first one is the most objective and observable. Thus, going 

from the microscopic to the mesoscopic level consists in 

aggregating only the psychological attributes. The mesoscopic 

agent will then have several bodies, corresponding to the physical 

microscopic bodies of the agents and driven by the low 

representation physical agent model (such as the navigational 

model), and one brain controlled by the low representation 

psychological model (such as decisional or emotional models). 

Doing so would decrease the CPU gain, because it only saves 

computation time on some agent models, but would also decrease 

the dissimilarity, in particular in crowded situations. However, 

many issues remain to be studied, especially the criteria for 

aggregating and disaggregating mesoscopic agents. 

Another weakness highlighted by our experiments is the use of 

fixed parameters which leads to small aggregates size. This 

limitation could be lifted by a study on a more generic 

psychological distance between two agents and on the dynamicity 

of the most important parameters of the approach such as the 

aggregation and dissagregation thresholds. The first one has been 

arbitrarily defined and deserves to be made dependent on more 

subjectives parameters, such as those which are important for the 

user observing the simulation. For our experiments, we chose the 

short-term goal as criterion, but another user which may be 

particularly interested in the stress level of each agent might 

decide that two actors are psychologically close if they share the 

same stress level. Although this attribute cannot be used alone to 

define a coherent psychological distance, there is a need to give to 

the user some control over the weight of each psychological 

attribute in the computation of the distance. Secondly, the 

important parameters such as the thresholds were defined by hand 

for this first experimentation. An idea would be to set them 

dynamically, function of the number of representation levels, the 

number of agents in the simulation and the available CPU power. 

This way, the aggregation and desaggregation processes would 

adapt the context of the simulation and would provide the best 

CPU gain / dissimilarity ratio. 

One of the most important limitations of the sub problem defined 

in section 3.3 is the simplification done to the scalability of the 

agent models part, especially for the definition of the aggregation, 

disaggregation and memory operators. Indeed, one of the major 

improvements of this work would come from the ability to obtain 

these operators through learning or search. As mentioned in 

section 3.1, the use of machine learning mechanisms can be 

promising. They may, for example, focus on minimizing the 

behavioral dissimilarity defined in section 4. 

Finally, the issue of communications between agents – which 

relates more generally to the notion of scalability of the 

interactions between agents at all levels of representation – has 

not been directly studied in this work, as our agents do not 

communicate directly with each other. Considering such ability 

would require the definition (or the automatic search) of 

aggregation and disaggregation operators to transform the 

information emitted from an agent at a given level of 

representation to another at another level. If those operators are 

similar to the ones working on the agents’ representation – except 

that they would work on the semantics – they would be called for 

each interaction and might increase the computational cost. This 

important point has yet to be investigated. 
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ABSTRACT
In modal logic, when adding a syntactic property to an ax-
iomatisation, this property will semantically become true in
all models, in all situations, under all circumstances. For
instance, adding a property like Kap→ Kbp (agent b knows
at least what agent a knows) to an axiomatisation of some
epistemic logic has as an effect that such a property becomes
globally true, i.e., it will hold in all states, at all time points
(in a temporal setting), after every action (in a dynamic set-
ting) and after any communication (in an update setting),
and every agent will know that it holds, it will even be com-
mon knowledge. We propose a way to express that a prop-
erty like the above only needs to hold locally: it may hold in
the actual state, but not in all states, and not all agents may
know that it holds. We can achieve this by adding relational
atoms to the language that represent (implicitly) quantifi-
cation over all formulas, as in ∀p(Kap → Kbp). We show
how this can be done for a rich class of modal logics and a
variety of syntactic properties.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods—Modal Logic

General Terms
Theory

Keywords
Modal logic, Correspondence theory, Canonicity, Local prop-
erties, Epistemic logic

1. INTRODUCTION
Modal logic has become the framework for formalising

areas in computer science and artificial intelligence as di-
verse as distributed computing [10], reasoning about pro-
grams [11], verifying temporal properties of systems, game
theoretic reasoning [18], and specifying and verifying multi-
agent systems [21]. Regarding the latter example alone,
since Moore’s pioneering work [14] on knowledge and ac-
tion, agent theories like intention logic [4] and BDI [15] use

Cite as: Reasoning about local properties in modal logic, van Dit-
marsch, van der Hoek, and Kooi, Proc. of 10th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011),
Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei, Tai-
wan, pp. 711-718.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

modal logic (where the modalities represent time, action,
informational attitudes like knowledge or belief, or motiva-
tional attitudes like desires or intentions) to analyse inter-
actions between modalities, like perfect recall, no-learning,
realism, or different notions of commitment. As for epis-
temic modal logic, since the seminal work of Hintikka [12],
modal epistemic logic has played a key role in knowledge
representation, witnessed by its key role for reasoning about
knowledge in computer science [7], and artificial intelligence
[13]. The current activities in dynamic epistemic logic [1,
19] can be seen as providing a modal logical analysis in the
area of belief revision, thereby providing it with a natural
basis to do multi-agent belief revision, give an account of the
change of higher order information, capture this all in one
and the same object language: a modal language, indeed.

The popularity of modal logic in those areas is partly ex-
plained by its appealing semantics: the notion of state is
a very powerful one when it comes to modeling computa-
tions of a machine, or describing possibilities that an agent
thinks/desires/fears to be possible. Another strong feature
of modal logic is its flexibility: the fact that temporal, dy-
namic, informational and motivational attitudes can be rep-
resented by modalities does not mean that they all satisfy
the same laws. Rather, depending on the interpretation one
has in mind, one can decide to either embrace or abandon
certain principles for each of the modalities used. Syntac-
tically, this means one assumes a number of axioms or in-
ference rules for a modality or for the interaction of some
modalities, and more often than not, this semantically cor-
responds to assuming some specific properties of the associ-
ated accessibility relations.

In the context of epistemic logic for instance, adding spe-
cific modal axioms allows one to specify that the knowing
agent is veridical (Kap → p): if agent a knows that p, then
p must be true), or that he is positively (Kap → KaKap)
or negatively (¬Kap → Ka¬Kap) introspective. Those ax-
ioms happen to correspond (in a precise way: correspon-
dence theory for modal logic is already some decades old,
cf. [17]) to reflexivity, transitivity and euclidicity of the as-
sociated accessibility relation Ra, respectively. Moreover,
the axioms are canonical for it: adding the syntactic axiom
to a modal logic enforces the canonical model for the logic
to have the corresponding property, which then in turn im-
plies that completeness of the logic with respect to the class
of models satisfying that relational property is guaranteed.
At this point, is important to note the difference between
Kap → p as a formula and that as a scheme, or axiom:
as a formula, it merely expresses that regarding the atom
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p, agent a cannot know it without it being true. However,
when we assume it as an axiom, or as a scheme, it means
that we assume it to hold for every substitution instance of
p, in other words, we assume that for all formulas ϕ, the
implication Kaϕ→ ϕ holds.

It is often argued (indeed, already by Hintikka in [12])
that a distinguishing feature between knowledge and belief is
that whereas knowledge is veridical, belief need not be, i.e.,
the scheme Bap → p should not be assumed as an axiom
for belief. This then simply entails that epistemic logics
have veridicality as an axiom, and doxastic logics have not.
Semantically speaking: the accessibility relations denoting
knowledge are reflexive, those denoting belief need not be.
But how then to deal with a situation where we want to
express that “currently, a’s beliefs happen to be true”? If we
add Bap → p as an axiom to our logic, the effect is that in
all models (with respect to which the logic is complete), and
in all states, all instances of that axiom are true, i.e., for all
models M , for all states s and for all formulas ϕ, we then
have M, s |= Baϕ→ ϕ. Given a model M and a state s we
can express that a’s belief that an individual proposition q
holds is correct: M, s |= Baq∧q. And we can express that a’s
belief about q is correct: M, s |= (Baq → q)∧ (Ba¬q → ¬q).
But what we cannot express in modal logic is that Baϕ→ ϕ
holds for all ϕ in one state, without claiming at the same
time it should hold throughout the model. As a consequence,
we cannot express in the object language that agent b thinks
that agent a’s beliefs are correct, while agent c believes that
a is wrong about a proposition q. The closest one gets to
expressing that would be to say that for all ϕ, in M, s we
have M, s |= Bb(Baϕ → ϕ) ∧ Bc((Baq ∧ ¬q) ∨ (Ba¬q ∧
q)) (but here, the quantification over ϕ is on a meta-level,
and not in the scope of agent b). Neither can we say, in a
temporal doxastic context, that a’s beliefs now are correct,
but tomorrow they need not be.

To give another example of the same phenomenon, sup-
pose one adds the scheme Kap → Kbp to a modal logic (b
knows everything that a knows). Semantically, this means
Rb ⊆ Ra. If the logic is about a set of agents A, then it
becomes common knowledge among A that b knows at least
what a knows! And if there is a notion of time, we have that
it will always be the case that b knows at least what a knows,
and, when having modalities for actions, it follows that no
action can make it come about that a has a secret for b, in
particular, it is impossible to inform a about something that
b does not already know—this rules out dynamics that is, in
contrast, very possible in DEL.

So, the general picture in modal logic that we take as
our starting point is the following. One has a modal logic
to which one adds an axiom scheme θ (say, Bap → p). If
one is lucky, the scheme corresponds to a relational property
Θ(x) (in the case above, Rxx). However, adding θ to the
logic means having Θ(x) true everywhere, implying that θ is
always true. What we are after is looking at ways to enforce
the scheme θ locally. To do so, we will add a marker � to
the modal language, such that � is true locally, in a state s,
if and only if Θ is true, locally (i.e., Rss holds).

Doing so, we generalise work of [20], where a case study, in
the context of a multi-agent logic S5, is given for ‘knowing
at least as much as’, i.e., in our terminology, �(a, b) in [20]
equals a � b, and our Θ(a, b)(x) is the property ∀y(Rbxy ⇒
Raxy) in [20].

We will not only generalise the result of [20] to arbitrary

modal logics K(+ϕ1, . . . ,+ϕn) where ϕi are canonical ax-
ioms, but also we allow to add several markers at the same
time. This then enables that we cannot only make global
properties locally true, but it allows for far more subtle quan-
tifications over formulas than is allowed in modal logic, en-
abling us to express properties like“If all of John’s beliefs are
correct, than so must Mary’s beliefs be”, or “If John knows
now everything that Mary knows, then that must have been
true yesterday as well” or “If John’s beliefs are correct, then
he must know that Mary’s beliefs are correct as well” (for
more examples of such quantification, see Section 2.1).

This paper is organised as follows. In Section 1.1 we sketch
how our machinery will look like. Then, in Section 2 we for-
mally introduce three languages and present an example.
Section 3 provides an axiomatisation of our extended modal
logic, we come back to the example and make a case for com-
pleteness. Finally, in Section 4 we summarise and conclude.

1.1 To a Modal Logic with Local Schemes
In this section we introduce three languages to reason

about Kripke models. The place where these languages meet
are important for our set-up. Let us outline the overall ap-
proach at the hand of an example: formal definitions fol-
low later in this section. First of all, we are interested in
a modal scheme θ(a, b, p) = [a]p → [b]p in a modal lan-
guage L (generally, we write [a]ϕ for modal formulas, but
for epistemic interpretations we may write Kaϕ, and for
doxastic ones Baϕ). To the modal language we add a rela-
tional atom �(a, b), or, in this specific case Sup(a, b), which
will be true in a state s iff ∀y(Rbsy ⇒ Rasy) holds. The
latter property is a formula Θ(a, b)(s) in a first-order lan-
guage L1. Our modal logic should now formalise the idea
that θ(a, b, c) and �(a, b) ‘capture the same’. Rather than
saying that the two are equivalent, the logic will take care
that something along the following lines holds: consistency
of a formula ϕ with an occurrence of ¬�(a, b) is the same as
consistency of ϕ with the occurrence of ¬ � (a, b) replaced
by ¬θ(a, b, p) (if p is a fresh atom). For completeness of
the logic, we then take care that in its canonical model, the
truth of θ(a, b, p) in a specific world (i.e., maximal consis-
tent set ∆) coincides with property Θ(∆). We show that
our construction works because the second order formula
∀P (∀x(Raxy ⇒ Py)⇒ ∀y(Rbxy ⇒ Py)) = ∀P Θ̂(a, b, P )(x)

is equivalent to Θ(x). The formula ∀P Θ̂(a, b, P ) is an exam-
ple of a formula from the third language that we use, i.e., a
second-order language L2.

The languages that we define are simple extensions of lan-
guages usually studied in standard modal logic [3, 2]. More
specifically, our modal logic extends that of modal logic with
some relational atoms �, the first order language is the stan-
dard language to reason about properties of accessibility re-
lations, and the second order language is similar to the one
usually obtained by applying the so-called standard trans-
lation to modal formulas. Our completeness proof, in turn,
is an extension of ‘standard’ completeness proofs in modal
logic: we sometimes have to add fresh atoms p to ensure that
θ(a, b, p) is satisfied. However, we have borrowed ideas from
[5] to prove our Extension Lemma 2 and ideas from [16] to
make this lemma work ‘everywhere in the canonical model’.
Space does not allow to include the proofs themselves, but
we will make an effort to explain the overall idea and the
construction of the canonical model.
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2. LANGUAGE AND SEMANTICS
As outlined above, we deal with three languages, which are

all interpreted over the same objects, i.e., Kripke models.
The languages are an extended modal language L, a first
order language L1 and a second order language L2.

For all languages, we assume a set of modality labels
A = {a1, . . . , a|A|}. In the modal language, these will give
rise to modalities [a], and in the other two languages, we
assume to have a binary relation Ra for each a ∈ A. For
the latter two languages we also assume to have a set of
variables X = {x, y, . . . }. The variables will range over
possible worlds: note that neither in L1 nor in L2 we as-
sume to have constants. For L2, we furthermore use a set
Π = {P, P1, P2, . . . , Q,Q1, Q2, . . . } of unary predicates. For
each such predicate P in Π we assume to have an atomic
proposition p ∈ π that are building blocks for the modal
language L. On top of this, for this modal language L we
assume a finite set ρ = {�1,�2, · · ·�m} of relational atoms:
they are nothing else than syntactic atoms of which the truth
depends on local properties of accessibility relations (see the
function I in Definition 1). Therefore, we will often write
�(a1, . . . , an) rather than � to make this dependence clear,
and treat � as if it were an n-ary relational predicate (rather
than an atomic symbol). Our languages will be denoted
L(A, π, ρ) (the modal language), L1(A,X ) (the first order
language) and L2(A,Π,X ) (the second order language). If
the parameters for the languages are clear, we will also write
L, L1 and L2, respectively.

Definition 1 (modal language). Let the sets A, π,
and ρ be as described above. The modal language L(A, π, ρ)
is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [a]ϕ | �(a1, · · · , an)

where a, a1, . . . , an ∈ A, p ∈ π and � is an n-ary relational
atom in ρ. Formula 〈a〉ϕ is shorthand for ¬[a]¬ϕ and we
also assume the usual definitions for disjunction, implication
and bi-implication. If the modality is an epistemic one, the
labels are agents, and we write Kaϕ rather than [a]ϕ. For a
doxastic interpretation we write Baϕ, etc.

A formula without occurrences of relational atoms is called
a purely modal formula. Suppose we have a multi-modal
formula θ(a1, . . . , an, p1, . . . pk) where a1, . . . , an are labels
of modalities [a1], . . . [an] and p1, . . . , pk are atoms. We will
write ~a for the tuple a1, . . . , an and ~p for p1, . . . , pk. When
we write a ∈ ~a we mean that a is one of the labels occurring
in the tuple ~a, likewise for p and ~p. Finally, for any tuple
~x = x1, . . . , xn with each xi taken from some set X, we will
write ~x ∈ ~X.

Definition 2 (first and second order language).
Let A and X be given. First define a language L+(A,X ):

Θ := Raxy | ∀yΘ | ¬Θ | Θ & Θ

with a ∈ A, and x, y ∈ X . Now, our first order language
L1(A,X ) is the one-free-variable sublanguage of L+, i.e.,
the sublanguage of L+ consisting of all formulas with at most
one variable not in the scope of a quantifier. If Θ ∈ L1(A,X )
has x as its only free variable, and if a1, . . . an are all the
modality labels occurring in Θ, we will also write Θ(~a)(x)
for Θ.

Finally, given A,Π and X we define the second order lan-
guage L2(A,Π,X ) as the one-free-variable fragment of

Θ̂ := P (x) | Raxy | ∀yΘ̂ | ∀P Θ̂ | ¬Θ̂ | Θ̂ & Θ̂

with P ∈ Π, x, y ∈ X and a ∈ A. In L1(A,X ) and L2(A,Π,X ),
existential quantification (using ∃) and implication (using
⇒) are defined in a standard way.

We write Px for P (x). As mentioned earlier, all languages
will be interpreted over Kripke models.

Definition 3 (Kripke models and frames). Given A,
π and ρ, a Kripke model is a tuple M = 〈W,R, I, V 〉 where

• W is a set of possible worlds;

• R : A → ℘(W ×W ) assigns a binary relation to each
modality label

• I : ρ→ L1(A,X ) assigns a first order property to each
relational atom in ρ

• V : π → ℘(W ) assigns a set of possible worlds to each
propositional variable

Rather then (w, v) ∈ R(a) we will write Rawv. A Kripke
frame is a tuple F = 〈W,R, I〉 such that 〈M,V 〉 = 〈W,R, I, V 〉
is a model. The ‘arity’ of a symbol � ∈ ρ can be read off
from its interpretation I(�): if I(�) refers to modalities
a1, . . . , an, then we may write �(~a) for �.

Definition 4 (semantics of modal formulas). Let
A and π be given. Also, let M = 〈W,R, I, V 〉. Then we de-
fine, for ϕ ∈ L(A, π, ρ):

M,w |= p iff w ∈ V (p)
M,w |= ¬ϕ iff M,w 6|= ϕ
M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ
M,w |= [a]ϕ iff for all v if Rawv, then M, v |= ϕ
M,w |= �(~a) iff I(�(~a))(w) holds

The class of all models is denoted K(A, π, ρ). All models
with interpretation I are denoted K(A, π, ρ, I). Validity in
a model M is defined as usual. Moreover, K(A, π, ρ) |= ϕ
means that for all I, M = 〈W,R, I, V 〉, and all w ∈ W ,
we have M |= ϕ. Given I, we say that ϕ is I-satisfiable, if
there is a model M = 〈W,R, I, V 〉 and a w ∈ W such that
M,w |= ϕ. Formula ϕ is I-valid if ¬ϕ is not I-satisfiable.
If F = 〈W,R, I〉 is a frame, F,w |= ϕ is defined as: for all
valuations V, 〈W,R, I, V 〉, w |= ϕ.

Interpretation of L1(A,X )-formulas in a modelM = 〈W,R,
I, V 〉 is straightforward. For L2(A,Π,X ), we assume that
Ps holds for a predicate P iff s ∈ V (p). In other words, the
link between a propositional atom and a unary predicate is
implicit by using lower-case and upper-case notation.

Example 1. Let �(a, b) be such that in M with interpre-
tation I, we have I(�(a, b)) = Θ(a, b) where Θ(a, b)(x) =
∀y(Rbxy ⇒ Raxy), saying that in the current world w, the
set of a-successors of w is a superset of the set of b-successors
of w. If this is the interpretation of �(a, b), we will also
write Sup(a, b). As a second example, take � = �(a) to
be such that I(�(a))(x) = Raxx. Note that Ba � (a) can
hence be interpreted as ‘a believes that his beliefs are correct’,
since M,w |= Ba � (a) does entail that for all ϕ, M,w |=
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Table 1: In this table, ~a is a sequence a or (a, b) or (a, b, c) of modality labels, and ~p is either the single atom
p or the sequence p, q. Θ(~a)(x) is a property of a state x, and �(~a) is a name in the object language such that
�(~a) holds at w iff Θ(~a)(w) holds of M .

θ(~a, ~p) Θ(~a)(x) �(~a)
[a]p→ [b]p ∀y(Rbxy ⇒ Raxy) Sup(a, b)
[c]p→ [a][b]p ∀y, z((Raxy&Rbyz)⇒ Rcxz) Trans(a, b, c)
¬[a]⊥ ∃yRaxy Ser(a)
[a]p→ p Raxx Refl(a)
¬[a]p→ [b]〈c〉p ∀yz((Raxy&Rbxz)⇒ Rcyz) Eucl(a, b, c)
〈a〉p→ 〈b〉〈c〉p ∀z(Raxz ⇒ ∃yRbxy&Rcyz) Dens(a, b, c)

Table 2: For every modal formula θ(~a, ~p) from Table 1, we give the second order translation Θ̂(~a, ~P ).

θ(~a, ~p) Θ̂(~a, ~P )(x)
[a]p→ [b]p ∀y(Rbxy ⇒ Py)⇒ ∀z(Raxz ⇒ Pz)
[c]p→ [a][b]p ∀w(Rcxw ⇒ Pw)⇒ ∀y(Raxy ⇒ ∀z(Rbyz ⇒ Pz))
¬[a]⊥ ¬∀y(Raxy ⇒ ⊥)
[a]p→ p ∀y(Raxy ⇒ Py)⇒ Px
¬[a]p→ [b]〈c〉p ¬∀w(Raxw ⇒ Pw)⇒ ∀y(Rbxy ⇒ ∃z(Rcyz&Pz))
〈a〉p→ 〈b〉〈c〉p ∃w(Raxw&Pw)⇒ ∃y(Rbxy&∃z(Rcyz&Pz))

Ba(Baϕ→ ϕ) (but see Remark 1). As a final example, take
�(a, b, c) with I(�(a, b, c))(x) = ∀y∀z((Raxy &Rbyz) ⇒
Rcxz) we will write Trans(a, b, c) for Θ(a, b, c). Of course,
a special case of this is � = �(a, a, a) saying that currently,
at world w, the relation Ra is transitive. For more examples,
see Table 1.

Remark 1. Take �(a) and M such that I(�(a)) = ∀xRaxx.
Note that although M,w |= �(a) entails that agent a’s beliefs
are correct, the converse is not true, as the following exam-
ple shows. Let M = 〈W,R, I, V 〉 be such that W = {w, v},
and Ra = {(w, u), (u,w)}. Moreover, assume that for all p,
w ∈ V (p) iff u ∈ V (p). Since M,w and M, v are bisimilar [2,
Chapters 1 and 5] models, we have M,w |= ϕ iff M,u |= ϕ,
and hence M,w |= Baϕ → ϕ, for all purely modal ϕ. How-
ever, since (w,w) 6∈ Ra, we have M,w |= ¬� (a).

Note that, since Θ(~a)(w) does not refer to atomic propo-
sitions p (or, rather predicates P ), we have that Θ(~a)(w)
holds in the model M iff Θ(~a)(w) holds in the frame F .

Definition 5 (Standard Translation). Fix sets A,
π, Π, and ρ. Fix an interpretation I and write I(�(~a)) =
Θ�(~a). We define STI : L(A, π, ρ)×X → L2(A,Π,X ) by

STI(p)(x) = P (x)
STI(�~a)(x) = Θ�(~a)(x)
STI(¬ϕ)(x) = ¬STI(ϕ)(x)
STI(ϕ ∧ ψ)(x) = STI(ϕ)(x) & STI(ψ)(x)
STI([a]ϕ)(x) = ∀y(Rxy ⇒ STI(ϕ)(y))

In the last clause, y is assumed to be a fresh variable. If ϕ
is purely modal (i.e., ϕ is �-free), STI(ϕ) does not depend
on the interpretation I and we write ST(ϕ) in such a case.

Note that the standard translation ST(θ(~a, ~p)) of a modal
formula involving modalities ~a and atoms ~p is typically a
formula Θ̂(~a, ~P )(x) involving binary relations Ra (one for

each a ∈ ~a) and predicates P (one for each p ∈ ~p) and a free
variable x.

Example 2. Take θ(a, b, p) = [a]p→ [b]p. Then we have
that STI(θ(a, b, p))(x) =

∀y(Rbxy ⇒ Py)⇒ ∀z(Raxz ⇒ Pz)

If θ(a, b, c, p) = [c]p→ [a][b]p, we have STI(θ(a, b, c, p)) =

∀w(Rcxw ⇒ Pw)⇒ ∀y(Raxy ⇒ ∀z(Rbyz ⇒ Pz))

The following is straightforward from classical modal the-
ory, except for the case of θ(~a, ~p) = �(~a), in which case it
follows directly from the truth definition (Definition 4) for
�-formulas.

Lemma 1. Let I be an interpretation of relational symbols
and let θ(~a, ~p) be a modal formula. Let Θ̂(~a, ~P )(x) be its
second order translation STI(θ(~a, ~p)). Then, for all models
M = 〈W,R, I, V 〉, all frames F = 〈W,R, I〉 and worlds w ∈
W we have

1. M,w |= θ(~a, ~p) iff Θ̂(~a, ~P )(w) holds in M

2. M |= θ(~a, ~p) iff ∀xΘ̂(~a, ~P )(x) holds in M

3. F,w |= θ(~a, ~p) iff ∀~P Θ̂(~a, ~P )(w) holds in F

4. F |= θ(~a, ~p) iff ∀x∀~P Θ̂(~a, ~P )(x) holds in F

Table 2 provides the standard translation Θ̂(~a, ~P )(x) of
the modal formulas θ(~a, ~p) that we introduced in Table 1.

Definition 6. Let θ(~a, ~p) be a purely modal formula from
L(A, π, ρ) and suppose that Θ ∈ L1(A,X ) is such that Θ(~a)(x)

is equivalent with the second order formula ∀~P Θ̂(~a, ~P )(x)

where Θ̂(~a, ~P )(x) = ST(θ(~a, ~p))(x). Then we say that θ(~a, ~p)
characterises Θ(~a)(x).
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If θ(~a, ~p) characterises Θ(~a)(x) then we have that F,w |=
θ(~a, ~p) if Θ(~a)(w) holds. In other words, θ(~a, ~p) corresponds
with Θ(~a). There are many well known classes of modal
formulas θ(~a, ~p)(x) for which it is guaranteed that the sec-

ond order formula ∀~PST(θ(~a, ~p)) is equivalent to a formula
Θ(~a)(x) ∈ L1(A,X ). A large set of formulas for which this
is true is the set of so-called Sahlqvist formulas. Moreover,
given such a Sahlqvist formula θ(~a, ~p), its first order equiva-
lent Θ(~a)(x) can be effectively computed from it [3, Theorem
3.54]. So for Sahlqvist formulas, we can effectively find the
first-order formula that it characterises. All the formulas
θ(~a, ~p) from Table 1 are (equivalent to) Sahlqvist formulas.

Take the specific example in a doxastic context where
Θ(a)(x) is ∀xRaxx, and I(�(a)) = Θ(a), note that θ(a, p) =
(Bap → p) characterises Θ(a)(x) but still, as shown in Re-
mark 1, the formulas �(a) and θ(a, p) are not equivalent.
Still, the two should be strongly connected, in a sense we
will explain in Section 3. We first look at an example, in-
volving our extended modal language.

2.1 A Simple Example
Consider five friends, Joey, Chandler, Ross, Monica and

Phoebe (or j, c, r,m and p, for short). In this example, we
use ‘think’ and ‘believe’ for the same thing. Joey believes
that Monica’s beliefs are at least as accurate as Ross’ beliefs,
i.e., Joey believes that if Ross’ beliefs are correct, so must
Monica’s be (A). Joey also believes that Monica thinks that
Chandler believes anything that Monica believes (B). Al-
though Joey does not think that he believes everything he
knows (he thinks that he knows he cannot find a job as an
actor, but at the same time cannot believe it), he actually
believes anything he knows (C). Moreover, Joey thinks that
Chandler’s beliefs are consistent (D). Finally, Joey happens
to know that Monica believes that Phoebe is in competition
with her for Chandler’s attention, but at the same time Joey
thinks that Chandler believes that Phoebe is not in compe-
tition with Monica for his attention (E). Then, we conclude
that Joey believes that Ross’ beliefs are not guaranteed to
be correct (F ), or, better, that Joey believes he may assume
that some formula is believed by Ross, but not true (F ′).

We first give a (semi-formal) formalisation of our assump-
tion using a modal logic that allows for quantification over
formulas. Let z represent the proposition that Joey cannot
find himself a job as an actor, and let q be the proposition
that Phoebe is in competition with Monica for Chandler’s
attention. This formalisation is given in Table 3, where as-
sumption A in the episode is represented as a, etc. The
formalisation in our language L(A, π, ρ) follows in Table 4.

We can now be more precise about what it means that
our language can do more than just formalising a local ver-
sion of a global property. For instance, the global property
Bap→ p will have a local counterpart Refl(a). Locally, this
will denote something that is similar to ∀ϕ(Bϕ → ϕ). But
if one looks at the ‘translation’ a in Table 3 of the assump-
tion A above, i.e., Bj(∀ϕ(Brϕ → ϕ) → ∀ϕ(Bmϕ → ϕ)), it
becomes clear that this is different from the quantification
g : ∀ϕBj((Brϕ → ϕ) → (Bmϕ → ϕ)), which one would
get as a local counterpart of an axiom Bj((Brp → p) →
(Bmp → p)). That a and g are not equivalent, can be seen
in the model M,w of Figure 1, where a is true in M,w, but
g is not: for the latter, ϕ = p provides a counterxample.
That a is true in M,w is easily seen from realising that a is
formalised by a′.

r m
mr

r m r m
m

j j j

w

Figure 1: A model M,w. The atom p is true exactly
in the worlds that are filled black.

Table 3: A semi-formal translation of the episode

a Bj(∀ϕ(Brϕ→ ϕ)→ ∀ϕ(Bmϕ→ ϕ))
b BjBm(∀ϕ(Bmϕ→ Bcϕ))
c ¬Bj(Kjz → Bjz) ∧ ∀ϕ(Kjϕ→ Bjϕ)
d Bj∀ϕ(¬(Bcϕ ∧Bc¬ϕ))
e KjBmq ∧BjBc¬q
f Bj¬∀ϕ(Brϕ→ ϕ)

We then formalise the same episode using the relational
atoms �(~a) introduced in Table 1, which results in Table Ta-
ble 4. Abusing the language somewhat, we write Sup(kj, j)
for the relational atom corresponding to Kjϕ→ Bjϕ—from
a language point of view, Kj and Bj are simply two different
modal operators, say [i] and [kj].

Table 4: A formalisation of the episode

a′ Bj(Refl(r)→ Refl(m))
b′ BjBmSup(m, c)
c′ ¬Bj(Kjz → Bjz) ∧ Sup(kj, k)
d′ BjSer(c)
e′ KjBmq ∧BjBc¬q
f ′ Bj¬Refl(r)

3. AXIOMATIZATION
The aim of this section is to provide an axiomatisation for

modal logics that are enriched with some relational atoms
�1(~a1), . . . ,�m(~am), such that for every �k(k ≤ m), there is
a modal formula θ�k

(~a, ~p) such that, at least on frames, the
two ‘mean the same thing’. In fact, the logic K(A, π, ρ, I)
that we define should be sound and complete with respect
to K(A, π, ρ, I), so our aim for our logic is that for all for-
mulas ϕ ∈ L(A, π, ρ), the notions K(A, π, ρ, I) ` ϕ and
K(A, π, ρ, I) |= ϕ coincide. The idea to achieve this is as
follows. First of all, suppose that for every relational atom
�(~a) and fixed interpretation I we have a formula θ�(~a, ~p)
such that θ�(~a, ~p) characterises I(�(~a)). Then, for each
�(~a) and related θ�(~a, ~p) we add an axiom �(~a)→ θ�(~a, ~p)
to our logic K(A, π, ρ, I).
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Adding the other direction as an implication does not
work, as the example �(~a) = �(a, b) = Sup(a, b) and θ(~a, ~p) =
[a]p → [b]p shows: ([a]p → [b]p) → Sup(a, b) is not a valid-
ity: the antecedent may be true due to some specific choice
of p. However, what we semantically do have is the follow-
ing: suppose that we have K(A, π, ρ, I) |= ϕ→ ([a]p→ [b]p),
where p does not occur in ϕ. This then means that ϕ must
entail that (locally) all b successors are a successors, i.e.,
K(A, π, ρ, I) |= ϕ → Sup(a, b), because if the latter would
not hold, there would be a model M = 〈W,R, I, V 〉 such
that M,w, |= ϕ ∧ ¬Sup(a, b). But since p does not occur
in ϕ, we can change the valuation V for p freely without
changing that of ϕ, in particular we can choose V ′ such that
x ∈ V ′(p)↔ Rawx (and V ′(q) = V (q) for atoms q 6= p). It
is easy to see that in the resulting model M ′ = 〈W,R, I, V ′〉
we have M ′, w |= ϕ ∧ ¬([a]p → [b]p): a contradiction. This
means that we need to be able to infer the following in
K(A, π, {Sup(a, b)}, I):

If K(A, π, {Sup(a, b)}, I) |= ϕ→ ([a]p→ [b]p) (1)

then K(A, π, {Sup(a, b)}, I) |= ϕ→ Sup(a, b),

where p 6∈ ϕ
The rule (1) can be understood as follows. If p does not occur
in ϕ, and ϕ→ ([a]p→ [b]p) is true at a state s, then ϕ must
carry sufficient information such that [a]p→ [b]p must hold
(it will not be because of specific requirements on p imposed
by ϕ) and hence we must have ϕ→ Sup(a, b) holding at s as
well. But in fact we can do the same reasoning that involves
successors of s: Suppose ϕ implies that in all Rc successors t
of s, we have M, t |= [a]p→ [b]p. Then (in the same way as
for s), we must have M, t |= ϕ→ Sup(a, b). In other words,
the following should hold for K(A, π, {Sup(a, b)}, I):

If K(A, π, {Sup(a, b)}, I) |= ϕ→ [c]([a]p→ [b]p) (2)

then K(A, π, {Sup(a, b)}, I) |= ϕ→ [c]Sup(a, b),

where p 6∈ ϕ
And the same should hold for all Rd successors u of all Rc-
successors t of s, i.e., we also have a valid rule if we replace
[c] in (2) by [c][d]. But also, we have the following. Suppose
that p does not occur in ϕ or ψ. If M, s |= ϕ → [c](ψ →
([a]p → [b]p)), it means that if ϕ is true in s, then in all
Rc successors t of s we have M, t |= ψ → ([a]p → [b]p),
and we have argued above that we then should also have
M, t |= ψ → Sup(a, b). I.e., we have:

If K(A, π, {Sup(a, b)}, I) |= ϕ→ [c](ψ → ([a]p→ [b]p)) (3)

then K(A, π, {Sup(a, b)}, I) |= ϕ→ [c](ψ → Sup(a, b)),

where p 6∈ ϕ,ψ
To formalise that a property θ�(~a, ~p) holds after arbitrary
sequences ϕ1 → [a1](ϕ2 → . . . [an−1](ϕn → θ�(~a, ~p)) . . . ),
we follow [20] and introduce pseudo modalities: we will then
present an inference rule R� for every � ∈ ρ to our axioma-
tisation K(A, π, ρ, I).

Definition 7 (pseudo modalities). We define the
following pseudo modalities, which are (possibly empty) se-
quences s = () or s = (s1, . . . , sn), where each si is a for-
mula or a modality label. The formula 〈s〉ϕ represents an
L(A,Π, ρ) formula, as follows:
〈()〉ϕ = ϕ
〈ψ, s2, . . . , sn〉ϕ = ψ ∧ 〈s2, . . . , sn〉ϕ
〈a, s2, . . . , sn〉ϕ = 〈a〉(〈s2, . . . , sn〉ϕ)

We also define [s]ϕ as ¬〈s〉¬ϕ. We say that ~p does not
occur in s (and write ~p 6∈ s) if none of the atoms p occurring
in ~p does occur in any of the formulas si in s.

So, for instance 〈a, ψ, b〉ϕ is an abbreviation of 〈a〉(ψ∧〈b〉ϕ),
while [a, ψ, b]ϕ is [a](ψ → [b]ϕ).

Definition 8 (proof system). Fix A, π and ρ. More-
over, fix an interpretation I : ρ → L1(A,X ) such that for
every � ∈ ρ, there is a θ�(~a, ~p) such that the modal formula
θ�(~a, ~p) characterises the first order formula I(�). Then,
the following comprises the axioms and inference rules of
the logic K(A, π, ρ, I)

Prop All instances of propositional tautologies

K [a](ϕ→ ψ)→ ([a]ϕ→ [a]ψ)

Ax� �(~a)→ θ�(~a, ~p)

MP From ϕ→ ψ and ϕ, infer ψ

Nec From ϕ, infer [a]ϕ

R� From 〈s〉¬θ�(~a, ~p)→ ϕ, infer 〈s〉¬� (~a)→ ϕ, where ~p
does not occur in ϕ or s.

US From ϕ infer ϕ[ψ/p].

MP stands for Modus Ponens, Nec for Necessitation, and
US for Uniform Substitution (ϕ[ψ/p] stands for substitution
of ψ for every occurrence of p in ϕ). If �(~a) and θ�(~a, ~p) are
connected through the axiom Ax� and inference rule R�, we
say they are axiomatically linked (through axiom Ax� and
rule R�). If there is a derivation of a formula ϕ from a set
of formulas Γ using Γ and the axioms and inference rules
from K(A, π, ρ, I) we write Γ `K(A,π,ρ,I) ϕ, or Γ `K ϕ, for
short.

Theorem 1 (Soundness). For all ϕ ∈ L(A, π, ρ), if
K(A, π, ρ, I) ` ϕ then K(A, π, ρ, I) |= ϕ.

3.1 Back to Our Example
To formalise the derivation of Table 4, let the set of modal-

ities A = {c, j,m, p, r}, let π = {q, z} and let ρ = {Refl(r),
Refl(m),Sup(c,m),Ser(c),Sup(kj, j)} and those atoms are
axiomatically linked with their ‘natural’ modal counterparts
(see Table 1 and for KimplB(j) we take Kjp → Bjp). Let
the resulting logic be K(A, π, ρ, I).

First of all, from c′ and AxKimplB(j) we derive KjBmq →
BjBmq. Together with e′ this gives e′′: BjBmq ∧ BjBc¬q.
From d′, i.e., BjSer(c) and AxSer(c), we get Bj(Bc¬q →
¬Bcq). Combining this with e′′ gives BjBmq ∧ Bj¬Bcq,
which is equivalent to Bj¬(Bmq → Bcq) (*).

From b′ and AxSup(m,c) we derive BjBm(Bmp→ Bcp), for
any p (**). Now, take the formula ψ = (Bmq → Bcq). From
(*) we have Bj¬ψ, and from (**) we conclude BjBmψ. In
other words, we found a formula ψ for which Bj¬(Bmψ →
ψ). Now using the contrapositive of axiom AxRefl(m), we
obtain Bj¬Refl(m), which is our conclusion f ′.

Now one may wonder whether this also warrants the con-
clusion f , but as should be clear from Remark 1, Bj¬Refl(m)
and Bj¬∀ϕ(Bmϕ → ϕ) are not the same thing. However,
what we do have is the following. Let ϕ be a′∧b′∧c′∧d′∧e′,
and let s be Bj , then what we have proven now is

K(A, π, ρ, I) ` ϕ→ Bj¬Refl(m) (4)
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But from this, if not derive, we can safely assume that, given
ϕ, there is some formula ψ for which Bj(Bmψ∧¬ψ), because
if this were not the case, we would have, for some atom p
not occuring in ϕ:

K(A, π, ρ, I) ` ϕ→ Bj(Bmp→ p) (5)

From which, using rule R�(~a), we would conclude

K(A, π, ρ, I) ` ϕ→ BjRefl(m) (6)

which either means we have a derivation for Bj⊥ (Joey be-
lieves anything), or, if we assume the conjunct g′ = Ser(j)
to be also part of ϕ (expressing, that actually, Joey’s beliefs
are consistent), that we have derived a contradiction with
(4).

It is worth noting how the axiomatisation makes it possi-
ble that some relational atoms (and hence some first-order
frame properties) only hold in the scope of a modal operator
(like in property a′ and b′ for example): the axiom Ax� and
rule R� do not require that some relational properties hold,
they only specify what should be the case if they hold.

3.2 Completeness
Definition 9. A theory Γ is a set of formulas. For π

a set of propositional atoms, Γ is a π-theory if all propo-
sitional atoms in Γ are from π. Given a logic L, a theory
Γ is L-consistent if ⊥ cannot be derived from Γ using the
axioms and inference rules of L. A theory Γ is a maximal
L-consistent π-theory if it is consistent and no π-theory ∆
is L-consistent while at the same time Γ ⊂ ∆. For a logic
K(A, π, ρ, I), a set of formulas Γ is a witnessed π-theory
if for every 〈s〉¬ � (~a) ∈ Γ, there are atoms ~p such that
〈s〉¬θ�(~a, ~p) ∈ Γ, where �(~a) and θ�(~a, ~p) are axiomatically
linked. If Γ is not witnessed, then a formula 〈s〉¬ � (~a) for
which there is no 〈s〉¬θ�(~a, ~p) ∈ Γ, is called a defect for
the theory Γ. Finally, Γ is said to be fully witnessed, if it
is witnessed and for every formula of the form 〈s〉ϕ, either
that formula or its negation is in Γ.

Lemma 2 (Extension Lemma). Let Σ be a K(A, π, ρ, I)-
consistent π-theory. Let π′ ⊇ π be an extension of π by
a countable set of propositional variables. Then there is a
maximal K(A, π′, ρ, I)-consistent, witnessed π′-theory Σ′ ex-
tending Σ.

Before we outline a proof, we first define some languages.

Definition 10. Let the set of agents A, the set of atoms
π and the set of relational atoms ρ be fixed. Let L(A, π, ρ)
be as in Definition 1. Let π0 = {p0, p1, . . . } be a set of fresh
atomic variables, i.e., π ∩ π0 = ∅ and let π′ = π ∪ π0. Let
πn = π∪{pi | i ≤ n}. Define Ln to be L(A, πn, ρ), and let Lω
be L(A, π′, ρ). A theory ∆ ⊆ Σ is called an approximation
if for some n it is a consistent πn-theory. For such a theory,
and any number k, the sequence ~p = 〈pn+1, . . . , pn+k〉 is a
new sequence ~p for ∆ if n is the least number such that ∆
is a πn-theory.

Proof of Lemma 2 (Sketch). Assume an enumeration
of ψ0, ψ1, . . . of all formulas of the form 〈s〉¬� (~a), where s
is a pseudo modality and �(~a) ∈ ρ. Define

∆+ =

8>>><>>>:
∆ ∪ {〈s〉(¬θ�(~a, ~p))} where ~p is a new sequence

for ∆, and 〈s〉¬� (~a) is the
first defect for ∆,
if this exists

∆ otherwise

Clearly, by Ax�, the set ∆+ is consistent when ∆ is and
hence, if ∆ is an approximation, so is ∆+. To define the
extension Σ′ of Σ, assume ϕ0, ϕ1, . . . to be an enumeration
of the formulas in Lω, and define Σ0 = Σ, and

Σ2n+1 =


Σ2n ∪ {ϕn} if this is consistent
Σ2n ∪ {¬ϕn} else

Σ2n+2 = (Σ2n+1)+

Finally, let Σ′ =
S
n∈ω Σn. By construction, Σ′ ⊃ Σ is a

maximal K(A, π, ρ, I)-consistent, witnessed π′-theory.

Definition 11 (canonical model). The canonical mo-
del Mc = (W c, Rc, I, V c) for the logic K(A, π, ρ, I) has:

• W c = {Γ | Γ is a maximal Lω-consistent witnessed
π′-theory};
• RcaΓ∆ iff for all ϕ ∈ Lω it holds that if [a]ϕ ∈ Γ, then
ϕ ∈ ∆;

• I as given as a parameter of the logic;

• V cp = {Γ | p ∈ π′ ∩ Γ}.
Lemma 3. Suppose the following holds:

1. θ�(~a, ~p) is a purely modal formula;

2. θ�(~a, ~p) and �(~a) are linked through the rule R� and
the axiom Ax�;

3. The first order formula I(�(~a)) = Θ(~a)(x) is equiva-

lent with the second order formula ∀~P Θ̂(~a, ~P )(x) where

Θ̂(~a, ~P )(x) is ST(θ�(~a, ~p))(x).

Then, in the canonical model, �(~a) and Θ(~a)(x) are con-
nected as in Definition 4, i.e., for all ∆ ∈ Mc we have
Mc,∆ |= �(~a) iff in Mc it holds that I(�(~a))(∆).

Lemma 3 paves the way for a coincidence lemma that
guarantees that membership and truth in the canonical model
coincide. We then get:

Theorem 2. If the assumptions of Lemma 3 hold, the
logic K(A, π, ρ, I) is sound and complete with respect to the
class of K(A, π, ρ, I) models.

Definition 12. A purely modal formula ϕ is canonical
for a first order property Φ, if the canonical model for the
modal logic (K + ϕ)(A, π, ρ, I) has the property Φ.

There are many examples of canonical formulas: all Sahlqvist
formulas are canonical [8].

Theorem 3. Let ϕi be canonical for Φi, i ≤ n. Then the
logic (K+ϕ1, . . . , ϕn)(A, π, ρ, I) is sound and complete with
respect to all models in K(A, π, ρ, I) that satisfy Φ1, . . . ,Φn.

4. CONCLUSION
First, note that our modelling of locality is different from

local frame correspondence as defined in [3], and quite dis-
tant from the use of local propositions in epistemic logic
[6], propositions that do not change truth value within an
agent’s equivalence class .

We have so far assumed that the properties of �(~a) are
those specified by the axiom A� and rule R�. However, one
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can add connections between �(~a) and modal formulas, or
between different �1(~a1) and �2(~a2) atoms. For instance

Refl(a, a)→ Trans(a, a, a) (7)

added to an epistemic logic has the effect that whenever
a’s knowledge is veridical, a is also positively introspective.
I.e., we would have, semantically, that whenever M, s |=
Kaϕ → ϕ, for all ϕ, then also M, s |= Kaϕ → KaKaϕ, for
all ϕ. This again is a property that cannot be expressed in
standard, ‘global’ modal logic. As a second example, in an
epistemic temporal modal logic, one could add an axiom

Trans(a, a, a)→ F (Trans(a, a, a) ∧ Eucl(a, a, a)) (8)

saying that whenever agent a is positively introspective, he
will eventually also become negatively introspective. As a
third example, a simple axiom like

Ser(a)→ Ser(b) (9)

in a doxastic setting would mean that whenever a’s beliefs
are consistent, those of b must be consistent as well.

It is possible to view some standard results in modal logic
concerning completeness of modal systems as obtained as
special cases from our local logic. If the conditions of The-
orem 2 are satisfied, and one adds a �(~a) as an axiom, one
immediately gets completeness with respect to the class of
models that satisfy I(�(~a)). For instance, in a logic with ax-
ioms and rules for Refl(a), adding Refl(a) itself as an axiom
gives a modal system that is sound and complete with re-
spect to the class of reflexive Kripke models! Of course, this
amounts to the same thing as adding θ�(~a, ~p), as is directly
clear from rule R� (take ϕ = ⊥ and s the empty sequence).

Finally, it is important to realise that, although we pre-
sented the axioms for the underlying logic (the formulas ϕi
that we assumed to be canonical) and the relational atoms
as two independent layers, let us recall that [20] showed
that interaction properties between the modalities and the
relational atoms may be automatically ‘imported’. For the
case of epistemic logic S5 with at least two agents and the
Sup(a, b) atom, one can derive that Sup(a, b)→ KbSup(a, b)
and ¬Sup(a, b) → Kb¬Sup(a, b), in other words, in such a
logic, it is derivable that if agent a considers at least the
states possible that b considers possible, then b knows this!
Similarly, if there is a state considered possible by b but not
by a, then agent b knows this as well!

To summarise, we have presented a flexible way to deal
locally with quantification over formulas. In particular, we
have shown how, under some mild conditions, in a modal
logic that extends K with some canonical axioms, one can
add a number of relational atoms, for each of them an ax-
iom and an inference rule, such that the logic is complete
for the class of models that interpret the atom as a first
order property of the underlying frame. We argued that
this presents many opportunities to express properties con-
cerning the knowledge or beliefs of agents in a local way, so
that they are only true now, or as a belief or knowlege of
some specific agents. Although we focussed on epistemic and
doxastic logics, our technique is applicable in temporal and
dynamic settings as well. On our agenda is to study how our
framework behaves in a dynamic epistemic logic setting. For
instance, one might consider the effect of publicly announc-
ing relational atoms, like Sup(a, b), which would mean that it
is announced that a knows at least what b knows. After such
an announcement, one would expect that the local property

becomes global again, in many cases it would become a va-
lidity in the resulting model that ∀y(Rbxy ⇒ Raxy).

Like we explained, our completeness proof borrows ideas
from both [16] and [5]. Also, the inference rule R� is remi-
niscent of an inference rule for irreflexivity [9]. However, it
is important to stress that the approaches mentioned aim to
axiomatise global properties. As far as we know, the work
presented in this paper is a first general approach to local
properties in models.

We thank the AAMAS reviewers for their helpful com-
ments.
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ABSTRACT
Logics of propositional control, such as van der Hoek and Wool-
dridge’s CL-PC [14], were introduced in order to represent and rea-
son about scenarios in which each agent within a system is able
to exercise unique control over some set of system variables. Our
aim in the present paper is to extend the study of logics of propo-
sitional control to settings in which these agents have incomplete
information about the society they occupy. We consider two possi-
ble sources of incomplete information. First, we consider the pos-
sibility that an agent is only able to “read” a subset of the over-
all system variables, and so in any given system state, will have
partial information about the state of the system. Second, we con-
sider the possibility that an agent has incomplete information about
which agent controls which variables. For both cases, we intro-
duce a logic combining epistemic modalities with the operators of
CL-PC, investigate its axiomatization, and discuss its properties.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
I.2.4 [Knowledge representation formalisms and methods]

General Terms
Theory

Keywords
epistemic logic, propositional control, partial observability

1. INTRODUCTION
The Coalition Logic of Propositional Control (CL-PC) was intro-
duced by van der Hoek and Wooldridge as a formalism for reason-
ing about how agents and coalitions can exercise control in multi-
agent environments [14]. The logic models situations in which
each agent has control over some set of propositions; that is, each
agent is associated with some set of propositions, and has the abil-
ity to assign a (truth) value to each of its propositions. In this
way, valuations become possible worlds (see e.g., [15] for an early
treatment of such modelings). The language of CL-PC provides
modal constructs 3iϕ to express the fact that, under the assump-
tion that the rest of the system remains unchanged, agent i can as-
sign values to the propositions under its control in such a way that

Cite as: Knowledge and Control, W. van der Hoek, N. Troquard and M.
Wooldridge, Proc. of 10th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonenberg and
Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 719-726.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

ϕ becomes true; these operators are closely related to the strategic
ability operators in cooperation logics such as ATL [2] and Coali-
tion Logic [11]. Since the logic was originally presented, a num-
ber of variants of CL-PC have been developed. For example: the
logic DCL-PC is an extension to CL-PC in which agents are able
to transfer the control of their variables by executing transfer pro-
grams [12]; and Gerbrandy studied generalisations of CL-PC, al-
lowing for instance situations in which agents have “partial” con-
trol of propositions [7].

Our aim in this paper is to study one rather obvious aspect of
propositional control logics that has hitherto been neglected: the
interaction between knowledge and control. It is indeed surprising
that this aspect of propositional control logics has not been previ-
ously studied in the literature. After all, the interaction between
knowledge and ability has a venerable history in the artificial intel-
ligence community, going back at least to the work of Moore in the
late 1970s [10]. Moore was interested in knowledge pre-conditions:
what an agent needs to know in order to be able to do something.
To use a standard example, in order to be able to open a safe, you
need to know the combination. He formalised a notion of ability
that was able to capture such subtleties in a logic that combined
elements of dynamic and epistemic logic. More recently, the inter-
play between ability and knowledge has been studied with respect
to cooperation logics such as ATL and Coalition Logic. For exam-
ple, van der Hoek and Wooldridge proposed ATEL, a variant of ATL
extended with epistemic modalities [13]; and various authors de-
veloped variants of ATEL intended to rectify some counterintuitive
properties of the original ATEL proposal [8, 1].

Epistemic logic is, ultimately, a logic modelling (un)certainty [6].
When we say an agent knows ϕ, we typically mean that the agent is
certain about ϕ. This notion of uncertainty is elegantly captured in
possible worlds semantics, where knowing ϕ means that ϕ is true
in all worlds that the agent considers possible. If we turn to CL-PC,
we can identify several different sources of uncertainty, as follows.

First, and most obviously, an agent may be uncertain about the
value of the variables in the system. We call this type of uncertainty
partial observability, and it is very naturally modelled by assigning
to every agent a set of variables that the agent is able to “see”. Par-
tial observability interacts with control in several important ways.
For example, if I control the variable q and my goal is to achieve the
formula p ↔ ¬q , then if I can observe the value of p, I can readily
choose a value for q that will result in my goal being achieved: I
simply choose the opposite to the value of p. However, if I can-
not see the value of p, then I am in trouble. Second, and perhaps
more unusually, there may be uncertainty about which agent con-
trols which variables. Here, we might conceivably have a situation
in which an agent is able to bring about some state of affairs, but
does not know that they are able to bring it about, because it is not
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aware that it controls the appropriate variables.
The aim of the present paper is to develop extensions to CL-PC

that are able to capture these two types of uncertainty. The remain-
der of the paper is structured as follows. After presenting some
definitions that will be used throughout the remainder of the pa-
per, in Section 2, we present the epistemic extension to CL-PC for
the case that agents have complete knowledge about how the con-
trol of variables is actually distributed over the agents, but they
may lack information about what is factually true. Subsequently,
in Section 3, we then look at formalising the case where agents
have full knowledge about factual truth, partial knowledge about
who controls what, and are completely ignorant about other’s in-
formation regarding control. We also sketch an even more general
setting where both factual truth and control may be uncertain. We
conclude in Section 4.

We begin with some definitions, which are used throughout the
remainder of the paper. First, let B = {true, false} be the set
of Boolean truth values. We assume that the domains we model
contain a (finite, non-empty) set N = {1, . . . ,n} of agents (|N | =
n , n > 0). The environment is also assumed to contain a (fixed,
finite) set A = {p, q , . . .} of Boolean variables. Each agent i ∈
N will be assumed to control some subset Ai of atoms A, with
the intended interpretation that if p ∈ Ai , then i has the unique
ability to assign a value (true or false) to p. We require that the
sets Ai form a partition of A, i.e., Ai ∩ Aj = ∅ for i 6= j , and
A1 ∪ · · · ∪ An = A. Thus every variable is controlled by some
agent; and no variable is controlled by more than one agent. A
coalition is simply a set of agents, i.e., a subset of N . We typically
use C ,C ′, . . . as variables standing for coalitions. Where C ⊆ N ,
we denote by AC the set of variables under the collective control
of the agents in C : AC =

⋃
i∈C Ai . A valuation is a total function

θ : A → B, which assigns a truth value to every Boolean variable.
Let Θ denote the set of all valuations. Where C is a coalition, a
C -valuation is a function θC : AC → B; thus a C -valuation is a
valuation to variables under the control of the agents in C . Given a
set X of atoms and two valuations θ1 and θ2, we write θ1 ≡X θ2

to mean that θ1 and θ2 agree on the value of all variables in X , i.e.,
θ1(p) = θ2(p) for all p ∈ X .

2. PARTIAL OBSERVABILITY
In this section, we develop an Epistemic Coalition Logic of Propo-
sitional Control with Partial Observability – ECL-PC(PO) for short.
This logic is essentially CL-PC extended with epistemic modalities
Ki , one for each agent i ∈ N . These epistemic modalities have a
conventional (S5) possible worlds semantics. The interpretation we
give to epistemic accessibility relations is as follows. We assume
each agent i ∈ N is able to see a subset Vi ⊆ A of the overall
set of Boolean variables; that is, it is able to correctly perceive the
value of these variables. A valuation θ′ is then i-accessible from
valuation θ if θ and θ′ agree on the valuation of variables visible to
i , i.e., θ ≡Vi θ

′. Formally, the language of ECL-PC(PO) is defined
by the following BNF grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 3iϕ | Kiϕ

where p ∈ A, and i ∈ N . As in CL-PC [14], a formula 3iϕ means
that i can assign values to the variables under its control in such
a way that, assuming no other variables are changed, ϕ becomes
true. As in epistemic logic [6], a formula Kiϕ means that the agent
i knows ϕ.

The remaining operators of classical logic (“∧” – and, “→” –
implies, “↔” – iff) are assumed to be defined as abbreviations in
terms of ¬,∨ as usual. We define the box dual operator of 3i as:
2iϕ ≡ ¬3i¬ϕ. We also assume the existential dual Mi (“maybe”)

of the Ki operator is defined as: Miϕ ≡ ¬Ki¬ϕ. For coalitions,
we define (this definition is justified in [14]):

2{1,...,k}ϕ ≡ 21 . . .2kϕ.

Coming to the semantics, a frame for CL-PC is simply a structure
〈N ,A1, . . . ,An〉, where N is the set of agents in the system, and
each Ai is the set of variables under the control of agent i ; a model
for CL-PC combines such a frame with a valuation θ ∈ Θ, which
gives an initial value for every Boolean variable [14]. Frames for
ECL-PC(PO) extend CL-PC frames with a set of variables Vi ⊆ A
for each agent i ∈ N . Formally, an ECL-PC(PO) frame, F , is a
(2n + 1)-tuple

F = 〈N ,A1, . . . ,An ,V1, . . . ,Vn〉, where

• N = {1, 2, . . . ,n} is a (finite, nonempty) set of agents.

• The sets Ai form a partition of A.

• Vi ⊆ A is the set of atoms whose values are visible to i .

It will often make sense to assume Vi ⊇ Ai , i.e., each agent can see
the value of the variables it controls; however, we will not impose
this as a requirement. We leave aside the question for now of what
settings there are in which this assumption does not hold.

The truth value of an ECL-PC(PO) formula is inductively defined
wrt. a frame F and a valuation θ by the following rules (|=d stands
for a ‘direct semantics’, [14]):

F , θ |=d p iff θ(p) = true (p ∈ A)
F , θ |=d ¬ϕ iff F , θ 6|=d ϕ
F , θ |=d ϕ ∨ ψ iff F , θ |=d ϕ or F , θ |=d ψ
F , θ |=d 3iϕ iff ∃θ′ ∈ Θ : θ′ ≡A\Ai

θ s.t. M , θ′ |=d ϕ
F , θ |=d Kiϕ iff ∀θ′ ∈ Θ : θ′ ≡Vi θ =⇒ M , θ′ |=d ϕ

We denote the fact that ϕ is true in all models by |=d ϕ. We
let Λ1 = {ϕ | |=d ϕ} be the logic of all the formulas valid in all
ECL-PC(PO) models.

EXAMPLE 1. Suppose we have a frame F with two agents, N =
{1, 2} and two Boolean variables, A = {p, q}, with A1 = V1 =
{p} and A2 = {q} and V2 = {p, q}. Thus agent 1 can only
see the value of the variable it controls, while agent 2 can see the
values of both variables. Let θ(p) = θ(q) = true . Now, we have:

• F , θ |=d 31(p ↔ ¬q)

Agent 1 can set his variable p in such a way that p and q
have different values.

• F , θ |=d ¬K1q ∧ ¬K1¬q ∧K1(K2q ∨K2¬q)

Agent 1 does not know the value of variable q , but he does
know that 2 knows the value of q .

• F , θ |=d K131(p ↔ ¬q) ∧ ¬31K1(p ↔ ¬q)

Agent 1 knows that he can make p and q take on different
values (because he controls p, and hence can make it differ-
ent to q in any given state). However, agent 1 cannot choose
values for the variables he controls in such a way that he
knows that p and q take on different values.

• F , θ |=d K221((K2p ∨K2¬p) ∧ (K2q ∨K2¬p))

Agent 2 knows that whatever truth values 1 chooses for her
variables, 2 will know the value of p and of q .

• F , θ |=d K2((p ∧ q) ∧ 31(¬p ∧ 32(¬p ∧ ¬q))) Agent 2
knows that (p ∧ q) and that 1 can bring about that ¬p which
2 can further narrow down to (¬p ∧ ¬q).
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CLPC
(Prop) ϕ , where ϕ is a propositional tautology
(K (2)) 2i (ϕ→ ψ) → (2iϕ→ 2iψ)
(T (2)) 2iϕ→ ϕ
(B(2)) ϕ→ 2i3iϕ
(empty) 2∅ϕ↔ ϕ
(comp∪) 2C12C2ϕ↔ 2C1∪C2ϕ
(confl) 3i2jϕ→ 2j 3iϕ
(exclu) (3ip ∧3i¬p) → (2j p ∨ 2j¬p) , where j 6= i
(actual)

∨
i∈N 3ip ∧3i¬p

(full2) (
∧

p∈X 3ip ∧3i¬p) → 3iϕX

Knowledge
(K (K)) Ki (ϕ→ ψ) → (Kiϕ→ Kiψ)
(T (K)) Kiϕ→ ϕ
(B(K)) ϕ→ KiMiϕ
(4(K)) Kiϕ→ KiKiϕ
(incl) 2Nϕ→ Kiϕ
(unif ) Mip ∧Mi¬p → 2N (Mip ∧Mi¬p)
(fullK) (

∧
p∈X Mip ∧Mi¬p) → MiϕX

Rules
(MP ) from ` ϕ→ ψ and ` ϕ infer ` ψ
(Nec(2)) from ` ϕ infer ` 2iϕ

Figure 1: Axiomatics of Λ1. The meta-variable i ranges over
N , C1 and C2 over 2N , ϕ represents an arbitrary formula of
ECL-PC(PO), p ranges over A. ϕX is the conjunction of literals
true in any valuation of X ⊆ A.

When studying a new logic, there are two key computational
problems we must consider: the model checking problem and the
satisfiability problem. For ECL-PC(PO), the model checking prob-
lem is the problem of determining, for a given frame and valuation
F , θ and formula ϕ, whether or not F , θ |=d ϕ. The satisfiability
problem is the problem of determining whether, for a given formula
ϕ there exists a frame F and valuation θ such that F , θ |=d ϕ. It
was proved in [14] that both the model checking and satisfiability
problems for the underlying logic CL-PC are PSPACE-complete.
The fact that the model checking problem is PSPACE complete
in fact yielded a decision problem for satisfiability: because the
frames F are “small”, we can exhaustively search the set of pos-
sible frames and valuations for a formula, checking each pair in
turn to see whether it satisfies the formula. Observe that the model
checking problem for ECL-PC(PO) is trivially seen to be solvable
in polynomial space. Then basically the same approach for satisfi-
ability checking of CL-PC also works for ECL-PC(PO): the truth of
a formula only depends on at most one more agent than is named in
the formula, as with CL-PC [14], and so we can exhaustively exam-
ine each F , θ pair to see whether F , θ |=d ϕ. We may conclude:

THEOREM 1. The model checking and satisfiability problems
for ECL-PC(PO) are both PSPACE-complete.

An axiomatization for ECL-PC(PO) is provided in Figure 1. Several
points are in order with respect to this axiomatization. First, note
that Ki is an S5 modality, and that the axiom 4 for the modality 2i

is an instance of axiom (comp∪). With K (2),T (2) and B(2)
this implies that 2i is also an S5 modality.

LEMMA 1. The axiomatization for Λ1 in Figure 1 is sound.

We now prove that this axiomatization is complete. This will be
done using a normal form for ECL-PC(PO)-formulas.

DEFINITION 1. We define ctrls(i , p) as (3ip ∧ 3i¬p) and
sees(i , p) as (Kip ∨ Ki¬p). Let CTRL = {ctrls(i , p) | i ∈
N & p ∈ A} and VIEW = {sees(i , p) | i ∈ N & p ∈ A}.

The elements of A,CTRL and VIEW are called basic proposi-
tions. For any set Φ of basic propositions, call L(Φ) = {x ,¬x |
x ∈ Φ} the set of literals over Φ. For a basic proposition x , let
`(x ) ∈ {x ,¬x}. So e.g., `(p)→ 3i`(p) stands both for p → 3ip
and for ¬p → 3¬p. A propositional description π is a conjunc-
tion over L(A) where each p ∈ A occurs exactly once. Let Π be
the set of propositional descriptions. A control description γ is a
conjunction over CTRL such that for every p ∈ A, there is ex-
actly one i ∈ N such that ctrls(i , p) occurs in γ. Let Γ be the
set of control descriptions. Finally, a visibility description ς is a
conjunction over L(VIEW ), such that for every agent i and every
atom p ∈ A, either sees(i , p) or ¬sees(i , p) occurs in ς . Let Σ be
the set of visibility descriptions. A full description is a conjunction
π ∧ γ ∧ ς , where π, γ and ς are as explained above.

Given a propositional description π ∈ Π, we shall note π̂i the
conjunction of literals in π that are under the control of agent i and
π̌i the conjunction of literals in π that are not under its control.
Of course π ↔ π̂i ∧ π̌i . In the same vein, we shall note π̈i the
conjunction of literals in π that are seen by agent i and π̇i the
conjunction of literals in π that are not seen by it. Again π ↔
π̈i ∧ π̇i .

As its name suggests, a full description (π ∧ γ ∧ ς) fully charac-
terises a situation: it specifies which atoms are true and which are
false (this is π), it specifies which agents control which variables
(through γ) and it specifies exactly which propositional variables
each agent can see (through ς). So semantically, it is immediately
clear that any formula will be a disjunction of such full descriptions
(namely, descriptions of those situations where ϕ is true), but our
task is now to show that this is derivable in the logic.

The next Lemma states a few theorems derivable within our ax-
iomatic system, all of which are instrumental in the proofs of The-
orem 2 and of Theorem 3.

LEMMA 2. Let π, γ and ς be propositional, control and visibil-
ity descriptions, respectively (and so are their ‘primed’ version).
For P ⊆ A, let π1(L(P)) be a conjunction over L(P) and let
π2(L(A \ P)) be a conjunction over L(A \ P).

Then, the following are derivable in Λ1:

1. ¬ctrls(i , p)→ (`(p)→ 2i`(p))

2. sees(i , p)→ (`(p)→ Ki`(p))

3. `(ctrls(i , p))↔ 2N `(ctrls(i , p))

4. `(sees(i , p))↔ 2N `(sees(i , p))

5.
∧

p∈P ctrls(i , p) ∧∧
p 6∈P ¬ctrls(i , p)→

3iπ(L(P)) ∧ (π2(L(A \ P))→ 2iπ2(L(A \ P)))

6. 3i(π̂
i ∧ π̌i)↔ π̌i

7.
∧

p∈P sees(i , p) ∧∧
p 6∈P ¬sees(i , p)→

Miπ2(L(A \ P)) ∧ (π1(L(P))→ Kiπ1(L(P)))

8. Mi(π̈
i ∧ π̇i)↔ π̈i

9. 2Nϕ↔ 2i2Nϕ

10. 2Nϕ↔ Ki2Nϕ

11. (π ∧ γ ∧ ς)↔ (π ∧ 2Nγ ∧ 2N ς)

THEOREM 2 (NORMAL FORM). Every formula ϕ is provably
equivalent to a disjunction of full descriptions, i.e., for every ϕ
there exists a k and πj , γj and ςj (1 ≤ j ≤ k ) such that

` ϕ↔
∨
j≤k

(πj ∧ 2Nγj ∧ 2N ςj ) (1)
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PROOF. By Lemma 2.11, it follows from

` ϕ↔
∨
j≤k

(πj ∧ γj ∧ ςj )

which we prove now by induction on the structure of ϕ.
We will make use of the fact that the sets of propositional (Π),

control (Γ) and visibility (Σ) descriptions are finite. Roughly speak-
ing, a triple (π, γ, ς) represents a state. The idea behind the nor-
mal form is, that a formula can be represented by a subset X ⊆
Π × Γ × Σ, which translates in the language as a (typically large)
disjunction of formulas of the form π ∧ γ ∧ ς .

One base case is for ϕ being a basic proposition in Φ.

` p ↔
∨
πi∈Π
πi`p

∨
γj∈Γ

∨
ςk∈Σ

(πi ∧ γj ∧ ςk )

The statement πi ` p means that p appears as a positive literal in
πi . The two other base cases ϕ = ctrls(i , p) and ϕ = sees(i , p)
are analogous.

Now we suppose for induction that ϕ can be transformed into an
equivalent formula

∨
j≤k (πj ∧ γj ∧ ςj ).

Case ψ = ¬ϕ: “ψ is represented by the complement of the states
representing ϕ”.

` ψ ↔
∨
j≤k

∨
(π,γ,ς)∈Π×Γ×Σ

(π,γ,ς)6=(πj ,γj ,ςj )

(π ∧ γ ∧ ς)

Case ψ = ϕ1 ∨ϕ2: since the normal form itself is a disjunction,
this case is straightforward.

Case ψ = 3iϕ: similar to ψ = Miϕ.
Case ψ = Miϕ: by induction hypothesis

` ψ ↔ Mi

∨
j≤k

(πj ∧ γj ∧ ςj )

By modal logic

` ψ ↔
∨
j≤k

Mi(πj ∧ γj ∧ ςj )

By Lemma 2.10 and Lemma 2.11

` ψ ↔
∨
j≤k

Mi(πj ∧Ki2Nγj ∧Ki2N ςj )

By S5(K )

` ψ ↔
∨
j≤k

(Miπj ∧Ki2Nγj ∧Ki2N ςj )

Applying our notation and Lemma 2.11 and Lemma 2.10

` ψ ↔
∨
j≤k

(Mi(π̈
i
j ∧ π̇i

j ) ∧ γj ∧ ςj )

By Lemma 2.8

` ψ ↔
∨
j≤k

(π̈i
j ∧ γj ∧ ςj )

Finally,

` ψ ↔
∨
j≤k

∨
π̃j∈Π(π̇i

j )

((π̈i
j ∧ π̃j ) ∧ γj ∧ ςj )

where Π(π̇i
j ) is the set of propositional descriptions restricted to

the set of atoms occurring in π̇i
j , that is, that are not seen by i .

We require some subsidiary definitions. We begin by defining
an alternative, possible worlds semantics for ECL-PC(PO). Given a
frame F , a Kripke model for ECL-PC(PO) is a structure

K = 〈W ,R3
1 , . . . ,R

3
n ,R

K
1 , . . . ,R

K
n , π〉

where W = Θ is a set of worlds, which correspond to possible
valuations to A, R3

i ⊆W ×W , and RK
i ⊆W ×W , where these

latter relations are defined as:

R3
i (w ,w ′) iff w ≡A\Ai

w ′, and RK
i (w ,w ′) iff w ≡Vi w ′.

Finally, π : W → 2A gives the set of Boolean variables true at
each world. The key clauses for |=k (‘Kripke semantics) are then
as follows:

K ,w |=k p iff p ∈ π(w) (p ∈ A)
K ,w |=k 3iϕ iff ∃w ′ ∈W s.t. R3

i (w ,w ′) and K ,w ′ |=k ϕ
K ,w |=k Kiϕ iff ∀w ′ ∈W s.t. RK

i (w ,w ′) and K ,w ′ |=k ϕ

LEMMA 3. Let F , θ be an ECL-PC(PO) frame and associated
valuation, let K ,w be the corresponding Kripke model and world,
and let ϕ be an arbitrary ECL-PC(PO) formula. Then:

F , θ |=d ϕ iff K ,w |=k ϕ.

We assume the standard definitions of maximally consistent sets
and their existence via Lindenbaum’s lemma (see, e.g., [4, p.196]).
We proceed to construct a canonical model

K̂ = 〈Ŵ , R̂3
1 , . . . , R̂

3
n , R̂

K
1 , . . . , R̂

K
n , π̂〉, where:

• Ŵ is the set of all Λ1 maximally consistent sets;

• R̂3
i (w ,w ′) iff ϕ ∈ w ′ implies 3iϕ ∈ w ;

• R̂K
i (w ,w ′) iff ϕ ∈ w ′ implies Miϕ ∈ w ; and

• π̂(w) = A ∩ w .

The following is a standard result for canonical models:

LEMMA 4 (TRUTH LEMMA.). Let
K̂ = 〈Ŵ , R̂3

1 , . . . , R̂
3
n , R̂

K
1 , . . . , R̂

K
n , π̂〉

be a canonical model, w ∈ Ŵ be a world in K̂ , and ϕ be an
arbitrary ECL-PC(PO) formula. Then:

K̂ ,w |=k ϕ iff ϕ ∈ w .

The truth lemma above gives rise to completeness wrt. a set of
models, but it is not the kind of models we have associated with
ECL-PC(PO). In the intended models, the modalities Ki and 3i are
defined with respect to valuations that are ‘similar’ with respect to
the appropriate sets of atoms, while in the canonical model, those
modal operators are defined as necessity operators with respect to a
relation between maximal consistent sets that is defined in terms of
membership of formulas in these sets. We now have to show that,
in the canonical model, these two ways of looking at the modalities
coincide. For this, our normal form Theorem 2 will be crucial.

But first we restrict ourselves to a generated submodel of K̂ . To
be more precise, for the canonical model K̂ just obtained, and w ∈
Ŵ , let K̂~w be the model generated by w in the following sense. Let
R̂3

N be R̂3
1 ∪ · · ·∪ R̂3

n . Then, define Ŵ~w = {v | R̂3
N (w , v)}, and

all relations R̂3
~wi

and R̂K
~w and valuation π̂~w are the old relations and

valuation restricted to the new set Ŵ~w . The following is a known
result about generated submodels:

∀ϕ∀v ∈ Ŵ~w K̂ , v |= ϕ iff K̂~w , v |= ϕ
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THEOREM 3 (K̂~w SIMULATES AN ECL-PC(PO) FRAME.). Let
K̂ be as defined above, and take w ∈ Ŵ . Consider the model K̂~w .
Define, for every i ∈ N , the sets Ai = {p | ctrls(i , p) ∈ w},
and Vi = {p | sees(i , p) ∈ w}. Then, in K̂~w , the accessibility
relations satisfy the following properties:

1. R̂3
~wi

(v , v ′) iff π~w (v) ≡A\Ai
π~w (v ′).

2. R̂K
~wi

(v , v ′) iff π~w (v) ≡Vi π~w (v ′).

PROOF. Consider the first item. Suppose R̂3
~wi

(v , v ′), which
means that for any ϕ, ϕ ∈ v ′ ⇒ 3iϕ ∈ v . Take any p ∈
A \ Ai . We show that p ∈ v iff p ∈ v ′. Suppose p ∈ v .
By definition of Ai , we have ctrls(i , p) 6∈ w , and, since w is a
maximal consistent set, ¬ctrls(i , p) ∈ w . By Lemma 2, item 4
(take `(ctrls(i , p) = ctrls(i , p)) we have 2N¬ctrls(i , p) ∈ w ,
and, since v is R̂3

N
-reachable from w , we have ¬ctrls(i , p) ∈ v .

This gives (¬ctrls(i , p) ∧ p) ∈ v , which, by Lemma 2, item 1
gives us 2ip ∈ v . Now for contradiction, if p 6∈ v ′, we would
have ¬p ∈ v ′, and by definition, 3i¬p ∈ v , which contradicts
2ip ∈ v . The reasoning for p 6∈ v goes similar.

For the converse, suppose π~w (v) ≡A\Ai
π~w (v ′), i.e., v ∩ (A \

Ai) = v ′ ∩ (A \ Ai). Take an arbitrary ϕ ∈ v ′, we have to show
that 3iϕ ∈ v . By Theorem 2, we know that ϕ is equivalent to a
disjunction as specified in (1), and since v ′ is a maximal consistent
set, there must be (uniquely) a propositional description π, a control
description γ and a visibility description ς such that (π ∧ 2Nγ ∧
2N ς) ∈ v ′. Since v and v ′ are both reachable from the same
generating world w , we have (2Nγ ∧ 2N ς) ∈ v and hence, by
(comp∪) and (T (2))

(2iγ ∧ 2i ς) ∈ v (2)

Let us decompose π into π1 ∧ π2, where π1 uses all the atoms p
from Ai , and π2 uses all the atoms from A \ Ai . By Lemma 2,
item 5, we have

3iπ1 ∈ v (3)

Moreover π ∈ v ′ implies that π2 ∈ v ′. Moreover by assumption
v ∩(A\Ai) = v ′∩(A\Ai). Hence, π2 ∈ v . By Lemma 2, item 5,
we then have that

2iπ2 ∈ v (4)

Collecting equations (2), (3) and (4), and using the modal validity
` (2α ∧3β)→ 3(α ∧ β), we obtain 3i(π1 ∧ π2 ∧ γ ∧ ς) ∈ v .
By Lemma 2.11, we conclude 3i(π1 ∧ π2 ∧ 2Nγ ∧ 2N ς) ∈ v
which means that 3iϕ ∈ v .

We now prove the second item. Suppose R̂K
~wi

(v , v ′), which
means that for any ϕ, ϕ ∈ v ′ ⇒ Miϕ ∈ v . Take any p ∈ Vi .
We show that p ∈ v iff p ∈ v ′. Suppose p ∈ v . By defini-
tion of Vi , we have sees(i , p) ∈ w . By Lemma 2, item 4 we
have 2N sees(i , p) ∈ w , and, since v is R̂3

N
-reachable from w ,

we have sees(i , p) ∈ v . This gives (sees(i , p) ∧ p) ∈ v , which,
by Lemma 2, item 2 gives us Kip ∈ v . Now for contradiction, if
p 6∈ v ′, we would have ¬p ∈ v ′, and by definition, Mi¬p ∈ v ,
which contradicts Kip ∈ v . The reasoning for p 6∈ v goes similar.

For the converse, suppose π~w (v) ≡Vi π~w (v ′), i.e., v ∩ (Vi) =
v ′∩(Vi). Take an arbitraryϕ ∈ v ′, we have to show that Miϕ ∈ v .
By Theorem 2, we know that ϕ is equivalent to a disjunction as
specified in (1), and since v ′ is a maximal consistent set, there must
be (uniquely) a propositional description π, a control description γ
and a visibility description ς such that (π ∧ 2Nγ ∧ 2N ς) ∈ v ′.
Since v and v ′ are both reachable from the same generating world
w , we have (2Nγ ∧ 2N ς) ∈ v and hence, by (incl )

(Kiγ ∧Ki ς) ∈ v (5)

Let us decompose π into π1 ∧ π2, where π1 uses all the atoms p
from A \ Vi , and π2 uses all the atoms from Vi . By Lemma 2,
item 7, we have

Miπ1 ∈ v (6)

Moreover π ∈ v ′ means trivially that π2 ∈ v ′. Moreover by as-
sumption v ∩ (Vi) = v ′ ∩ (Vi). Hence, π2 ∈ v . By Lemma 2,
item 7, we then have that

Kiπ2 ∈ v (7)

Collecting equations (5), (6) and (7), and using the modal validity
` (2α ∧3β)→ 3(α ∧ β), we obtain Mi(π1 ∧ π2 ∧ γ ∧ ς) ∈ v .
By Lemma 2.11, we conclude Mi(π1 ∧ π2 ∧ 2Nγ ∧ 2N ς) ∈ v
which means that Miϕ ∈ v .

THEOREM 4 (COMPLETENESS OF Λ1 .). Λ1 is sound and com-
plete with respect to the class of ECL-PC(PO) frames.

PROOF. Soundness is observed in Lemma 1. For completeness,
take a Λ1-consistent formula ϕ. Consider a maximal consistent set
w with ϕ ∈ w . We know that K̂ ,w |= ϕ. Take the generated
model K̂~w . We know that again K̂~w ,w |= ϕ, and moreover, by
Theorem 3, K̂~w simulates an ECL-PC(PO) frame.

3. UNCERTAINTY ABOUT OWNERSHIP
The next type of uncertainty we consider relates to which agents
control which variables. We refer to the logic we develop to capture
such situations as the ECL-PC(UO), where “UO” stands for “uncer-
tainty of ownership”. The syntax of ECL-PC(UO) is identical to that
of ECL-PC(PO), and so we will not present the syntax again here.
In the semantics however, we substitute for every agent the set of
propositions that it can see the value of, with a set of propositions
which it sees the ownership of.

Given a set of agents N , atomic variables A, and control partition
A1, . . . ,An , a controls observation for agent i is as set Ωi ⊆ A.
The interpretation of Ωi is that p ∈ Ωi means that agent i knows
who has control over the variable p, that is, the agent j ∈ N such
that p ∈ Aj . Given this, we define a frame F for ECL-PC(UO) as:

F = 〈N ,A1, . . . ,An ,Ω1, . . . ,Ωn〉 where:

• N and Ai ⊆ A are as before, and

• Ωi is the controls observation for agent i .

We now define a relation on frames, which will be used to give a
semantics to our epistemic modalities. Let

F = 〈N ,A1, . . . ,An ,Ω1, . . . ,Ωi , . . . ,Ωn〉, and

F ′ = 〈N ,A′1, . . . ,A′n ,Ω′1, . . . ,Ω′i , . . . ,Ω′n〉
be two frames that contain the same agents and the same base set
of propositional variables. Then we write F 'i F ′ to mean that
(1) Ωi = Ω′i and (2) for all p ∈ Ωi and for all j ∈ N we have
Aj ∩ Ωi = A′j ∩ Ωi . Thus, roughly, F 'i F ′ means that F ′

and F ′ agree on the variables that i can see the ownership of, and
moreover, for each of those variables, the control is assigned to the
same agents in both frames.

Formally, the key steps in the semantics are defined as follows:

F , θ |=d p iff θ(p) = true (p ∈ A)
F , θ |=d 3iϕ iff ∃θ′ ∈ Θ : θ′ ≡A\Ai

θ s.t. M , θ′ |=d ϕ
F , θ |=d Kiϕ iff ∀F ′ : F ′ 'i F =⇒ F ′, θ |=d ϕ
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EXAMPLE 2. Suppose we have a frame F in which N = {1, 2},
A1 = {p}, A2 = {q}, Ω1 = ∅, Ω2 = {p, q}. In this case, agent
1 has no information at all about which agent controls which vari-
able: As far as this agent is concerned, any partition of controlled
variables to agents is possible. Let θ(p) = θ(q) = true . We have:

• F , θ |=d K1(p ∧ q) ∧K2(p ∧ q)

Unlike ECL-PC(PO), agents have no uncertainty about the
actual value of variables. Thus both agents know that both
variables are true in the valuation θ.

• F , θ |=d 31(¬p ∧ q) ∧ ¬K131(¬p ∧ q)

In fact, agent 1 can bring about ¬p ∧ q: he controls the
variable p and he can choose ¬p ∧ q . However, because he
is uncertain about whether he controls p, he does not know
that he has the ability to choose ¬p ∧ q .

• F , θ |=d 32(p ∧ ¬q) ∧K232(p ∧ ¬q)

Agent 2 can choose a value for q so as to bring about p∧¬q
(assuming agent 1 leaves p unchanged). Moreover, since 2
knows that she controls q , she knows that she can choose
p ∧ ¬q .

• F , θ |=d K2((p ∧ q) ∧31(¬p ∧32¬q))

Agent 2 knows that actually p ∧ q holds, and that 1 can
choose a situation where p is false and in which agent 2 fur-
thermore can set q to false.

• F , θ |=d K12{1,2}3{1,2}(p ↔ ¬q) ∧K22132(p ↔ ¬q)

Agent 1 knows that together, the agents can always make the
values of p and q different, but agent 2 even knows that,
no matter which values 1 chooses for his variables, 2 can
achieve a situation such that p and q are different.

Note that, by the same arguments as given for ECL-PC(PO), we
may conclude that:

THEOREM 5. The model checking and satisfiability problems
for ECL-PC(UO) are both PSPACE-complete.

We give an axiomatization for ECL-PC(UO) in Figure 2. Deriv-
ability ` in this section refers to that axiomatization. The following
definitions and notations are useful.

DEFINITION 2. Define seeswho(i , p) as
∨

j∈N Kictrls(j , p).
Let SW = {seeswho(j , p) | j ∈ N , p ∈ A}. The elements
of A,CTRL and SW are our new basic propositions. A controls
observation description ω is a full conjunction over SW . We note
Ω the set of such controls observation descriptions. A new full
description is a conjunction π ∧ γ ∧ ω, where π, γ and ω are as
explained above.

Let P ⊆ A. We define CTRL(P) = {∧ ctrls(i , p) | i ∈
N , p ∈ P , every p appears only once}. Finally let ω̂i be of the
form

∧
p∈A `(seeswho(i , p)) and let the formula ω̌i be of the form∧

p∈At,j 6=i `(seeswho(j , p)) such that ω̂i ∧ ω̌i is a controls obser-
vation description.

As with ECL-PC(PO), a full description (π ∧ γ ∧ ω) fully char-
acterises a situation: it specifies which atoms are true and which
are false (this is π), it specifies which agents control which vari-
ables (through γ) and it specifies exactly which agent is aware of
who owns which variables (through ω). So semantically, it is im-
mediately clear that any formula will be a disjunction of such full
descriptions (namely, descriptions of those situations where ϕ is
true), but our task is now to show that this is derivable in the logic.

CLPC ϕ where ϕ is a CLPC tautology
Knowledge
(K (K)) Ki (ϕ→ ψ) → (Kiϕ→ Kiψ)
(T (K)) Kiϕ→ ϕ
(B(K)) ϕ→ KiMiϕ
(4(K)) Kiϕ→ KiKiϕ
Ax1 ψ → Kiψ when ψ objective
Ax2 3Nψ → Ki3Nψ when ψ objective
Ax3 `(seeswho(i , p)) → Ki`(seeswho(i , p))
Ax4 seeswho(i , p) ∧ `(ctrls(j , p)) → Ki`(ctrls(j , p))
Ax5

∧
p∈P ¬seeswho(i , p) → Mi (γ ∧ ω̌i )

Ax6
∧

p∈P seeswho(i , p) → (γ → Kiγ)

Ax7 Mi ω̌
i ∧Ki ω̂

i

Rules
(MP ) from ` ϕ→ ψ and ` ϕ infer ` ψ
(Nec(2)) from ` ϕ infer ` 2iϕ
(Nec(Ki )) from ` ϕ infer ` Kiϕ

Figure 2: Axiomatics of Λ2. The meta-variable i ranges over N ,
ϕ represents an arbitrary formula of ECL-PC(UO), p ranges
over A. Finally, ω̂i , and ω̌i are as specified in Definition 2, and
γ ∈ CTRL(P). Objective formulas have no modal operators.

LEMMA 5. The axiomatization for Λ2 in Figure 2 is sound.

We now prove that this axiomatization is complete.

THEOREM 6 (NORMAL FORM). Every formula ϕ is provably
equivalent to a disjunction of full descriptions, i.e., for every ϕ
there exists a k and πj , γj and ωj (1 ≤ j ≤ k ) such that

` ϕ↔
∨

1≤j≤k

πj ∧ γj ∧ ωj

The proof of Theorem 6 is omitted for reasons of space. We now
define an alternative, possible worlds semantics for ECL-PC(UO).
Given a frame F = 〈N ,A1, . . . ,An ,Ω1, . . . ,Ωi , . . . ,Ωn〉, a cor-
responding pointed Kripke model for ECL-PC(UO) is a structure

K ,w(F ,θ) = 〈W ,R3
1 , . . . ,R

3
n ,R

K
1 , . . . ,R

K
n , π〉,w(F ,θ)

where W = Π × Γ × Ω is a set of worlds that correspond to a
frame and a propositional valuation. For every w ∈ W , we note
w(π) the propositional description it contains, w(γ) the control
description, and w(ω) the controls observation description. Given
two states w and w ′, a set of propositions X , we have already de-
fined w(π) ≡X w ′(π). We define w(γ) ≡i

X w ′(γ) to mean that
for every p ∈ X , w(γ) ` ctrls(i , p) iff w ′(γ) ` ctrls(i , p). Sim-
ilarly, we define w(ω) ≡i

X w ′(ω) to mean that for every p ∈ X ,
w(ω) ` seeswho(i , p) iff w ′(ω) ` seeswho(i , p). Finally, the
world w(θ,F) is such that w(θ,F)(π) describes θ, w(θ,F)(γ) de-
scribes A1, . . .An and w(θ,F)(ω) describes Ω1, . . . ,Ωn .

The relations R3
i ⊆W ×W , and RK

i ⊆W ×W , are defined
as follows:

R3
i (w ,w ′) iff


w(π) ≡A\Ai

w ′(π)

w(ω) = w ′(ω)

w(γ) = w ′(γ)

and

RK
i (w ,w ′) iff


w(π) ≡A w ′(π)

w(ω) ≡i
Ωi

w ′(ω)

w(γ) ≡i
Aj∩Ωi

w ′(γ) for all j ∈ N

.

Finally, π : W → 2A gives the set of Boolean variables true at each
world. We can then define a Kripke semantics for our language,
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with the key clauses defined via the satisfiability relation |=k as
follows:

K ,w |=k p iff p ∈ π(w) (p ∈ A)
K ,w |=k 3iϕ iff ∃w ′ ∈W s.t. R3

i (w ,w ′) and K ,w ′ |=k ϕ
K ,w |=k Kiϕ iff ∀w ′ ∈W s.t. RK

i (w ,w ′) and K ,w ′ |=k ϕ

The following is immediate.

LEMMA 6. Let F , θ be an ECL-PC(UO) frame and associated
valuation, let K ,w(θ,F) be the corresponding Kripke model and
world, and let ϕ be an arbitrary ECL-PC(UO) formula. Then:

F , θ |=d ϕ iff K ,w(θ,F) |=k ϕ.

The definition of a canonical model K̂ for the logic is as before
(although the model of course will be different, since the axioms
are different!), and the truth lemma holds for this language as well.
But in this case, we do not need to restrict ourselves to a generated
submodel.

THEOREM 7 (K̂ SIMULATES AN ECL-PC(UO) FRAME.).
Let K̂ be as defined as above. Define, for every i ∈ N and v ∈ Ŵ ,
the sets Avi = {p | ctrls(i , p) ∈ v}, and Ωvi = {p | ∃j ∈
N ,Kictrls(j , p) ∈ v}. Then, in K̂ , the accessibility relations
satisfy the following properties:

1. R̂3
i (v , v ′) iff


π(v) ≡A\Ai

π(v ′)
v(ω) = v ′(ω)

v(γ) = v ′(γ)

2. R̂K
i (v , v ′) iff


π(v) ≡A π(v ′)
v(ω) ≡i

Ωv′
i

v ′(ω)

v(γ) ≡i
Av′

j
∩Ωv′

i

v ′(γ) for all j ∈ N

PROOF. We prove the second item. Suppose that R̂K
i (v , v ′). By

definition, it means that for all ϕ, ϕ ∈ v ′ implies Miϕ ∈ v . We
now prove the three properties of the right side of the item. We first
show that p ∈ v iff p ∈ v ′. Suppose that p ∈ v ′. Then Kip ∈ v ′

by Ax1. By hypothesis we obtain MiKip ∈ v , which by S5 yields
p ∈ v . The case p 6∈ v ′ is similar.

We now show that Kictrls(j , p) ∈ v iff Kictrls(j , p) ∈ v ′.
First, suppose that Kictrls(j , p) ∈ v . Then by hypothesis we
have MiKictrls(j , p) ∈ v and Kictrls(j , p) ∈ v by S5. Sec-
ond, suppose that Kictrls(j , p) 6∈ v ′. Since v ′ is a m.c. set,
¬Kictrls(j , p) ∈ v ′. Then, MiMi¬ctrls(j , p) ∈ v which by
S5 is equivalent to Mi¬ctrls(j , p) ∈ v and ¬Kictrls(j , p) ∈ v .
And since v is a m.c. set, we have Kictrls(j , p) 6∈ v .

Now, take any j ∈ N and any p ∈ Av′
j
∩ Ωv′

i
. We show that

ctrls(j , p) ∈ v iff ctrls(j , p) ∈ v ′. First, suppose that ctrls(j , p) ∈
v ′. By definition of Ω~v′

i
, we have Kictrls(j , p) ∈ v ′. By hypoth-

esis, we have MiKictrls(j , p) ∈ v which in S5 is equivalent to
ctrls(j , p) ∈ v . Second, suppose that ctrls(j , p) 6∈ v ′. Since
v ′ is an m.c. set, ¬ctrls(j , p) ∈ v ′. Also, by definition of Ω~v′

i
,

we have seeswho(i , p) ∈ v ′. Hence, by Axiom Ax4 we have
Ki¬ctrls(j , p) ∈ v ′. Hence, we have MiKi¬ctrls(j , p) ∈ v
which in S5 is equivalent to ¬ctrls(j , p) ∈ v , and since v is a m.c.
set we obtain ctrls(j , p) 6∈ v .

We now prove the right to left direction of item 2. To do so,
suppose that (hyp1) π(v) ≡A π(v ′), (hyp2) v(ω) ≡i

Ωv′
i

v ′(ω) and

(hyp3) v(γ) ≡i
Av′

j
∩Ωv′

i

v ′(γ) for all j ∈ N . We need to show that

R̂K
i (v , v ′), that is, for all ϕ we have ϕ ∈ v ′ implies Miϕ ∈ v .

Take an arbitrary ϕ ∈ v ′. By Theorem 6, we assume w.l.o.g. that
for some k we have ϕ↔ ∨

1≤j≤k (πj ∧ γj ∧ ωj ).
Since v ′ is an m.c. set, there is (uniquely) a full description π ∧

γ ∧ ω such that (π ∧ γ ∧ ω) ∈ v ′.

From (hyp1) we have π ∈ v and by Ax1 we obtain

Kiπ ∈ v (8)

Let us writeω asω1∧ω2 such thatω1 contains the `(seeswho(i , p))
literals (those concerning i’s observations) and ω2 contains all the
other literals in ω. Since by (hyp2) we have v(ω) ≡i

Ωv′
i

v ′(ω), we

have ω1 ∈ v and by Axiom Ax3 we get Kiω1 ∈ v . Hence

Kiω1 ∈ v (9)

Let us now decompose γ into γ1 ∧ γ2 such that γ1 contains all
the ctrls(j , p) appearing in γ such that p ∈ Ωv′

i
and ω2 contains

all the other control atoms appearing in γ.
From (hyp3) we know that for all j ∈ N we have v(γ) ≡i

Av′
j
∩Ωv′

i

v ′(γ). Then for all p ∈ Av′
j
∩ Ωv′

i
and all j ∈ N , we have that

ctrls(j , p) ∈ v iff ctrls(j , p) ∈ v ′.
Then we have γ1 ∈ v and by Axiom Ax6 we obtain

Kiγ1 ∈ v (10)

Finally, using Axiom Ax5 we obtain

Mi(ω2 ∧ γ2) ∈ v (11)

Combining (8), (9), (10), and (11) we then obtain Mi(π∧ω∧γ) ∈
v , i.e., Miϕ ∈ v .

THEOREM 8 (COMPLETENESS OF Λ2 .). Λ2 is sound and com-
plete with respect to the class of ECL-PC(UO) frames.

Let us finally sketch a general setup, in which:

1. not every atom p ∈ A needs to be in control of an agent;

2. agent i does not necessarily know what j sees (if i 6= j ) and
does not have complete ignorance either;

3. agent i does not necessarily know what j knows about con-
trol (if i 6= j ) and does not have complete ignorance either.

To cater for this, let Υi = 〈Ωi ,Vi〉, where Ωi ⊆ A and Vi ⊆ A.
The idea is that for every atom in Ωi , agent i knows who controls
it, and for every atom in Vi , agent i knows what its truth value is.
Now, a model M is of the form

M = 〈N ,S ,R∆,'〉, where

1. S is a set of states 〈A1, . . . ,An ,Υ1, . . . ,Υn , θ〉;
(a) ∪i∈N Ai ⊆ A and Ai ∩ Aj 6= ∅
(b) Υi = 〈Ωi ,Vi〉 with Ωi ,Vi ⊆ A

2. R∆ : N → S × S is a binary relation. This relation satisfies
the following: for every 〈A1, . . . ,An ,Υ1, . . . ,Υn , θ〉 ∈ S ,
and every θ′ such that θ ≡A\Ais

θ′, there is a state t =

〈A1, . . . ,An ,Υ1, . . . ,Υn , θ
′〉;

3. Given two states s = 〈A1, . . . ,An ,Υ1, . . . ,Υn , θ〉 and s ′ =
〈A′1, . . . ,A′n ,Υ′1, . . . ,Υ′n , θ′〉, define

s 'i s ′ iff

 Υi = Υ′i
∀p ∈ Vi θ(p) = θ′(p)
∀p ∈ Ωi∀j ∈ N (p ∈ Aj iff p ∈ A′j )
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The semantics is very general and allows for a number of speciali-
sations. Examples of such specialisations are:

1. For all states s and every agent i , Ωis = A (complete knowl-
edge about control)

2. For all states s and t , and every agent i , the components Ωis

and Ωit are the same.

3. For all states s and t , and every agent i , the components Vis

and Vit are the same.

These properties entail some validities:

1. |= ctrls(j , p)↔ Kictrls(j , p)

2. |= Kictrls(j , p)↔ (KhKictrls(j , p) ∧ 2NKictrls(j , p))

3. |= sees(i , p)↔ (Khsees(i , p) ∧ 2N sees(i , p))

In fact, all those specialisations apply to ECL-PC(PO). Other nat-
ural assumptions would be that for instance Ai ⊆ Ωi (correspond-
ing to ctrls(i , p) → Kictrls(i , p)) and Ai ⊆ Vi (corresponding
to ctrls(i , p)→ sees(i , p)).

We give one simple scenario that can be modelled in this set-
up, that of Voting. All agents either desire something (pi ) or not.
They can reveal their preference through qi : if pi ↔ qi , agent i is
truthful, otherwise it lies. Here, Ai = {qi}, Ωi = {qj | j ∈ N }
and Vi = {pi} ∪ {qj | j ∈ N }. In other words, we assume
agents cannot control what they prefer, although what they can do
is choose their vote. We have here

`(pi)→ Ki(3i(`(pi) ∧ qi) ∧3i(`(pi) ∧ ¬qi))

i.e., i knows that it can vote truthfully but it can also lie. We also
get Kiqj → ¬(Kipj ∨ Ki¬pj ): even if i knows j ’s vote, it does
not know j ’s real preference. Note that the information about what
agents see and what they know about controls is still global, we
have e.g. KiKj ctrls(h, qh).

4. CONCLUSION
As noted before, we added an information component to the logic
of propositional control CL-PC ([14]). From a technical perspec-
tive, like in [7], our logic ECL-PC(PO), even if we would require
that all agents see all propositional variables, is an extension of
CL-PC, since as presented in [14], the distribution of propositional
variables A over agents is assumed as given. In ECL-PC(PO), it is
not given, but it is fixed, implying that a specification ϕ may leave
room for different distributions of the atoms, but once it is chosen,
there is no way to refer to other distributions, not in terms of what
agents can imagine, nor in terms of what they can achieve.

There are close connections between propositional logics of con-
trol and other logics that facilitate reasoning about the powers of
coalitions, like Coalition Logic [11] and ATL [2]. In fact, CL-PC
was partially motivated by the way the model checking system
MOCHA for ATL [3] is designed, in which the system is divided
in a number of modules (agents, in our terminology), each con-
trolling its own set of Boolean variables. And indeed, there have
been several attempts to add an epistemic component to ATL [13,
8, 1]. However, what those extensions all have in common is that
the uncertainty of the agents is specified in an abstract way: in the
Kripke models for the logics for cooperation and knowledge, the
accessibility relations corresponding to knowledge are just given,
abstract, equivalence relations. In our logic CL-PC(PO) the knowl-
edge is determined by the variables of which the agent can see the
truth value, and in ECL-PC(UO) this accessibility relation is deter-
mined by the variable of which the agent can see the ownership. In

this sense, we provide a computationally grounded semantics [16]
for knowledge, which brings our approach closer to the interpreted
systems approach to epistemic logic [5, 6]. Interestingly enough,
the key idea of interpreted systems (two states are the same for
agent i if the atoms that it sees have the same value) does not only
apply to the epistemic dimension in our logics, but also to the con-
trol dimension: two states are reachable in terms of i’s control, if
the values of the atoms not in i’s control is the same.

Future work should study how to combine our two approaches,
as suggested at the end of Section 3, and to weaken some of the un-
derlying assumptions regarding the agents’ knowledge. Related to
this, we would like to provide a completeness proof for our systems
that does not rely on a normal form (and on the assumption that the
number of propositional atoms is finite). Doing this, one needs to
find a way of juggling with the two types of definitions of ‘access’
we are dealing with here: on the one hand, the canonical model in
modal logic defines this in terms of membership of formulas in the
states, whereas the interpreted systems approach would to this in
terms of ‘similarity’ of the states. We hope that work of Lomus-
cio [9], connecting general S5 semantics with that of interpreted
systems, may give some first steps in this search. Another natural
direction to be explored is to emphasize the group aspect of both di-
mensions: when forming a coalition C to bring about ϕ, i.e., 3Cϕ
gives rise to interesting questions from cooperative game theory,
and epistemic logic provides the tools and results to combine this
with interesting notions of group knowledge.
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ABSTRACT
A well known (and often used) result by Marc Pauly states
that for every playable effectivity function E there exists a
strategic game that assigns to coalitions exactly the same
power as E, and vice versa. While the latter direction of the
correspondence is correct, we show that the former does not
always hold in the case of infinite game models. We point
out where the proof of correspondence goes wrong, and we
present examples of playable effectivity functions in infinite
models for which no equivalent strategic game exists. Then,
we characterize the class of truly playable effectivity func-
tions, that does correspond to strategic games. Moreover,
we discuss a construction that transforms any playable effec-
tivity function into a truly playable one while preserving the
power of most (but not all) coalitions. We also show that
Coalition Logic is not expressive enough to distinguish be-
tween playable and truly playable effectivity functions, and
we extend it to a logic that can make this distinction while
enjoying finite axiomatization and finite model property.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems; I.2.4 [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods—Modal
logic; J.4 [Social and Behavioral Sciences]: Economics

General Terms
Theory

Keywords
Strategic reasoning, cooperative games, correspondence

1. INTRODUCTION
Several logics for reasoning about coalitional power have

been proposed and studied in the last two decades. Eminent
examples are: Alternating-time Temporal Logic (ATL) [1],
Coalition Logic (CL) [11], and Seeing To It That (STIT) [2],
used in computer science and philosophy to reason about
properties of multi-agent systems. A crucial feature of these
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Goranko, Jamroga, Turrini, Proc. of 10th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011),
Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei, Tai-
wan, pp. 727-734.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

logics is the correspondence between their models and the
game structures they are meant to reason about.

In particular, the connection between the semantics of
Coalition Logic and games relies on Pauly’s representation
theorem [11] which states that playable effectivity functions
correspond exactly to strategic games. Moreover, the corre-
spondence has been used to obtain further results for CL: if
the semantics can be defined equivalently in terms of strate-
gic games and playable effectivity functions, they can be
used interchangeably when proving properties of the logic.
A similar remark applies to ATL and STIT, connected to
Coalition Logic by a number of simulation results [4, 6, 7].

The correspondence between strategic games and effectiv-
ity functions is important even without the logical context.
Effectivity functions generalize basic models of cooperative
game theory, whereas strategic games are models of non-
cooperative game theory. Pauly’s result is relevant as it
puts forward a characterization of strategic games in terms
of coalitional games, therefore establishing a connection be-
tween the two families of game models.

In this paper, we show that the representation theorem
is not correct as it stands. More precisely, we show that
there are some playable effectivity functions with no corre-
sponding strategic games. We point out where Pauly’s proof
of correspondence goes wrong, and we present examples of
playable effectivity functions , for which no equivalent strate-
gic games exist. Then, we define a more restricted class of
effectivity functions, that we call truly playable, and we show
that they correspond precisely to strategic games. We dis-
cuss several alternative characterizations of truly playable
functions. Moreover, we present a construction that recov-
ers the correspondence in the sense that it transforms any
playable function into a truly playable one while preserving
the power of most (but not all) coalitions. Finally, we dis-
cuss the ramifications for the above mentioned logics. On
the one hand we show that the complete axiomatization of
Coalition Logic from [11] is not affected if we change the
class of models from playable to truly playable. On the
other hand, we propose more expressive languages that can
characterize the property of true playability, thus drawing a
logical distinction with Pauly’s playability.

2. PRELIMINARIES

2.1 Strategic Games
Strategic games are basic models of non-cooperative game

theory [10]. After [11], we focus on abstract game forms,
where the effect of strategic interaction between players is
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represented by abstract outcomes from a given set and play-
ers’ preferences are not specified. For simplicity we refer to
them as strategic games.

Definition 1 (Strategic game). A strategic game G
is a tuple (N, {Σi|i ∈ N}, o, S) that consists of a nonempty
finite set of players N , a nonempty set of strategies Σi for
each player i ∈ N , a nonempty set of outcomes S, and an
outcome function o :

∏
i∈N Σi → S which associates an out-

come with every strategy profile.

Additionally, we follow [11] and define coalitional strate-
gies σC in G as tuples of individual strategies σi for i ∈ C,
i.e., ΣC =

∏
i∈C Σi. Note that this definition allows for only

one strategy σ∅ when C = ∅, namely the empty function.

2.2 Effectivity Functions
Effectivity functions have been introduced in cooperative

game theory [9] to provide an abstract representation of the
powers of coalitions to influence the outcome of the game.

Definition 2 (Effectivity function). An effectivity

function is a function E : 2N → 22S , that associates a family
of sets of states from S with each set of players.

Intuitively, elements of E(C) are choices available to coali-
tion C: if X ∈ E(C) then by choosing X the coalition C can
force the outcome of the game to be in X. Effectivity func-
tions are usually required to satisfy additional properties,
consistent with this interpretation.

Definition 3 (Playability [11]). An effectivity func-
tion E is playable iff the following conditions hold:

Outcome Monotonicity X ∈ E(C) and X ⊆ Y implies
Y ∈ E(C);

N-maximality X 6∈ E(∅) implies X ∈ E(N);

Liveness ∅ /∈ E(C);

Safety S ∈ E(C);

Superadditivity if C ∩D = ∅, X ∈ E(C) and Y ∈ E(D),
then X ∩ Y ∈ E(C ∪D).

Looking at playable effectivity functions, we can observe
that their representation contains some redundancy. In par-
ticular, the fact that E(C) is outcome monotonic suggests
that one could succinctly represent it in terms of minimal
sets, i.e., the elements of E(C) that form an antichain under
set inclusion. The nonmonotonic core, introduced in [11], is
aimed at providing such a representation.

Definition 4 (Nonmonotonic core). Let E be an ef-
fectivity function. The nonmonotonic core Enc(C) for C ⊆
N is the set of minimal sets in E(C):

Enc(C) = {X ∈ E(C) | ¬∃Y (Y ∈ E(C) and Y ( X)}.
We will show in Section 3.1 that not all sets in an effec-

tivity function need to contain a set from the nonmonotonic
core. Thus, Enc does not always behave well as a represen-
tation of the effectivity function, unless it is “complete” in
the following sense.

Definition 5 (Complete nonmonotonic core). The
nonmonotonic core Enc(C) is complete iff for every X ∈
E(C) there exists Y ∈ Enc(C) such that Y ⊆ X.

The nonmonotonic core of the empty coalition is of par-
ticular interest to us. For it, the following holds.

Proposition 1. For every playable effectivity function E:

1. E(∅) is a filter.

2. Enc(∅) is either empty or a singleton.

Proof. (1) E(∅) is non-empty by Safety; closed under
supersets by Outcome Monotonicity, and under intersections
by Superadditivity (with respect to the empty coalition).

(2) Suppose Enc(∅) is non-empty, and let X,Y ∈ Enc(∅).
Then, coalition ∅ is effective for each of X and Y , hence, by
superadditivity, it is effective for X ∩ Y . By the definition
of Enc(∅), it follows that X = X ∩ Y = Y .

Each strategic game G can be canonically associated with
an effectivity function, called the α-effectivity function of G
and denoted with EαG.

Definition 6 (α-Effectivity in Strategic Games).
For a strategic game G the α-effectivity function EαG : 2N →
22S is defined as follows: X ∈ EαG(C) if and only if there
exists σC such that for all σC we have o(σC , σC) ∈ X.

Proposition 2. For every α-effectivity function

EαG : 2N → 22S , the following hold:

1. The nonmonotonic core of EαG(∅) is the singleton set
{Z} where Z = {{x} ∈ S | x = o(σN ) for some σN}.

2. EαG(∅) is the principal1 filter generated by Z.

Proof. For both claims it suffices to observe that Z ∈
EαG(∅) and that Z ⊆ U for every U ∈ EαG(∅). Therefore,
Enc(∅) = {Z} for E = EαG and EαG(∅) is the principal filter
generated by Z.

3. PROBLEM WITH CORRESPONDENCE
In this section we show that playability is not sufficient to

make effectivity functions correspond to strategic games.

3.1 Counterexample to Pauly’s Representation
Theorem

Theorem 3 (Pauly’s Representation Theorem [11]).
A coalitional effectivity function E α-corresponds to a strate-
gic game if and only if E is playable.

Thus, the theorem states that every playable effectivity
function is equal to the α-effectivity function of some game
(Pauly calls this equivalence relation α-correspondence), and
that each game has an α-effectivity function that is playable.
While the latter is true, the former turns out incorrect.

Proposition 4. There is a playable effectivity function
E for which E 6= EαG for all strategic games G.

Proof. Consider an effectivity function E ranging on a
set N consisting of a single player a and on the set of natural
numbers N (i.e., N = {a}, S = N), and defined as follows:

• E({a}) = {X ⊆ N | X is infinite};
1Filter F on domain Ω is principal iff there exists X ⊆ Ω
such that F is the set of all supersets of X. Then, F is said
to be generated by X.
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• E(∅) = {X ⊆ N | X is finite}.
We claim that E is playable and that it does not corre-

spond to any strategic game. Let us first verify the playabil-
ity conditions. Outcome monotonicity, N-maximality, live-
ness and safety are straightforward to check. For superad-
ditivity, notice that we have only two cases to verify:

1. C = {a}, D = ∅. Superadditivity holds here because
intersection of an infinite and a cofinite set is infinite.

2. C = ∅, D = ∅. Superadditivity in this case holds be-
cause intersection of two cofinite sets is cofinite.

On the other hand, Enc(∅) = ∅ because there are no
minimal cofinite sets. This implies, by Proposition 2, that
E 6= EαG for all strategic games G.

3.2 Tracing the Problem
Below, we summarize the relevant part of the proof of

Theorem 2.27 from [11], and show where it goes wrong. We
outline the construction of a strategic game G given an effec-
tivity function E (Steps 1–4); then, the argument supposed
to show that E α-corresponds to G (Steps 5–6).

Step 1: the players and the domain remain the same.
The game G = (N,S,Σi, o) inherits the set of outcomes and
the set of players as in the effectivity function E.

Step 2: coalitions choose a set from their effectivity
function. Now, a family of functions is defined:

Fi = {fi : Ci → 2S | for all C we have that fi(C) ∈ E(C)}
where Ci = {C ⊆ N | i ∈ C}. Each function fi assigns
choices to all coalitions of which i is a member. Fi simply
collects all such assignments.

Step 3: coalitions are partitioned according to their
choices. Let f = (fi)i∈N , fi ∈ Fi, be a tuple of such as-
signments, one per player. The next step is to define the set
P∞(f) which results from iterative partitioning of the set of
players in the coarsest possible way such that players in the
same partition are assigned same coalitional choices:

P0(f) = 〈N〉
P1(f) = P (f,N) = 〈C1

1 , . . . , C
1
k1〉

P2(f) = 〈P (f, C1
1 ), . . . , P (f, C1

k1)〉 = 〈C2
2 , . . . , C

2
k2〉

...

P∞(f) = Pr(f) such that Pi(f) = Pi+1(f) for all i ≥ r,
where each P (f, C) returns the coarsest partitioning
〈C1, . . . , Cm〉 of coalition C such that for all l ≤ m and
for all i, j ∈ Cl it holds that fi(C) = fj(C).

Step 4: an outcome is chosen in the intersection of
coalitional choices. Strategies and outcome function are
defined as follows. Each player in N is given a set of strate-
gies of the form (fi, ti, hi) where fi ∈ Fi is an assignment
of coalitional choices for player i (see Step 2), ti is a player
(possibly different from i), and hi : 2S \ ∅ → S is a selec-
tor function that picks up an arbitrary element from each
nonempty subset of S.

The outcome of strategy σN is now defined as:

o(σN ) = hi0(G(f)), G(f) =

k⋂
l=1

f(Cl),

where i0 is a uniquely chosen player, hi0 is the outcome
selector from i0’s strategy, and Cl is one of the k coalitions
in P∞(f).

This concludes the construction of a game G which should
α-correspond to the effectivity function E. Steps 5–6 are
supposed to prove that E = EαG .

Step 5: choices are not removed by the construction.
First, an attempt to prove E(C) ⊆ EαG (C) for arbitrary
coalition C is presented [11, p.29]:

For the inclusion from left to right, assume that
X ∈ E(C). Choose any C-strategy σC = (fi, ti, hi)i∈C
such that for all i ∈ C and for all C′ ⊇ C we have
fi(C

′) = X.(*) By coalition monotonicity, such
fi exists.(**) Take now any C-strategy, σC =
(fi, ti, hi)i∈C . We need to show that o(σC , σC) ∈
X. To see this, note that C must be a subset
of one of the partitions Cl in P∞(f). Hence,

o(σN ) = hi0(G(f)) = hi0
⋂k
l=1 f(Cl) ∈ X.

The deduction of the last sentence is where the proof goes
wrong. The problem is that, for C = ∅, the only available
strategy is the empty strategy σ∅ which vacuously satisfies
condition (*). And, for any agent i, a choice assignment
fi satisfying the condition must exist. However, there is
no guarantee that any i will indeed choose fi in its strategy
since the coalition C for which we can fix its strategy does
not include any players. In consequence, one cannot deduce
that hi0

(⋂k
l=1 f(Cl)

) ∈ X; this could be only concluded if
the intersection contains at least one player whose choice
fi(Cl) is X (or a subset of X).

Another case where the reasoning fails is C = N . Consider
a state space S with x ∈ S, and an effectivity function E
such that {x} /∈ E(N). Now, let strategy profile σN consist
of σi = (fi, ti, hi) where everybody assumes choosing the
whole state space in all circumstances (i.e., fi(C) = S for all
i and C) and applies the same selector hi such that hi(S) =
x. Now we get that o(σN ) = x, so {x} ∈ EαG (N), and hence
E(N) 6= EαG (N).

Step 6: choices are not added by the construction.
The proof of the other direction (EαG (C) ⊆ E(C)) fails too,
because in order to establish the inclusion for C = N , it is
reduced to inclusion in step 5 for C = ∅, and we have just
shown that it does not necessarily hold.

This concludes our analysis of the proof of Pauly’s repre-
sentation theorem in [11]. We consider it important for two
reasons. First, we have identified precisely what was wrong
with the construction of the proof. Second, we will reuse
the sound parts of the original construction when proving a
revised version of the correspondence in Section 4.2 and to
obtain some additional results in Section 4.4.

4. TRULY PLAYABLE EFFECTIVITY
FUNCTIONS

In this section we introduce an additional constraint on
playable effectivity functions, that will enable us to restore
the correspondence with strategic games in in Section 4.2.

4.1 Characterizing True Playability

Definition 7. An effectivity function E is truly playable
iff it is playable and E(∅) has a complete nonmonotonic core.
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Several equivalent characterizations of truly playable ef-
fectivity functions are given in Proposition 5. For one of
them, we will need the additional notion of a crown. Intu-
itively, an effectivity function is a crown if every choice of
the agents in the grand coalition includes at least one state
that the grand coalition can enforce precisely.

Definition 8. An effectivity function E is a crown iff
X ∈ E(N) implies {x} ∈ E(N) for some x ∈ X.

Proposition 5. The following are equivalent for every

playable effectivity function E : 2N → 22S .

1. E is truly playable.

2. E(∅) has a non-empty nonmonotonic core.

3. Enc(∅) is a singleton and E(∅) is a principal filter,
generated by Enc(∅).

4. E is a crown.

Proof. (1) ⇒ (2): immediate, by safety.
(2) ⇒ (3): Let Z ∈ Enc(∅) and let X ∈ E(∅). Then,

by superadditivity, Z ∩ X ∈ E(∅), and Z ∩ X ⊆ Z, hence
Z ∩X = Z by definition of Enc(∅). Thus, Z ⊆ X. So, E(∅)
is the principal filter generated by Z, hence Enc(∅) = {Z}.

(3) ⇒ (1): immediate from the definitions.
(3) ⇒ (4): Let Enc(∅) = {Z} and suppose {x} /∈ E(N)

for all x ∈ X for some X ∈ E(∅). Then, by N-maximality,
S \ {x} ∈ E(∅), i.e. Z ⊆ S \ {x} for every x ∈ X. Then
Z ⊆ S \X, hence S \X ∈ E(∅). Therefore, X /∈ E(N) by
superaditivity and liveness. By contraposition, E is a crown.

(4) ⇒ (3): Let Z = {z | {z} ∈ E(N)} and let X ∈ E(∅).
Take any z ∈ Z, which is nonempty by liveness and the
fact that E is a crown. By superadditivity we obtain that
{z} ∩ X ∈ E(∅), hence z ∈ X by liveness. Thus, Z ⊆ X.
Moreover, Z ∈ E(∅), for else S\Z ∈ E(N) by N-maximality,
hence {x} ∈ E(N) for some x ∈ S \ Z, which contradicts
the definition of Z. Therefore, E(∅) is the principal filter
generated by Z, hence Enc(∅) = {Z}.

Corollary 6. Every playable effectivity function

E : 2N → 22S on a finite domain S is truly playable.

Proof. Straightforward, by Proposition 5.3 and the fact
that every filter on a finite set is principal.

4.2 Truly Playable Functions Correspond to
Strategic Games

The proof of Theorem 2.27 from [11] fails when we con-
sider the effectivity function of the empty coalition or the
grand coalition. However the proof is correct for the other
cases. We will now show that the additional condition of
true playability yields correctness of the original construc-
tion from [11].

Theorem 7. A coalitional effectivity function E α-corre-
sponds to a strategic game if and only if E is truly playable.

Proof. By Propositions 2 and 5, for any strategic game
G its α-effectivity function EαG is truly playable.

For the other direction, given a truly playable effectivity
function E, we slightly change Pauly’s procedure outlined in
Section 3.2 (Steps 1–4). We impose an additional constraint
on players’ strategies σi = (fi, ti, hi), namely, we require
that hi(X) = x for some {x} ∈ E(N). In other words,

the selector functions only select the “jewels” in the crown.
Note that for C /∈ {∅, N} the new procedure yields game G′
with exactly the same Eα(C) as the original construction G
from [11] (we omit the proof due to lack of space). It remains
now to show that the procedure constructs a strategic game
G such that E(C) = EαG (C) for all C ⊆ N , that is, to show
that steps 5 and 6 work well in truly playable structures.

Ad. Step 5. We show that E(C) ⊆ EαG (C) for C = ∅ and
C = N , the only cases in which the original proof failed.

Assume that X ∈ E(∅). We need to prove that X ∈
EαG (∅). By true playability we know that there exists Y ∈
Enc(∅) such that Y ⊆ X. By Proposition 5, Enc(∅) =
{Y } and E(∅) = {Z | Y ⊆ Z}. We will show now that
Y = {x | {x} ∈ E(N)} (*). First, suppose that x ∈ Y
and {x} /∈ E(N), then by N -maximality S \ {x} ∈ E(∅), a
contradiction. Second, let {x} ∈ E(N) and x /∈ Y , then by
superadditivity ∅ ∈ E(N) which contradicts liveness.

Now, consider any strategy profile σN . We have o(σN ) =

hi0
(⋂k

l=1 f(Cl)
) ∈ Y because every hi returns only elements

in Y by construction.
For the case C = N , assume that X ∈ E(N). We need

to prove that X ∈ EαG (N). By true playability, there exists
x ∈ X such that {x} ∈ E(N). Now, let σN consist of
strategies σi = (fi, ti, hi) such that fi(N) = {x} for every i.
It is easy to see that o(σN ) = x, and hence {x} ∈ EαG (N).
Thus, X ∈ EαG (N) because EαG (N) is closed under supersets.

Ad. Step 6. Dually to Step 5, we show that EαG (C) ⊆
E(C). That is, assuming X 6∈ E(C) we show that X 6∈
EαG (N). We do it by a slight modification of the original
proof from [11].

Suppose first that C = N . Then, X ∈ E(∅) by N -
maximality, and by Step 5 we have X ∈ EαG (∅). Since EαG is
truly playable, we have also that X 6∈ EαG (N).

Assume now that C 6= N , and let j0 ∈ C. Let σC be
any strategy for coalition C. We must show that there is
a strategy σC such that o(σC , σC) 6∈ X. To show this, we

take σC = (fi, ti, hi)i∈C such that for all C′ ⊇ C and for

all i ∈ C we have fi(C
′) = S. We also choose tj0 such that

((t1+. . .+tn) mod n)+1 = j0. Note that C must be a subset
of one of the partitions Cl in P∞(f), say Cl0 . Moreover,
there must be a partitioning 〈C1, . . . , Ck〉 ofN\Cl0 such that

G(f) = f(Cl0) ∩ ⋂kl=1 f(Cl) =
⋂k
l=1 f(Cl). Since f(Cl) ∈

E(Cl) we get that G(f) ∈ E(N)\Cl0 by superadditivity. By
coalition-monotonicity and the fact that N \ Cl0 ⊆ C, we
also have G(f) ∈ E(C). Finally, by (*) and superadditivity
we obtain G(f) ∩ {x | {x} ∈ E(N)} ∈ E(C).

Since X 6∈ E(C) and E(C) is closed under supersets, it
must hold that G(f) ∩ {x | {x} ∈ E(N)} 6⊆ X. Thus,
there is some s0 ∈ S such that: s0 ∈ G(f), {s0} ∈ E(N),
and s0 /∈ X. Now we fix hj0 so that hj0(G(f)) = s0.
Then, o(σC , σC) = hj0(G(f)) = s0 6∈ X which concludes
the proof.

4.3 Non-Truly Playable Structures
In this section we focus on the class of playable but not

truly playable effectivity functions, hereafter called “non-
truly playable”. Non-truly playable effectivity functions have
a simple abstract characterization, following from Proposi-
tion 5:

Proposition 8. Effectivity function E : 2N → 22S is
non-truly playable if and only if it is playable and E(∅) is a
non-principal filter.
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To see a more generic class of examples, consider an infi-
nite domain S, and let F be any non-principal filter on S.
Then we define an effectivity function EF on S as follows.

• EF (∅) = F .

• EF (N) = {X | X 6∈ F}
• For each C with ∅ ( C ( N take EF (C) to be any

set of sets such that EF (∅) ⊆ EF (C) ⊆ EF (N) that is
closed under outcome monotonicity and that are pair-
wise closed under regularity and superadditivity.

Proposition 9. EF is playable but not truly playable.

We omit the proof due to lack of space.

4.4 From Playable to Truly Playable Effectiv-
ity Functions

In this section we show that one can reconstruct a non-
truly playable effectivity function into a truly playable one
with “minimal” modifications. To do so, we interpret choices
of the grand coalition containing multiple outcome states as
ones that involve inherent nondeterminism. That is, we in-
terpret {x1, x2, . . . } ∈ E(N) as a choice where no agent has
control over which state out of x1, x2, . . . will become the
outcome; as a consequence any of these states can possibly
be encountered in the next moment. Under such assump-
tion, it is possible to recover true playability by a simple
extension of Pauly’s procedure. The extension consists in
adding an extra player d (the “decider”) who settles the
nondeterminism and decides which of x1, x2, . . . is going to
become the next state.

Proposition 10. Let E : 2N → 22S be a playable ef-
fectivity function. There exists a truly playable effectivity

function E′ : 2N∪{d} → 22S with additional player d 6∈ N ,
such that:

• E′(C) = E(C) for every C ⊆ N,C 6= ∅,
• E′(∅) = {S}, and

• E′(N ∪ {d}) = 2S \ {∅}.
Proof. Given a playable E, we construct a strategic game

whose α-effectivity function satisfies the properties above.
Then, existence of a truly playable effectivity function fol-
lows immediately. The idea is to take the construction from
the proof of Theorem 2.27 in [11] and reassign selection of
the outcome state to the additional player d.

Let h : 2S \ {∅} → S be any selector function that selects
an arbitrary element from the argument set. In our case,
h will designate the “default” outcome for each subset of S.
Now, the game G is constructed as follows:

• N ′ = N ∪ {d};
• The strategies of each player i 6= d are simply the

player’s assignments of coalitional choice, i.e., Σi = Fi,
as in section 3.2;

• The strategies of d are state selections: Σd = S;

• The transition function is based on the same partition-
ing of N as before, that yields 〈C1, . . . , Ck〉. Then, the
game proceeds to the state selected by the decider if
his choice is consistent with the choices of the others,
otherwise it proceeds to the appropriate “default” out-
come:

o(σN , s) =

{
s if s ∈ ⋂ki=1 f(Cl)

h(
⋂k
i=1 f(Cl)) else.

Now, it is easy to see that for every ∅ ( C ( N indeed
EαG (C) = E(C) because that was the case in the original con-
struction, and the only difference now is that d “took over”
the selection of a state in

⋂k
i=1 f(Cl) from a collective choice

of N . For C = N , we also have EαG (N) = E(N) since for ev-

ery σN we get by superadditivity that
⋂k
i=1 f(Cl) ∈ E(N),

and every state from the intersection can be potentially se-
lected by d. Moreover, {s} ∈ EαG (N ∪ {d}) for every s ∈ S
because {s} is enforced by σN∪{d} = 〈f1, . . . , f|N|, s〉 such
that fi = S for all i ∈ N . Thus, by outcome monotonic-
ity, EαG (N ∪ {d}) = 2S \ {∅}. Finally, by true playability of
EαG , we have EαG (∅) = {{s | {s} ∈ EαG (N ∪ {d})}} = {S}.
We observe additionally that EαG (d) = {{s} ∪ {h(X) | X ∈
EαG(d) and s /∈ X} | s ∈ S}.

5. LOGICS AND TRUE PLAYABILITY
In this section, we investigate the impact of true playabil-

ity on logics of coalitional ability. We begin by indicating
that the validities of Coalition Logic do not change if we re-
strict models to truly playable. As a consequence, CL (and
even ATL) cannot distinguish between playable and truly
playable models. Then, we discuss two extensions of CL
that can discern the two classes of structures.

For preliminaries on modal logic see e.g. [5, 3].

5.1 Ramifications for CL
We recall from [11] that the models of Coalition Logic

(also called coalition models ) are neighborhood models of
the type M = (W,E, V ) consisting of a set of states W , a

dynamic effectivity function E : W → (
2N → 22W

)
and a

valuation function V : W → 2P ranging over a countable
set of atomic propositions P . A coalitional frame is a coali-
tion model minus the valuation. A model (resp. frame) is
playable iff it includes only playable effectivity functions at
each w ∈ W , and truly playable iff it includes only truly
playable functions at each w ∈ W . The operator [C] is in-
terpreted as follows:

M,w |= [C]φ if and only if φM ∈ E(w)(C),

where φM is the set {v ∈ W |M, v |= φ}. Formula ϕ is valid
in model M (M |= ϕ) if and only if it holds in every state in
M ; ϕ is valid in frame F (F |= ϕ) if and only if it is valid in
every model based on F . We extend these notions to classes
of models and frames in the obvious way.

We note that the problem with Pauly’s Representation
Theorem has no repercussions on the semantics of CL and
the soundness/completeness results for that logic. Let us for-
mally define Play to be the class of playable coalition models,
and TrulyPlay as the class of truly playable models. Since
TrulyPlay ( Play, every CL formula valid in Play is valid in
TrulyPlay, too. The converse follows from the finite model
property of CL with respect to Play [11] and the fact that it
coincides with TrulyPlay on finite models.

Corollary 11. The axiomatization of CL from [11] is
sound and complete wrt truly playable coalition models, and
hence, also with respect to strategic game models.

Furthermore, the semantics based on effectivity functions
can be extended to ATL (see. [6]; also, cf. [11] for the frag-
ment of ATL without “until”, called Extended CL). Again,
it can be shown that Play and TrulyPlay determine the same
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sets of validities for ATL, by checking the soundness of the
axiomatization for ATL given in [7] for Play, and using the
completeness result for ATL with respect to strategic game
models (equivalently, TrulyPlay) proved in the same paper.

5.2 CL with Infinite Disjunctions
One possible extension of CL that can tell apart the classes

Play and TrulyPlay involves infinite disjunctions of formulas.
The idea is that in truly playable models, every choice of
the grand coalition can be narrowed down to a singleton.
The infinitary disjunction

∨
i∈I for a set of indices I has the

natural interpretation:

M,w |=
∨
i∈I

φi if and only if M,w |= φi for some i ∈ I.

Proposition 12. For any cardinal number2 κ, let Playκ
(resp. TrulyPlayκ) denote the class of playable (resp. truly
playable) coalition models with the domain of outcomes W
of cardinality at most κ and let {pι}ι∈κ be a set of different
propositional letters.

1. Playκ 6|= [N ]
∨
ι∈κ pι ↔

∨
ι∈κ[N ]pι;

2. TrulyPlayκ |= [N ]
∨
ι∈κ pι ↔

∨
ι∈κ[N ]pι.

Proof. For (1) simply check the example in Section 3.1
with the set S being κ and every state ι associated with a
designating atomic proposition pι. Claim (2) follows from
Proposition 5.

5.3 CL with “Outcome Selector” Modality
Adding infinitary operators to a logical language makes

its practical applicability problematic. Here we propose an-
other (in fact, simpler) extension of CL, by adding a new
normal modality 〈O〉, with a dual [O], called “outcome se-
lector”. The informal reading of 〈O〉φ should be “there is an
outcome state, enforceable by the grand coalition and satis-
fying φ”. In order to define the semantics of 〈O〉 in the usual
semantic way, we first expand coalition models to what we
call extended coalition models with an additional “outcome
enforceability” relation R. Later we will use axioms to im-
pose the right behavior of R.

Definition 9 (Extended coalition frames). An ex-
tended (playable) coalition frame is a neighbourhood frame
F = (W,E,R) where W is a set of outcomes, E a playable
effectivity function, R a binary relation on W .

An extended coalition model is an extended coalition frame
endowed with a valuation function. Given an extended coali-
tion model M = (W,E,R, V ), the modality 〈O〉 is inter-
preted as follows.

M,w |= 〈O〉φ if and only if wRs and M, s |= φ.

That is, 〈O〉 has standard Kripke semantics with respect
to the outcome enforceability relation R. Note that ex-
tended coalition models do not require any interaction be-
tween the effectivity function and the relation R. However,
given the intuitive reading of the relation R, the interaction
suggests itself, and the following definition account for that.

Definition 10 (Standard coalition frames).
A standard coalition frame is an extended coalition frame
such that, for all w, v ∈ W , we have wRv if and only if
{v} ∈ E(w)(N).
2We regard cardinals as (special) ordinals in von Neumann
sense: any ordinal is the set of all smaller ordinals.

A standard coalition model is a standard coalition frame
with a valuation function. Depending on the properties of
the underlying effectivity functions we call extended coali-
tion frames and models playable or truly playable.

5.4 Characterizing Standard Truly Playable
Coalition Frames

Proposition 13. An extended coalition frame F is stan-
dard and truly playable if and only if F |= [N ]q ↔ 〈O〉q, for
any atomic proposition q.

Proof. Left to right: Assume that F is standard and
truly playable. Assume first that (F, V ), w |= [N ]q for any V
and w ∈W . By definition of E we have that qM ∈ E(w)(N).
As F is truly playable there is v ∈ qM with {v} ∈ E(w)(N).
However F is also standard so wRv. But this means that
(F, V ), w |= 〈O〉q. Conversely, if (F, V ), w |= 〈O〉q then
wRv for some v ∈ qM . F being standard we have that
{v} ∈ E(w)(N). By outcome monotonicity qM ∈ E(w)(N),
i.e. (F, V ), w |= [N ]q.

Right to left: Assume that F |= [N ]q ↔ 〈O〉q. Let us first
prove that F is standard. Suppose wRv for some w, v ∈W .
Let V be a valuation that assigns the atom q only to v. We
have that M,w |= 〈O〉q. Then, by the assumptions we also
have M,w |= [N ]q, which means that {v} ∈ E(w)(N). Con-
versely, suppose now that {v} ∈ E(w)(N). For the same
valuation V we must have that (F, V ), w |= [N ]q and by
assumption that 〈O〉q, which means that wRv. Thus, F is
standard. To prove that F is truly playable, assume that
for some X ⊆ W , X ∈ E(w)(N) and let now V be a val-
uation function such that V (q) = X. By definition of E
we have that (F, V ), w |= [N ]q, hence by assumption, that
(F, V ), w |= 〈O〉q, which means that wRv for some v ∈ V (q).
Then, F being standard, {v} ∈ E(w)(N).

5.5 Standard Truly Playable Models: Axioms
We propose the following axiomatic system TPCL for the

class of standard truly playable coalition models TrulyPlay,
extending Pauly’s axiomatization of CL. The axioms include
propositional tautologies plus the following schemes:

1. [N ]>
2. ¬[C]⊥
3. ¬[∅]φ→ [N ]¬φ
4. [C]φ∧[D]ψ → [C∪D](φ∧ψ) for any disjoint C,D ⊆ N
5. [N ]φ↔ 〈O〉φ
6. [O](φ→ ψ)→ ([O]φ→ [O]ψ).

The inference rules are: Modus Ponens, plus:

φ→ ψ

[C]φ→ [C]ψ
, and

φ

[O]φ
.

Remark. Axiom 5 seems to render the outcome modal-
ity [O] redundant. This, however, is not so, because the se-
mantics of the modality [N ] is (monotonic) neighbourhood
semantics, while the semantics of [O] is by default Kripke
semantics. Relating these by Axiom 5 suffices to enforce
the true playability of the underlying frames, as shown in
Proposition 13. On the other hand, it is easy to show that
the normality Axiom 6, as well as the necessitation rule for
[O], are derivable from the rest. We have only added them
to emphasize the fact that [O] is a normal modality.

The proof of the following claim is routine.
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Proposition 14. TPCL is sound for the class TrulyPlay:
every formula derivable in TPCL is valid in TrulyPlay.

5.6 Completeness for TPCL

Theorem 15 (Completeness theorem). Every formula
consistent in TPCL is satisfiable in TrulyPlay. Consequently,
the logic TPCL is complete for the class TrulyPlay.

We will prove the completeness, using canonical model
construction followed by filtration for monotonic modal log-
ics, partly using constructions from [5] and [11]. Thus, we
will also obtain finite model property for TPCL. Here we
only sketch the standard canonical model construction and
refer the reader for further details to [5] and [11].

We start with a formula δ which is consistent in TPCL.
By a well-known argument, it is contained in some maximal
TPCL-consistent set. We take the set WL of maximally
consistent sets and define for every formula φ the proof set
of φ as φ∗ = {s ∈WL | φ ∈ s}.

To shorten the notation we hereafter denote the logic
TPCL by L.

Definition 11 (Canonical Model). The canonical
model for TPCL is ML = (WL, EL, RL, V L) where:

- w ∈ V L(p) if and only if p ∈ w;
- X ∈ EL(w)(C) iff ∃ψ∗ ⊆ X : [C]ψ ∈ w, for C 6= N
- X ∈ EL(w)(C) iff ∀ψ∗ if X ⊆ ψ∗ then [C]ψ ∈ w, for C = N
- wRLv iff ∀ψ, if ψ ∈ v then 〈O〉ψ ∈ w.

Some remarks:

• That EL is playable and well-defined is proved in [11].

• The canonical relation for N is defined in [11] in the
following equivalent way: X ∈ EL(w)(N) if and only if
[∅]ψ 6∈ w for all ψ∗ such that ψ∗ ⊆ X. The equivalence
follows easily from the fact that `L [N ]φ↔ ¬[∅]¬φ.

Proposition 16 (Truth Lemma). For any w ∈ WL

we have that ML, w |= φ if and only if φ ∈ w.

Proof. By induction on the length of φ: standard for
atomic propositions, boolean formulas, and formulas of the
form 〈O〉ψ; proved in [11] for formulas of the form [C]ψ.

The canonical model is an extended coalition model, how-
ever it is neither standard nor truly playable. The reason for
that is the fact that for all ψ ∈ L, ψ ∈ v implies that [N ]ψ ∈
w is not sufficient to conclude that {v} ∈ EL(w)(N) as
states are not characterized by unique formulas of the lan-
guage of L. In order to obtain a standard and truly playable
model satisfying the given L-consistent formula δ we are go-
ing to filter the canonical model with the set Σ(δ), obtained
by taking all subformulae of δ and closing under boolean
operators. That set is finite up to propositional equivalence.

Filtrations.
First, we define a general notion of filtration for extended

coalition models and then a special filtration construction
that preserves playability. Filtrations of coalition models are
introduced, e.g., in [8] for the purpose of axiomatizing Nash-
consistent Coalition Logic. Here we only add the filtration
for the relation corresponding to the modality 〈O〉.

Let M = (W,E,R, V ) be an extended coalition model and
Σ a subformula-closed set of formulas over L. The equiva-
lence classes induced by Σ on M are defined as follows:

v ≡Σ w ⇔ for all φ ∈ Σ : M, v |= φ if and only if M,w |= φ.

We denote the equivalence class to which v belongs by |v|
and the set {|v| | v ∈ X} by |X| for any v ∈W and X ⊆W .

Definition 12 (Filtration). Let M = (W,E,R, V )
be an extended coalition model and Σ a subformula closed set
of formulas over L. A coalition model Mf

Σ = (W f
Σ , E

f
Σ, R

f
Σ, V

f
Σ )

is a filtration of M through Σ whenever the following condi-
tions are satisfied:

• W f
Σ = |W |.

• For all C ⊆ N and φ ∈ Σ, φM ∈ E(w)(C) implies

{|v| |M, v |= φ} ∈ EfΣ(|w|)(C).

• For all C ⊆ N and Y ⊆ |W |: Y ∈ EfΣ(|w|)(C)
implies that for all φ ∈ Σ if φM ⊆ {v | |v| ∈ Y } then
φM ∈ E(w)(C).

• If wRv then |w|R|v|.
• If |w|R|v| then for all 〈O〉φ ∈ Σ, if M, v |= φ then M,w |=
〈O〉φ.

• V fΣ (p) = |V (p)| for all atoms p ∈ Σ.

The conditions above are needed to ensure the Filtration
Lemma, as showed in [8] for the neighbourhood relations
and e.g., in [5] for the binary relation.

Proposition 17 (Filtration Lemma). If Mf
Σ =

(W f
Σ , E

f
Σ, R

f
Σ, V

f
Σ ) is a filtration of M through Σ then for all

φ ∈ Σ we have that M,w |= φ if and only if Mf
Σ, |w| |= φ.

Definition 13 (Playable Filtration). Let M =
(W,E,R, V ) be an extended coalition model and Σ(δ) the
boolean closure of the set of subformulas of δ, such that
δ ∈ L, the language of TPCL. A coalition model MF

Σ(δ) =

(WF
Σ(δ), E

F
Σ(δ), R

F
Σ(δ), V

F
Σ(δ)) is a playable filtration of M through

Σ(δ) whenever the following conditions are satisfied:

• WF
Σ(δ) = |W |.

• For all C ( N,C 6= N , and Y ⊆ |W |: Y ∈ EFΣ(δ)(|w|)(C)

if and only if there exists φ ∈ Σ(δ) such that φM ⊆ {v |
|v| ∈ Y } and φM ∈ E(w)(C).

• For all Y ⊆ |W |: Y ∈ EFΣ(δ)(|w|)(N) if and only if

Y 6∈ EFΣ(δ)(|w|)(∅).

• |w|RFΣ(δ)|v| if and only if there exists w′ ∈ |w|, ∃v′ ∈ |v|
such that w′Rv′.

• V FΣ(δ)(p) = |V (p)| for all atoms p ∈ Σ(δ).

That MF
Σ(δ) is a filtration in the sense of Definition 12 is

proved in [8] for the coalitional modalities. We have added
to that a minimal filtration for modality 〈O〉. So MF

Σ(δ) is a
filtration in the sense of Definition 12. In [8] it is also shown
that playability is preserved by that filtration and that every
subset of WF

Σ(δ) is definable by a formula of Σ(δ) as follows.
First, for every state |w| ∈ |W | we define

χFΣ(δ)(|w|) :=
∧
{φ ∈ Σ(δ) |MF

Σ(δ), |w| |= φ}.

Then, for every Y ⊆ |W | we put

χFΣ(δ)(Y ) :=
∨
{χFΣ(δ)(|w|) | |w| ∈ Y }.
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It is straightforward to show, using the filtration lemma,
that for every Y ⊆ |W |:

MF
Σ(δ), |w| |= χFΣ(δ)(Y ) if and only if |w| ∈ Y,

that is, χFΣ(δ)(Y ) indeed characterizes the set y in MF
Σ(δ).

Proposition 18. ML,FΣ(δ) is standard and truly playable.

Proof. To prove that ML,FΣ(δ) is standard we have to show

that for each w, v ∈ W , |v|RL,FΣ(δ)|w| if and only if {|v|} ∈
EL,FΣ(δ)(|w|)(N). From right to left it is straightforward. For

the other direction, suppose |v|RL,FΣ(δ)|w|. Then ML,FΣ(δ), |v| |=
〈O〉χFΣ(δ)(|w|) by definition of RL,FΣ(δ) and by the properties

of filtrations. By the fact that RL,FΣ(δ) is a minimal filtra-

tion we have that ∃w′ ∈ |w|, ∃v′ ∈ |v| such that v′RLw′.
By definition of RL and the Truth Lemma we have that
ML, v′ |= 〈O〉χFΣ(δ)(|w|). By the axioms of L and the Truth

Lemma we have ML, v′ |= [N ]χFΣ(δ)(|w|), hence ML, v′ |=
¬[∅]¬χFΣ(δ)(|w|). Then (¬χFΣ(δ)(|w|))M

L 6∈ EL(v′)(∅) by the

definition of EL. But, by Definition 12 {(¬χFΣ(δ)(|w|))M
L,F
Σ(δ)} 6∈

EL,FΣ(δ)(|v|)(∅) and in turn {(χFΣ(δ)(|w|))M
L,F
Σ(δ)} ∈ EL,FΣ(δ)(|v|)(N).

Recall now that (χFΣ(δ)(|w|))M
L,F
Σ(δ) = |w|.

Now, to prove that ML,FΣ(δ) is truly playable, assume Y ∈
EL,FΣ(δ)(|w|)(N). Then, (¬χFΣ(δ)(Y ))

M
L,F
Σ(δ) 6∈ EL(w)(∅) by the

definition of filtration, which means that for all φ ∈ Σ(δ), if

{v | |v| ∈ (¬χFΣ(δ)(Y ))
M
L,F
Σ(δ)} ⊆ φM then φM 6∈ EL(w)(∅).

In particular (¬χFΣ(δ)(Y ))M
L 6∈ EL(w)(∅). By the definition

of EL we have that [∅]¬χFΣ(δ)(Y ) 6∈ w and by true playa-

bility that 〈O〉χFΣ(δ)(Y ) ∈ w. By the definition of canonical

relation for 〈O〉 we have that there exists v with wRLv such

that χFΣ(δ)(Y ) ∈ v. By definition of filtration |w|RL,FΣ(δ)|v|
and by the Filtration Lemma ML,FΣ(δ), |v| |= χFΣ(δ)(Y ). Fi-

nally, {|v|} ∈ EL,FΣ(δ)(|w|)(N) since ML,FΣ(δ) is standard.

This completes the proof of the Completeness theorem 15.

Corollary 19 (Finite Model Property). The logic
TPCL has the finite model property with respect to the class
of models TrulyPlay.

6. CONCLUSIONS
In this paper, we have revisited the correspondence be-

tween two classes of abstract game forms: strategic games
from noncooperative game theory on one hand, and effec-
tivity functions from cooperative game theory on the other.
We consider our contribution as threefold. First, we have
corrected a well-known and often used result from [11] relat-
ing strategic games and playable effectivity functions. We
have shown that strategic games do not correspond to all
playable functions, but to a strict subset of the class, which
we call truly playable effectivity functions. Second, we have
provided several abstract characterizations of truly playable
functions. We have also shown that the remaining playable
effectivity functions (that we call non-truly playable) are in-
duced by non-principal filters, and hence only scenarios with

infinitely many possible outcomes can fall in that class. Fi-
nally, we have pointed out that Coalition Logic and ATL are
not expressive enough to characterize true playability. On
the other hand, they can be extended in a relatively simple
way to obtain such a characterization. To this purpose we
have proposed an extension of Coalition Logic with a normal
outcome selector modality that we have shown sufficient for
axiomatic characterization of truly playable structures.

The importance of our work is mainly theoretical. Essen-
tially, it implies that all the claims that have been proved
using Pauly’s correspondence between playable effectivity
functions and games should be revisited and possibly re-
interpreted in the light of the results presented here. Exam-
ple of such issues, already addressed here, include: axioma-
tization for Coalition Logic in the class of multi-player game
models, axiomatization of ATL in coalitional models, and
the respective finite model properties. In practical terms,
this also means that, whenever a decision procedure is built
on those theoretical results, the designer should be aware
of the correct correspondence between the two classes of
game models, which is especially relevant for satisfiability-
checking algorithms. Tableaux for extensions of Coalition
Logic, like the one for a combination of CL and description
logic ALC from [12], are examples of such procedures.
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ABSTRACT
In epistemic logic, Kripke structures are used to model the distri-
bution of information in a multi-agent system. In this paper, we
present an approach to quantifying how much information each par-
ticular agent in a system has, or how important the agent is, with
respect to some fact represented as a goal formula. It is typically
the case that the goal formula is distributed knowledge in the sys-
tem, but that no individual agent alone knows it. It might be that
several different groups of agents can get to know the goal formula
together by combining their individual knowledge. By using power
indices developed in voting theory, such as the Banzhaf index, we
get a measure of how important an agent is in such groups. We
analyse the properties of this notion of information-based power in
detail, and characterise the corresponding class of voting games.
Although we mainly focus on distributed knowledge, we also look
at variants of this analysis using other notions of group knowledge.
An advantage of our framework is that power indices and other
power properties can be expressed in standard epistemic logic. This
allows, e.g., standard model checkers to be used to quantitatively
analyse the distribution of information in a given Kripke structure.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
I.2.4 [Knowledge representation formalisms and methods]

General Terms
Theory

Keywords
Epistemic logic, power indices, model checking

1. INTRODUCTION
Epistemic logic is widely used in the multi-agent systems commu-
nity to reason about the knowledge and ignorance of agents in terms
of the information they possess [5]. In many situations, it would be
useful to be able to quantify how information is distributed in a sys-
tem, or to reason about the relative importance of the information

∗For also Knowledge itself is Power; with apologies to Francis Ba-
con.

Cite as: Scientia Potentia Est, Thomas Ågotnes and Wiebe van der Hoek
and Michael Wooldridge, Proc. of 10th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2011), Tumer, Yolum, So-
nenberg and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 735-742.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

that different agents have. In general, it is difficult to answer the
question of whether an agent has more information than another
agent except for in special cases, such as when one agent knows
everything another agent knows [15]. In this paper, we quantify the
distribution of information in a system in a specific sense satisfying
two assumptions. The first is that we are interested in who knows
more about some given fact. The second is that we are interested in
situations where information can be communicated between agents,
and it is not always possible or desirable to communicate with ev-
ery other agent in the system.

Consider the following situation. M knows that if sales are up
this quarter, the stock price will increase (p → q). T knows that if
the new CEO has signed the contract, the stock price will increase
(r → q). W knows that sales are up this quarter and that the new
CEO has signed the contract (p∧ r). Assume that this describes all
(relevant) facts that the three agents know. Who knows more? We
are here interested in a more specific type of question: who has the
most important or valuable information about whether or not the
stock price will increase (q), in a social setting where communica-
tion is possible? None of the agents alone knows q, but they can
combine their knowledge to find out that q is in fact true. And here
the importance of the knowledge of the three agents differ: M and
W can together find out q, as can T and W. M and T cannot. It
can thus be argued that W knows more about q in this social set-
ting, since he can combine his knowledge in several different ways
with others’ knowledge – and, indeed, it is not hard to see that W’s
knowledge is necessary for any group to be able to find out q, un-
like that of M or T . If it is important for each individual agent to
find out q, and since no agent already knows q, the only possibil-
ity is to communicate with someone else; in which case clearly W
would be considered the most important agent.

In this paper we analyse the relative importance of the knowl-
edge each agent has in a system where information about some
fact or objective (q in our example above) is distributed through-
out the system. To this end, we employ power indices such as the
Banzhaf index, known from voting theory. The starting point is a
pointed Kripke structure. It is typically the case that the objective
is distributed knowledge in the system, but that no individual agent
knows it. It might be that several different groups of agents can get
to know the objective by combining their knowledge. Our approach
measures the importance of an agent in an arbitrary group of agents
wrt. deriving the objective. We consider an agent to be powerful,
or to have important information, if the probability of changing the
distributed knowledge in the group from ignorance to knowledge
about the objective by joining some arbitrary group, is high. This
concept of information based power can, e.g., be used to identify
agents that are crucial to the functioning of the multi-agent system.

The question of “who knows more” in epistemic logic has re-
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cently been studied in [15]. The notion of information based power
we introduce in this paper is a more fine-grained generalisation: if
an agent knows more in the sense of [15] then she has a higher
power index, but not necessarily the other way around. Solution
concepts for coalitional games have recently been used to measure
the degree of inconsistency in databases [8]. In [2] power indices
are used to analyse the relative importance of agents when in terms
of complying or not complying with a normative system defined
over a Kripke-like structure [12, 1]. However, we are not aware of
any approaches using power indices to measure relative importance
of agents in terms of their knowledge/information as described by
a Kripke structure.

The paper is organised as follows. In the two next sections we
briefly review some background material about epistemic logic and
power indices that we will use. In Section 4 we define power
indices for agents, given a pointed Kripke structure and a goal
formula. We give a complete characterisation of the power in-
dices that can be obtained in this way, study their properties in
detail, and show how standard epistemic logic can be used to ex-
press power properties. Since these power properties can be ex-
pressed in epistemic logic, we can also use epistemic logic to rea-
son about agents’ knowledge about such properties. In Section 5
we study what agents know about the distribution of information-
based power in the system. In most of the paper we use distributed
knowledge to define power, but in Section 6 we discuss other types
of group knowledge as well. We conclude in Section 7.

2. EPISTEMIC LOGIC
Assume a finite set of agents Ag = {1, . . . , n} and a countably
infinite set of atomic propositions Θ. The language LK of the epis-
temic logic S5n is defined by the following grammar:

ϕ ::= > | p | Kiϕ | ¬ϕ | ϕ1 ∧ ϕ2

where p ∈ Θ and i ∈ Ag. An epistemic (Kripke) structure, M,
(over Ag, Θ) is an (n + 2)-tuple [5]:

M = 〈W,∼1, . . . ,∼n, π〉, where

• W is a finite, non-empty set of states;

• ∼i ⊆ W ×W is an epistemic accessibility relation for each
agent i ∈ Ag, where each ∼i is an equivalence relation; and

• π : W → 2Θ is a Kripke valuation function, which gives the
set of primitive propositions satisfied in each state.

Formulae are interpreted in a pointed structure, a pair M, s, where
M is a model and s is a state in M, as follows.

• M, s |= >
• M, s |= p iff p ∈ π(s) (where p ∈ Θ)

• M, s |= ¬ϕ iff M, s 6|= ϕ

• M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

• M, s |= Kiϕ iff for all t such that s ∼i t, M, t |= ϕ.

We will make use of extensions of S5n with group knowledge. To
this end, when G ⊆ Ag, we denote the union of G’s accessibility
relations by ∼E

G, so ∼E
G= (

S
i∈G ∼i). We use ∼C

G to denote the
transitive closure of ∼E

G. Finally, ∼D
G denotes the intersection of

G’s accessibility relations (cf. [5, p.66–70]). The logics S5D
n , S5C

n
and S5CD

n are obtained as follows. The respective languages, LD,
LC, and LCD, are obtained by adding the clause DGϕ, CGϕ, and
both, respectively, where G ⊆ Ag, to the definition of LK . The
interpretation of the two group operators:

• M, s |= DGϕ iff for all t such that s ∼D
G t, M, t |= ϕ

• M, s |= CGϕ iff for all t such that s ∼C
G t, M, t |= ϕ

We use the same notation for the satisfaction relation for all these
logics; it will be clear from context which logic we are working in.
As usual, we write M |= ϕ if M, s |= ϕ for all s in M, and |= ϕ
if M |= ϕ for all M; in this latter case, we say that ϕ is valid.
A formula is satisfied in a pointed model if it is true. When Φ is
a set of formulae, Φ |= ϕ, Φ entails ϕ, means that any pointed
model that satisfies Φ also satisfies ϕ. A formula is satisfiable if
there exists a pointed model that satisfies it. A formula or set of
formulae is satisfiable in a set of pointed models if it is satisfied
by at least one pointed model in that set. The usual propositional
abbreviations are used, in addition to EGϕ (G ⊆ Ag) for

V
i∈G Kiϕ;

K̂iϕ for ¬Ki¬ϕ; D̂Gϕ for ¬DG¬ϕ and ĈGϕ for ¬CG¬ϕ. We will
often abuse notation and write singleton sets of agents {i} as i.

EGϕ means that all individuals in the group G know ϕ. DGϕ
means that ϕ is distributed knowledge among G. Roughly speak-
ing, this knowledge would come about if all members of G were to
share their information (but see also Section 4.2). CGϕ, that ϕ is
common knowledge in G, means that EGϕ∧EGEGϕ∧EGEGEGϕ∧
. . . . These concepts of group and individual knowledge are related
as follows (with i ∈ G):

|= (CGϕ→ EGϕ)∧(EGϕ→ Kiϕ)∧(Kiϕ→ DGϕ)∧(DGϕ→ ϕ)

The above implications express that common knowledge is the stron-
gest property, and truth the weakest. However, since CGϕ is such a
strong notion, this often means it will only be obtained for ‘weak’
ϕ. Or [5], common knowledge can be paraphrased as what ‘any
fool knows’, while distributed knowledge corresponds to what ‘a
wise man knows’.

Finally, the knowledge set of G ⊆ Ag in M, s is:

KG(M, s) = {ϕ ∈ LK : M, s |= Kiϕ for some i ∈ G}

3. COALITIONAL GAMES AND POWER
We briefly review some key concepts from the area of cooperative
game theory [10] and the theory of voting power [6] that we will
use in the following. A cooperative (or coalitional) game is a pair
Γ = 〈Ag, ν〉, where Ag = {1, . . . , n} is a set of players, or agents,
and ν : 2Ag → R is the characteristic function of the game, which
assigns to every set of agents a numeric value, which is convention-
ally interpreted as the value that this group of agents could obtain
if they chose to cooperate. A cooperative game is said to be sim-
ple if the range of ν is {0, 1}; in simple games we say that G are
winning if ν(G) = 1, while if ν(G) = 0, we say G are losing.
A simple cooperative game is said to be monotonic if ν(G) = 1
implies that ν(H) = 1, whenever G ⊆ H. A monotonic simple co-
operative game is sometimes called a simple voting game [6]. For
simple games, a number of power indices attempt to characterise in
a systematic way the influence that a given agent has, by measuring
how effective this agent is at turning a losing coalition into a win-
ning coalition [6]. The best-known of these is perhaps the Banzhaf
index and its relatives, the Banzhaf score and Banzhaf measure [3].

Agent i is said to be a swing player for G if G is not winning but
G ∪ {i} is. We define a function swing(G, i) so that this function
returns 1 if i is a swing player for G, and 0 otherwise, i.e.,

swing(G, i) =


1 if ν(G) = 0 and ν(G ∪ {i}) = 1
0 otherwise.

Now, we define the Banzhaf score for agent i, denoted σi, to be the
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number of coalitions for which i is a swing player:

σi =
X

G⊆Ag\{i}
swing(G, i). (1)

The Banzhaf measure µi, is the probability that i would be a swing
player for a coalition chosen at random from 2Ag\{i}:

µi =
σi

2n−1
(2)

The Banzhaf index for a player i ∈ Ag, denoted by βi, is the pro-
portion of coalitions for which i is a swing to the total number of
swings in the game – thus the Banzhaf index is a measure of rel-
ative power, since it takes into account the Banzhaf score of other
agents:

βi =
σiP

j∈Ag σj
(3)

Finally, we define the Shapley-Shubik index; here the order in which
agents join a coalition plays a role. Let P(Ag) denote the set of
all permutations of Ag, with typical members $,$′, etc. If $ ∈
P(Ag) and i ∈ Ag, then let prec(i, $) denote the members of
Ag that precede i in the ordering $. Given this, let ςi denote the
Shapley-Shubik index of i, defined as follows:

ςi =
1

|Ag|!
X

$∈P(Ag)

swing(prec(i, $), i) (4)

Thus the Shapley-Shubik index is essentially the Shapley value [10,
p.291] applied to simple ({0, 1}-valued) cooperative games.

We say that a player is a veto player if it is included in all winning
coalitions, a dictator if µi = 1, and a dummy if µi = 0.

4. POWER OF DISTRIBUTED KNOWLEDGE
We define the power of agents given a pointed Kripke structure,
and an objective specified as a goal formula. Intuitively, an agent
is maximally powerful if she already knows the goal formula, and
is completely powerless if she does not know anything needed in
combination with others’ knowledge to be able to conclude that the
goal formula is true. In between these two extremes are potentially
many intermediate levels of power: the more sub-groups the agent
can join in order for the group to have shared knowledge of the
objective, the more powerful the agent is.

In order to formalise the fact that information about the goal for-
mula is shared in a group, we use the concept of distributed knowl-
edge. We define a simple coalitional game where a coalition is
winning iff it has distributed knowledge about the goal formula.

Formally, a goal structure is a tuple S = 〈M, s, χ〉, where M, s
is a pointed model over agents Ag and χ ∈ LD is a goal formula.
Given a goal structure we define the simple game 〈Ag, νD

S 〉:

νD
S (G) =


1 M, s |= DGχ
0 otherwise.

EXAMPLE 1. Figure 1 shows a model MMTW of the situation
described in the introduction. Observe that MMTW , s |= KM(p →
q)∧KT(r → q)∧KW(p∧r), and also that these formulae represent
“private” knowledge of the respective agents; i.e., we have that
MMTW , s |= ¬KM(r → q)∧¬KM(p∧ r)∧¬KT(p→ q)∧¬KT(p∧
r) ∧ ¬KW(p → q) ∧ ¬KW(r → q). Furthermore observe that
MMTW , s |= ¬Dxq for all x ∈ {M, T,W}, and that MMTW , s |=
¬D{M,T}q ∧ D{M,W}q ∧ D{T,W}q. We thus get that M is swing for
exactly {W}, that T is swing for exactly {W}, that W is swing for
exactly {M}, {T} and {M, T}, and thus that:

σM = σT = 1, σW = 3 µM = µT = 1
4
, µW = 3

4

βM = βT = 1
5
, βW = 3

5
ςM = ςT = 1

6
, ςW = 2

3
.

•p,¬q,¬r

T T

•¬p,¬q,¬r
t

M,T

M

•p,q,r
s

M

W •p,¬q,r

•¬p,¬q,r

Figure 1: The model MMTW . Reflexive loops are omitted.

What are the properties of νD
S ? From the fact that DGχ implies

DHχ when G ⊆ H it follows that νD
S is always monotonic. In fact,

monotonicity completely characterise the (simple) games induced
in this way: every monotonic (voting) game is induced by some
Kripke structure and goal formula via the definition above.

THEOREM 1. For any simple cooperative game Γ = 〈Ag, ν〉,
there exists a goal structure S such that νD

S = ν iff Γ is monotonic.

PROOF. The implication to the right is immediate (as already
mentioned), so assume that ν is monotonic. Let p ∈ Θ. We con-
struct a goal structure S = 〈M, s, χ〉 such that νD

S = ν as follows:
W = {s0} ∪ {sH : ν(H) = 0}; s = s0; V(p) = {s0}; χ = p. ∼i is
defined by the following equivalence classes: [s0]∼i = {s0}∪{sH :
i ∈ H} and for every H′ such that i 6∈ H′, [sH′ ]∼i = {sH′}. Infor-
mally: for each H such that ν(H) = 0 there is a designated state sH

where p is false, which no agent in H can discern from s0.
Let ν(G) = 1. We must show that M, s0 |= DGp, so let t be such

that (s0, t) ∈ Ti∈G ∼i. It suffices to show that t = s0. Assume
otherwise: that t = sH for some H such that ν(H) = 0. For every
i ∈ G, s0 ∼i sH , and by the definition of ∼i it follows that i ∈ H.
Thus, G ⊆ H. But since ν(G) = 1 and ν(H) = 0, that contradicts
monotonicity.

Conversely, let ν(G) = 0. We have that s0 ∼i sG for every i ∈ G
and M, sG |= ¬p. Thus M, s0 6|= DGp.

4.1 Expressing Power
Epistemic logic can be used to express and reason about power in
Kripke structures. The following expressions can, e.g., be used
together with a standard model checker, to determine the power
distribution in a given structure.

• i is swing for G when the goal is χ:

Swing(G, i, χ) ≡ ¬DGχ ∧ DG∪{i}χ

• The Banzhaf score of i wrt. goal χ is at least k:

BAL(i, k, χ) ≡
_

G1 6=···6=Gk⊆Ag\{i}

^
G∈{G1,...,Gk}

Swing(G, i, χ)

• The Banzhaf score of i wrt. goal χ is k:

B(i, k, χ) ≡ BAL(i, k, χ) ∧ ¬BAL(i, k + 1, χ)

• Of potential interest is checking whether or not one agent has
more information/power than another. Note that the maxi-
mal Banzhaf score is determined by the maximum number
of coalitions not containing the agent; 2n−1. The Banzhaf
score of agent i is at least as high as that of agent j:

BNoLower(i, j, χ) ≡
_

k∈[0,2n−1]

BAL(i, k, χ) ∧ ¬BAL(j, k, χ)
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• i is a veto player wrt. goal χ:

Veto(i, χ) ≡ ¬DAg\{i}χ

i is a veto player iff it is included in all winning coalitions,
iff all coalitions without i are losing, iff ¬DGχ holds for all
G without i. By monotonicity this holds iff Veto(i, χ) holds.

• i is a dictator wrt. goal χ:

Dictator(i, χ) ≡ Veto(i, χ) ∧ Kiχ

i is a dictator iff all coalitions containing i are winning, and
no coalition without i is winning. This holds iff Dictator(i, χ)
holds, by monotonicity.

• i is a dummy wrt. goal χ:

Dummy(i, χ) ≡
^

G∈2Ag

DG∪{i}χ→ DGχ

i is a dummy iff ∀G : M, s |= ¬(¬DGχ∧DG∪{i}χ) which is
equivalent to ∀G : M, s |= DG∪{i}χ→ DGχ.

4.2 Full Communication
Implicit in the idea of information-based power is that groups of
agents should somehow be able to realise the knowledge distributed
among them in order to jointly find out that the goal formula is true.
However, while distributed knowledge is the most popular concept
in the literature aiming to capture the “sum” of the knowledge in a
group, it has the following property, as first pointed out in [13]. It
might be that G has distributed knowledge of the goal, but it is still
not possible for the group to establish χ through communication
in the following sense: it might not be the case that there exists
a formula ϕi for each i ∈ G such that M, s |= V

i∈G Kiϕi and |=V
ϕi → χ. This (possibly lacking) communication property is

equivalent [13] to:

M, s |= DGχ ⇒
[
i∈G

Ki(M, s) |= χ (5)

and [13] calls this the principle of full communication (the other
direction of (5),

S
i∈GKi(M, s) |= χ⇒ M, s |= DGχ, holds on any

model). As an example, consider the model M1 in Figure 2. In this
model p is distributed knowledge among agents 1 and 2 in state s,
but p is not entailed from the individual knowledge of 1 and 2 in s
and the model does not satisfy the principle of full communication.

•p
s

1 2

•p
s

1,2

•¬p

2

•¬p

1

•¬p

1,2

•p •p

Figure 2: Models M1 (left) and M2 (right). Reflexive and tran-
sitive edges omitted.

So, if we take the p as the goal formula, agent 1 is swing for {2}
in state s in the model M1 above, but it is not possible for agents
1 and 2 to actually infer p together by communicating using the
epistemic language. Our information-based power measures make
particular sense in models that satisfy the principle of full commu-
nication, because in such models whatever is distributed knowledge

can be obtained by communication in the sense that it follows from
individual knowledge that the involved agents can specify and com-
municate as logical formulas. So which models satisfy the principle
of full communication? There are two particularly relevant model
properties here (generalisations of propositions given in [13]). A
model M = 〈W,∼1, . . . ,∼n, π〉 is a:

• full model [7] iff for all s ∈ W, G ⊆ Ag, and Φ ⊆ LD: if
Φ∪KG(M, s) is satisfiable then Φ is satisfiable in {t : (s, t) ∈
∼D

G }.
• full communication model [11] iff for all s ∈ W, G ⊆ Ag, and
ϕ ∈ LK : if {ϕ}∪KG(M, s) is satisfiable then ϕ is satisfiable
in {t : (s, t) ∈ ∼D

G }.
Clearly, full models are full communication models. [7] shows that
fullness is sufficient for the principle of full communication to hold,
while [11] shows that a model satisfies the principle of full commu-
nication if and only if the model is a full communication model.

While this definition of full communication models may seem
somewhat technical, note that the principle of full communication
is often violated by the existence of bisimilar states in the model
(such as in the model above). Indeed, bisimulation contractions of
finite models are full communication models (they are distinguish-
ing in the sense of [13], due to the existence of characteristic formu-
lae). Models that are finite and do not contain bisimilar states (and
thus are their own bisimulation contractions) are very common.

Thus, on full communication models we get an alternative, equiv-
alent, definition of power. We have that:

νD
S (G) = 1 ⇔

[
i∈G

Ki(M, s) |= χ (6)

when M is a full communication model.

4.3 Properties of Power
The relationship between power properties and epistemic proper-
ties is of natural interest, not the least in order to validate that our
definition of power is reasonable. The relationship properties in the
following lemma are discussed below.

LEMMA 1. Let the goal structure S = 〈M, s, χ〉 be given.

1. If M, s |= ¬DAgχ, then xi = 0 for all i and x ∈ {σ, µ, β, ς}.
2. If M, s |= ¬χ, then xi = 0 for all i and x ∈ {σ, µ, β, ς}.
3. If M, s |= Kiχ, then xi ≥ xj for all j and x ∈ {σ, µ, β, ς}.
4. If M, s |= ¬DAg\{i}χ, xi ≥ xj for all j and x ∈ {σ, µ, β, ς}.
5. If M, s |= Kiχ ∧ ¬Kjχ, then xi > xj for all x ∈ {σ, µ, β, ς}.
6. On full communication models, if Ki(M, s) ⊆ Kj(M, s) then

xi ≤ xj, for any power measure x ∈ {σ, µ, β, ς}.
The first property says that if not enough information to infer the
goal formula is distributed throughout the complete system, then
every agent has no power. The second property is a special case
of the first – the goal cannot be derived because it is not true. The
third and fourth properties represent the other extreme: maximum
power. The agent has maximum power (at least as much power
as anyone else) if she already knows the goal, or if the rest of the
system does not have enough information to derive the goal (i.e, if
the agent is a veto player). The fifth and sixth properties are about
relative power. The fifth says that an agent who already knows χ
is always strictly more powerful than an agent who does not know
χ. The sixth property says that if one agent knows at least as much
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as another agent, then the first agent is at least as powerful. This
relates our definition of power to a more classical notion of “know-
ing more” in a reasonable way. Our notion is more fine grained;
the implication does not hold in the other direction. The sixth prop-
erty holds for full communication models, which, again, is a natural
class of models in which to interpret our power measures since they
come with a natural mechanism for distribution of information.

PROOF (OF LEMMA 1). 1. Follows immediately from mono-
tonicity: if i is swing for G, then M, s |= DG∪{i}χ.

2. Immediate from |= ¬χ→ DAg¬χ and the first item.
3. If suffices to show that i is swing for any coalition any agent

j is swing for. So assume that M, s |= ¬DGχ ∧ DG∪{j}χ. From
M, s |= Kiχ it follows that M, s |= DG∪{i}χ, and thus i is also
swing for G.

4. Assume that j is swing for G. From M, s |= DG∪{j}χ, the
assumption that M, s |= ¬DAg\{i}χ and monotonicity, it follows
that i ∈ G. Thus it also follows that i is swing for (G \ {i}) ∪ {j}.
Because i ∈ G and j 6∈ G for coalitions G for which j is swing,
(G1 \{i})∪{j} 6= (G2 \{i})∪{j} for any two different coalitions
G1,G2 for which j is swing, and thus there are at least as many
swings for i.

5. If j is swing for G, M, s |= ¬DGϕ so G cannot contain i and i
is also swing for G. In addition, i is swing for ∅, unlike j.

6. Let M be a full communication model and assume that i is
swing for G, i.e., that M, s |= DGχ ∧ DG∪{i}χ. From the fact that
M is a full communication model and eq. (6) above, we get thatS

l∈G∪{i}Kl(M, s) |= χ. FromKi(M, s) ⊂ Kj(M, s) it follows thatS
l∈G∪{j}Kk(M, s) |= χ which again means that M, s |= DG∪{j}χ.

Thus, j is swing for G.

In the following lemma we look at power measures in “similar”
models. The proper notion of bisimulation for distributed knowl-
edge, and hence our power measures, is given in the second point.

LEMMA 2.

1. The power measures are not invariant under (standard) bisim-
ulation. That is, bisimilar pointed models may have different
power measures.

2. The power measures are invariant under collective bisimu-
lation [11].

3. On full models, the power measures are invariant under (stan-
dard) bisimulation.

PROOF. 1. A counter-example is found in Figure 2, which con-
tains two bisimilar models with two agents. It is easy to see that by
taking χ = p, we get σ1 = 1 in M1 but σ1 = 0 in M2.

2. follows immediately from the fact that satisfaction in LD is
invariant under collective bisimulation [11, Prop. 19].

3. For full models the notions of collective bisimulation and
bisimulation coincide [11, Prop. 20].

Finally, let us look at the relationship between power properties
and the structure of the goal formula. We will make use of the
logical expressions of power properties from Section 4.1.

Starting with tautologies and contradictions:

|= ¬Swing(G, i,>) |= ¬Swing(G, i,⊥)
|= Veto(i,⊥) |= ¬Veto(i,>)
|= ¬Dictator(i,⊥) |= ¬Dictator(i,>)

With such goal formulae, no agent can be swing for any coalition.
Every agent is a veto player for ⊥, while no agent is a veto player
for >. No agent can be a dictator for ⊥ nor >.

The case of conjunction:

|= (Swing(G, i, χ1) ∧ Swing(G, i, χ2))→ Swing(G, i, χ1 ∧ χ2)

Swings are closed under the operation of taking conjunction of goal
formulae. The converse does not hold, but this does:

|= Swing(G, i, χ1 ∧ χ2)→ (Swing(G, i, χ1) ∨ Swing(G, i, χ2))

– if i is swing wrt. a conjunction, she is swing wrt. at least one of
the conjuncts (but not necessarily both).

For negation we have that (but not the other way around):

|= Swing(G, i,¬χ)→ ¬Swing(G, i, χ)

Moving on to the case that the goal formula is epistemic, first
observe the following properties of distributed S5 knowledge: |=
DGDG′ϕ → DGϕ for any G,G′, and |= DGDG′ϕ ↔ DGϕ when
G ⊆ G′. From these properties it follows that:

|= Swing(H, i,DGχ)→ Swing(H, i, χ) when H ⊆ G
|= Swing(H, i,DGχ)↔ Swing(H, i, χ) when H ∪ {i} ⊆ G

In particular, using a goal formula DGϕ is equivalent to using ϕ
when it comes to counting swings within G.

If we take G = {j} in the expressions above, we get the case
where the goal formula describes individual knowledge. It follows
that:

|= Swing(∅, i,Kjχ)→ Swing(∅, i, χ) for any j
|= Swing({j}, i,Kjχ)→ Swing({j}, i, χ) for any j
|= Swing(∅, i,Kiχ)↔ Swing(∅, i, χ)

5. KNOWLEDGE OF POWER
We have thus associated power indices with states of Kripke struc-
tures, by assuming that they are defined by agents’ knowledge. But
epistemic logic allows us to reason about agents’ knowledge about
state-properties – so we can go from analysing the power of knowl-
edge to analysing knowledge of power: what do the agents in the
system know about the distribution of power?

The formula KjSwing(G, i, χ), where Swing(G, i, χ) = ¬DGχ∧
DG∪{i}χ, denotes the fact that agent j knows that i is swing for G.
If we look first at the more general case of distributed knowledge
of that fact, we have the following (we formally prove this and the
following validities in Theorem 2 below):

|= Swing(G, i, χ)→ DG∪{i}Swing(G, i, χ) (7)

– if i is swing for G, then this is distributed knowledge in G ∪ {i}.
However, this does not carry over to individual knowledge. It

turns out that Swing(G, i, χ) ∧ ¬KjSwing(G, i, χ) is satisfiable, for
any j including j = i. Thus, an agent can be swing for a coalition,
without neither the agent nor the agents in the coalition knowing it.
When, then, does an agent know that she is swing? The answer is:
almost never. The following holds:

|= Kj¬Dummy(i, χ)→ Kjχ (8)

for any i, j (including i = j). In other words, an agent can only
know that any agent (including herself) is swing for any coalition if
she (the first agent) already knows the goal formula! In the typical
case that χ is distributed information throughout the system, but
no individual agent alone knows χ, no agent knows that any agent
can swing any coalition from ignorance to knowledge about χ. It
follows that

|= Kj¬Dummy(i, χ)→ Kj

^
k∈Ag

BNoLower(j, k, χ) (9)
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– only agents that are maximally powerful (at least as powerful as
any other agent), and know that they are, can know that anyone
(including themselves) are not a dummy player.

It also holds that

|= KjSwing(G, i, χ)→ KjSwing(G, j, χ) (10)

– if an agent knows that another agent is swing for some coalition,
then the first agent must be swing for the same coalition. In partic-
ular: |= Kj¬Dummy(i, χ)→ Kj¬Dummy(j, χ).

However, no agent in a coalition can know that someone is swing
for that coalition:

|=
^
j∈G

¬KjSwing(G, i, χ) (11)

For veto players, we have that

|= KiVeto(j, χ)→ ¬Ki¬Dummy(i, χ) i 6= j (12)

– the only agents that can know that someone else is a veto player
are agents that consider it possible that they are dummies them-
selves.

For dictators, we have that

|= ¬KjDictator(i, χ) i 6= j (13)

– the only agent that can know who the dictator is, is the dictator.
Turning to knowledge about the values of power indices, we have

|= KjB(i, k, χ)→ BNoLower(j, i, χ) (14)

– no agent can know the Banzhaf score of any agent with a lower
score than herself.

We can conclude that the distribution of power is generally not
known in the system. We emphasise that this does not pose any
problem for our interpretation of the power indices as measures of
the distribution of information in the system, as we discuss further
in Section 7.

THEOREM 2. Properties (7)–(14) hold.

PROOF. We make use of the fact that distributed knowledge sat-
isfies the S5 properties [4], which follows from the fact that the
intersection of equivalence relations is an equivalence relation, as
well as the monotonicity property (DGϕ→ DHϕ when G ⊆ H).

(7): from ¬DGχ it follows that DG¬DGχ by negative introspec-
tion, and DG∪{i}¬DGχ follows by monotonicity. DG∪{i}DG∪{i}χ
follows from DG∪{i}χ by positive introspection. DG∪{i}Swing(G, i)
follows by knowledge distribution.

(8): Kj¬Dummy(i, χ) is equal to Kj
W

G(DG∪{i}χ ∧ ¬DGχ). By
reflexivity DG∪{i}χ implies χ, and thus

W
G(DG∪{i}χ∧¬DGχ) im-

plies that χ. By knowledge distribution, Kjχ holds.
(9): let Kj¬Dummy(i, χ) be true. By (8), Kjχ and from positive

introspection KjKjχ. From Lemma 1.3 it follows that KjBNoLower(j, k, χ)
for any k.

(10): from KjSwing(G, i, χ) it follows that Kj¬DGχ. By (8) it
also follows that Kjχ. By knowledge distribution, Kj(¬DGχ∧Kjχ),
which by monotonicity implies that Kj(¬DGχ ∧ DG∪{j}χ).

(11): if KjSwing(G, i, χ) is true for some j ∈ G, then KjSwing(G, j, χ)
by (10), and Swing(G, j, χ) by reflexivity. But this is a contradic-
tion.

(12): from KiVeto(j, χ) it follows that Ki¬Kiχ when i 6= j, from
which it follows that ¬Kiχ. If Ki¬Dummy(i, χ) is true, then Kiχ
by (8); a contradiction.

(13): KjDictator(i, χ) is equivalent to Kj(Veto(i, χ)∧Kiχ), which
implies that Kjχ and Veto(i, χ). From the latter it follows that
¬DAg\{i}χ, and from monotonicity it follows that ¬Kjχ – a con-
tradiction.

(14): if σi = 0, the formula holds trivially. If σi > 0, KjB(i, k, χ)
implies that there is a G such that Kj(¬DGχ ∧ DG∪{i}χ) is true. It
follows that Kjχ, and by Lemma 1.3 that σj ≥ σi.

6. OTHER TYPES OF GROUP KNOWLEDGE
We have so far used the notion of distributed knowledge to measure
power. Can other notions of group knowledge be used? Note that
both everybody-knows and common knowledge are anti-monotonic,
in the sense that CGϕ implies CG′ϕwhen G′ ⊆ G, while distributed
knowledge is monotonic (DG′ϕ implies DGϕ). This means that
simply “replacing” distributed knowledge in the definition of the
game by any of these notions would not make sense (e.g., ¬CGϕ∧
CG∪{i}ϕ is not satisfiable). However, there is another way in which
we can look at an agent’s power with respect to common knowledge
(and similarly with everybody-knows). An agent has “negative”
power if he can swing a coalition from having common knowledge
of the goal, to not having it. In other words, this would correspond
to an agent’s power to spoil, rather than to achieve, the goal. Using
this definition of the power measures, a high value means that the
agent has little information, and including it in a group is likely to,
e.g., break common knowledge needed for coordination.

Let us start with everybody-knows. Given S = 〈M, s, χ〉, let:

νE
S (G) =


1 M, s |= ¬EGχ
0 otherwise

We say that a simple cooperative game is determined if there is a set
of agents Winners ⊆ Ag such that ν(G) = 1 iff G ∩Winners 6= ∅.
Note that determined games are monotonic.

THEOREM 3. For any simple cooperative game Γ = 〈Ag, v〉,
there exists a goal structure S such that νE

S = ν iff Γ is determined.

PROOF. For the implication to the right, given S let Winners =
{i : M, s |= ¬Kiχ}. It is easy to see that νE

S (G) = 1 iff G ∩
Winners 6= ∅. For the implication to the right, we define S =
〈M, s, χ〉 as follows. Let p ∈ Θ. Let W = {s, t}; s0 = s; V(p) =
{s}, V(q) = ∅ for q 6= p; s ∼i t ⇔ i ∈ Winners; χ = p.
Let ν(G) = 1. That means that there is an agent i such that i ∈
G ∩Winners. From i ∈ Winners it follows that M, s0 |= ¬Kip, and
since i ∈ G we get that M, s0 |= ¬EGχ. For the other direction, let
M, s0 |= ¬EGp. That means that M, s0 |= ¬Kip for some i ∈ G.
But the only possibility then is that also i ∈ Winners. Thus, i ∈
G ∩Winners, and thus ν(G) = 1.

It is easy to see that for determined games, the Banzhaf score is
the same for all winners, as well as the same (0) for all non-winners:

LEMMA 3. For any determined game and any agent i,

σi =


2|Ag\Winners| i ∈ Winners
0 otherwise

It follows that it is easy to compute the power measures:

THEOREM 4. Given a goal structure S = 〈M, s, χ〉 and an
agent i in M, the Banzhaf score σi for i in the game 〈Ag, νE

S 〉 can be
computed in polynomial time.

PROOF. By Theorem 3 the game is determined. The winners
can be computed in polynomial time: for every state t, check whether
M, t |= ¬χ, and if it does add i to Winners if there is an i-transition
from t to s. σi is computed from the size of Winners according to
Lemma 3.
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Moving on to common knowledge, given S = 〈M, s, χ〉, let:

νC
S (G) =


1 M, s |= ¬CGχ
0 otherwise

EXAMPLE 2. The following two examples are inspired by [14,
Section 2.3]. In the first setting, the set of agents Ag is the set of
participants of a conference, and a ∈ Ag represents our hero Alco.
During one afternoon, while all other participants are attending
a joint session, Alco spends his time in the bar of the conference
hotel. The session chair announces χ: ‘tomorrow, sessions start
at 9:00 rather than 10:00’. Everybody (i.e., Ag) at the confer-
ence feels very responsible for the well-being of the participants,
and only if CAgχ holds, people will stop informing each other of
χ. If s is the situation immediately after the chair’s announce-
ment, we obviously have M, s |= Swing(Ag \ {a}, a, χ), where
Swing is now defined for common knowledge: Swing(G, i, χ) =
CGχ ∧ ¬CG∪{i}χ. Now consider a new state s1, in which Alco
leaves the bar to get some fresh air, and which leads to a state s2
where at the general session a friend f of Alco makes the chair
(publicly) aware that Alco was in the bar during the announcement
χ. At this moment it is common knowledge among Ag \ {a} that
Swing(Ag \ {a}, a, χ), but then the chair replies to f by saying that
there is an intercom in the bar that is directly connected to the con-
ference room. Note that a is now still a veto player wrt. Ag and
χ, since Alco does not know about the discussion regarding his ab-
sence during the announcement of χ. In other words, although in
s2 we have EAgχ, we also have ¬KaKf Kaχ: Alco knows that his
friend f may have concerns about Alco not knowing χ (this con-
cern is justified, since f notified the chair), and Alco does not know
that f has been properly informed (that Kaχ) by the chair, so one
may expect that a will make at some time an effort to make pub-
licly known that he knows χ, so people can stop worrying about
a′s time-table tomorrow.

Swing players for common knowledge in a coalition G often
come with delicate protocols for the communication in G. An ex-
ample here is the celebrations of Santa Claus in certain cultures,
where it is common knowledge among those over a certain age that
Santa Claus is in fact not responsible for the presents at the evening
(this is χ), while χ is not known among the participants under a
certain age. Now, even when everybody at the Christmas party
knows that χ, there may be several swing players for several coali-
tions, which explains that conversations have to be participated in
carefully. To be more precise, suppose that EGEGχ ∧ ¬KiKjKiχ
(with i, j ∈ G). Since i knows that everybody in G knows χ al-
ready, he might chose not to look childish to j and reveal to j that
Kiχ, indicating he is not a fool. But i might also chose to exploit
¬KiKjKiχ, and challenge j into a ‘dangerous conversation’, where
j may think he needs to be careful not to reveal χ to i.

These examples also suggest that power is in fact an interesting
issue in dynamic contexts, after enough communication has taken
place for instance, Alco may seize to be a swing player. Dynamic
Epistemic Logic ([14]) paves the right formal framework to study
these phenomena, like the fact that some true formulas can never be
known no matter how often they are announced: they would always
have a veto player (Moore sentences like (p∧¬Kap) being the most
prominent examples).

Like for the case of distributed knowledge, the class of games
obtained in this way is exactly the monotonic games.

THEOREM 5. For any simple cooperative game Γ = 〈Ag, ν〉,
there exists a goal structure S such that νC

S = ν iff Γ is monotonic.

PROOF. It is easy to see that νC
S is monotonic.

For the other direction, let ν be monotonic. If there is no coali-
tion G with ν(G) = 1, let M consist of only one state s with
V(p) = {s} and ∼a= W × W for every a ∈ Ag. It is easily
seen that νC

M,s,p(G) = 0 for all coalitions G.
Otherwise put first of all s ∈ W ∩ V(p) and add (s, s) to each
∼a. Let H1, . . .Hk be the coalitions with the property that ν(Hi) =
1 and for no proper subset of Hi, it holds that ν(H) = 1. For
each such Hi, do the following. Let Hi = {ai

1, a
i
2, . . . a

i
m(i)}. Add

new states Wi = {si
1, s

i
2, . . . s

i
m(i)} to W in such a way that (s, si

1)

and (si
1, s) become members of∼ai

1
and furthermore add (si

j, s
i
j+1),

(si
j+1, s

i
j) to ∼ai

j+1
with 1 ≤ j < m(i). Add (si

j, s
i
j) to each ∼a

(1 ≤ m(i)). Finally, add Wi\{si
m(i)} to V(p). When this process has

finished for all Hi, take the transitive symmetric reflexive closure of
every ∼a so far defined. The effect of this last step is that for every
agent a and every two states si

1 and sj
1 with (s, si

1) and (s, sj
1) ∈ ∼a,

we also add (si
1, s

j
1) and (sj

1, s
i
1) to ∼a.

A straight path π in the model is a sequence of state-agent al-
terations 〈x1, a1, x2, a2 . . . xn〉, with each xi ∈ W, ai ∈ Ag, and
(xi, xi+1) ∈ ∼ai such that xi 6= xj if i 6= j. It is a straight s-path if
x1 = s. Let Ag(π) be the set of agents occurring in π. Note that a
straight s-path that ends in state sn denotes a ‘shortest’ route in the
model from s to sn, since the states in a straight path are different. A
straight path x1, a1, x2, a2 . . . xn leads to ϕ if xn is the only-ϕ world
in it. The following is an important property of our model: there is
a straight path π leading to ¬p iff for some Hi, we have ν(Hi) = 1
and Ag(π) = Hi.

We now prove that ∀G ⊆ Ag (ν(G) = 1 iff M, s |= ¬CGp).
First, if ν(G) = 1, there is a smallest set Hi = {ai

1, . . . , a
i
m(i)} ⊆ G

such that ν(Hi) = 1. For this Hi, we have constructed a straight
s-path π leading to ¬p and for which Ag(π) = Hi. So, we have
M, s |= ¬CHi p, and hence M, s |= ¬CGp, i.e., νC

S (G) = 1. Sec-
ondly, suppose M, s |= ¬CGp, it means for our model that there is
a straight s-path π leading to ¬p for which Ag(π) ⊆ G (indeed,
there may be agents a ∈ G \ Ag(π)). But the only such paths we
have in M are paths that use a minimal set of agents Hi for which
ν(Hi) = 1, so ν(Ag(π)) = 1. By monotonicity, ν(G) = 1.

7. DISCUSSION
We have shown that our information-based notion of power has rea-
sonable properties, at least on full communication models – which
come with a natural mechanism for distribution of information. We
have also shown that it is easy to compute such power indices using
a standard model checker for epistemic logic.

It is natural to define swings using distributed knowledge. A
high power index here means that the agent’s knowledge is impor-
tant for an arbitrary group jointly getting to know the goal formula
by sharing their information. We also gave alternative definitions
of “negative” power in terms of swinging a group from a situation
where every member knows the goal, or the goal is common knowl-
edge. Here, a high power index means that the agent knows little:
if it is important to have common knowledge in a group (e.g., for
coordination), then it is likely that including a high-power agent
will lead to failure. The everybody-knows case is computation-
ally tractable, but the price is a lower “resolution”: the agents di-
vide into only two classes, with agents in the same class having the
same power. It is interesting that the common knowledge case and
the distributed knowledge correspond to the same class of voting
games (Theorems 1 and 5). If this seems counter-intuitive, keep in
mind that the two theorems express that there is a connection be-
tween distributed knowledge and lack of common knowledge: con-
ceiving distributed knowledge as a game where a coalition wins if
it implicitly knows the goal formula, is structurally similar to con-
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ceiving common knowledge as a game where a coalition wins if it
does not commonly know the goal.

[15] studies a particular notion of “knowing more”. Their con-
cept “i knows at least what j knows” is defined by Ri(s) ⊆ Rj(s)
where s is a state and Rx(s) = {t : (s, t) ∈ Rx} and Rx is an
indistinguishability relation for agent x. Our power measures for
distributed knowledge agree: if Ri(s) ⊆ Rj(s) then Swing(G, j, χ)
implies that Swing(G, i, χ) for any χ, and thus σi ≥ σj. The im-
plication does not hold in the other direction; our notion of “know-
ing more” is more fine grained. [15] also introduces a modal op-
erator � where, for agents i and j, the formula i � j expresses
that whatever state is an alternative for j, is also an alternative for
i. This provides a way to locally express that Kiϕ → Kjϕ for
all ϕ. There is one sense in which such an operator allows one
also to express properties of the power of knowledge in a compact
way. For distributed knowledge for instance, the formula i � j
implies that (Swing(G, i, χ) → Swing(G, j, χ)) and ¬Swing(G ∪
{i}, j, χ) – for any χ. When reasoning about the power in the con-
text of everybody knows, “opposite” properties derive: |= (i �
j) → (Swing(G, j, χ) → Swing(G, i, χ)) and |= (i � j) →
¬Swing(G ∪ {j}, i, χ). Note that such properties cannot be ex-
pressed in modal logic without such an operator: for instance in
|= (Kiϕ → Kjϕ) → (Swing(G, i, χ) → Swing(G, j, χ)) the for-
mula ϕ is a specific formula (not a scheme), and |= (Kiϕ →
Kjϕ) ⇒ |= (Swing(G, i, χ) → Swing(G, j, χ)) is obviously true,
but much weaker: the antecedent is false (if i 6= j).

In Section 5 we saw that agents in the system generally know
very little about the distribution of information-based power in the
system. For example, an agent with a high power index typically
does not know which coalitions she needs to join in order to de-
rive the goal formula (or indeed that she is a high-power agent).
We emphasise that this is not in any way a problem for the inter-
pretation of our power indices. A high Banzhaf index means, in
our setting, that the probability of changing some arbitrary coali-
tion from ignorance to knowledge about the goal is high – in the
same way that it is interpreted as the probability of changing an out-
come in voting theory. In fact, that an agent does not know which
coalitions it is swing for makes the probability of being swing for
an arbitrary coalition more interesting. Furthermore, in many dis-
tributed and multi-agent systems, such as sensor networks, agents
are restricted to communication with some arbitrary sub-group of
all agents at any given time. We think of these power measures
as a tool for external analysis of the information distribution in a
system, to find out, e.g., whether information is evenly distributed
or whether there are some agents that are particularly crucial to
the functioning of the system in the sense that the information they
have is difficult to obtain elsewhere in the system. The negative
results about knowledge of power properties can also be seen as
a barrier against strategic behaviour: it is almost never possible
for an agent to know that it suffices to share information with only
some particular subgroup of the grand coalition.

An interesting direction for future work is to associate formulae
of the form DGDHϕ with composite voting games [6, p. 27]. In
this paper we have studied a semantic notion of power, associated
with a point in a Kripke structure. Another direction for future
work is to develop a syntactic notion of power, based on a set of
epistemic formulae. For such an approach it would be necessary
to syntactically describe that agents know “this and nothing more”,
and extensions of epistemic logic with only knowing [9] seem like
a promising starting point.
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ABSTRACT
A number of popular logical formalisms for representing and reasoning
about the abilities of teams or coalitions of agents have been proposed
beginning with the Coalition Logic (CL) of Pauly. Ågotnes et al intro-
duced a means of succinctly expressing quantification over coalitions with-
out compromising the computational complexity of model checking in CL
by introducing Quantified Coalition Logic (QCL). QCL introduces a sepa-
rate logical language for characterizing coalitions in the modal operators
used in QCL. Boella et al, increased the representational expressibility
of such formalisms by introducing Higher-Order Coalition Logic (HCL),
a monadic second-order logic with special set grouping operators. Tractable
fragments of HCL suitable for efficient model checking have yet to be
identified. In this paper, we relax the monadic restriction used in HCL
and restrict ourselves to the diamond operator. We show how formulas us-
ing the diamond operator are logically equivalent to second-order formulas.
This permits us to isolate and define well-behaved expressive fragments of
second-order logic amenable to model-checking in PTIME. To do this, we
appeal to techniques used in deductive databases and quantifier elimination.
In addition, we take advantage of the monotonicity of the effectivity func-
tion resulting in exponentially more succinct representation of models. The
net result is identification of highly expressible fragments of a generalized
HCL where model checking can be done efficiently in PTIME.
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1. INTRODUCTION
In recent years, developing formal techniques for representing

and reasoning about the abilities of teams or coalitions has become
a major focus of research in the areas of artificial intelligence and
multiagent systems [2–10,12,16,17,19,21–29]. In particular, com-
bining ideas and techniques from game theory, logic and social
theory has become highly relevant due to the widespread use of
social software and trends in robotics and agent systems where co-
operation among such agents is becoming increasingly important.
A number of popular logical formalisms for representing and rea-
soning about the abilities of teams or coalitions of agents have been
proposed beginning with the Coalition Logic (CL) of Pauly [19]
which is a propositional multimodal logic. Recent trends in devel-
opment of logical formalisms for reasoning about coalitions have
tried to increase expressivity of such formalisms while retaining
tractability in the reasoning components associated with such for-
malisms. For instance, Ågotnes et al [3] introduce a means of
succinctly expressing quantification over coalitions without com-
promising the computational complexity of model checking in CL
by introducing Quantified Coalition Logic (QCL). More recently,
Boella et al [7], increased the representational expressibility of such
formalisms by introducing Higher-Order Coalition Logic (HCL),
a monadic second-order logic with special set grouping operators.
HCL subsumes both CL and QCL representationally, and includes
a sound and complete axiomatization for weakly playable frames,
but currently lacks a tractable reasoning component.

Due to the modal nature of many of these formalisms which are
based on the use of effectivity functions as part of coalition frames,
the major computational problem has been that of model checking.

Given a succinct representation of a modelM, a state
s, and a formula ϕ of your favorite coalition logic L,
is it the case thatM, s |=L ϕ?

In addition to the representational problem, research focus as-
sociated with the reasoning problem has been placed on finding
succinct representations of models in L, extending the expressiv-
ity of formulas ϕ and trying to guarantee tractability of the model
checking problem for the full language or its fragments used in L.
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Higher-order logic is particularly suited as a representation lan-
guage for modeling the abilities and interactions between coali-
tions. It is representationally expedient in the sense that coalitions
are in fact sets of agents and one wants to represent such sets and
their properties in as direct a way as possible. This of course can
be done directly and succinctly in higher-order logic. Boella et
al [7] provide very convincing arguments in this respect. On the
other hand, reasoning in higher-order logic is more problematic.
Yet there are well-behaved fragments of such logics that deserve
investigation and surprisingly, one can isolate fragments which are
representationally expressive and also computationally tractable.

This is both the focus and contribution of this paper. Our contri-
bution is to propose a higher-order logic HCL? which essentially
subsumes HCL representationally and semantically. Additionally,
we isolate a number of interesting fragments of HCL? which are
amenable to tractable model checking in PTIME using succinct im-
plicit representations of model frames. The techniques used to do
this involve quantifier elimination [13] and the use of standard tech-
niques from deductive database theory [1, 18].

In Sections 2 and 3 we give an overview of coalition logic [19],
quantified coalition logic [3] and higher-order coalition logic [7]
to set the context and provide scientific continuity. In Section 4
we propose the higher-order logic HCL? which is a generalization
of HCL. Section 5 discusses various succinct representations of
models using deductive database techniques. In Section 6 we de-
fine several fragments of HCL? and provide lemmas showing that
formulas from these fragments are amenable to model-checking in
PTIME. Section 7 summarizes assertion types that can be model
checked in PTIME. We then conclude with some comments and
future work in Section 8.

2. COALITION LOGIC
Coalition Logic (CL) [19] is a propositional modal logic, with

modalities indexed by coalitions. The semantics of CL is based
on the concept of an effectivity function developed in social choice
theory to model the ability of a group of individuals. In CL, it is
relativized to state and has the form

E : P(Ag)× S −→ P(P(S)) (1)

where Ag is a set of agents, S is a set of states and P(.) denotes
the powerset of a given set.

For a given coalitionC ⊆ Ag and a state s ∈ S,C can cooperate
to ensure that for any T ∈ E(C, s), the next state will be in T
regardless of the actions of other agents outside C. A variety of
possible strategies can lead to a set of possible outcomes. To gain
some intuitions concerning such functions consider the following
example based on one considered in [19].1

EXAMPLE 1. Angelina has to decide whether she wants to
marry Edwin, the Judge, or stay single. Edwin and the Judge each
can similarly decide whether they want to stay single or marry An-
gelina. This situation can be modeled using a function E of the
form (1) as follows. The set of agents is Ag = {a, e, j} and the set
of states is S = {s0, ss, se, sj}, where s0 is an initial state, where
Angelina, Edwin and Judge are singles, ss is a state where An-
gelina remains single, se where she marries Edwin, and sj where
she marries the Judge.

Angelina has the right to remain single, so {ss} ∈ E({a}, s0).
Edwin can only guarantee that he does not marry Angelina, so we
have {ss, sj} ∈ E({e}, s0). Analogously, for the Judge, we have

1Characters are actually taken from the comic opera Trial by Jury
and the example originates from [15].

{ss, se} ∈ E({j}, s0). Angelina and Edwin together can achieve
any situation except the one where Angelina marries the Judge,
and hence {ss}, {se} ∈ E({a, e}, s0). Again, the situation is
analogous for the Judge: {ss}, {sj} ∈ E({a, j}, s0). Edwin and
the Judge can together guarantee that Angelina remains single, so
{ss} ∈ E({e, j}, s0).

Note that Angelina can act as a dictator forcing everybody to
stay single. On the other hand, neither Edwin nor the Judge have
such a strong strategy. 2

Coalition Logic is a propositional multimodal logic, where for-
mulas are defined by the following grammar:

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | [C]ϕ (2)

where Ag is fixed, C ⊆ Ag and p ranges over the set of Boolean
variables Φ0. The intended meaning of [C]ϕ is that coalitionC has
the ability to achieve ϕ.

Given Ag, a modelM is a triple 〈S, E , π〉, where

• S = {s1, . . . , sn} is a finite non-empty set of states

• E is an effectivity function

• π : S −→ P(Φ0) is a valuation function, which for every
state s ∈ S gives the set of Boolean variables satisfied at s.

The satisfaction relation is defined as usual for >, atomic vari-
ables and connectives. For the modal case we have:

M, s |=CL [C]ϕ iff there is T ∈ E(C, s) such that
for all t ∈ T we haveM, t |=CL ϕ.

Table 1: Properties of effectivity function (1).
For every C ⊆ Ag, s ∈ S and
X ⊆ Y ⊆ S, if X ∈ E(C, s)
then Y ∈ E(C, s)

outcome monotonicity

For every C ⊆ D ⊆ Ag and s ∈ S,
E(C, s) ⊆ E(D, s)

coalition monotonicity

For all X ⊆ S and s ∈ S,
if X∈E(C, s) then X̄ 6∈E(C̄, s)

C-regularity

For all C ⊆ Ag, E is C-regular regularity
For all X ⊆ S and s ∈ S,
if X̄ 6∈E(C̄, s) then X∈E(C, s)

C-maximality

For all C ⊆ Ag, E is C-maximal maximality
For all X,Y ⊆ S, C ⊆ D ⊆ Ag
and s ∈ S, if C ∩D = ∅,
X ∈ E(C, s) and Y ∈ E(D, s) then
X ∩ Y ∈ E(C ∪D, s)

superadditivity

In [20] the some important properties of effectivity functions are
studied. These properties are shown in Table 1, where C̄ def

= Ag\C
and X̄ def

= S \ X . Restricting effectivity functions with certain
properties determines particular classes of models.

An effectivity function E is playable provided that for allC⊆Ag
and s ∈ S, (i) ∅ 6∈ E(C, s), (ii) S ∈ E(C, s), (iii) E is Ag-
maximal, (iv) E is outcome monotonic and (v) E is superadditive.
The term playability is justified by the fact that an effectivity func-
tion is playable iff it is an effectivity function of a strategic game
(see Theorem 3.2 in [20]).

Coalition monotonicity will play an important role in the context
of our model checking results. The following lemma (see, e.g., [19,
20]) guarantees this property for playable effectivity functions.

LEMMA 2. Every playable effectivity function is regular and
coalition monotonic. 2
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3. EXTENSIONS OF COALITION LOGIC
Recent work with logical formalisms for representing and rea-

soning about the abilities of coalitions from a game-theoretic per-
spective have focused jointly on issues of expressivity and tractabil-
ity, balancing the two against each other. The major computa-
tional problem in this respect is model checking. In this section,
we briefly describe two prominent logical formalisms, Quantified
Coalition Logic [3] and Higher-Order Coalition logic [7] which at-
tempt to generalize Coalition Logic in several respects. This sum-
mary is intended to provide a context for the higher-order logic
HCL? and model checking results for fragments of this logic that
we introduce in Section 4.

3.1 Quantified Coalition Logic
Quantified Coalition Logic (QCL) [3] is an extension of CL that

permits a limited form of quantification over coalitions. Although
it provides no increase in expressivity, it is exponentially more suc-
cinct than CL and computationally no worse with respect to model
checking. Rather than providing C directly in formulas of the form
[C]ϕ, it allows C to be specified in a special language for coalition
predicates given by the grammar:

P ::= subseteq(C) | supseteq(C) | ¬P | P ∨ P (3)

This allows one to express coalitions based on being a subset (a su-
perset) of a coalition. There are two modalities in QCL:2

• 〈ψ〉ϕ – there is a coalition satisfying ψ which can achieve ϕ
• [ψ]ϕ – every coalition satisfying ψ can achieve ϕ.

3.2 Higher-Order Coalition Logic
Recently, Boella et al [7] introduced Higher-Order Coalition

Logic (HCL) as a more general and expressive way to quantify
over coalitions. HCL is a monadic second-order logic with special
set grouping operators which can be used to characterize differ-
ent coalitions. Both CL and QCL can be effectively embedded
into HCL and there is no need for separate languages to represent
coalitions and the effect coalitions have, as is the case with QCL.
An axiomatization is provided for HCL and it is shown to be sound
and complete for weakly playable semantic structures. Tractable
fragments of HCL suitable for efficient model checking have yet
to be identified, although this paper will identify a number of such
fragments for a related logic HCL?.

We write σ[x := u] (respectively, σ[X := U ]) to denote the
assignment which differs from σ only in assigning u to x (respec-
tively, U to X).

HCL is a well-behaved fragment of second-order logic, where
second-order quantifiers are restricted to binding unary relation
variables. Free and bound variables (VI ), relation symbols, con-
nectives ∧,¬, quantifiers ∀,∃ are defined as in classical first-order
logic. To obtain the monadic second-order language, the first-order
language is extended by a countable set VS of set variables (one-
argument relation variables) and formulas of HCL are defined us-
ing the following grammar:

ϕ ::= F (x1, . . . , xk) | X(x) | ¬ϕ | ϕ ∨ ϕ |
∀Xϕ | ∀xϕ | [{x}ϕ]ϕ | 〈{x}ϕ〉ϕ (4)

where

• F (x1, . . . , xk) is a first-order atomic formula
• x ∈ VI and X ∈ VS
• {x}ϕ is a grouping operator which denotes the set of all ele-

ments d such that ϕ[x := d] holds.
2Note that these modalities are not dual to each other (see [3]).

The intended meaning of modalities in HCL is the same as in
the case of QCL. However, HCL offers a much richer language to
express properties of coalitions. Consider the following examples,
mainly from [7], illustrating the expressiveness of HCL:

• ∀x(super_user(x)→user(s)) – any super user is a user
• ∀X(∀x(X(x)→user(x))→ 〈{y}X(y)〉ϕ) – there is a co-

alition, where all users can achieve ϕ
• 〈{x}ψ(x)〉ϕ → 〈{y}∃x(ψ(x) ∧ collaborates(y, x))〉ϕ –

whenever there is a coalition, say C, satisfying ψ which can
achieve ϕ, there is also a coalition consisting of collaborators
of at least one member of C which can achieve ϕ.

Semantic structures for HCL correspond to weak playability. An
effectivity function E is weakly playable if for all C⊆D⊆Ag and
s ∈ S, (i) ∅ 6∈ E(Ag, s), (ii) ∅ ∈ E(D, s) implies ∅ ∈ E(C, s),
(iii) ∅ 6∈ E(∅, S) implies S ∈ E(C, s), (iv) E is Ag-maximal,
(v) E is outcome monotonic and (vi) E is superadditive.

HCL uses a general or Henkin semantics. A more detailed dis-
cussion about the semantic basis for HCL is provided in Section 4.

4. COALITION LOGIC HCL?
The goal of this paper is to provide a logical formalism for rea-

soning about the abilities of coalitions that has high expressive-
ness, yet is still amenable to tractable model-checking. HCL cer-
tainly has high expressiveness and is more general than both CL
and QCL. On the other hand, it currently lacks nice computational
properties for different fragments of the language. Our results
are intended to provide both well-behaved fragments and tractable
model checking techniques for higher-order logic using HCL?

In this section, we introduce the higher-order logic HCL?. For
the purposes of continuity and context, before providing formal
definitions, we list the difference between HCL and HCL? and
then remark on some of these differences.

1. HCL restricts quantification over relations to unary
(monadic) predicates. HCL? relaxes this restriction and per-
mits quantification over relations of arbitrary arity.

2. HCL includes both the diamond and box operators in the lan-
guage. HCL? excludes the box operator from the language.
Since box can be defined in terms of diamond, this is done
for technical reasons pertaining to model-checking and does
not limit expressivity of the language in general.

3. HCL uses a general or Henkin semantics which approxi-
mates the standard semantics for higher-order logic. HCL?

uses the standard semantics for higher-order logic.

4. HCL restricts frames to those whose effectivity function is
weakly playable. HCL? only requires frames to be mono-
tonic (both outcome and coalition monotonic) for our model
checking results to apply.

Before commenting on these differences, we provide the syntax
and semantics of HCL?.

The syntax of HCL? is given by the following grammar:

ϕ ::= > | F (x1, . . . , xk) | X(x1, . . . , xk) |
¬ϕ | ϕ ∨ ϕ | ∀Xϕ | ∀xϕ | 〈{x}ϕ〉ϕ (5)

A coalition frame is a tuple 〈Ag, S, E〉, where Ag is a finite,
nonempty set (of agents), S is a finite set of states and E is an
effectivity function.

A coalition frame is monotonic if its effectivity function is
both outcome monotonic and coalition monotonic. Monotonicity
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is the weakest requirement necessary for our model-checking re-
sults. In the rest of the paper we assume that the frames considered
are monotonic.

A coalition model based on a frame 〈Ag, S, E〉 is a tuple
M = 〈Ag, S, E , I, σ〉, where:

• I is a first-order interpretation, for any first order formula α
and s ∈ S it assigns a set of tuples αI(s) satisfying α in
state s

• σ assigns in states: (i) values in Ag to individual variables,
(ii) sets of tuples of respective arity to relation variables.3

Let M = 〈Ag, S, E , I, σ〉 be a coalition model and s ∈ S.
We define the satisfaction relation as follows, where
M′=〈Ag, S, E , I, σ[x := d]〉 andM′′=〈Ag, S, E , I, σ[X :=D]〉:

• M, s |= >
• M, s |= F (x1, . . . , xk) iff 〈σ(x1), . . . , σ(xk)〉 ∈ F I(s)

• M, s |= ¬ϕ iffM, s 6|= ϕ

• M, s |= ϕ ∨ ψ iffM, s |= ϕ orM, s |= ψ

• M, s |= X(x1, . . . , xk) iff 〈σ(x1), . . . , σ(xk)〉 ∈ σ(X, s)

• M, s |= ∀xϕ iff for all d ∈ Ag,M′, s |= ϕ

• M, s |= ∀Xϕ, for a k-argument relation variable X ,
iff for all D ∈ P(Agk),M′′, s |= ϕ

• M, s |= 〈{x}ψ〉ϕ iff there is C={d | M′, s |= ψ} and
T ∈ E(C, s) such that for all t∈T ,M, t |=ϕ.

HCL uses a general or Henkin semantics which approximates
the standard semantics used by HCL? for higher-order logic.
Henkin semantics is weaker than the standard semantics. In gen-
eral |=H ϕ implies |= ϕ. This is in large part due to restriction of
second-order quantification solely to definable sets which is a pre-
requisite for showing completeness of the proof system associated
with Henkin semantics. The standard semantics is not restricted to
definable sets and in HCL?, second-order quantifiers range over all
relations of respective arity, which directly reflects intuitions be-
hind them. On the other hand, HCL? is undecidable. However,
in the context of model-checking, when a given finite structure is
fixed and the language includes equality (=) as well as constants
denoting domain elements, then every set becomes definable and
both semantics become compatible in the sense that for any finite
model M , M |=H ϕ iff M |= ϕ. Note that the required constants
and equality is always available given the unique names and closed
world assumptions.

HCL? permits quantification over relation variables of any arity,
not only monadic ones, as required in HCL. Due to this, HCL?

provides increased expressivity. For example, the following HCL?

formula is outside of the HCL syntax:

∀u∀X((∀x∀y(X(x, y)→ Cn(x, y))∧
∀x∀z((Cp(x, z) ∨ ∃y(X(x, y) ∧X(y, z)))→ X(x, z)))
→ 〈{y}∃x(X(x, y) ∧ S(x))〉W (u)

)
.

(6)

If, for example, Cn stands for “controls”, Cp for “being able to
cooperate”, S for “smart” and W for “wins” then (6) states that

for every agent u, there is a coalition formed from
agents that are able to cooperate with one another and
are controlled transitively by smart agents, that can
make u a winner,

3In this definition, we restrict models to a single sort for agents, but
our results are also valid for many-sorted structures.

where “controlled transitively” is formalized by a transitiveX con-
taining relation Cp and contained in Cn.

On the other hand, the box operator, [{x}ψ], while included
in HCL syntax, is not part of HCL? syntax. The box operator,
[{x}ψ], is definable by means of the diamond 〈{x}ψ〉 operator
(see [3]). However, using such definitions results in an exponen-
tial blow up in the length of formulas. In the context of model-
checking and quantifier elimination, dealing with formulas which
include the box operator directly is problematic, as they are defined
by a formula using the sequence of quantifiers ∀∃∀. The first two
alternating quantifiers binding relational variables cause substantial
technical problems.

HCL? restricts frames to those whose effectivity function has the
property of monotonicity (both outcome and coalition monotonic).
Observe that playability implies both conditions: outcome mono-
tonicity (by definition of playability) and coalition monotonicity
(by Lemma 2). HCL considers frames whose effectivity functions
have the property of being weakly playable. If one considers weak
playability only, outcome monotonicity is assumed by definition,
however one has to additionally assume the coalition monotonicity
property.

5. REPRESENTATION OF MODELS
Querying deductive databases and model-checking are very sim-

ilar. When querying a deductive database, we can view the database
as a model and the query as a formula which is being checked for
satisfaction relative to the database. We will in fact take advan-
tage of this analogy when doing model-checking in HCL?. Since
functions are typically not allowed in deductive databases, we will
equivalently replace effectivity functions E by effectivity relations:

E ⊆ P(Ag)× S × P(S) (7)

such that E(C, s, T )
def≡ T ∈ E(C, s). This representation then

views a model frame in HCL? as a deductive database containing
the relation E and model checking as satisfying a query relative to
that database. One can then study the complexity of model check-
ing relative to the language fragments of HCL? used in the query
language by using results from deductive database theory and de-
scriptive complexity. Observe that one can identify any set with its
characteristic relation, i.e., rather than using set X , we may use the

unary relation X(x)
def≡ x ∈ X .

To simplify the presentation, coalition models will be repre-
sented in a deductive database using the relationE() defined above,
but more succinct representations are also possible, as discussed in
the end of this section. The extensional part will contain facts rep-
resented as E() atoms and the intensional part will contain a rule
encapsulating monotonicity assumptions:

(E(X,x, Y ) ∧X ⊆ X ′ ∧ Y ⊆ Y ′)→ E(X ′, x, Y ′). (8)

This, in fact, ensures a succinct representation of coalition models
when doing model checking. Since we assume that coalition mod-
els are monotonic, we do not have to include information that fol-
lows from monotonicity. The same representation is used in [19]
for outcome monotonicity only. Our representation of the effec-
tivity relation is more succinct, since we also use coalition mono-
tonicity. This may result in exponentially smaller representations.
For example, if E({a}, s, {s}) holds, we do not have to include
an exponential number of facts of the form E(C, s, {s}) for all
C with a ∈ C in the model. Consequently, we avoid the prob-
lem of explicit model checking criticized elsewhere in the litera-
ture (e.g., [3]). It is important to note that rule (8) is not intended to
generate a possibly exponential number of facts. It is only used to
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reduce the size of models and to model check facts involving E()
literals as is demonstrated in the proof of Lemma 6.

We can also increase succinctness of the model representation
by applying the Closed World Assumption, allowing one not to list
negative facts. Using this approach, model checking then becomes
similar to querying deductive databases (see, e.g., [1]). The follow-
ing example illustrates the representation used for coalition models.

EXAMPLE 3 (EXAMPLE 1 CONTINUED). The model consid-
ered in the introductory example consists of the following facts:

E
({a}, s0, {ss}

)
, E
({e}, s0, {ss, sj}

)
, E
({j}, s0, {ss, se}

)
E
({a, e}, s0, {ss}

)
, E
({a, e}, s0, {se}

)
E
({a, j}, s0, {ss}

)
, E
({a, j}, s0, {sj}

)
, E
({e, j}, s0, {ss}

)
.

Recall that the rule (8) reflecting the monotonicity of E is in the
intensional part of the database. Observe that due to (8), one can
remove facts E

({a, e}, s0, {ss}
)

and E
({a, j}, s0, {ss}

)
.

Also, no matter how many other agents and states are involved,
the above model of this particular scenario does not need to be
extended. 2

Using our representation, the size of a coalition frame
F = 〈Ag, S, E〉 is given by:

|F| def
= max

{
|Ag|, |S|,

∑
E(C,s,X)∈E

(|C|+ |X|+ 1
)}
. (9)

Complexity results will be provided w.r.t. size of models. The
input or query formula is considered to be fixed, thus has a constant
length. This is standard practice. Observe that the size of models
can, in the worst case, be exponential w.r.t. both |Ag| and |S|.

In this context, what do we mean by succinct representation of
models? Our claim is that a large class of models used in practical
applications can be succinctly represented by leveraging formal re-
sults from deductive database theory. Recall that we represent an
effectivity function as a relationE() and then represent that relation
(usually defined in terms of atoms) in a deductive database with an
intensional rule for monotonicity. In fact, one can use any equiva-
lent formula in first-order fixpoint logic to represent the effectivity
relation. This formula may include fixpoints, quantifiers and rela-
tions other than E(). Additionally, we can use other intensional
rules in addition to the monotonicity rule.

Why is this fundamentally important? Well, any model that is
polynomial in the size of agents and states can be equivalently
represented as a fixpoint formula and this fixpoint formula can be
polynomially compiled into a deductive database. The tractability
of model checking obviously applies to this class of models, too.4

Let’s illustrate this idea with the following Example 4.

EXAMPLE 4. Consider n sax players, m bass players and k
drummers (n,m, k ≥ 1). To organize a concert, one needs at least
a trio consisting of a sax player, a bass player and a drummer. Let
s0 be the initial state, sc be the state where a concert is possible
and sn where it is not. Let S(x), B(x) and D(x) stand for “x is
a sax player”, “x is a bass player” “x is a drummer”, respectively.
Then in this model we need n+m+ k facts:5

{S(s) | s is a sax player} ∪ {B(b) | b is a sax player}∪
{D(d) | d is a drummer},

4In fact, any equivalent representation of the class of fixpoint for-
mulas such as stratified Datalog would also do as a representational
mechanism.
5We implicitly assume that all players are different. For example,
no sax player is at the same time a bass player, etc.

in addition to facts reflecting that coalitions consisting of all sax
players (of all bass players or of all drummers) have the power to
block the concert:

E(S, s0, {sn}), E(B, s0, {sn}), E(D, s0, {sn})
as well as rule (8) and the following intensional rule expressing
that any suitable trio makes the concert possible:

(S(x)∧C(x)∧B(y)∧C(y)∧D(z)∧C(z))→E(C, s0, {sc}). (10)

Note that the size of the model isO(n+m+k) (and after unwinding
rule (10), it isO(n+m+k+n∗m∗k)) rather thanO(2n+m+k),
when rules (8) and (10) are not used. 2

To our knowledge, these techniques for reducing the size of mod-
els resulting in succinct representations is novel and quite power-
ful. It also shows how the integration of the model-checking tech-
niques developed in this paper together with deductive database
techniques results in an expressive and efficient representational
technique. Additionally, one has a more formal characterization
of what is meant by succinct representation.

6. MODEL CHECKING
When checking satisfiability of a formula from HCL?, we do

this relative to a model and a state. Given an arbitrary formula
in HCL?, we will introduce a translation operator Tr which maps
each formula into another second-order formula in HCL?. This
operator has two purposes.

1. It parameterizes all relational predicates in the formula with
an additional state argument.

2. It translates any instance of the diamond modality into
a second-order formula which is equivalent.

The net result is that a query is now reduced to an arbitrary second-
order formula without modalities in HCL? whose satisfiability we
would like to check relative to a coalition model. Transforming
the model checking problem into the problem of a 2nd-order query
to a deductive database representing a coalition model has great
advantages. We can now isolate fragments of second-order logic
which, through the use of quantifier elimination reduce the prob-
lem to a 1st-order or fixpoint query on a relational database. Results
from deductive database theory ensure us that this can be done effi-
ciently relative to the size of the database which we know contains
a succinct representation of a coalition model due to the advanta-
geous use of the monotonicity constraint.

We now provide the translation operator Tr . The translation
Tr (ϕ, s) results in a formula expressing the fact that formula ϕ
is satisfied in state s. To define Tr , with every k-argument symbol
like F,X of the HCL? language we associate respectively a fresh
(k + 1)-argument symbol F ′, X ′ not appearing in the original
HCL? language:

• Tr (F (x1, . . . , xk), s)
def
= F ′(s, x1, . . . , xk)

• Tr (¬ϕ, s) def
= ¬Tr (ϕ, s)

• Tr (ϕ ∨ ψ, s) def
= Tr (ϕ, s) ∨ Tr (ψ, s)

• Tr (X(x1, . . . , xk), s)
def
= X ′(s, x1, . . . , xk)

• Tr (∀xϕ, s) def
= ∀xTr (ϕ, s)

• Tr (∀Xϕ, s) def
= ∀XTr (ϕ, s)

• Tr (〈{x}ψ〉ϕ, s) def
= ∃X(∀x(X(x) ≡ Tr (ψ, s))∧

∃Y (E(X, s, Y )) ∧ ∀y(Y (y)→ Tr (ϕ, y))
)
.
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Observe that the last clause of the Tr operator above translates
any instance of the diamond operator into an equivalent second-
order formula. The following important lemma allows us to replace
these translations of the diamond operator in a query formula with
a more efficient but equivalent query about E() without second-
order quantifiers.

LEMMA 5 (DIAMOND ELIMINATION LEMMA). For every
coalition modelM = 〈Ag, S, E , I, σ〉 and s ∈ S,

M, s |= Tr (〈{x}ψ〉ϕ, s) ≡ E({x}Tr (ψ, s), s, {y}Tr (ϕ, y)).

PROOF.
(→) Assume thatM, s |= Tr (〈{x}ψ〉ϕ, s). By definition,

M, s |= ∃X(∀x(X(x) ≡ Tr (ψ, s)) ∧ ∃Y (E(X, s, Y ))∧
∀y(Y (y)→ Tr (ϕ, y))

)
,

In particular,M, s |= ∃X∀x(X(x) → Tr (ψ, s)). By monotonic-
ity of E we have that M, s |= E({x}Tr (ψ, s), s, {y}Tr (ϕ, y)).

(←) Assume thatM, s |= E({x}Tr (ψ, s), s, {y}Tr (ϕ, y)). Let

X(x)
def≡ Tr (ψ, s) and Y (y)

def≡ Tr (ϕ, y). SuchX and Y obviously
satisfy

M,s |=∀x(X(x)≡Tr (ψ,s))∧E(X,s, Y )∧∀y(Y (y)→Tr (ϕ, y)).

Therefore,

M, s |= ∃X(∀x(X(x) ≡ Tr (ψ, s)) ∧ ∃Y (E(X, s, Y ))∧
∀y(Y (y)→ Tr (ϕ, y))

)
,

so, by definition of Tr ,M, s |= Tr (〈{x}ψ〉ϕ, s), which completes
the proof.

Given this lemma and the following lemma, we can already show
that formulas in the fragment of HCL? containing arbitrary in-
stances of the diamond operator, but no other 2nd-order quantifiers
can be model-checked for satisfiability in PTIME.

LEMMA 6. Model checking for formulas without second-order
quantifiers is in PTIME.

PROOF. Let M be a coalition model and s a state in M. We
first eliminate diamonds from the input formula.

Checking whether M is a model for a formula without occur-
rences of effectivity relation can be done in polynomial time in the
standard way (see, e.g., [1, 18]).

Checking the truth value of a given expression of the form
E
({x}Tr (ψ, s), s, {y}ϕ(y)

)
can be done by traversing facts in the

model and checking whether there is a fact E
(
C, s, T ) such that

M, s |= E
(
C, s, T )→ E

({x}Tr (ψ, s), s, {y}ϕ(y)
)
. Such a fact

exists iffM, s |= E
({x}Tr (ψ, s), s, {y}ϕ(y)

)
. To check the re-

quired implication we use monotonicity: we simply check whether:

• the set C is included in the set being the value of
{x}Tr (ψ, s) inM and s
• the set T is included in the set being the value of {y}ϕ(x) in
M and s.

Computing the sets {x}Tr (ψ, s) and {y}ϕ(x) can be done in
polynomial time by an obvious extension of the technology of
querying databases in logic (see, [1]).

Let us now assume that our queries use both the diamond opera-
tor and additional 2nd-order quantifiers. Our next task is to identify
additional fragments of HCL? where these additional quantifiers
can be eliminated. Any formulas in such fragments are then guar-
anteed to be amenable to model-checking in PTIME based on the
results which follow.

Since universal quantifiers are definable by existential ones (us-
ing the standard definition ∀ = ¬∃¬), in what follows we will
focus on the existential fragment of HCL? without any loss in ex-
pressivity. The existential fragment of HCL? is the smallest set
containing arbitrary HCL? formulas without any universal quanti-
fiers, formulas of the form

∃X1 . . .∃Xrϕ, (11)

where ϕ contains no second-order quantifiers, and which is closed
under Boolean connectives, first-order quantifiers and modalities.

The first fragment of well-behaved formulas will be those that
are positive. By the positive fragment of HCL?, we mean formulas
in the existential fragment with the additional restriction that for
formulas of the form (11), ϕ is positive w.r.t. all relation variables
X1 . . . Xr . The standard definition of positive formulas [13] will
have to be slightly modified since relations such as the effectivity
relation E have arguments that might be formulas.

An occurrence of a relation variableX is positive (negative) inϕ,
if it appears under an even (respectively, odd) number of negation
signs.6 A formula ϕ is positive (negative) w.r.t. X if all occur-
rences of X in ϕ are positive (respectively, negative).

For example, formula

¬X(a) ∨ Y (b) ∨ ¬E({x}X(x), s, {y}¬Y (y)
)

is negative w.r.t. X and positive w.r.t. Y .
We could deal with the monotonic fragment of HCL? instead.

The reason we do not is that in general, checking monotonicity or
down-monotonicity is not decidable, while checking positivity and
negativity can be done in time linear in the length of the consid-
ered formula. Since positivity implies monotonicity and negativity
implies down-monotonicity, it is algorithmically convenient to use
positivity and negativity rather than monotonicity.

We now have the following lemma.

LEMMA 7. Model checking for the positive fragment of HCL?

is in PTIME.

PROOF. In light of Lemma 6 it suffices prove the claim for for-
mulas of the form (11), where ϕ is positive w.r.t. X1 . . . Xr . Con-
sider ϕ′ obtained from ϕ by replacing all occurrences ofX1 . . . Xr
by>. It appears that ϕ′ is equivalent to formula ∃X1 . . .∃Xrϕ. To
show this, consider a coalition modelM and its state s.

(→) If M, s |= ϕ′ then there are X1 . . . Xr such that
M, s |= ∃X1 . . .∃Xrϕ (it suffices to define all of them to be >).

(←) Assume thatM, s |= ∃X1 . . .∃Xrϕ. Formula ϕ is posi-
tive w.r.t. X1 . . .∃Xr , so monotone w.r.t. X1 . . .∃Xr .7 Since for
each 1 ≤ i ≤ r, formula Xi(. . .) → > is a tautology, by mono-
tonicity we get thatM, s |= ϕ′.

The final fragment of well-behaved formulas we will focus on
are the semi-Horn formulas. By the semi-Horn fragment of HCL?

we mean formulas in the existential fragment of HCL? which have
the following form:

∃X̄{∀x̄[α(X̄, x̄, z̄)→ Xi(x̄)] ∧ β(X̄)
}

where X̄ stands for X1, . . . , Xr , 1 ≤ i ≤ r, α is positive w.r.t.
each of X1, . . . , Xr and β is negative w.r.t. each of X1, . . . , Xr .

We will now show that semi-Horn formulas in the existential
fragment can be reduced to logically equivalent fixpoint formu-
las without higher-order quantifiers and that such formulas can be
6Here, as usual, each implication ϕ → ψ is replaced by ¬ϕ ∨ ψ
and each equivalence ϕ ≡ ψ is replaced by (¬ϕ∨ψ)∧ (¬ψ ∨ϕ).
7Monotonicity of effectivity relations is used here, too.
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model-checked in PTIME. To show tractability of model checking
for the semi-Horn fragment of HCL?, we will use the following
theorem from [14] (see also [13]), where by LFPX(x̄) [α(X, x̄, z̄)]
and GFPX(x̄) [α(X, x̄, z̄)] we denote the least and the greatest fix-
point of α(X, x̄, z̄), i.e., the least and the greatest (w.r.t. inclusion)
relation satisfying X(x̄) ≡ α(X, x̄, z̄).8 For a detailed discussion
of fixpoint calculus and their use in databases see, e.g., [1, 18]. For
our purposes it is important to show that fixpoint queries are com-
putable in PTIME w.r.t. size of the database (in our case w.r.t. size
of the model).

The following additional notation will be used in the theorem and
proof. Let α(x, ȳ) be a higher-order formula, X(x̄) be a (higher-
order) relation, γ(x̄) be a (higher-order) formula with all free vari-
ables being x̄. Then αX(x̄)

γ(x̄) denotes the formula obtained from α

by substituting all subformulas of the form X(t̄) by γ(t̄).

THEOREM 8. Let X be a relation variable and α(X, x̄, z̄),
β(X) be formulas with relations of arbitrary order, where the num-
ber of distinct variables in x̄ is equal to the arity of X . Let α be
monotone w.r.t. X .

If β(X) is down-monotone w.r.t. X then

∃X{∀x̄[α(X, x̄, z̄)→ X(x̄)] ∧ β(X)
} ≡

β(X)
X(x̄)

LFPX(x̄) [α(X,x̄,z̄)](x̄).
(12)

If β(X) is monotone w.r.t. X then

∃X{∀x̄[X(x̄)→ α(X, x̄, z̄)] ∧ β(X)
} ≡

β(X)
X(x̄)

GFPX(x̄) [α(X,x̄,z̄)](x̄).
(13)

The following example illustrates the use of Theorem 8

EXAMPLE 9. Consider formula (6). It is universally quantified,
so we first negate it to replace universal quantifiers by existential
quantifiers:

¬∃u∃X(∀x∀y(X(x, y)→ Cn(x, y))∧
∀x∀z((Cp(x, z)∨∃y(X(x, y)∧X(y, z)))→X(x, z))∧
¬〈{y}∃x(X(x, y) ∧ S(x))〉W (u)

)
.

(14)

Formula under ∃u is semi-Horn. To apply our method we first
have to translate the formula using translation Tr and applying
Lemma 5. The result is:

¬∃u∃X ′(∀x∀y(X ′(s, x, y)→ Cn′(s, x, y))∧
∀x∀z((Cp′(s, x, y)∨∃y(X ′(s, x, y)∧X ′(s, y, z)))→X ′(s, x, z))
∧ ¬E({y}∃x(X ′(s, x, y)∧S′(s, x)), s,W ′(s, u))

)
.

To apply the equivalence (12) we formally need a small trick,9

namely the second line of the above formula is equivalent to

∀t∀x∀z((t = s ∧ (Cp′(s, x, y) ∨ ∃y(X ′(s, x, y) ∧X ′(s, y, z))))
→ X ′(t, x, z))

Now we apply equivalence (12) of Theorem 8 and obtain the fol-
lowing equivalent formula:

¬∃u(∀x∀y(X ′(s, x, y)→ Cn′(s, x, y))∧
¬E({y}∃x(X ′(s, x, y)∧S′(s, x)), s,W ′(s, u))

)
,

(15)

where X ′ should be respectively replaced by

LFPX ′(t, x, z) [t = s ∧ (Cp′(s, x, z)∨
∃y(X ′(s, x, y) ∧X ′(s, y, z)))]. (16)

8We shall only use this notation in contexts where the least and the
greatest relation exist.
9Which later will appear reversible.

Using the fact that t = s, we get the following equivalent of (16):10

LFPX ′(s, x, z) [Cp′(s, x, z)∨∃y(X ′(s, x, y) ∧X ′(s, y, z))]. (17)

Formula (16), in which X ′s are respectively replaced by the least
fixpoint formula (17), is the input to the model checking method. 2

Since positivity implies monotonicity and negativity implies
down-monotonicity, we have the following theorem as a conse-
quence of equivalence (12) from Theorem 8.

THEOREM 10. Model checking for the semi-Horn fragment of
HCL? is in PTIME.

PROOF. Observe that second-order quantifiers can be elimi-
nated from semi-Horn formulas using (12). The resulting formula
is a fixpoint formula. Checking whether it holds in a given model
M can be done in time polynomial w.r.t. the size ofM.

Note that in Theorem 8 second-order quantification binds a sin-
gle relation variable, while in semi-Horn formula there might be
a longer tuple of existential quantifiers. However, such a tuple can
be encoded by a single relation variable by adding a special argu-
ment (or a number of arguments) identifying “original” relations.
For example, to encode X1, . . . , Xr , we can consider a relation
variable X (̂i, x̄), where î is the special argument, x̄ is the list of
arguments of the length being the maximum of lengths of argu-
ments of X1, . . . , Xr . Now, rather than writing Xi(x̄i) one can
write X (̂i, x̄i, ȳ), where ȳ is a tuple of dummy arguments, needed
when the number of arguments of Xi is smaller than the number of
arguments in x̄.

One can also define the dual form of semi-Horn formulas. By the
dual semi-Horn fragment of HCL? we mean formulas in the exis-
tential fragment of HCL?, which have the following form:

∃X̄{∀x̄[Xi(x̄)→ α(X̄, x̄, z̄)] ∧ β(X̄)
}

where X̄ stands for X1, . . . , Xr , 1 ≤ i ≤ r and α, β are both
positive w.r.t. each of X1, . . . , Xr .

By applying the equivalence (13) from Theorem 8, we have the
following theorem.

THEOREM 11. Model checking for the dual semi-Horn frag-
ment of HCL? is in PTIME. 2

7. ASSERTION TYPES EXPRESSIBLE IN
TRACTABLE FRAGMENTS OF HCL?

Let us summarize a number of useful types of assertions which
can be represented in those fragments of HCL? which admit
tractable model checking.

The first, obvious class of expressible formulas is provided by
Lemma 6. This is quite a rich class of formulas. Probably the
most interesting among them are existence assertions allowing one
to express that, in a given circumstance C(x̄), there is a coalition
satisfying a certain condition A which can lead to a set of states
guaranteeing that a given goal G(z̄) is achieved:

C(x̄)→ 〈{y}A(y)〉 G(z̄). (18)

Note that bothC andG can still contain diamonds. In applications,
one can frequently expect queries of the form (18), often simplified
to the case where C(x̄) is true, i.e., when one is interested whether
in a given situation there is a coalition able to achieve a given goal
(i.e., 〈{y}A(y)〉 G(z̄)).

10Explaining what we have meant by “reversibility” of the trick ap-
plied earlier.
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Another significant class of formulas is provided by Lemma 7 to-
gether with Theorems 10 and 11. A very important subclass of such
formulas is the one, where using existential second-order quanti-
fiers, one can “transfer” coalitions among diamonds. We call such
assertions transfer assertions, which typically can take the form

∃X(∀x̄(A(X, x̄)→ 〈{y}B(X, x̄, y)〉) ∧ C(X)
)
. (19)

Of course, tractable model checking is possible when such a for-
mula translates into a positive or (dual) semi-Horn formula, like in
the following example,

∃X(∀x̄(X(x̄)→ (〈{y}(X(y) ∨ large(y))〉goal∧
∀x̄(strong(x)→ X(x̄))

)
,

expressing that there is a coalition consisting of all strong agents
in addition to possibly some large agents, capable of achieving the
goal.

Observe that the class of formulas which admit tractable model
checking using the methods provided in this paper is not limited to
the above types of assertions, but these assertion types do show the
practical use of the fragments we deal with.

8. CONCLUSIONS
We have introduced the higher-order logic HCL? which can be

used for reasoning about the abilities of coalitions and interactions
between them. HCL? is a generalization of HCL which subsumes
both CL and QCL. Additionally, we have isolated a number of ex-
pressive fragments of HCL? and shown that the model-checking
problem for these fragments can be solved in PTIME by appeal-
ing to use of quantifier elimination, results from deductive database
theory and descriptive complexity. Additionally, through advanta-
geous use of monotonicity constraints on coalition frames and use
of deductive database techniques one can often get exponentially
more succinct representations of coalition models in the model-
checking process.

For formulas outside of this fragment one could use extensions
of the second-order quantifier elimination algorithm of [11] which,
although often finding reductions outside these fragments, does not
guarantee such reductions. For a presentation of this algorithm as
well as other relevant techniques see also [13].
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ABSTRACT
Recent research in multi-robot exploration and mapping has
focused on sampling environmental fields, which are typi-
cally modeled using the Gaussian process (GP). Existing
information-theoretic exploration strategies for learning GP-
based environmental field maps adopt the non-Markovian
problem structure and consequently scale poorly with the
length of history of observations. Hence, it becomes compu-
tationally impractical to use these strategies for in situ, real-
time active sampling. To ease this computational burden,
this paper presents a Markov-based approach to efficient
information-theoretic path planning for active sampling of
GP-based fields. We analyze the time complexity of solving
the Markov-based path planning problem, and demonstrate
analytically that it scales better than that of deriving the
non-Markovian strategies with increasing length of planning
horizon. For a class of exploration tasks called the transect
sampling task, we provide theoretical guarantees on the ac-
tive sampling performance of our Markov-based policy, from
which ideal environmental field conditions and sampling task
settings can be established to limit its performance degrada-
tion due to violation of the Markov assumption. Empirical
evaluation on real-world temperature and plankton density
field data shows that our Markov-based policy can generally
achieve active sampling performance comparable to that of
the widely-used non-Markovian greedy policies under less
favorable realistic field conditions and task settings while
enjoying significant computational gain over them.
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1. INTRODUCTION
Research in multi-robot exploration and mapping has re-

cently progressed from building occupancy grids [14] to sam-
pling spatially varying environmental phenomena [5, 6, 8],
in particular, environmental fields (e.g., plankton density,
pollutant concentration, temperature fields) that are char-
acterized by continuous-valued, spatially correlated measure-
ments (see Fig. 1). Exploration strategies for building occu-
pancy grid maps usually operate under the assumptions of
(a) discrete, (b) independent cell occupancies, which impose,
respectively, the following limitations for learning environ-
mental field maps: these strategies (a) cannot be fully in-
formed by the continuous field measurements and (b) cannot
exploit the spatial correlation structure of an environmental
field for selecting observation paths. As a result, occupancy
grid mapping strategies are not capable of selecting the most
informative observation paths for learning an environmental
field map.

Furthermore, occupancy grid mapping strategies typically
assume that range sensing is available. In contrast, many in
situ environmental and ecological sensing applications (e.g.,
monitoring of ocean phenomena, forest ecosystems, or pollu-
tion) permit only point-based sensing, thus making a high-
resolution sampling of the entire field impractical in terms
of resource costs (e.g., energy consumption, mission time).
In practice, the resource cost constraints restrict the spatial
coverage of the observation paths. Fortunately, the spatial
correlation structure of an environmental field enables a map
of the field (in particular, its unobserved areas) to be learned
using the point-based observations taken along the resource-
constrained paths. To learn this map, a commonly-used
approach in spatial statistics [15] is to assume that the envi-
ronmental field is realized from a probabilistic model called
the Gaussian process (GP) (Section 3.2). More importantly,
the GP model allows an environmental field to be formally
characterized and consequently provides formal measures of
mapping uncertainty (e.g., based on mean-squared error [5]
or entropy criterion [6]) for directing a robot team to explore
highly uncertain areas of the field. In this paper, we focus on
using the entropy criterion to measure mapping uncertainty.

How then does a robot team plan the most informative
resource-constrained observation paths to minimize the map-
ping uncertainty of an environmental field? To address this,
the work of [6] has proposed an information-theoretic multi-
robot exploration strategy that selects non-myopic observa-
tion paths with maximum entropy. Interestingly, this work
has established an equivalence result that the maximum-
entropy paths selected by such a strategy can achieve the
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dual objective of minimizing the mapping uncertainty de-
fined using the entropy criterion. When this strategy is ap-
plied to sampling a GP-based environmental field, it can be
reduced to solving a non-Markovian, deterministic planning
problem called the information-theoretic multi-robot adap-
tive sampling problem (iMASP) (Section 3). Due to the
non-Markovian problem structure of iMASP, its state size
grows exponentially with the length of planning horizon. To
alleviate this computational difficulty, an anytime heuristic
search algorithm called Learning Real-Time A∗ [1] is used to
solve iMASP approximately. However, this algorithm does
not guarantee the performance of its induced exploration
policy. We have also observed through experiments that
when the joint action space of the robot team is large or the
planning horizon is long, it no longer produces a good pol-
icy fast enough. Even after incurring a huge amount of time
and space to improve the search, its resulting policy still
performs worse than the widely-used non-Markovian greedy
policy, the latter of which can be derived efficiently by solv-
ing the myopic formulation of iMASP (Section 3.3).

Though the anytime and greedy algorithms provide some
computational relief to solving iMASP (albeit approximately),
they inherit iMASP’s non-Markovian problem structure and
consequently scale poorly with the length of history of ob-
servations. Hence, it becomes computationally impractical
to use these non-Markovian path planning algorithms for in
situ, real-time active sampling performed (a) at high resolu-
tion (e.g., due to high sensor sampling rate or large sampling
region), (b) over dynamic features of interest (e.g., algal
blooms, oil spills), (c) with resource cost constraints (e.g.,
energy consumption, mission time), or (d) in the presence of
dynamically changing external forces translating the robots
(e.g., ocean drift on autonomous boats), thus requiring fast
replanning. For example, the deployment of autonomous
underwater vehicles (AUVs) and boats for ocean sampling
poses the above challenges/issues among others [3].

To ease this computational burden, this paper proposes a
principled Markov-based approach to efficient information-
theoretic path planning for active sampling of GP-based en-
vironmental fields (Section 4), which we develop by assum-
ing the Markov property in iMASP planning. To the proba-
bilistic robotics community, such a move to achieve time effi-
ciency is probably anticipated. However, the Markov prop-
erty is often imposed without carefully considering or for-
mally analyzing its consequence on the performance degra-
dation while operating in non-Markovian environments. In
particular, to what extent does the environmental structure
affect the performance degradation due to violation of the
Markov assumption? Motivated by this lack of treatment,
our work in this paper is novel in demonstrating both theo-
retically and empirically the extent of which the degradation
of active sampling performance depends on the spatial cor-
relation structure of an environmental field. An important
practical consequence is that of establishing environmen-
tal field conditions under which the Markov-based approach
performs well relative to the non-Markovian iMASP-based
policy while enjoying significant computational gain over it.
The specific contributions of our work include:
• analyzing the time complexity of solving the Markov-based

information-theoretic path planning problem, and show-
ing analytically that it scales better than that of deriv-
ing the non-Markovian strategies with increasing length
of planning horizon (Section 4.1);

• providing theoretical guarantees on the active sampling
performance of our Markov-based policy (Section 4.2) for
a class of exploration tasks called the transect sampling
task (Section 2), from which various ideal environmental
field conditions and sampling task settings can be estab-
lished to limit its performance degradation;
• empirically evaluating the active sampling performance

and time efficiency of our Markov-based policy on real-
world temperature and plankton density field data under
less favorable realistic environmental field conditions and
sampling task settings (Section 5).

2. TRANSECT SAMPLING TASK
Fig. 1 illustrates the transect sampling task introduced

in [12, 13] previously. A temperature field is spatially dis-
tributed over a 25 m × 150 m transect that is discretized into
a 5 × 30 grid of sampling locations comprising 30 columns,
each of which has 5 sampling locations. It can be observed
that the number of columns is much greater than the number
of sampling locations in each column; this observed prop-
erty is assumed to be consistent with every other transect.
The robots are constrained to simultaneously explore for-
ward one column at a time from the leftmost to the right-
most column of the transect such that each robot samples
one location per column for a total of 30 locations. So, each
robot’s action space given its current location consists of
moving to any of the 5 locations in the adjacent column on
its right. The number of robots is assumed not to be larger
than the number of sampling locations per column. We as-
sume that an adversary chooses the starting robot locations
in the leftmost column and the robots will only know them
at the time of deployment; such an adversary can be the
dynamically changing external forces translating the robots
(e.g., ocean drift on autonomous boats) or the unknown ob-
stacles occupying potential starting locations. The robots
are allowed to end at any location in the rightmost column.

In practice, the constraint on exploring forward in a tran-
sect sampling task permits the planning of less complex ob-
servation paths that can be achieved more reliably, using
less sophisticated control algorithms, and by robots with
limited maneuverability (e.g., unmanned aerial vehicles, au-
tonomous boats and AUVs [10]). For practical applications,
while the robot is in transit from its current location to a
distant planned waypoint [3, 13], this task can be performed
to collect the most informative observations during transit.
In monitoring of ocean phenomena and freshwater quality
along rivers, the transect can span a plankton density or
temperature field drifting at a constant rate from right to
left and the autonomous boats are tasked to explore within
a line perpendicular to the drift. As another example, the
transect can be the bottom surface of ship hull or other mar-
itime structure to be inspected and mapped by AUVs.

3. NON-MARKOVIAN PATH PLANNING

3.1 Notations and Preliminaries
Let U be the domain of the environmental field represent-

ing a set of sampling locations in the transect such that each
location u ∈ U yields a measurement zu. The columns of the
transect are indexed in an increasing order from left to right
with the leftmost column being indexed ‘0’. Each planning
stage is associated with a column from which every robot in
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Figure 1: Transect sampling task on a temperature
field (measured in ◦C) spatially distributed over a
25 m × 150 m transect that is discretized into a 5×30
grid of sampling locations (white dots).

the team selects and takes an observation (i.e., comprising
a pair of location and its measurement). Let k denote the
number of robots in the team. In each stage i, the team of k
robots then collects from column i a total of k observations,
which are denoted by a pair of vectors xi of k locations and
zxi of the corresponding measurements. Let x0:i and zx0:i

denote vectors comprising the histories of robots’ sampling
locations and corresponding measurements over stages 0 to
i (i.e., concatenations of x0, x1, . . . , xi and zx0 , zx1 , . . . , zxi),
respectively. Let Zu, Zxi , and Zx0:i be random measure-
ments that are associated with the realizations zu, zxi , and
zx0:i , respectively.

3.2 GP-Based Environmental Field
The GP model can be used to formally characterize an

environmental field as follows: the environmental field is de-
fined to vary as a realization of a GP. Let {Zu}u∈U denote
a GP, i.e., every finite subset of {Zu}u∈U has a multivariate
Gaussian distribution [9]. The GP is fully specified by its

mean µu
4
= E[Zu] and covariance σuv

4
= cov[Zu, Zv] for all

u, v ∈ U . We assume that the GP is second-order station-
ary, i.e., it has a constant mean and a stationary covariance
structure (i.e., σuv is a function of u− v for all u, v ∈ U). In
particular, its covariance structure is defined by the widely-
used squared exponential covariance function [9]

σuv
4
= σ2

s exp


−1

2
(u− v)>M−2(u− v)

ff
+ σ2

nδuv (1)

where σ2
s is the signal variance, σ2

n is the noise variance,
M is a diagonal matrix with length-scale components `1
and `2 in the horizontal and vertical directions of a tran-
sect, respectively, and δuv is a Kronecker delta of value 1
if u = v, and 0 otherwise. Intuitively, the signal and noise
variances describe, respectively, the intensity and noise of
the field measurements while the length-scale can be in-
terpreted as the approximate distance to be traversed in
a transect for the field measurement to change considerably
[9]; it therefore controls the degree of spatial correlation or
“similarity” between field measurements. In this paper, the
mean and covariance structure of the GP are assumed to be
known. Given that the robot team has collected observa-
tions x0, zx0 , x1, zx1 , . . . , xi, zxi over stages 0 to i, the distri-
bution of Zu remains Gaussian with the following posterior
mean and covariance

µu|x0:i = µu + Σux0:iΣ
−1
x0:ix0:i{zx0:i − µx0:i}> (2)

σuv|x0:i = σuv − Σux0:iΣ
−1
x0:ix0:iΣx0:iv (3)

where µx0:i is a row vector with mean components µw for
every location w of x0:i, Σux0:i is a row vector with covari-
ance components σuw for every location w of x0:i, Σx0:iv is
a column vector with covariance components σwv for every
location w of x0:i, and Σx0:ix0:i is a covariance matrix with
components σwy for every pair of locations w, y of x0:i. Note
that the posterior mean µu|x0:i (2) is the best unbiased pre-
dictor of the measurement zu at unobserved location u. An

important property of GP is that the posterior covariance
σuv|x0:i (3) is independent of the observed measurements
zx0:i ; this property is used to reduce iMASP to a determin-
istic planning problem as shown later.

3.3 Deterministic iMASP Planning
Supposing the robot team starts in locations x0 of leftmost

column 0, an exploration policy is responsible for direct-
ing it to sample locations x1, x2, . . . , xt+1 of the respective
columns 1, 2, . . . , t + 1 to form the observation paths. For-

mally, a non-Markovian policy is denoted by π
4
= 〈π0(x0:0 =

x0), π1(x0:1), . . . , πt(x0:t)〉 where πi(x0:i) maps the history
x0:i of robots’ sampling locations to a vector ai ∈ A(xi) of
robots’ actions in stage i (i.e., ai ← πi(x0:i)), and A(xi) is
the joint action space of the robots given their current lo-
cations xi. We assume that the transition function τ(xi, ai)
deterministically (i.e., no localization uncertainty) moves
the robots to their next locations xi+1 in stage i + 1 (i.e.,
xi+1 ← τ(xi, ai)). Putting πi and τ together yields the as-
signment xi+1 ← τ(xi, πi(x0:i)).

The work of [6] has proposed a non-Markovian policy π∗

that selects non-myopic observation paths with maximum
entropy for sampling a GP-based field. To know how π∗

is derived, we first define the value under a policy π to be
the entropy of observation paths when starting in x0 and
following π thereafter:

V π0 (x0)
4
= H[Zx1:t+1 |Zx0 , π]

= −
Z
f(zx0:t+1 |π) log f(zx1:t+1 |zx0 , π) dzx0:t+1

(4)
where f denotes a Gaussian probability density function.
When a non-Markovian policy π is plugged into (4), the
following (t+1)-stage recursive formulation results from the
chain rule for entropy and xi+1 ← τ(xi, πi(x0:i)):

V πi (x0:i) = H[Zxi+1 |Zx0:i , πi] + V πi+1(x0:i+1)

= H[Zτ(xi,πi(x0:i))|Zx0:i ] + V πi+1((x0:i, τ(xi, πi(x0:i))))

V πt (x0:t) = H[Zxt+1 |Zx0:t , πt]

= H[Zτ(xt,πt(x0:t))|Zx0:t ]
(5)

for stage i = 0, . . . , t− 1 such that each stagewise posterior
entropy (i.e., of the measurements Zxi+1 to be observed in
stage i+1 given the history of measurements Zx0:i observed
from stages 0 to i) reduces to

H[Zxi+1 |Zx0:i ] =
1

2
log (2πe)k|Σxi+1|x0:i | (6)

where Σxi+1|x0:i is a covariance matrix with components
σuv|x0:i for every pair of locations u, v of xi+1, each of which
is independent of observed measurements zx0:i by (3), as dis-
cussed above. So, H[Zxi+1 |Zx0:i ] can be evaluated in closed
form, and the value functions (5) only require the history
of robots’ sampling locations x0:i as inputs but not that of
corresponding measurements zx0:i .

Solving iMASP involves choosing π to maximize V π0 (x0)
(5), which yields the optimal policy π∗. Plugging π∗ into
(5) gives the (t+ 1)-stage dynamic programming equations:

V π
∗

i (x0:i) = max
ai∈A(xi)

H[Zτ(xi,ai)|Zx0:i ] + V π
∗

i+1((x0:i, τ(xi, ai)))

V π
∗

t (x0:t) = max
at∈A(xt)

H[Zτ(xt,at)|Zx0:t ]

(7)
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for stage i = 0, . . . , t− 1. Since each stagewise posterior en-
tropy H[Zτ(xi,ai)|Zx0:i ] (6) can be evaluated in closed form
as explained above, iMASP for sampling the GP-based field
(7) reduces to a deterministic planning problem. Further-
more, it turns out to be the well-known maximum entropy
sampling problem [11] as demonstrated in [6]. Policy π∗ =
〈π∗0(x0:0), . . . , π∗t (x0:t)〉 can be determined by

π∗i (x0:i) = arg max
ai∈A(xi)

H[Zτ(xi,ai)|Zx0:i ] + V π
∗

i+1((x0:i, τ(xi, ai)))

π∗t (x0:t) = arg max
at∈A(xt)

H[Zτ(xt,at)|Zx0:t ]

(8)
for stage i = 0, . . . , t− 1. Similar to the optimal value func-
tions (7), π∗ only requires the history of robots’ sampling lo-
cations as inputs. So, π∗ can generate the maximum-entropy
paths prior to exploration.

Solving the myopic formulation of iMASP (7) is often con-
sidered to ease computation (Section 4.1), which entails de-
riving the non-Markovian greedy policy πG = 〈πG0 (x0:0), . . . ,
πGt (x0:t)〉 where, for stage i = 0, . . . , t,

πGi (x0:i) = arg max
ai∈A(xi)

H[Zτ(xi,ai)|Zx0:i ] . (9)

The work of [2] has proposed a non-Markovian greedy policy
πM = 〈πM0 (x0:0), . . . , πMt (x0:t)〉 to approximately maximize
the closely related mutual information criterion:

πMi (x0:i) = arg max
ai∈A(xi)

H[Zτ(xi,ai)|Zx0:i ]−H[Zτ(xi,ai)|Zx0:i+1 ]

(10)
for stage i = 0, . . . , t where x0:i+1 denotes the vector com-
prising locations of domain U not found in (x0:i, τ(xi, ai)).
It is shown in [2] that πM greedily selects new sampling lo-
cations that maximize the increase in mutual information.
As noted in [6], this strategy is deficient in that it may not
necessarily minimize the mapping uncertainty defined using
the entropy criterion. More importantly, it suffers a huge
computational drawback: the time needed to derive πM de-
pends on the map resolution (i.e., |U|) (Section 4.1).

4. MARKOV-BASED PATH PLANNING
The Markov property assumes that the measurements Zxi+1

to be observed next in stage i+ 1 depends only on the cur-
rent measurements Zxi observed in stage i and is condition-
ally independent of the past measurements Zx0:i−1 observed
from stages 0 to i− 1. That is, f(zxi+1 |zx0:i) = f(zxi+1 |zxi)
for all zx0 , zx1 , . . . , zxi+1 . As a result, H[Zxi+1 |Zx0:i ] (6) can
be approximated by H[Zxi+1 |Zxi ]. It is therefore straight-
forward to impose the Markov assumption on iMASP (7),
which yields the following dynamic programming equations
for the Markov-based path planning problem:eVi(xi) = max

ai∈A(xi)
H[Zτ(xi,ai)|Zxi ] + eVi+1(τ(xi, ai))eVt(xt) = max

at∈A(xt)
H[Zτ(xt,at)|Zxt ] .

(11)
for stage i = 0, . . . , t − 1. Consequently, the Markov-based
policy eπ = 〈eπ0(x0), . . . , eπt(xt)〉 can be determined by

eπi(xi) = arg max
ai∈A(xi)

H[Zτ(xi,ai)|Zxi ] + eVi+1(τ(xi, ai))eπi(xt) = arg max
at∈A(xt)

H[Zτ(xt,at)|Zxt ] .
(12)

4.1 Time Complexity: Analysis & Comparison
Theorem 1. Let A 4

= A(x0) = . . . = A(xt). Deriving
the Markov-based policy eπ (12) for the transect sampling task
requires O(|A|2(t+ k4)) time.

Note that |A| = rCk = O(rk) where r is the number of
sampling locations per column and k ≤ r as assumed in
Section 2. Though |A| is exponential in the number k of
robots, r is expected to be small in a transect, which pre-
vents |A| from growing too large.

In contrast, deriving iMASP-based policy π∗ (8) requires
O(|A|tt2k4) time. Deriving greedy policies πG (9) and πM

(10) incur, respectively, O(|A|t4k3+|A|2tk4) andO(|A|t|U|3+
|A|2tk4) = O(|A|t4r3 + |A|2tk4) time to compute the obser-
vation paths over all |A| possible choices of starting robot
locations. Clearly, all the non-Markovian strategies do not
scale as well as our Markov-based approach with increasing
length t+ 1 of planning horizon or number t+ 2 of columns,
which is expected to be large. As demonstrated empiri-
cally (Section 5), the Markov-based policy eπ can be derived
faster than πG and πM by more than an order of magnitude;
this computational advantage is boosted further for transect
sampling tasks with unknown starting robot locations.

4.2 Performance Guarantees
We will first provide a theoretical guarantee on how the

Markov-based policy eπ (12) performs relative to the non-
Markovian iMASP-based policy π∗ (8) for the case of 1
robot. This key result follows from our intuition that when
the horizontal spatial correlation becomes small, exploiting
the past measurements for path planning should hardly im-
prove the active sampling performance in a transect sam-
pling task, thus favoring the Markov-based policy. Though
this intuition is simple, supporting it with formal theoretical
results (and their corresponding proofs reported elsewhere
[7]) turns out to be non-trivial as shown below.

Recall the Markov assumption that H[Zxi+1 |Zx0:i ] (6) is to
be approximated by H[Zxi+1 |Zxi ]. This prompts us to first
consider bounding the difference of these posterior entropies
that ensues from the Markov property:

H[Zxi+1 |Zxi ]−H[Zxi+1 |Zx0:i ] =
1

2
log

σ2
xi+1|xi

σ2
xi+1|x0:i

=
1

2
log

 
1−

σ2
xi+1|xi − σ2

xi+1|x0:i

σ2
xi+1|xi

!−1

≥ 0 .

(13)

This difference can be interpreted as the reduction in un-
certainty of the measurements Zxi+1 to be observed next
in stage i + 1 by observing the past measurements Zx0:i−1

from stages 0 to i − 1 given the current measurements Zxi
observed in stage i. This difference is small if Zx0:i−1 does
not contribute much to the reduction in uncertainty of Zxi+1

given Zxi . It (13) is often known as the conditional mutual
information of Zxi+1 and Zx0:i−1 given Zxi denoted by

I[Zxi+1 ;Zx0:i−1 |Zxi ] 4= H[Zxi+1 |Zxi ]−H[Zxi+1 |Zx0:i ] ,

which is of value 0 if the Markov property holds.
The results to follow assume that the transect is discretized

into a grid of sampling locations. Let ω1 and ω2 denote the
horizontal and vertical grid discretization widths (i.e., sep-
arations between adjacent sampling locations), respectively.

Let `′1
4
= `1/ω1 and `′2

4
= `2/ω2 represent the normalized hor-

izontal and vertical length-scale components, respectively.
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The following lemma bounds the variance reduction term
σ2
xi+1|xi − σ2

xi+1|x0:i
in (13):

Lemma 2. Let ξ
4
= exp


− 1

2`′21

ff
and ρ

4
= 1 +

σ2
n

σ2
s

. If

ξ <
ρ

i
, then 0 ≤ σ2

xi+1|xi − σ2
xi+1|x0:i ≤

σ2
sξ

4

ρ
i
− ξ .

The next lemma is fundamental to the subsequent results
on the active sampling performance of Markov-based policyeπ. It provides bounds on I[Zxi+1 ;Zx0:i−1 |Zxi ], which follow
immediately from (13), Lemma 2, and the lower bound

σ2
xi+1|xi = σ2

xi+1 − (σxi+1xi)
2/σ2

xi ≥ σ2
s + σ2

n − σ2
sξ

2 :

Lemma 3. If ξ <
ρ

i
, then 0≤ I[Zxi+1 ;Zx0:i−1 |Zxi ]≤∆(i)

where ∆(i)
4
=

1

2
log

„
1− ξ4

( ρ
i
− ξ)(ρ− ξ2)

«−1

.

Remark. If j ≤ s, then ∆(j) ≤ ∆(s) for j, s = 0, . . . , t.

From Lemma 3, since ∆(i) bounds I[Zxi+1 ;Zx0:i−1 |Zxi ] from
above, a small I[Zxi+1 ;Zx0:i−1 |Zxi ] can be guaranteed by
making ∆(i) small. From the definition of ∆(i), there are
a few ways to achieve a small ∆(i): (a) ∆(i) depends on
`′1 through ξ. As `′1 → 0+, ξ → 0+, by definition. Con-
sequently, ∆(i) → 0+. A small `′1 can be obtained us-
ing a small `1 and/or a large ω1, by definition; (b) ∆(i)
also depends on the noise-to-signal ratio σ2

n/σ
2
s through ρ.

Raising σ2
n or lowering σ2

s increases ρ, by definition. This,
in turn, decreases ∆(i); (c) Since i indicates the length of
history of observations, the remark after Lemma 3 tells us
that a shorter length produces a smaller ∆(i). To sum-
marize, (a) environmental field conditions such as smaller
horizontal spatial correlation and noisy, less intense fields,
and (b) sampling task settings such as larger horizontal grid
discretization width and shorter length of history of obser-
vations all contribute to smaller ∆(i), and hence smaller
I[Zxi+1 ;Zx0:i−1 |Zxi ]. This analysis is important for under-
standing the practical implication of our theoretical results
later. A limitation with using Lemma 3 is that of the suffi-
cient condition ξ < ρ/i, which will hold if the field conditions
and task settings realized above to make ∆(i) small are ad-
equately satisfied.

The following theorem uses the induced optimal valueeV0(x0) from solving the Markov-based path planning prob-

lem (11) to bound the maximum entropy V π
∗

0 (x0) of obser-
vation paths achieved by π∗ from solving iMASP (7):

Theorem 4. Let εi
4
=
Pt
s=i ∆(s) ≤ (t − i + 1)∆(t). If

ξ <
ρ

t
, then eVi(xi)−εi ≤ V π∗i (x0:i) ≤ eVi(xi) for i = 0, . . . , t.

The above result is useful in providing an efficient way of
knowing the maximum entropy V π

∗
0 (x0), albeit approximately:

the time needed to derive the two-sided bounds on V π
∗

0 (x0)
is linear in the length of planning horizon (Theorem 1) as
opposed to exponential time required to compute the ex-
act value of V π

∗
0 (x0). Since the error bound εi is defined

as a sum of ∆(s)’s, we can rely on the above analysis of
∆(s) (see paragraph after Lemma 3) to improve this error
bound: (a) environmental field conditions such as smaller
horizontal spatial correlation and noisy, less intense fields,
and (b) sampling task settings such as larger horizontal grid
discretization width and shorter planning horizon (i.e., fewer
transect columns) all improve this error bound.

In the main result below, the Markov-based policy eπ is
guaranteed to achieve an entropy V eπ

0 (x0) of observation paths
(i.e., by plugging eπ into (5)) that is not more than ε0 from

the maximum entropy V π
∗

0 (x0) of observation paths achieved
by policy π∗:

Theorem 5. If ξ <
ρ

t
, then policy eπ is ε0-optimal in

achieving the maximum-entropy criterion, i.e., V π
∗

0 (x0) −
V eπ

0 (x0) ≤ ε0.

Again, since the error bound ε0 is defined as a sum of ∆(s)’s,
we can use the above analysis of ∆(s) to improve this bound:
(a) environmental field conditions such as smaller horizontal
spatial correlation and noisy, less intense fields, and (b) sam-
pling task settings such as larger horizontal grid discretiza-
tion width and shorter planning horizon (i.e., fewer transect
columns) all result in smaller ε0, and hence improve the ac-
tive sampling performance of Markov-based policy eπ relative
to that of non-Markovian iMASP-based policy π∗. This not
only supports our prior intuition (see first paragraph of this
section) but also identifies other means of limiting the per-
formance degradation of the Markov-based policy.

For the multi-robot case, a condition has to be imposed on
the covariance structure of GP to obtain a similar guarantee:

|σuv|x0:i | ≤ |σuv|xm | (14)

for m = 0, . . . , i and any u, v, x0, x1, . . . , xi ∈ U . Intuitively,
(14) says that further conditioning does not make Zu and
Zv more correlated. Note that (14) is satisfied if u = v.

Similar to Lemma 3 for the 1-robot case, we can bound
I[Zxi+1 ;Zx0:i−1 |Zxi ] for the multi-robot case but tighter con-
ditions have to be satisfied:

Lemma 6. Let `′1 = `′2. If ξ < min(
ρ

ik
,
ρ

4k
) and (14)

is satisfied, then 0 ≤ I[Zxi+1 ;Zx0:i−1 |Zxi ] ≤ ∆k(i) where

∆k(i)
4
=
k

2
log

 
1− ξ4

( ρ
ik
− ξ)(ρ− 4k

ρ
ξ2)

!−1

.

To improve the upper bound ∆k(i), the above analysis of
∆(i) can be applied here as these two upper bounds are
largely similar: (a) environmental field conditions such as
smaller spatial correlation and noisy, less intense fields, and
(b) sampling task settings such as larger grid discretiza-
tion width and shorter planning horizon (i.e., fewer transect
columns) all entail smaller ∆k(i). Decreasing the number k
of robots also reduces ∆k(i), thus yielding tighter bounds on
I[Zxi+1 ;Zx0:i−1 |Zxi ]. Using Lemma 6, we can derive guaran-
tees similar to that of Theorems 4 and 5 on the performance
of Markov-based policy eπ for the multi-robot case.

5. EXPERIMENTS AND DISCUSSION
In Section 4.2, we have highlighted the practical implica-

tion of our main theoretical result (i.e., Theorem 5), which
establishes various environmental field conditions and sam-
pling task settings to limit the performance degradation of
Markov-based policy eπ. This result, however, does not re-
veal whether eπ performs well (or not) under “seemingly”
less favorable field conditions and task settings that do not
jointly satisfy its sufficient condition ξ < ρ/(tk). These
include large spatial correlation, less noisy, highly intense
fields, small grid discretization width, long planning horizon
(i.e., many transect columns), and large number of robots.
So, this section evaluates the active sampling performance
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and time efficiency of eπ empirically on two real-world datasets
under such field conditions and task settings as detailed be-
low: (a) May 2009 temperature field data of Panther Hollow
Lake in Pittsburgh, PA spanning 25 m by 150 m, and (b)
June 2009 plankton density field data of Chesapeake Bay
spanning 314 m by 1765 m.

Using maximum likelihood estimation (MLE) [9], the learned
hyperparameters (i.e., horizontal and vertical length-scales,
signal and noise variances) are, respectively, `1 = 40.45 m,
`2 = 16.00 m, σ2

s = 0.1542, and σ2
n = 0.0036 for the temper-

ature field, and `1 = 27.53 m, `2 = 134.64 m, σ2
s = 2.152,

and σ2
n = 0.041 for the plankton density field. It can be

observed that the temperature and plankton density fields
have low noise-to-signal ratios σ2

n/σ
2
s of 0.023 and 0.019, re-

spectively. Relative to the size of transect, both fields have
large vertical spatial correlations, but only the temperature
field has large horizontal spatial correlation.

The performance of Markov-based policy eπ is compared
to non-Markovian policies produced by two state-of-the-art
information-theoretic exploration strategies: greedy policies
πG (9) and πM (10) proposed by [6] and [2], respectively.
The non-Markovian policy π∗ that has to be derived ap-
proximately using Learning Real-Time A∗ is excluded from
comparison due to the reason provided in Section 1.

5.1 Performance Metrics
The tested policies are evaluated using the two metrics

proposed in [6], which quantify the mapping uncertainty of
the unobserved areas of the field differently: (a) The ENT(π)
metric measures the posterior joint entropy H[Zx0:t+1 |Zx0:t+1 ]
of field measurements Zx0:t+1 at unobserved locations x0:t+1

where x0:t+1 denotes the vector comprising locations of do-
main U not found in the sampled locations x0:t+1 selected
by policy π. Smaller ENT(π) implies lower mapping uncer-
tainty; (b) The ERR(π) metric measures the mean-squared
relative error |U|−1P

u∈U{(zu−µu|x0:t+1)/µ̄}2 resulting from
using the observations (i.e., sampled locations x0:t+1 and
corresponding measurements zx0:t+1) selected by policy π
and the posterior mean µu|x0:t+1 (2) to predict the field

where µ̄ = |U|−1P
u∈U zu. Smaller ERR(π) implies higher

prediction accuracy. Two noteworthy differences distinguish
these metrics: (a) The ENT(π) metric exploits the spatial
correlation between field measurements in the unobserved
areas whereas the ERR(π) metric implicitly assumes inde-
pendence between them. As a result, unlike the ERR(π)
metric, the ENT(π) metric does not overestimate the map-
ping uncertainty. To illustrate this, suppose the unknown
field measurements are restricted to only two unobserved lo-
cations u and v residing in a highly uncertain area and they
are highly correlated due to spatial proximity. The behavior
of the ENT(π) metric can be understood upon applying the
chain rule for entropy (i.e., ENT(π) = H[Zu, Zv|Zx0:t+1 ] =
H[Zu|Zx0:t+1 ] + H[Zv|Zx0:t+1 , Zu]); the latter uncertainty
term (i.e., posterior entropy of Zv) is significantly reduced or
“discounted” due to the high spatial correlation between Zu
and Zv. Hence, the mapping uncertainty of these two un-
observed locations is not overestimated. A practical advan-
tage of this metric is that it does not overcommit sensing re-
sources; in the simple illustration above, a single observation
at either location u or v suffices to learn both field measure-
ments well. On the other hand, the ERR(π) metric considers
each location to be of high uncertainty due to the indepen-
dence assumption; (b) In contrast to the ENT(π) metric, the

(a) Field 1: `1 = 5.00 m, `2 = 5.00 m.

(b) Field 2: `1 = 5.00 m, `2 = 16.00 m.

(c) Field 3: `1 = 40.45 m, `2 = 5.00 m.

(d) Field 4: `1 = 40.45 m, `2 = 16.00 m.

Figure 2: Temperature fields (measured in ◦C)
with varying horizontal length-scale `1 and vertical
length-scale `2.

ERR(π) metric can use ground truth measurements to eval-
uate if the field is being mapped accurately. Let ENTD(π)
4
= ENT(eπ)−ENT(π) and ERRD(π)

4
= ERR(eπ)−ERR(π).

Decreasing ENTD(π) improves the ENT(eπ) performance ofeπ relative to that of π. Small |ENTD(π)| implies that eπ
achieves ENT(eπ) performance comparable to that of π. ERRD(π)
can be interpreted likewise. Additionally, we will consider
the time taken to derive each policy as the third metric.

5.2 Temperature Field Data
We will first investigate how varying spatial correlations

(i.e., varying length-scales) of the temperature field affect
the ENT(π) and ERR(π) performance of evaluated policies.
The temperature field is discretized into a 5×30 grid of sam-
pling locations as shown in Figs. 1 and 2d. The horizontal
and/or vertical length-scales of the original field (i.e., field 4
in Fig. 2d) are reduced to produce modified fields 1, 2, and
3 (respectively, Figs. 2a, 2b, and 2c); we fix these reduced
length-scales while learning the remaining hyperparameters
(i.e., signal and noise variances) through MLE.

Table 1 shows the results of mean ENT(π) and ERR(π)
performance of tested policies (i.e., averaged over all possi-
ble starting robot locations) with varying length-scales and
number of robots. The ENT(π) and ERR(π) for all poli-
cies generally decrease with increasing length-scales (except
ERR(eπ) for 1 robot from field 2 to 4) due to increasing
spatial correlation between measurements, thus resulting in
lower mapping uncertainty.

For the case of 1 robot, the observations are as follows:
(a) When `2 is kept constant (i.e., at 5 m or 16 m), reduc-
ing `1 from 40.45 m to 5 m (i.e., from field 3 to 1 or field
4 to 2) decreases ENTD(πG), ERRD(πG), ENTD(πM ), and
ERRD(πM ): when the horizontal correlation becomes small,
it can no longer be exploited by the non-Markovian poli-
cies πG and πM ; (b) For field 3 with large `1 and small `2,
ENTD(πG) and ENTD(πM ) are large as the Markov prop-
erty of eπ prevents it from exploiting the large horizontal
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Table 1: Comparison of ENT(π) (left) and ERR(π)
(×10−5) (right) performance for temperature fields
that are discretized into 5× 30 grids (Fig. 2).

ENT(π) ERR(π)
1 robot Field Field
Policy 1 2 3 4 1 2 3 4eπ -83 -246 -543 -597 3.7040 0.5713 2.3680 0.5754
πG -82 -246 -554 -598 1.8680 0.5713 0.0801 0.0252
πM -80 -211 -554 -596 1.8433 0.5212 0.0701 0.0421

2 robots Field Field
Policy 1 2 3 4 1 2 3 4eπ -71 -190 -380 -422 0.3797 0.2101 0.1171 0.0095
πG -72 -190 -382 -425 0.3526 0.2101 0.0150 0.0087
πM -68 -131 -382 -421 0.6714 0.1632 0.0148 0.0086

3 robots Field Field
Policy 1 2 3 4 1 2 3 4eπ -53 -109 -232 -297 0.1328 0.0068 0.0063 0.0031
πG -53 -109 -215 -297 0.1312 0.0068 0.0059 0.0031
πM -53 -73 -214 -255 0.1080 0.1397 0.0055 0.0030

Table 2: Comparison of ENT(π) (left) and ERR(π)
(×10−5) (right) performance for temperature field
that is discretized into 13× 75 grid.
ENT(π) Number k of robots
Policy 1 2 3eπ -4813 -4284 -3828
πG -4813 -4286 -3841
πM -4808 -4277 -3825

ERR(π) Number k of robots
Policy 1 2 3eπ 1.0287 0.0032 0.0015
πG 0.0082 0.0030 0.0024
πM 0.0087 0.0034 0.0019

correlation; (c) When `1 is kept constant (i.e., at 5 m or
40.45 m), reducing `2 from 16 m to 5 m (i.e., from field 2
to 1 or field 4 to 3) increases ERRD(πG) and ERRD(πM ):
when vertical correlation becomes small, it can no longer be
exploited by eπ, thus incurring larger ERR(eπ).

For the case of 2 robots, the observations are as follows:
(a) |ENTD(πG)| and |ENTD(πM )| are small for all fields
except for field 2 where eπ significantly outperforms πM . In
particular, when `2 is kept constant (i.e., at 5 m or 16 m),
reducing `1 from 40.45 m to 5 m (i.e., from field 3 to 1 or field
4 to 2) decreases ENTD(πG), ENTD(πM ), and ERRD(πG):
this is explained in the first observation of 1-robot case;
(b) For field 3 with large `1 and small `2, ERRD(πG) and
ERRD(πM ) are large: this is explained in the second and
third observations of 1-robot case; (c) When `1 is kept con-
stant (i.e., at 5 m or 40.45 m), reducing `2 from 16 m to 5 m
(i.e., from field 2 to 1 or field 4 to 3) increases ERRD(πG):
this is explained in the third observation of 1-robot case.
This also holds for ERRD(πM ) when `1 is large.

For the case of 3 robots, it can be observed that eπ can
achieve ENT(eπ) and ERR(eπ) performance comparable to
(if not, better than) that of πG and πM for all fields.

To summarize the above observations on spatial correla-
tion conditions favoring eπ over πG and πM , eπ can achieve
ENT(eπ) performance comparable to (if not, better than)
that of πG and πM for all fields with any number of robots
except for field 3 (i.e., of large `1 and small `2) with 1 robot
as explained previously. Policy eπ can achieve comparable
ERR(eπ) performance for field 2 (i.e., of small `1 and large
`2) with 1 robot because eπ is capable of exploiting the large
vertical correlation, and the small horizontal correlation can-
not be exploited by πG and πM . Policy eπ can also achieve
comparable ERR(eπ) performance for all fields with 2 and 3
robots except for field 3 (i.e., of large `1 and small `2) with 2
robots. These observations reveal that (a) small horizontal
and large vertical correlations are favorable to eπ; (b) though
large horizontal and small vertical correlations are not favor-
able to eπ, this problem can be mitigated by increasing the
number of robots. For more detailed analysis (e.g., visual-
ization of planned observation paths and their corresponding
error maps), the interested reader is referred to [4].

Figure 3: Plankton density (chl-a) field (measured in
mg m−3) spatially distributed over a 314 m × 1765 m
transect that is discretized into a 8 × 45 grid with
`1 = 27.53 m and `2 = 134.64 m.

We will now examine how the increase in resolution to 13×
75 grid affects the ENT(π) and ERR(π) performance of eval-
uated policies; the resulting grid discretization width and
planning horizon are about 0.4× smaller and 2.5× longer,
respectively. Table 2 shows the results of mean ENT(π) and
ERR(π) performance of tested policies with varying num-
ber of robots, from which we can derive observations similar
to that for temperature field 4 discretized into 5 × 30 grid:eπ can achieve ENT(eπ) and ERR(eπ) performance compara-
ble to (if not, better than) that of πG and πM except for
ERR(eπ) performance with 1 robot. So, increasing the grid
resolution does not seem to noticeably degrade the active
sampling performance of eπ relative to that of πG and πM .

5.3 Plankton Density Field Data
Fig. 3 illustrates the plankton density field that is dis-

cretized into a 8 × 45 grid. Table 3 shows the results of
mean ENT(π) and ERR(π) performance of tested policies
with varying number of robots. The observations are as
follows: eπ can achieve the same ENT(eπ) and ERR(eπ) per-
formance as that of πG and superior ENT(eπ) performance
over that of πM because small horizontal and large vertical
correlations favor eπ as explained in Section 5.2. By increas-
ing the number of robots (i.e., k > 2), eπ can achieve ERR(eπ)
performance comparable to (if not, better than) that of πM .

Table 4 shows the results of mean ENT(π) and ERR(π)
performance of tested policies after increasing the resolu-
tion to 16 × 89 grid; the resulting grid discretization width
and planning horizon are about 0.5× smaller and 2× longer,
respectively. Similar observations can be obtained: eπ can
achieve ENT(eπ) performance comparable to that of πG and
superior ENT(eπ) performance over that of πM . By deploy-
ing more than 1 robot, eπ can achieve ERR(eπ) performance
comparable to (if not, better than) that of πG and πM .
Again, we can observe that increasing the grid resolution
does not seem to noticeably degrade the active sampling
performance of eπ relative to that of πG and πM .

5.4 Incurred Policy Time
Fig. 4 shows the time taken to derive the tested policies

for sampling the temperature and plankton density fields
with varying number of robots and grid resolutions. It can
be observed that the time taken to derive eπ is shorter than
that needed to derive πG and πM by more than 1 and 4
orders of magnitude, respectively. It is important to point
out that Fig. 4 reports the average time taken to derive πG

and πM over all possible starting robot locations. So, if the
starting robot locations are unknown, the incurred time to
derive πG and πM have to be increased by rCk-fold. In con-
trast, eπ caters to all possible starting robot locations. So,
the incurred time to derive eπ is unaffected. These observa-
tions show a considerable computational gain of eπ over πG

and πM , which supports our time complexity analysis and
comparison (Section 4). So, our Markov-based path planner
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Figure 4: Graph of time taken to derive policy vs. number k of robots for temperature field 4 discretized
into (a) 5× 30 and (b) 13× 75 grids and plankton density field discretized into (c) 8× 45 and (d) 16× 89 grids.

Table 3: Comparison of ENT(π) (left) and ERR(π)
(×10−3) (right) performance for plankton density
field that is discretized into 8× 45 grid.

ENT(π) ERR(π)
Number k of robots Number k of robots

Policy 1 2 3 4 1 2 3 4eπ -359 -322 -196 -121 5.6124 2.2164 0.0544 0.0066
πG -359 -322 -196 -121 5.6124 2.2164 0.0544 0.0066
πM -230 -186 -70 -11 4.5371 0.5613 0.0472 0.0324

Table 4: Comparison of ENT(π) (left) and ERR(π)
(×10−3) (right) performance for plankton density
field that is discretized into 16× 89 grid.
ENT(π) Number k of robots
Policy 1 2 3eπ -4278 -3949 -3681
πG -4238 -3964 -3686
πM -4171 -3840 -3501

ERR(π) Number k of robots
Policy 1 2 3eπ 3.4328 0.0970 0.0546
πG 1.5648 0.1073 0.0643
πM 0.8186 0.0859 0.0348

is more time-efficient for in situ, real-time, high-resolution
active sampling.

6. CONCLUSION
This paper describes an efficient Markov-based information-

theoretic path planner for active sampling of GP-based en-
vironmental fields. We have provided theoretical guarantees
on the active sampling performance of our Markov-based
policy eπ for the transect sampling task, from which ideal
environmental field conditions (i.e., small horizontal spatial
correlation and noisy, less intense fields) and sampling task
settings (i.e., large grid discretization width and short plan-
ning horizon) can be established to limit its performance
degradation. Empirically, we have shown that eπ can gen-
erally achieve active sampling performance comparable to
that of the widely-used non-Markovian greedy policies πG

and πM under less favorable realistic field conditions (i.e.,
low noise-to-signal ratio) and task settings (i.e., small grid
discretization width and long planning horizon) while en-
joying huge computational gain over them. In particular,
we have empirically observed that (a) small horizontal and
large vertical correlations strongly favor eπ; (b) though large
horizontal and small vertical correlations do not favor eπ,
this problem can be mitigated by increasing the number of
robots. In fact, deploying a large robot team often produces
superior active sampling performance of eπ over πM in our
experiments, not forgetting the computational gain of > 4
orders of magnitude. Our Markov-based planner can be used
to efficiently achieve more general exploration tasks (e.g.,
boundary tracking and those in [5, 6]), but the guarantees
provided here may not apply. For our future work, we will
“relax” the Markov assumption by utilizing a longer (but
not entire) history of observations in path planning. This
can potentially improve the active sampling performance in
fields of moderate to large horizontal correlation but does
not incur as much time as that of non-Markovian policies.
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ABSTRACT
Maintaining accurate world knowledge in a complex and
changing environment is a perennial problem for robots and
other artificial intelligence systems. Our architecture for
addressing this problem, called Horde, consists of a large
number of independent reinforcement learning sub-agents,
or demons. Each demon is responsible for answering a sin-
gle predictive or goal-oriented question about the world,
thereby contributing in a factored, modular way to the sys-
tem’s overall knowledge. The questions are in the form of
a value function, but each demon has its own policy, re-
ward function, termination function, and terminal-reward
function unrelated to those of the base problem. Learning
proceeds in parallel by all demons simultaneously so as to
extract the maximal training information from whatever ac-
tions are taken by the system as a whole. Gradient-based
temporal-difference learning methods are used to learn ef-
ficiently and reliably with function approximation in this
off-policy setting. Horde runs in constant time and memory
per time step, and is thus suitable for learning online in real-
time applications such as robotics. We present results using
Horde on a multi-sensored mobile robot to successfully learn
goal-oriented behaviors and long-term predictions from off-
policy experience. Horde is a significant incremental step
towards a real-time architecture for efficient learning of gen-
eral knowledge from unsupervised sensorimotor interaction.
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1. THE PROBLEM OF EXPRESSIVE AND
LEARNABLE KNOWLEDGE

How to learn, represent, and use knowledge of the world in
a general sense remains a key open problem in artificial intel-
ligence (AI). There are high-level representation languages
based on first-order predicate logic and Bayes networks that
are very expressive, but in these languages knowledge is dif-
ficult to learn and computationally expensive to use. There
are also low-level languages such as differential equations
and state-transition matrices that can be learned from data
without supervision, but these are much less expressive.
Knowledge that is even slightly forward looking, such as
‘If I keep moving, I will bump into something within a few
seconds’ cannot be expressed directly with differential equa-
tions and may be expensive to compute from them. There
remains room for exploring alternate formats for knowledge
that are expressive yet learnable from unsupervised sensori-
motor data.

In this paper we pursue a novel approach to knowledge
representation based on the notion of value functions and
on other ideas and algorithms from reinforcement learning.
In our approach, knowledge is represented as a large number
of approximate value functions learned in parallel, each with
its own policy, pseudo-reward function, pseudo-termination
function, and pseudo-terminal-reward function. Learning
systems using multiple approximate value functions of this
type have previously been explored as temporal-difference
networks with options (Sutton, Rafols & Koop 2006; Sutton,
Precup & Singh 1999). Our architecture, called Horde, dif-
fers from temporal-difference networks in its more straight-
forward handling of state and function approximation (no
predictive state representations) and in its use of more effi-
cient algorithms for off-policy learning (Maei & Sutton 2010;
Sutton et al. 2009). The current paper also extends prior
work in that we demonstrate real-time learning on a physi-
cal robot.

Previous work on the problem of representing a general
sense of knowledge while being grounded in and learnable
from sensorimotor data goes back at least to Cunningham
(1972) and Becker (1973). Drescher (1991) considered a sim-
ulated robot baby learning conditional probability tables for
boolean events. Ring (1997) explored continual learning of a
hierarchical representation of sequences. Cohen et al. (1997)
explored the formation of symbolic fluents from simulated
experience. Kaelbling et al. (2001) and Pasula et al. (2007)

761



explored the learning of relational rule representations in
stochastic domains. All these systems involved learning sig-
nificant knowledge but remained far from learning from sen-
sorimotor data. Previous researchers who did learn from
sensorimotor data include Pierce and Kuipers (1997), who
learned spatial models and control laws, Oates et al. (2000),
who learned clusters of robot trajectories, Yu and Ballard
(2004), who learned word meanings, and Natale (2005), who
learned goal-directed physical actions. All of these works
learned significant knowledge but specialized on knowledge
of a particular kind; the knowledge representation they used
is not as general as that of multiple approximate value func-
tions.

2. VALUE FUNCTIONS AS SEMANTICS
A distinctive, appealing feature of approximate value func-

tions as a knowledge representation language is that they
have an explicit semantics, a clear notion of truth grounded
in sensorimotor interaction. A bit of knowledge expressed
as an approximate value function is said to be true, or more
precisely, accurate, to the extent that its numerical values
match those of the mathematically defined value function
that it is approximating. A value function asks a question—
what will the cumulative future reward be?—and an approx-
imate value function provides an answer to that question.
The approximate value function is the knowledge, and its
match to the value function—to the actual future reward—
defines what it means for the knowledge to be accurate. The
idea of the present work is that the value-function approach
to grounding semantics can be extended beyond reward to
a theory of all world knowledge. In this section we define
these ideas formally for the case of reward and conventional
value functions (and thereby introduce our notation), and in
the next section we extend them to knowledge and general
value functions.

In the standard reinforcement learning framework (Sutton
& Barto 1998), the interaction between the AI agent and
its world is divided into a sequence of discrete time steps,
t = 1, 2, 3, . . ., each corresponding perhaps to a fraction of a
second. The state of the world at each step, denoted St ∈ S,
is sensed by the agent, perhaps incompletely, and used to
select an action At ∈ A in response. One time step later
the agent receives a real-valued reward Rt+1 ∈ R and a
next state St+1 ∈ S, and the cycle repeats. Without loss
of significant generality, we can consider the rewards to be
generated according to a deterministic reward function r :
S → R, with Rt = r(St).

The focus in conventional reinforcement learning is on
learning a stochastic action-selection policy π : S×A → [0, 1]
that gives the probability of selecting each action in each
state, π(s, a) = P(At = a|St = s). Informally, a good pol-
icy is one that results in the agent receiving a lot of reward
summed over time steps. For example, in game playing the
reward might correspond to points won or lost on each turn,
and in a race the reward might be −1 on each time step.
In episodic problems, the agent–world interaction consists
of multiple finite trajectories (episodes) that can terminate
in better or worse ways. For example, playing a game may
generate a sequence of moves that eventually ends with a
win, loss, or draw, with each outcome having a different
numerical value, perhaps +1, −1 and 0. A race may be
completed successfully or end in disqualification, two very
different outcomes even if the number of seconds elapsed is

the same. Another example is optimal control, in which it is
common to have costs for each step (e.g., related to energy
expenditure) plus a terminal cost (e.g., relating to how far
the final state is from a goal state). In general, a problem
may have both a reward function as already formulated and
also a terminal-reward function, z : S → R, where z(s) is the
terminal reward received if termination occurs upon arrival
in state s.

We turn now to formalizing the process of termination.
In many reinforcement learning problems, particularly non-
episodic ones, it is common to give less weight to delayed
rewards, in particular, to discount them by a factor of γ ∈
[0, 1) for each step of delay. One way to think about dis-
counting is as a constant probability of termination, of 1−γ,
together with a terminal reward that is always zero. More
generally, we can consider there to be an arbitrary termina-
tion function, γ : S → [0, 1], with 1 − γ(s) representing the
probability of terminating upon arrival in state s, at which
time a corresponding terminal reward of z(s) would be reg-
istered. The overall return, a random variable denoted Gt
for the trajectory starting at time t, is then the sum of the
per-step rewards received up until termination occurs, say
at time T , plus the final terminal reward received in ST :

Gt =

T∑
k=t+1

r(Sk) + z(ST ). (1)

The conventional action-value function Qπ : S × A → R is
then defined as the expected return for a trajectory start-
ing from the given state and action and selecting actions
according to policy π until terminating according to γ (thus
determining the time of termination, T ):

Qπ(s, a) = E[Gt | St=s,At=a,At+1:T−1∼π, T ∼γ] .

This expectation is well defined given a particular state-
transition structure for the world (say as a Markov deci-
sion process). If an AI agent were to possess an approx-

imate value function, Q̂ : S × A → R, then it could be
assessed for accuracy according to its closeness to Qπ, for
example, according to the expectation of its squared error,
(Qπ(s, a)− Q̂(s, a))2, over some distribution of state–action
pairs. In practice it is rarely possible to measure this er-
ror exactly, but the value function Qπ still provides a useful
theoretical semantics and ground truth for the knowledge
Q̂. The value function is the exact numerical answer to the
precise, grounded question ‘What would the return be from
each state–action pair if policy π were followed?’, and the
approximate value function offers an approximate numerical
answer. In this precise sense the value function provides a
semantics for the knowledge represented by the AI agent’s
approximate value function.

Finally, we note that the value function for a policy is of-
ten estimated solely for the purpose of improving the policy.
Given a policy π and its value function Qπ, we can con-
struct a new deterministic greedy policy π′ = greedy(Qπ)
such that π′(s, arg maxaQ

π(s, a)) = 1, and the new pol-
icy is guaranteed to be an improvement in the sense that

Qπ
′
(s, a) ≥ Qπ(s, a) for all s ∈ S and a ∈ A, with equality

only if both policies are optimal. Through successive steps of
estimation and improvement, a policy that optimizes the ex-
pected return can be found. In this way the theory of value
functions provides a semantics for goal-oriented knowledge
(control) as well as for predictive knowledge.
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3. FROM VALUES TO KNOWLEDGE
(GENERAL VALUE FUNCTIONS)

Having made clear how a conventional value function pro-
vides a grounded semantics for knowledge about upcoming
reward, in this section we show how general value functions
(GVFs) provide a grounded semantics for a more general
kind of world knowledge. Using the ideas and notation de-
veloped in the previous section, this is almost immediate.

First note that although the action-value function Qπ is
conventionally superscripted only by the policy, it is equally
dependent on the reward and terminal-reward functions, r
and z. These functions could equally well have been consid-
ered inputs to the value function in the same way that π is.
That is, we might have defined a more general value func-
tion, which might be denoted Qπ,r,z, that would use returns
(1) defined with arbitrary functions r and z acting as pseudo-
reward function and pseudo-terminal-reward function. For
example, suppose we are playing a game, for which the base
terminal rewards are z = +1 for winning and z = −1 for los-
ing (with a per-step reward of r = 0). In addition to this, we
might pose an independent question about how many more
moves the game will last. This could be posed as a gen-
eral value function with pseudo-reward function r = 1 and
pseudo-terminal-reward function z = 0. Later in this paper
we consider several more examples from a robot domain.

The second step from value functions to GVFs is to con-
vert the termination function γ to a pseudo form as well.
This is slightly more substantive because, unlike the rewards
and terminal rewards, which do not pertain to the state evo-
lution in any way, termination conventionally refers to an
interruption in the normal flow of state transitions and a
reset to a starting state or starting-state distribution. For
pseudo termination we simply omit this additional implica-
tion of conventional termination. The real, base problem
may still have real terminations or it may have no termina-
tions at all. Yet we may consider pseudo terminations to
have occurred at any time. For example, in a race, we can
consider a pseudo-termination function that terminates at
the half way point. This is a perfectly well defined problem
with a value function in the general sense. Or, if we are
the racer’s spouse, then we may not care about when the
race ends but rather about when the racer comes home for
dinner, and that may be our pseudo termination. For the
same world—the same actions and state transitions—there
are many predictive questions that can be defined in the
form of general value functions.

Formally, we define a general value function, or GVF, as
a function q : S × A → R with four auxiliary functional
inputs π, γ, r, and z, defined over the same domains and
ranges as specified earlier, but now taken to be arbitrary
and with no necessary relationship to the base problem’s
reward, terminal-reward, and termination functions:

q(s, a;π, γ, r, z) = E[Gt | St=s,At=a,At+1:T−1∼π, T ∼γ] ,

where Gt is still defined by (1) but now with respect to the
given functions. The four functions, π, γ, r, and z, are re-
ferred to collectively as the GVF’s question functions; they
define the question or semantics of the GVF. Note that con-
ventional value functions remain a special case of GVFs.
Thus, we can consider all value functions to be GVFs. In
the rest of the paper, for simplicity, we sometimes use the
expression “value function” to mean the general case, using

“conventional value function” when needed to disambiguate.
We also drop the ‘pseudo-’ prefix from the question func-
tions when it can be done without ambiguity. In the robot
experiments that we present later there are no privileged
base problems, so there should be no confusion.

4. THE HORDE ARCHITECTURE
The Horde architecture consists of an overall agent com-

posed of many sub-agents, called demons. Each demon is
a independent reinforcement-learning agent responsible for
learning one small piece of knowledge about the base agent’s
interaction with its environment. Each demon learns an ap-
proximation, q̂, to the GVF, q, that corresponds to the de-
mon’s setting of the four question functions, π, γ, r, and z.

We turn now to describing Horde’s mechanisms for ap-
proximating GVFs with a finite number of weights, and for
learning those weights. In this paper we adopt the standard
linear approach to function approximation. We assume that
the world’s state and action at each time step, St and At, are
translated, presumably incompletely via sensory readings,
into a fixed-size feature vector φt = φ(St, At) ∈ Rn where
n � |S|. We refer to the set of all features, for all state–
action pairs, as Φ. In our experiments, the feature vector is
constructed via tile coding and thus is binary, φt ∈ {0, 1}n,
with a constant number of 1 features (see Sutton & Barto
1998). We also focus on the case where |S| is large, possibly
infinite, but |A| is finite and relatively small, as is common
in reinforcement learning problems. These are convenient
special cases, but none of them is essential to our approach.
Our approximate GVFs, denoted q̂ : S × A × Rn → R, are
linear in the feature vector:

q̂(s, a, θ) = θ>φ(s, a),

where θ ∈ Rn is the vector of weights to be learned, and
v>w =

∑
i viwi denotes the inner product of two vectors v

and w.
For learning the weights we use recently developed gradient-

descent temporal-difference algorithms (Sutton et al. 2009,
2008; Maei et al. 2009, 2010). These algorithms are unique
in their ability to learn stably and efficiently with function
approximation from off-policy experience. Off-policy expe-
rience means experience generated by a policy, called the be-
havior policy, that is different from that being learned about,
called the target policy. To learn knowledge efficiently from
unsupervised interaction one seems inherently to face such a
situation because one wants to learn in parallel about many
policies—the different target policies π of each GVF—but
of course one can only be behaving according to one policy
at a time.

For a typical GVF, the actions taken by the behavior
policy will match its target policy only on occasion, and
rarely for more than a few steps in a row. For efficient
learning, we need to be able to learn from these snippets
of relevant experience, and this requires off-policy learning.
The alternative—on-policy learning—would require learn-
ing only from snippets that are complete in that the ac-
tions match those of the GVF’s target policy all the way
to pseudo-termination, a much less common occurrence. If
learning can be done off-policy from incomplete snippets of
experience then it can be massively parallel and potentially
much faster than on-policy learning.

Only in the last few years have off-policy learning algo-
rithms become available that work reliably with function ap-
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proximation and that scale appropriately for real-time learn-
ing and prediction (Sutton et al. 2008, 2009). Specifically,
in this work we use the GQ(λ) algorithm (Maei & Sutton
2010). This algorithm maintains, for each GVF, a second
set of weights w ∈ Rn in addition to θ and an eligibility-
trace vector e ∈ Rn. All three vectors are initialized to
zero. Then, on each step, GQ(λ) computes two temporary
quantities, φ̄t ∈ Rn and δt ∈ R:

φ̄t =
∑
a

π(St+1, a)φ(St+1, a),

δt = r(St+1)+(1−γ(St+1))z(St+1)+γ(St+1)θ>φ̄t−θ>φ(St, At),

and updates the three vectors:

θt+1 = θt + αθ
(
δtet − γ(St+1)(1− λ(St+1))(w>t et)φ̄t

)
,

wt+1 = wt + αw
(
δtet − (w>t φ(St, At))φ(St, At)

)
,

et = φ(St, At) + γ(St)λ(St)
π(St, At)

b(St, At)
et−1,

where b : S × A → [0, 1] is the behavior policy and λ :
S → [0, 1] in an eligibility-trace function which determines
the rate of decay of the eligibility traces as in the TD(λ)
algorithm (Sutton 1988). Note that the per-time-step com-
putation of this algorithm scales linearly with the number of
features, n. Moreover, if the features are binary, then with a
little care the per-time-step complexity can be kept a small
multiple of the number of 1 features.

The approximation that will be found asymptotically by
the GQ(λ) algorithm depends on the feature vectors Φ, the
behavior policy b, and the eligibility-trace function λ. These
three are collectively referred to as the answer functions. In
this paper’s experiments we always used constant λ, and all
demons shared the same Φ and b. Finally, we note that
Maei and Sutton defined a termination function, β, that is
of the opposite sense as our γ; that is, β(s) = 1 − γ(s).
This is purely a notational difference and does not affect the
algorithm in any way.

We can think of the demons as being of two kinds. A
demon with a given target policy, π, is called a predic-
tion demon, whereas a demon whose target policy is the
greedy policy with respect to its own approximate GVF
(i.e., π = greedy(q̂), or π(s, arg maxa q̂(s, a, θ)) = 1) is called
a control demon. Control demons can learn and represent
how to achieve goals, whereas the knowledge in prediction
demons is better thought of as declarative facts. One way
in which the demons are not completely independent is that
a prediction demon can reference the target policy of a con-
trol demon. For example, in this way one could ask ques-
tions such as ‘If I follow this wall as long as I can, will my
light sensor then have a high reading?’. Demons can also
use each others’ answers in their questions (as in temporal-
difference networks). This allows one demon to learn a
concept such as ‘near an obstacle,’ say as the probabil-
ity of a high bump-sensor reading within a few seconds of
random actions, and then a second demon to learn some-
thing based on this, such as ‘If I follow this wall to its
end, will I then be near an obstacle?’ by using the first
demon’s approximate GVF in its terminal-reward function
(e.g., z(s) = maxa q̂(s, a, θfirst demon)).

Figure 1. The Critterbot robotic platform.

5. RESULTS WITH HORDE
ON THE CRITTERBOT

To evaluate the effectiveness of the Horde architecture, we
deployed it on the Critterbot, a custom-built mobile robot
(Figure 1). The Critterbot has a comma-shaped frame with
a ‘tail’ that facilitates object interaction and is driven by
three omni-directional wheels separated by 120 degrees. A
diverse set of sensors are deployed on the top of the robot,
including sensors for ambient light, heat, infrared light, mag-
netic fields, and sound. Another batch of sensors captures
proprioceptive information including battery voltages, ac-
celeration, rotational velocity, motor velocities, motor cur-
rents, motor temperatures, and motor voltages. The robot
can detect nearby obstacles with ten infrared proximity sen-
sors distributed along its sides and tail. The robot has been
designed to withstand the rigors of reinforcement learning
experiments; it can drive into walls for hours without dam-
age or burning out its motors, it can dock autonomously
with its charging station, and it can run continuously for
twelve hours without recharging.

The Critterbot’s sensors provide useful information about
its interaction with the world, but this information can be
challenging to model explicitly. For example, the sensor
readings from the magnetometer may be influenced by the
operation of data servers in the next room, and the ambient
light sensors are affected by natural daylight, indoor flores-
cent lights, shadows from looming humans, and reflections
from walls. Manually modeling these interactions is difficult
and potentially futile. The Horde architecture presents an
alternative wherein each demon autonomously learns a little
bit about the relationships among the sensors and actuators
from unsupervised experience.

We performed a series of experiments to examine how well
the architecture supports learning. In each experiment, the
observations and actions were tiled to form a state–action
feature representation Φ. A discrete set of actions were se-
lected, matching the formulation of the GQ(λ) algorithm.
With these choices, the entire architecture operates in con-
stant time per step. We have run the Horde architecture in
real-time with thousands of demons using billions of binary
features of which a few thousand were active at a time, using
laptop computers.
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Figure 2. Accurately predicting time-to-obstacle.
The robot was repeatedly driven toward a wall at a con-
stant wheel speed. For each of three regions of the sensor
space, for each time step spent in that region , we plot the
demon prediction q̂ on that step (bold line) and the actual
return from that step (thin line).

5.1 Subjective prediction experiments
Our first two experiments dealt with Horde’s ability to

answer subjectively posed predictive questions. Figures 2
and 3 show results on the Critterbot with instances of the
Horde architecture each with a single prediction demon. The
specific questions posed are ones that might be useful in en-
suring safety: ‘How much time do I have before hitting an
obstacle?’ and ‘How much time do I need to stop?’. In
both cases accurate predictions were made, and in the lat-
ter case they were adapted so as to remain accurate as the
experiment was changed from stopping on carpet, to stop-
ping when suspended in the air, to stopping on a wood floor.
The time step used in these experiment was approximately
30ms in length.

Figure 2 shows a comparison between predicted and ob-
served time steps needed to reach obstacles when driving
forward. Shown are the demon predictions q̂ on each step
(bold line) for each time step spent in a region of the sensor
space (a visit), and the actual return from that step (thin
line). The prediction was learned from a behaviour policy
that cycled between three actions: driving forward, reverse,
and resting. This is plotted for each of three regions of the
sensor space: IR=190–199, IR=210–219, and IR=230–239.
These represent three different value ranges of the Critter-
bot’s front IR proximity sensor.

The question functions for this demon were: π(s, forward)
= 1, r(s) = 1, z(s) = 0, ∀s ∈ S, and γ(s) = 0 if the value
of the Critterbot’s front-pointing IR proximity sensor was
over a fixed threshold, else γ(s) = 1. The remaining answer

Figure 3. Accurately tracking time-to-stop. The
robot was repeatedly rotated up to a standard wheel speed,
then switched to a policy that always took the stop action,
on three different floor surfaces. Shown is the prediction q̂
made on visits to a region of high velocity while stopping
(bold line) together with the actual return from that visit
(thin line). The floor surface was changed after visits 338
and 534.

functions were λ(s) = 0.4, ∀s ∈ S, and Φ = a single tiling
into twenty-six regions of the front IR sensor. The GQ(λ)
step sizes were αθ = 0.3 and αw = 0.00001. As shown in
Figure 2, this demon learned to accurately predict the return
(time steps to impact) for each range of its sensors.

Figure 3 demonstrates a demon’s ability to accurately pre-
dict stopping times on different surfaces. Shown is the pre-
diction q̂ made on visits to a region of high velocity while
stopping (bold line) together with the actual return from
that visit (thin line). For this predictive question, we de-
fined a single demon that predicts the number of timesteps
until one of the robot’s wheels approaches zero velocity (i.e.,
comes to a complete stop) under current environmental con-
ditions. The robot’s behaviour policy was to alternate at
fixed intervals between spinning at full speed and resting.
The floor surface, and thus the nature of the stopping prob-
lem, was changed after visits 338 and 534.

The question functions for this demon were: π(s, stop) =
1, r(s) = 1, z(s) = 0, ∀s ∈ S, and γ(s) = 0 if the wheel’s
velocity sensor was below a fixed threshold, else γ(s) = 1.
The remaining answer functions were λ(s) = 0.1, ∀s ∈ S,
and Φ = a single tiling into eight regions of the wheel’s
velocity sensor. The GQ(λ) step sizes were αθ = 0.1 and
αw = 0.001. As illustrated in Figure 3, this demon learned
to correctly predict the return (time steps to stopping) on
carpet, then adapted its prediction when the environment
changed to air and then to wood flooring.

765



Figure 4. Illustration of policies learned by four control demons in the spinning experiment. The first panel
shows the standard starting position, and the other four panels show the motions from that position produced when control
was given to one of the eight learned demon policies each tasked to maximize a different sensor. By maximized sensor: IR9)
Robot quickly rotates clockwise and stops in the position that maximizes the IR proximity sensor on the side of the robot’s
tail; IRO) Robot quickly rotates counterclockwise, overshoots a bit, then settles in a position that maximizes the proximity
sensor between the robot’s ‘eyes’; MAGX) Robot rotates clockwise and stops at a position that maximizes the magnetic x-axis
sensor; VEL) Robot spins continuously, maximizing the wheel velocity sensor.

5.2 Off-policy learning of multiple
spinning control policies

Our third experiment examined whether control demons
can learn policies in parallel while following a random be-
havior policy, in other words, whether the demons can learn
off-policy, a crucial ability for the scalability of the architec-
ture. The action set in this experiment was {rotate-right,
rotate-left, stop}. The behavior policy was to randomly
select one of the three actions, with a bias (50% probability)
toward repeating the action taken on the previous time step.
The result of this behavior policy was that the robot would
spin in place in both directions with a variety of speeds and
durations over time. The state space was represented with
four overlapping joint tilings across three sensors: the mag-
netometer, one of the IR sensors, and the velocity of one
of the wheels. Each sensor was divided into eight regions
for the tilings, resulting in a total of 3 × 4 × 83 = 6144
binary features. One additional feature was provided as a
bias unit (always =1), and three additional binary features
were used to encode the previous action. The time step cor-
responded to approximately 100ms. The other parameters
were αθ = 0.1, αw = 0.001, and λ(s) = 0.4,∀s ∈ S. Learn-
ing was done online, but the data was also saved so that the
whole learning process could be repeated without using the
robot if desired (this is one of the advantages of an off-policy
learning ability).

In this experiment we ran eight control demons in par-
allel for 100,000 time steps of off-policy learning with ac-
tions selected according to the behavior policy. Each demon
was tasked with learning how to maximize a different sensor
value. That is, their question functions were π = greedy(q̂)
and, for all s ∈ S, γ(s) = 0.98, z(s) = 0, and r(s) = the
value of one of eight sensors approximately normalized to a
0 to 1 range. The eight sensors used as rewards were four
of the IR proximity sensors, the magnetometer, the veloc-
ity sensor for one of the wheels, one of the thermal sensors,
and an IR beacon sensor for the charging station. To ob-
jectively measure the quality of the policies learned by the
eight demons, we occasionally interrupted learning to eval-
uate them on-policy. That is, with learning turned off, the
robot followed one of the eight learned demon policies for
250 time steps and we measured the demon’s return. We
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Figure 5. Learning curves for eight control demons learn-
ing off-policy in the spinning experiment. From extensive
experience spinning, eight control demons learned different poli-
cies each maximizing a different sensor. The graph shows the
performance of the policies, gathered in special on-policy evalu-
ation sessions during which learning was turned off. All demons
learned to perform near optimally. Rewards were scaled to the
range [0, 1], but because the beacon light flashes on and off, its
maximal average was 0.5.

repeated this for each demon ten times from each of three
initial starting positions (angles) to produce 30 measures of
the effectiveness of each demon’s policy at that point in the
training. These numbers were averaged together to produce
the learning curves shown in Figure 5.

Examples of the final learned behavior from four of the
demons are shown in Figure 4. These photos show typical
behavior, which in the case of all eight demons appeared to
successfully maximize the targeted sensor. In separate runs
we found that it would take approximately 25,000 steps each
to learn similarly competent control policies for a single de-
mon while behaving according to its policy as it was learned
(on-policy training). In only four times longer, we learned
eight demons in parallel, and could potentially have learned
thousands or millions more using off-policy learning.
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Figure 6. Learning light-seeking behavior from random behavior. Shown are superimposed images of robot positions:
Left) In testing, the robot under control of the demon policy turns and drives straight to the light source at the bottom of
the image; Middle) Under control of the random behavior policy for the same amount of time, the robot instead wanders all
over the pen; Right) Light sensor readings averaged over seven such pairs of runs, showing much higher values for the learned
target policy.

5.3 Off-policy learning of light-seeking
A final experiment examined whether a control demon

could learn a goal-directed policy when given a much greater
breadth of experience. In particular, we chose question func-
tions corresponding to the goal of maximizing the near-term
value of one of the light sensors: π = greedy(q̂), γ(s) = 0.9,
z(s) = 0, r(s) = a scaled reading from the front light sen-
sor. The behavior policy was to pick randomly from the set
{+10,−10, 0}3 interpreted as velocities for the robot’s three
wheels, for a total of 27 possible actions. The state space
was represented with 32 individual tilings over each of the
four directional light sensors, where each tile covered about
1/8th of the range. With the addition of a bias unit, this
made for a total of 27 × (32 × 4 × 8 + 1) = 27, 675 binary
features, of which 32× 4 + 1 = 129 were active on each time
step. The time step corresponded to approximately 500ms.

Using the random behavior policy, we collected a training
set of 61,200 time steps (approximately 8.5 hours) with a
bright light at nearly floor level on one side of the pen. Dur-
ing this time the robot wandered all over the pen in many
orientations. We trained the control demon off-line and off-
policy in two passes over the training set. To assess what
had been learned, we then placed the robot in the middle of
the pen facing away from the light and gave control to the
demon’s learned policy. The robot would typically turn im-
mediately and drive toward the light, as shown in the first
panel of Figure 6. This result demonstrates that demons
can learn effective goal-directed behavior from substantially
different training behavior.

Together, our results show that the Horde architecture can
be applied to robot systems to learn potentially useful bits of
knowledge in real-time from unsupervised experience. The
approach works across a range of feature representations,
parameters, questions, and goals. The robot is able to learn
bits of knowledge that could serve as useful components for
solving more complex tasks.

6. CONCLUSION
The Horde architecture is an experiment in knowledge rep-

resentation and learning built upon ideas and algorithms
from reinforcement learning. The approach is to express
knowledge in the form of generalized value functions (GVFs)
and thereby ground its semantics in sensorimotor data. This
approach is promising because 1) value functions make it
possible to capture temporally extended predictive and goal-
oriented knowledge, 2) a large amount of important knowl-
edge is of this form, 3) conventional knowledge representa-
tions of the grounded type (such as differential equations)
have difficulty representing knowledge of this form, and 4)
conventional methods that can capture this kind of knowl-
edge (high-level, symbolic methods such as rules, operators,
and production systems) are not as grounded and therefore
not as learnable as value functions. Although value func-
tions have always been potentially learnable, only recently
have scalable learning methods become available that make
it practical to explore the idea of GVFs with off-policy learn-
ing and function approximation. This work presents a first
look at the application and interpretation of GVFs in an
architecture with parallel off-policy learners.

In this paper we have focused on representing and learn-
ing knowledge as GVFs, and as such we have made only
suggestive comments about how such knowledge could be
used. Although this is an important limitation of our work,
we believe that it is an appropriate way to break down the
problem. The issues in learning and representation with
GVFs that we address here are non-trivial and have not been
adequately addressed before—certainly not in an embodied,
robotic form. In addition, reinforcement-learning ideas such
as value functions are already closely connected to known
action-selection and planning methods; it is not a great leap
to imagine several ways in which GVFs could be used to gen-
erate and improve behavior. We have briefly demonstrated
some of these, such as passing control to the learned pol-
icy of single demons (e.g., the sensor-maximization demons
in Section 5.2 and the light-seeking demon in Section 5.3),
and indicated how several demons could be combined to
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modulate an existing policy (e.g., varying behavior based
on impact and stopping time predictions as suggested by
Section 5.1). A rich and varied collection of demons and
questions, as made possible by the Horde architecture, al-
lows for a broad set of fusions of this kind. We have not
developed here the natural possibility of using GVFs to rep-
resent multi-scale policy-contingent models of the world’s
dynamics (option models; Sutton, Precup & Singh 1999),
and then using the models for planning as in dynamic pro-
gramming, Monte Carlo tree search (see Chaslot 2010), or
Dyna architectures (Sutton 1990). This is another natural
direction for future work.
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ABSTRACT

In several realistic domains an agent’s behavior is composed
of multiple interdependent skills. For example, consider a
humanoid robot that must play soccer, as is the focus of
this paper. In order to succeed, it is clear that the robot
needs to walk quickly, turn sharply, and kick the ball far.
However, these individual skills are ineffective if the robot
falls down when switching from walking to turning, or if it
cannot position itself behind the ball for a kick.

This paper presents a learning architecture for a humanoid
robot soccer agent that has been fully deployed and tested
within the RoboCup 3D simulation environment. First, we
demonstrate that individual skills such as walking and turn-
ing can be parameterized and optimized to match the best
performance statistics reported in the literature. These re-
sults are achieved through effective use of the CMA-ES op-
timization algorithm. Next, we describe a framework for
optimizing skills in conjunction with one another, a little-
understood problem with substantial practical significance.
Over several phases of learning, a total of roughly 100–150
parameters are optimized. Detailed experiments show that
an agent thus optimized performs comparably with the top
teams from the RoboCup 2010 competitions, while taking
relatively few man-hours for development.

Categories and Subject Descriptors

I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning

General Terms

Algorithms, Design, Experimentation.
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1. INTRODUCTION
As agents gain complexity and autonomy, automatic learn-

ing and optimization methods become attractive, as (a) they
can improve and refine human intuition, especially in com-
plex, dynamic environments, and (b) they demand signifi-
cantly less labor to adapt to changes in the agent and en-
vironment. As most complex systems naturally decompose
into smaller sub-units, for learning within such systems, it
becomes convenient, even beneficial, to explicitly recognize
their decomposition. In this paper we investigate the learn-
ing of agent behavior that can be decomposed into a se-
quence of atomic skills. Specifically we focus on optimizing
multiple skills within each agent, and present a learning ar-
chitecture for a humanoid robot soccer agent, which is fully
deployed and tested within the RoboCup [3] 3D simulation
environment, as a part of our team, UTAustinVilla.

In general, factors such as nonstationarity make it hard
to provide strong theoretical guarantees when learning mul-
tiple behaviors. Therefore it becomes relevant to investigate
such learning through empirical means. Our case study is
performed within a complex domain, with realistic physics,
state noise, multi-dimensional actions, and real-time con-
trol. In our test domain, teams of six autonomous humanoid
robots play soccer in a physically realistic environment. Al-
though each robot is ultimately controlled through low-level
commands to its joint motors, we devise primitives for skills
such as walking, turning, and kicking. In turn, such skills
are strung together for implementing higher-level behaviors
such as GoToTarget() and DriveBallToGoal(). It is quite clear
that a behavior such as DriveBallToGoal() will be more suc-
cessful if the robot can walk fast, turn quickly and sharply,
and kick the ball with speed and accuracy. On the other
hand, a very fast walk might tend to lead to a fall when
transitioning into a turn; kicks lose their potency if the robot
cannot accurately position behind the ball through precise
side-walking and turning. The key idea in this paper is that
skills can be optimized while respecting the tight coupling
induced over them by high-level behaviors.

Robot soccer has served as an excellent platform for test-
ing learning scenarios in which multiple skills, decisions, and
controls have to be learned by a single agent, and agents
themselves have to cooperate or compete. Although there is
a rich literature based on this domain, most reported work
primarily addresses (a) low-level concerns such as perception
and motor control [5, 17], or (b) high-level decision-making
problems [11, 19]. Thus the first contribution of our paper is
a general methodology for optimizing the intermediate stra-
tum of skills in an agent’s control architecture. The volume
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of the space thus optimized (hundreds of parameters) indeed
marks a qualitative shift from a predominantly hand-coded
approach for agent development to one significantly based
on learning.

A second contribution of our paper is the light it sheds
on designing objective functions (“fitness” functions) for op-
timization. On the one hand, “raw” statistics such as the
precision and speed of soccer skills do not yield skills that
operate well in unison. On the other hand, true objectives
such as goal difference and win-loss record are too noisy to
use effectively as a signal for learning. We demonstrate that
carefully designed intermediate objectives, which require op-
timizing sequences of skills, can promote learning to achieve
high-quality performance. An example of such an objective
is the minimization of the time to score a goal on an empty
field.

Finally, as an empirical contribution, we conduct detailed
and extensive experiments related to our investigation. In
particular, we compare several existing optimization meth-
ods, and find CMA-ES [8], a relatively recent addition to
the literature, to be the most robust and effective. We also
show evidence that conjunctive skill optimization can yield
a very competitive soccer agent. The agent we develop here,
which is based on, and motivated by the UTAustinVilla
2010 RoboCup agent, ranks among the top 8 teams from
the RoboCup 2010 competitions.

The remainder of this paper is organized as follows. In
Section 2 we describe the 3D simulation environment for
humanoid robot soccer, along with the architecture of our
agent. Section 3 describes how individual skills are param-
eterized and set up for optimization through several can-
didate methods. Section 4 then presents our methodology
for optimizing these skills in sequence. Comprehensive ex-
perimental results are presented both in Section 3 and in
Section 4. We conclude the paper with a summary and dis-
cussion in Section 5.

2. DOMAIN DESCRIPTION
The RoboCup 3D simulation environment is based on

SimSpark[4], a generic physical multiagent system simula-
tor. SimSpark uses the Open Dynamics Engine[2] (ODE) li-
brary for its realistic simulation of rigid body dynamics with
collision detection and friction. ODE also provides support
for the modeling of advanced motorized hinge joints used in
the humanoid agents.

The robot agents in the simulation are homogeneous and
are modeled after the Aldebaran Nao robot [1], which has
a height of about 57 cm, and a mass of 4.5 kg. The agents
interact with the simulator by sending actuation commands
and receiving perceptual information. Each robot has 22
degrees of freedom: six in each leg, four in each arm, and
two in the neck. In order to monitor and control its hinge
joints, an agent is equipped with joint perceptors and ef-
fectors. Joint perceptors provide the agent with noise-free
angular measurements every simulation cycle (20ms), while
joint effectors allow the agent to specify the direction and
speed (torque) in which to move a joint. Although there is no
intentional noise in actuation, there is slight actuation noise
that results from approximations in the physics engine and
the need to constrain computations to be performed in real-
time. Visual information about the environment is given to
an agent every third simulation cycle (60ms) through noisy
measurements of the distance and angle to objects within

a restricted vision cone (120◦). Agents are also outfitted
with noisy accelerometer and gyroscope perceptors, as well
as force resistance perceptors on both feet. Additionally
agents can communicate with each other every other simu-
lation cycle (40ms) by sending messages limited to 20 bytes.
Figure 1 shows a visualization of the Nao robot and the soc-
cer field during a game.

Agent Skills

At the lowest level of control, each robot is operated by
specifying torques to its joints. As a more convenient ab-
straction, we implement PID controllers for each joint, which
take as input a desired target angle and compute the appro-
priate torque for achieving it. In turn, skills use the PID
controllers as primitives. The set of skills needed to develop
a successful agent, and the focus of this paper, include walk-
ing (forwards, backwards, and sideways), turning, kicking,
standing, goalie-diving and getting up after falling. Further,
it is useful to explicitly breakdown skills such as walking for-
wards into several different speeds. Whereas we are able to
manually program fairly successful goalie-diving and getting
up skills, effective locomotion and kicking skills are harder
to develop manually: in contrast to getting up and goalie-
diving, successful locomotion and kicking require a combina-
tion of dynamic balancing, precision and high speed. Loco-
motion skills further need to be able to transition well to and
from other skills. Thus, for these skills we devise templates
with parameters, which are subsequently optimized.

Bipedal locomotion has long been an active area of re-
search. Pratt’s thesis [16] provides an excellent overview of
the field; Katić and Vukobratović [12] specifically survey in-
telligent control techniques used therein. A majority of the
literature on bipedal locomotion focuses on model-based ap-
proaches. For instance, a humanoid robot is commonly mod-
eled as an inverted pendulum [9], whose dynamics can be
analyzed and used to plan trajectories. Recent approaches
have also considered learning more complicated models, such
as Poincaré maps [15]. Analytical modeling has indeed re-
sulted in classical techniques — such as monitoring the“Zero
Moment Point” of the robot [21] — which can resist noise in
sensing, planning, and actuation, and small irregularities on
the walking surface [14]. Even without explicit modeling of
the dynamics, deviations from the intended trajectory can
be constantly corrected through “closed-loop” control [7].

“Open-loop” approaches that do not rely on corrective
feedback are typically simpler to implement and tend to

Figure 1: A screenshot of the Nao humanoid robot
(left), and a view of the soccer field during a 6 versus
6 game (right).
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yield faster walks, even if they are less robust to distur-
bances. However, in our simulation there is only minor
noise in sensing or actuating joint angles (note that vision
percepts are still noisy), and the soccer field is perfectly
flat. Consequently we find it effective to develop open-
loop skills for our agent. It must be noted that although
the absence of significant actuation noise simplifies skill-
development in our 3D simulation environment, in compen-
sation the domain necessitates the development of an entire
suite of soccer-related skills: multi-directional walks, turns,
and kicks. Thus simulation enables us to investigate a con-
cept that is relatively unexplored in the mainstream bipedal
control literature. Even the few learning approaches within
the 3D simulation environment have mainly been in the con-
text of straight walking [18].

Each of our open-loop skills is implemented as a periodic
state machine with multiple key frames, where a key frame is
a static pose of fixed joint positions. To provide us flexibility
in designing and parameterizing skills, we design an intuitive
skill description language that facilitates the specification of
key frames and the waiting times between them. Below is an
illustrative example describing the WalkFront skill (further
explained in Section 3).

SKILL WALK_FRONT

KEYFRAME 1
reset ARM_LEFT ARM_RIGHT LEG_LEFT LEG_RIGHT end
setTarget JOINT1 $jointvalue1 JOINT2 $jointvalue2 ...
setTarget JOINT3 4.3 JOINT4 52.5
wait 0.08

KEYFRAME 2
increaseTarget JOINT1 -2 JOINT2 7 ...
setTarget JOINT3 $jointvalue3 JOINT4 (2 * $jointvalue3)
wait 0.08
.
.
.

As seen above, joint angle values can either be numbers
or be parameterized as $<varname>, where <varname> is a
variable value that can be loaded after being learned. Note
that due to left-right symmetry, some of these parameters
influence multiple key frames.

Before proceeding to details about our skill optimization,
it is relevant to observe that alternative parameterizations
of skills could also be conceived. For example, rather than
direct control of joints, foot trajectories could be parame-
terized and tracked using inverse kinematics [13]. We plan
to explore such variations in future work.

3. OPTIMIZING INDIVIDUAL SKILLS
In this section we describe our optimization of the for-

ward walking skill, which essentially illustrates the basic
procedure adopted for optimizing any of our skills. As a
starting point for subsequent optimization, we achieve a rel-
atively stable front walk by programming the robot to raise
its left and right feet alternately to a certain height above the
ground, swinging them slightly forward, and then retracting
them to their initial configurations. Such a hand-coding ex-
ercise for our various skills results in slow but stable skills,
which are not very competitive themselves, but which serve
as useful seeds for further optimization. Our walk consists of
four key frames through which the agent periodically loops.

General intuition for a straight and stable walk suggests that
the legs should move in a symmetric and periodic manner.
For this reason the joint positions of our first two frames
are the same as our next two, except that the positions of
the left and right legs are appropriately mirrored. Based on
informal experimentation we decide to optimize three joint
positions in each leg for each key frame, as they appear to
be the most meaningful for a forward walk. These joints
are the hip moving the leg forward and backwards, knee,
and ankle moving the foot up and down. This provides a
12-dimensional parameter space to optimize, as we have 6
joint positions for each frame (3 for each leg), across two
frames (as frames 3 and 4 are just mirrored values of frames
1 and 2). See Figure 2 for screenshots with the joints we are
optimizing circled. We set the time to transition between
key frames to be 80ms. This time was also determined by
informal experimentation and gives the agent a walk cycle
duration of 320ms (4 × 80ms).

In order to evaluate the performance of a forward walk, we
measure the distance in the forward direction the agent can
travel in 15 seconds. Our performance metric of displace-
ment in the forward direction not only rewards speed, but
it also encourages straight walks (as the shortest distance to
walk is a straight line) and penalizes for lack of robustness
(if the agent falls over it takes several seconds for it to stand
up again). These measurements are taken in an automated
fashion. Our setup on a distributed computing cluster allows
us to run massive amounts of simulations in parallel, which
is necessary in order for our learning algorithms to complete
in a reasonable amount of time. In our experiments we used
Condor [20] as a convenient tool for batch job processing on
a cluster.

We compare the performance of four machine learning al-
gorithms while trying to optimize the parameter values for
our different skills. The algorithms we test are hill climbing
(HC), cross-entropy method (CEM) [6], genetic algorithm
(GA), and covariance matrix adaptation evolution strategy
(CMA-ES) [8]. These algorithms are evolutionary (or “pol-
icy search”) in nature and thus involve learning values incre-
mentally across multiple generations of a fixed population
size, where the individuals of a population consist of sets of
parameter weights. As a baseline performance measure we
also sample parameter values using random weight guessing
(RWG). Due to noise in the simulator there can be consider-
able variance in the performance of a skill from one instance
to the next using the same set of parameter weights. In
order to account for this variability in performance we con-
duct multiple runs of the same parameter sets and take the
average of these values when evaluating their performance.

Among these algorithms we try different configurations for
the number of generations, population size, and the number

Figure 2: Nao robot walk frames with the joints we
are optimizing circled.
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of samples we average across to determine the performance
of a set of parameter values. In order to make as fair a
comparison as possible among the algorithms we allocate
each of them the same “sample size” (the total number of
fitness evaluations taken for different sets of parameter val-
ues). For the machine learning algorithms the sample size
is equal to the product of the number of generations, the
population size, and the number of measurements we aver-
age over in determining a parameter set’s performance. For
random weight guessing the sample size is equal to the num-
ber of guesses performed multiplied by the number of mea-
surements used to compute average performance for each
parameter set. For the experiments we shortly report, we
fix this total sample size at 15,000 samples.

After testing the algorithms over many configurations we
find CMA-ES to be the most successful for learning skills in
our setup. Our results, shown in Figure 3(a), are averages
over at least five runs of each algorithm using the configu-
ration with which each performed the best. The distance
values reported are the average measurement for ten runs
of the best parameter set learned by each algorithm taken
after the algorithm is finished running. The post-learning
reevaluation of a parameter set’s performance is necessary
because of the noise in the simulator, and resulting poten-
tial bias toward configurations with less averaging samples
to report an inflated performance value influenced by just a
few lucky high outlier measurements. We find that GA and
CEM do the best with 30 generations and a population size
of 100 averaged across 5 samples, while HC and CMA-ES
perform better with 50 generations and a population size
of 30 averaged across 10 samples. Random weight guess-
ing performs best when guesses are evaluated by averaging
across 5 fitness trials.

Apart from good performance, another advantage we find
with using CMA-ES is its low configuration overhead. All
that is needed to be specified for CMA-ES are initial mean
and standard deviations for each parameter. The mean val-
ues are just our seed values and we find that CMA-ES per-
forms well over a reasonably large range of standard devi-
ation values. The other algorithms’ performances are more
dependent on their algorithm-specific parameter settings.
For HC we get the best values when using an initial step
size of 10◦ and a linear step size decay. For GA we find that
bounding the search space at a maximum of 30◦ from the
seed joint angles gives us the best performance. CEM, like
CMA-ES, also requires a standard deviation for each param-
eter. However, CEM’s performance seems to be more depen-
dent on the values chosen to initialize these standard devi-
ations. In contrast, CMA-ES is less affected by these initial
values due to the way it maintains and adjusts them across
generations using covariance analysis. We determine 30◦

to be a good standard deviation for CEM. We also achieve
our best performance using a standard deviation of 30◦ for
random weight guessing which selects values from Gaussian
distributions centered around our initial seed for each pa-
rameter.

As CMA-ES is found to perform significantly better than
the other algorithms, we describe here in more detail the
experiments conducted with it. Each experiment includes
15,000 sampling runs, in which we vary the learning con-
figuration values of population-size, number of generations,
and number of averaging runs that are executed for each
parameter set generated by the algorithm. This means that

for each configuration, the population-size times the number
of generations times the number of averaging runs is fixed at
15,000. As the sample size is always fixed, when defining a
configuration we face a trade-off: averaging over more runs
gives a more confident fitness value for each parameter set,
but decreases the number of generations and/or the popu-
lation size we can use. Averaging over 1, 2, 5, and 10 runs,
we try 14 different configurations, presented in Figure 3(b).
The configuration that presents the best balance between its
three factors, uses 50 generations, a population size of 30,
and 10 averaging runs for each candidate parameter set. Its
fitness value is 12.16 m/15sec (0.81m/s), with a standard
error of 0.38m/s. A learning curve corresponding to this
configuration is presented in Figure 3(c).

The highest speeds we are able to achieve when learn-
ing a front walk require a configuration with roughly three
times the number of samples used in the experiments above
(45,000). On our Condor-based system, such a run takes 5-7
hours. Table 1 shows the best results we achieve when opti-
mizing each of our main skills. To the best of our knowledge
these results are among the fastest that have been achieved
in our domain. Unfortunately, there are not many references
in the literature that describes other teams’ walk speeds; and
the only report we are aware of is that of Shafii et al. [18].
In comparing our learned skills with other teams’ using the
released agent binaries from RoboCup 2010, we observe a
clear advantage of the performance statistics we report here
over those of other teams’ skills. As expected, our perfor-
mance statistics also better those achieved in hardware on
Nao robots [10] due to the simplified modeling of our simu-
lator.

4. OPTIMIZING SEQUENCES OF SKILLS
Whereas the results from Table 1 signify that our param-

eterized skills can effectively be optimized using CMA-ES,
the job of deploying these skills to play soccer remains unfin-
ished. Fast locomotion skills, however stable they are when
executed individually, result in frequent falls of the robot
if integrated directly. To see why, consider a typical log of
the skills invoked (every 320ms, as described in the previous
section) by the agent during soccer play:

. . . WalkFront, WalkFront, Turn(R), Turn(R), Turn(R),
WalkFront, WalkFront, WalkFront, Turn(L), Turn(L),
WalkBack, WalkBack, . . . .

The trace shows that skills are highly interleaved, with
frequent transitions between them. In game scenarios, the
same skill is seldom executed for more than a few consecu-
tive cycles. Therefore, optimizing skills in isolation does not

Table 1: Performance statistics for various skills op-
timized using CMA-ES. In this table and all sub-
sequent ones, entries within parentheses correspond
to one standard error.

Skill Statistic Performance

WalkFront Speed 1.07(.00)m/s
WalkBack Speed 1.03(.00)m/s
WalkSide Speed .62(.01)m/s
Turn Angular speed 112.03(.24) ◦/s
Kick Ball displacement 5.09(.07)m
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Figure 3: Experimental results from optimizing WalkFront. Plots show the fitness values — the distance
traveled in 15 seconds — achieved by various learning algorithms and algorithm-specific parameter settings.
In all algorithms the sample size is fixed to 15,000 simulation runs. For evolutionary algorithms this means
that #generations × #avg × population-size = 15,000. Plot (a) shows the best performance achieved by
various methods. Plot (b) shows the performance achieved by CMA-ES under various settings of #generations
and #avg, while (c) shows the progress of learning under the best CMA-ES configuration with training time.
Error bars in all plots correspond to one standard error.

necessarily benefit their combined operation.
In order to optimize sequences of skills to work together,

carefully designed constraints are necessary. We begin by re-
vising the evaluation criterion used by the learning process.
Ideally, when learning a skill, it would be best to evaluate it
with respect to our ultimate goal: the team’s win-loss record
or mean goal difference against a set of opponents. However,
as these are extremely noisy measures, the number of runs
needed in order to obtain reliable performance estimates be-
comes impractical. A much less noisy measure, which still
aligns well with the team’s objective, is the time taken by
a single agent to score a goal on an empty field. We denote
this behavior DriveBallToGoal(), and the associated evalua-
tion metric time-to-score. Pseudo-code for DriveBallToGoal()
is as follows:

function DriveBallToGoal()
if robotDistanceFromBall > threshold_0
getRoughlyBehindBall()

else
chooseKickDirectionAndType()
computeThresholdsForPositioning()
# Position to kick / dribble:
if distanceToPosition > threshold_1

walkFront()
elseif robotOffsetFromKickDirection > threshold_2

turn()
elseif lateralLegAlignementWithBall > threshold_3

sideWalk()
else

kickOrDribble()

We use this behavior for our evaluations, as it achieves
a good balance between eliminating noisy effects such as
the actions of other players, while still requiring the agent
to combine its basic skills in a complex, realistic manner.
Later in this section, we show empirical results validating
the choice of time-to-score as an evaluation metric while op-

timizing skills.
Several skills are used during a learning evaluation through

DriveBallToGoal(). However, it would be inefficient to try
and learn all of them at once, due to the high dimension-
ality of the search space (roughly 100 – 150 parameters).
Instead we use a more efficient approach, which learns one
skill (roughly 12 parameters) at a time, while keeping others
fixed. This process results in a sequence of incremental im-
provements in the agent, with the crucial invariant property
that at any time all the skills work well together. In par-
ticular the optimization process improves the agent’s speed
while keeping it stable, as falls typically result in poor time-
to-score values. In turn, the amount each individual skill
can be optimized is limited by the need to cooperate with
other skills.

Apart from goalie dives and getting up skills, all the skills
used by our final agent are optimized. Yet, for the pur-
poses of this paper, we present an isolated study of our op-
timization procedure involving only forward and backward
walks, namely WalkFront and WalkBack, respectively. We
start with a base agent that uses basic, hand-coded versions
of these skills. Let us call this agent A0. Under A0 these
skills are not very fast, but they ensure relative stability dur-
ing locomotion and skill transitions. The idea is to use A0 as
a seed for successive optimizations. Figure 4(a) presents a
skill transition diagram, which shows the main skills of agent
A0 along with the legal transitions between them (marked
by arrows). Notice that the agent can only invoke Kick if it
is already standing; nor can it transition into a skill other
than Stand after executing Kick. In Figure 4(a) the walking
skills of A0 are suffixed “ S” to denote that they are “slow”.

We improve upon A0 in five incremental steps, each step
creating a new agent based on the agent that resulted from
the previous step. We denote the resulting agents A1, A2,
A3, A4, and A5. The first improvement, A1, is created from
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Figure 4: Constraints on transitions between skills represented as state diagrams. For Agent A0 neither the
WalkFront S nor the WalkBack S skills is optimized; the former is optimized (shown with thick border) under
A1. Further skills are added and optimized subsequently under agents A2, A3, and A4. Agent A5 is identical
to A4, except for retuning thresholds and the logic for selecting and invoking our new learned skills.

A0 by optimizing “WalkFront S” using CMA-ES, under the
time-to-score measure. Consider that while WalkFront S is
being optimized under this measure, we are searching for a
set of parameters that both improve speed and maintain sta-
bility. The need to maintain stability while cooperating with
all other skills puts multiple constraints on WalkFront S and
therefore limits how fast WalkFront S can get. We address
this problem in A2, by “decoupling” from WalkFront S an
additional skill called WalkFront F (“F”denoting“fast”). As
seen in Figure 4(c), we constrain the behavior of agent A2
such that WalkFront F can only be invoked following Walk-
Front S, and to transition to any other skills, it must first
transition into WalkFront S. The skills WalkFront S and
WalkFront F have exactly the same template, and initially
the same parameter values. However, optimizing the pa-
rameters of WalkFront F after first optimizing WalkFront S
(under A1) allows the agent to achieve greater speed while
retaining its stability. These properties result from the fact
that WalkFront F is unconstrained by most of the skills that
constrain WalkFront S.

Results in Section 4 demonstrate tangible gains consistent
with our progressive refinements from A0 to A1 to A2. In-
deed the trend is carried forward to agents A3 (Figure 4(d))
and A4 (Figure 4(e)), which are obtained based on a similar
decoupling procedure applied to the WalkBack skill. Re-
call that agents A1 through A4 are all obtained solely by
optimization of one skill at a time, starting from the seed
agent A0. To obtain our final agent, A5, we take A4 and
manually retune thresholds and the logic for selecting and
invoking our new learned skills in order to utilize them to
their full potential. For example, a change in skill speeds can
change the robot’s stopping distance, which in turn affects
the threshold for the decision of whether to continue Walk-
Front, as can be seen in the DriveBallToGoal() pseudo-code.
While the tuning is done here manually, it could potentially
be automated and learned. However, in this paper we focus
on skill learning, and leave the learned tuning as possible
future work.1

Note that agents A0 through A5 all use the same skills,
apart from WalkFront and WalkBack. The turns and side
walks used were also optimized in the manner described
above and were already integrated into our agent A0. It

1Videos showing optimized skills and behav-
ior are provided at the following URL: http:
//www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/
AustinVilla3DSimulationFiles/2010/html/
skilloptimization2010.html.

is worth mentioning, however, that time-to-score does not
serve as an ideal fitness measure while optimizing kicks, as
the kick skill is used only a small fraction of time, and most
of the time is spent on locomotion and positioning behind
the ball. Since Kick is only executed after an intermediate
Stand skill, we optimize kicks by starting the robot behind
the ball, using the distance covered by the ball in the kick
direction as an informative evaluation measure.

Experimental Evaluation

We have just described how we used two main ideas for
learning and optimizing skills: the idea of optimizing a skill
under the constraints of cooperating with other skills, and
the idea of skill decoupling. The remainder of this section
shows that our skill optimization process achieved tangible
gains, that were reflected directly in the agent’s performance
with respect to its ultimate objective: its win-loss record or
goal difference against a set of opponents.

We ran three sets of experiments, in which we measured
our agent both with respect to the time-to-score measure
and with respect to its actual game performance, and com-
pared the results with released binaries from RoboCup 2010.
In the first set of experiments we measured the progress
achieved by each step of our optimization process, which
started from the seed agent A0, continued by creating the
agents A1-A4 by optimizing one skill at a time, and finally
tuned A4 to be the final agent A5. Table 2 shows the re-
sults of playing agents A0-A5 against each other in full 6
vs. 6 games. In this setup, each of the players in a team
is played as the same agent, namely one of A0, A1,..., A5.
Each cell in the table shows the mean goal difference along
with the standard error, averaged over 100 full games. It
can be seen that every agent outperforms its predecessors.
This result demonstrates how our skill-optimization process
indeed achieved better game performance.

Table 2: Game results between agents A0 through
A5. Entries show the goal difference (row − column)
from 10 minute games.

A0 A1 A2 A3 A4
A5 2.11(.10) .77(.10) .70(.10) .58(.09) .48(.08)
A4 1.66(.10) .46(.08) .15(.07) .03(.07)
A3 1.67(.10) .28(.08) .01(.08)
A2 1.33(.10) .20(.07)
A1 1.23(.10)
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In the second set of experiments we compared the time-to-
score performance of our initial agent A0, our final agent A5,
and the set of all released agent binaries from RoboCup 2010
we were able to run on our computers. In each experiment,
we placed the ball in the middle of the field, which is 9m
from the goal, and then placed the agent 1 meter behind the
ball. We then measured the time it takes the agent to score
a goal. Table 3 shows the mean time it takes the agents to
score from this position, averaged over 500 runs, along with
the standard error. Our agent A5 is ranked second with a
mean time of 34.49 seconds, whereas the top agent’s mean
time to score is 31.08 seconds. Note that A0 is ranked in
the middle of the table with a time of 63.52. Agents A1–A4,
which are not shown in the table achieved times that rank
them between A0 and A5.

In our third set of experiments, we tested our agents A0
and A5 in playing full 6 vs. 6 games against the released
RoboCup 2010 agent binaries. The results are shown in
Table 4. The leftmost column shows the row agent’s rank
in RoboCup 2010. The rightmost columns show the re-
sults achieved by agents A0 and A5, when playing against
RoboCup binaries. Each cell shows the mean goal difference
between a column agent and a row agent, averaged over 100
full games, along with the standard error. Note that nega-
tive values (in bold) mean a positive goal difference for our
agent, therefore the bolded part of the table is where our
agent performed better than the row agent.

Two interesting facts can be observed in Table 4. The first
one is the correlation between the actual game performance
and the time-to-score measure (Table 3). An agent, whether
our agent or another team’s agent, with good game perfor-
mance usually had good time-to-score performance. Recall
that while optimizing our agent’s skills, we used the time-
to-score measure along with the DriveBallToGoal() behavior
as a less-noisy alternative for measuring real game perfor-
mance. Here we confirmed that while doing so, much of
the complexities of real game scenarios that are relevant to
skills execution were still retained. Therefore the time-to-

Table 3: Time to score on an empty field, starting
the center of the field. Each row corresponds to A0,
A5, or an agent from the RoboCup 2010 competi-
tion. Averages are over 500 runs.

Agent Time-To-Score/s

Apollo3d 31.08 (1.46)
A5 34.49 (0.89)

RoboCanes 36.18 (1.40)
NaoTH 36.75 (1.63)

UTAustinVilla 37.20 (0.89)
FCPortugal 47.54 (1.94)
SEURedSun 52.11 (2.49)

A0 63.52 (1.05)
Little Green Bats 71.02 (1.96)

FutK 77.89 (4.19)
BeeStanbul 98.56 (3.63)
Nexus3D 152.76 (5.15)
RoboPub 291.86 (1.17)
NomoFC 295.48 (1.32)
Bahia3D 300.01 (0.00)
Alzahra 300.01 (0.00)

Table 4: Full game results, averaged over 100
games. Each row corresponds to an agent from the
RoboCup 2010 competitions, with its rank therein
achieved. The two rightmost columns correspond
to our base agent A0 and final agent A5, respec-
tively. Entries show the goal difference (column −
row) from 10 minute games. Goal differences in fa-
vor of A0 and A5 are shown in bold.

Rank Team A0 A5

1 Apollo3d -4.29 (.17) -1.88 (.13)
2 NaoTH -3.79 (0.14) -1.85 (0.10)
4 BoldHearts -3.15 (0.13) -0.08 (0.11)

5-8 SEURedSun -1.93 (0.13) -1.16 (0.1)
5-8 RoboCanes -1.81 (0.12) -0.38 (0.09)
5-8 FCPortugal -1.57 (0.11) 0.43 (0.09)
9-16 UTAustinVilla -1.54 (0.09) 0.9 (0.09)
9-16 FutK -0.23 (0.06) 2.14 (0.1)
9-16 BeeStanbul 0.76 (0.07) 4.08 (0.11)
9-16 Nexus3D 1.67 (0.06) 4.08 (0.09)
9-16 Little Green Bats 1.84 (0.08) 5.0 (0.11)
9-16 NomoFC 3.62 (0.09) 7.07 (0.09)
17-20 Bahia3D 3.59 (0.08) 7.49 (0.1)
17-20 RoboPub 5.25 (0.08) 7.92 (0.1)
17-20 Alzahra 6.39 (0.08) 10.59 (0.09)

score measure is both effective, as it correlates with game
performance, and efficient, due to the reduced noise. How-
ever, note that the correlation is not expected to be perfect:
in real games there are factors like decision-making strate-
gies, formations, defensive tactics and more, that affect the
game performance, but do not reflect in the DriveBallTo-
Goal() behavior. The second interesting fact is that our final
agent, A5, was ranked in the table among the top 8 teams of
RoboCup 2010. As this ranking was achieved mainly using
our skill optimization process, with some additional tuning,
this demonstrates the effectiveness of our suggested method
of optimizing skills under constraints.

5. SUMMARY AND DISCUSSION
In several practical tasks an agent’s behavior is composed

of qualitatively distinct components. Can this natural de-
composition be used as a means to scale learning to com-
plex tasks? In this paper we presented a successful case
study of doing so in the context of humanoid robot soccer.
In particular we focused on the intermediate “skills” layer
of a soccer agent’s architecture. Together, the skills of a
soccer agent constitute a rich and complex aspect of behav-
ior, which it would be impractical to optimize as a single
monolithic block. We carefully engineered skills and rules
for transitions, and showed that optimizing components in
an incremental manner could significantly improve perfor-
mance. Each skill has 10–20 parameters; overall the number
of parameters optimized is around 100–150.

We believe our case study is a compelling example for
the methodology of decomposing a large learning problem
into components and devising informative objective func-
tions. Several practical systems resemble a soccer agent’s
control hierarchy, and often are indeed evaluated ultimately
through success (win) and failure (loss). This paper also
leads to recommendations for an optimization framework
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and experimental support for the CMA-ES algorithm, which
can serve as a useful starting point for related undertakings.

The RoboCup 3D simulation environment engenders the
novel research question of developing a suite of interacting
humanoid robotic skills, a relatively unexplored question in
the literature, which this paper addresses. Our demonstra-
tion specifically finds appeal for developing humanoid robot
soccer teams by investing significantly in learning and op-
timization. The architecture we presented here was a main
building block in developing our team, UTAustinVilla, and
the agents we presented here were motivated by, and based
on, our UTAustinVilla 2010 RoboCup agent. Our detailed
experimental results provide conclusive evidence for the im-
provements achieved with each incremental optimization,
and the final agent we develop (agent A5) ranks among
the top eight teams from the RoboCup 2010 competitions.
The human labor involved in developing our agent is rela-
tively low compared to the CPU time spent optimizing skills,
which is on the order of 100,000 hours.

In future work we intend to further extend the scope of
learning within our agent by replacing currently hand-coded
components (such as fine positioning and getting up). For
our basic locomotion skills, it is also relevant to consider al-
ternative parameterizations that involve closed-loop control
and inverse kinematics. Such approaches are likely to even-
tually extend the reach of our learning paradigm to hardware
platforms by using simulators that model physical robots
more precisely. Additionally we can seek to further refine
our coupled set of learned skills by using them as a seed
for our optimization framework. By continuing to optimize
the coupled skills in an alternating and iterative manner,
where they are learned in the context of previously opti-
mized skills, it is likely that further improvements to them
can be realized.
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ABSTRACT
A key component of any reinforcement learning algorithm is the
underlying representation used by the agent. While reinforcement
learning (RL) agents have typically relied on hand-coded state rep-
resentations, there has been a growing interest inlearning this rep-
resentation. While inputs to an agent are typically fixed (i.e., state
variables represent sensors on a robot), it is desirable to automati-
cally determine the optimal relative scaling of such inputs, as well
as to diminish the impact of irrelevant features. This work intro-
duces HOLLER, a novel distance metric learning algorithm, and
combines it with an existing instance-based RL algorithm toachieve
precisely these goals. The algorithms’ success is highlighted via
empirical measurements on a set of six tasks within the mountain
car domain.

Categories and Subject Descriptors
I.2.6 [Learning]: Miscellaneous

General Terms
Algorithms, Performance

Keywords
Reinforcement Learning, Distance Metric Learning, Autonomous
Feature Selection, Learning State Representations

1. INTRODUCTION
In Reinforcement Learning(RL) problems, an agent must learn

to select sequences of actions to maximize a reward signal. The
agent’s decision process is state-dependent — the effects of an ac-
tion will depend on the agent’s location in an environment. The
agent’s state representation is a critical component in a success-
ful agent, but state representations are typically designed by a hu-
man domain expert. The goal of this paper is to introduce a robust
method to allow more autonomy in designing state representation,
allowing the agent to scale dimensions of the state representation,
as well as to potentially ignore irrelevant dimensions.

There has been some exciting recent work on learning to con-
struct or scale state variables (c.f., proto-value functions [10]) but
such methods typically assume a model of the task is known. Other
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E. Taylor, Brian Kulis, and Fei Sha,Proc. of 10th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011), Tumer,
Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp.
777-784.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

work focuses on the placement and tuning of individual basisfunc-
tions (c.f., learning where to place kernels [2]). In contrast, this
work assumes that 1) the agent must efficiently sample the state
space and construct its representation on-line and 2) the agent should
learn a metric that should generalize across the entire state space,
not just the region explored.

Rather than constructing new state variables, we assume that the
state variables provided to the agent are sufficient to learnthe cur-
rent task, but that we do not know their relative weighting. For
example, consider a robot that has a laser range finder that reads
distances in meters and a sonar that reads distances in feet.It is
likely that the two state variables will need to be scaled differently
to accurately integrate their information. Likewise, if anagent is
provided both its speed in meters/second and its acceleration in
meters/second2, the relative importance of these two variables on
its estimate of location will need to be treated very differently.

Traditionally, state variables are scaled by normalizing all state
variables to have the same range (e.g.,[−1, 1]). For instance, con-
sider the CMAC [1] function approximator, a type of tile coding
used successfully in the mountain car domain [14]. CMACs can
take an arbitrary groups of continuous state variables and lay in-
finite, axis-parallel tilings over them; a continuous statespace is
discretized while maintaining the capability to generalize via mul-
tiple overlapping tilings. However, the number of tiles andwidth
of the tilings are hardcoded by a domain expert, which necessitates
knowing both the ranges (to normalize) and relative importance of
the different state variables (to determine the spacing andnumber
of tiles per dimension).

This work shows that it is possible to usedistance metric learn-
ing, a popular supervised learning technique, to scale and select
state variables automatically from data gathered via agentexperi-
ence. Experiments show that our theoretically grounded on-line
metric learning can result in significantly improved learning in a
set of RL tasks situated in the mountain car domain. Our hope is
that this work will encourage additional research into the integra-
tion of metric learning and RL, as well as to provide a powerful
tool to help automatically determine effective state representations.

2. BACKGROUND
This section first introduces Reinforcement Learning, the setting

for the paper. Next, Fitted R-MAX is discussed, an instance-based
RL algorithm that will be used in this paper’s experiments. Last,
an introduction to distance metric learning provides background to
understand HOLLER, our novel learning algorithm.

2.1 Reinforcement Learning
Reinforcement learning problems are typically framed asMarkov

decision processes(MDPs) defined by the 4-tuple{S, A, T, R}.

777



An agent perceives the currentstateof the worlds ∈ S (possibly
with noise). Tasks are often episodic: the agent executes actions in
the environment until it reaches a terminal or goal state, atwhich
point the agent is returned to a starting state. The setA describes
theactionsavailable to the agent, although not every action may be
possible in every state. Thetransition function, T : S × A 7→ S,
takes a state and an action as input and returns the state of the envi-
ronment after the action is performed. The agent’s goal is tomaxi-
mize its reward, a scalar value defined by thereward function.

A learner chooses which action to take in a state via a policy,
π : S 7→ A. π is modified by the learner over time to improve
performance, defined as the expected (discounted) total reward. In-
stead of learningπ directly, many RL algorithms instead approx-
imate the action-value function,Q : S × A 7→ R, which maps
state-action pairs to the expected real-valued return [16]. In tasks
with small, discrete state spaces,Q andπ can be fully represented
in a table. As the state space grows, using a table becomes imprac-
tical, or impossible if the state space is continuous. Agents in such
tasks typically factor the state usingstate variables(or features),
so thats = 〈x1, x2, . . . , xn〉. In such cases, RL methods usefunc-
tion approximators, such as artificial neural networks or tile coding,
where parameterized functions representingπ or Q are tuned via
supervised learning methods. The parameterization and bias of the
function approximator define the state space abstraction, allowing
observed data to update a region of state-action values rather than
a single state/action value.

2.2 Fitted R-Max
The experiments in this paper focus on integrating a learned

distance metric with Fitted R-MAX , an instance-based RL algo-
rithm [7]. Fitted R-MAX approximates the action-value function,
Q, for large or infinite state spaces by constructing an MDP over
a small (finite) sample of statesX ⊂ S. For each sample state
x ∈ X and actiona ∈ A, Fitted R-MAX estimates the dynamics of
the transition function,T (x, a), using all available data for action
a. The data from multiple nearby states will need to be integrated
and generalized as it is unlikely that points in a continuousstate
space will be sampled enough to approximate all action transitions.
A probability over predicted successor states inS, T (x, a), is first
approximated. The distribution of successor states is thenapproxi-
mated with a distribution of states inX, resulting in a MDP defined
over a finite size (X) that is formed based on data from the envi-
ronment (S). Q is then approximated via dynamic programming.

For the purposes of the current work, the most important feature
of Fitted R-MAX is that whenT andR are estimated for a pointx,
data from nearby points are averaged together, weighted by their
relative distances. That is, recorded instances that are (spatially)
closer tox are assumed to be more predictive than instances further
away. Rather than assuming that the similarity between points in
the state space is Euclidean, this work learns a distance metric for
Fitted R-MAX to use. A full description of Fitted R-MAX and its
implementation can be found elsewhere [7].

2.3 Distance Metric Learning
Distance metric learning is a core machine learning problemthat

attempts to learn an appropriate distance function for a given task.
Because distances or similarities are used in a variety of tasks —
including clustering, similarity searches, and many classification
algorithms — there has been significant interest in the design of al-
gorithms for tuning distance functions. Typically these algorithms
are at least partially supervised; in addition to the data, the algo-
rithm receives constraints for the desired distance metric. Exam-
ples include constraints of the form “pointsx andy should have

a small/large distance” or “pointsv andw should have a smaller
distance than pointsv andx.”

Metric learning algorithms typically attempt to constructa trans-
formation of the data (either linear or non-linear) such that the
constraints are satisfied after applying a standard distance function
such as the Euclidean distance to the transformed data. The most
popular approach is to learn a linear transformation of the data;
these methods are often calledMahalanobis metric learningmeth-
ods, and is the approach we employ in this work (c.f., [4, 5, 6,19,
22]). These methods are desirable in that they show good general-
ization performance on a variety of problems, including in vision,
text, and music domains (c.f., [3, 15]).

Recently, there has been interest in applying metric learning over
large-scale data, or in cases when the standard methods thatprocess
a large set of constraints in a batch mode are inadequate. Such
onlinealgorithms instead process a single constraint at a time, and
are designed to give comparable performance as compared to their
offline counterparts. There has been recent theoretical progress in
proving regret bounds for online learning methods, which provide
worst-case guarantees on the performance of an online algorithm
as compared to any corresponding offline algorithm [13, 23].We
pursue an online approach in this paper to avoid the computational
cost of repeatedly applying offline learning methods to our data.

3. LEARNING THE DISTANCE METRIC
Algorithm 1 summarizes the process of learning and using a dis-

tance metric in an RL agent. There are three main steps which will
be detailed in the following sections:

1. Collect data while the agent explores the environment.

2. Decide which states are “more similar,” based on the related-
ness of agent transitions.

3. Use state relatedness to calculate a distance metric: states
which have similar transitions should be closer than states
which have dissimilar transitions.

3.1 Collecting Data
Algorithm 1 is the top-level algorithm. It first initializesan agent

(lines 1–4) and then has it interact with its environment fora single
episode (lines 5–11), collecting data to be used for distance metric
learning. Lines 12–31 consider triples of vectors, where a vector is
defined by a pair of states which the agent has moved between (i.e.,
the difference betweens′ ands). Lines 18 and 19 consider sets vec-
tors recorded at similar times (e.g., +/-NumPtsactions).We restrict
the vectors to be temporally similar under the assumption that tran-
sitions which occur in rapid succession are likely to be moresimilar
than transitions that happen at very different times. This assump-
tion is domain dependent, but will often be true, particularly when
NumPtsis set so that these vectors are also close spatially. How-
ever, even in “well behaved” domains there will be regions ofthe
state space where this assumption will be violated (e.g., anagent
may often move without obstruction, but be constrained whenad-
jacent to a wall).

We only consider sets of three vectors〈v, w, x〉 which have the
same action (line 22), as transitions for different actionsmay be
dissimilar. The similarities between vectorsv andw, and between
vectorsv andx are calculated on lines 23 and 24, as discussed in
the following section. Lines 27 and 30 add the triple to the set of
current constraints, which are in the form “v is more similar tox
thanv is tow.” Finally, after all the data from an episode has been
processed, the distance metric is updated with the set of constants.

On lines 33 and 34, the algorithm can decide if more data needs
to be collected. For instance, if anyWa has changed significantly
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Algorithm 1 Main Algorithm (η)
1: π ← random policy
2: # initialize the dist. metric for each action
3: ∀a ∈ A, Wa ← Identity matrix (i.e., Euclidean distance)
4: i← 0
5: s← initial state # Begin an episode
6: repeat
7: Executea = π(s)
8: Observer ands′

9: Save tupleVi ← (s, a, s′)
10: s← s′

11: i← i + 1
12: until s is a terminal state # the episode ends
13: for j ∈ {0, . . . , i− 1} do
14: # get vector for transition between statesj ands′j
15: v ← Vj .s

′ − Vj .s #the vector froms to s′

16: a← Vj .a # the action in question
17: Ca ← ∅ # Set of constraints used to updateWa

18: for k ∈ {j − NumPts, . . . , j + NumPts} do
19: for l ∈ {j − NumPts, . . . , j + NumPts} do
20: w ← Vk.s′ − Vk.s # transitionk vector
21: x← Vl.s

′ − Vl.s # transitionl vector
22: if (a = Vk.a = Vl.a) and(v, w, x are distinct) then
23: rew ← CALCRELATEDNESS(Wa, v, w)
24: rex ← CALCRELATEDNESS(Wa, v, x)
25: if rew > rex then
26: # Relatedness(v,w)> Relatedness(v,x)
27: Ca ← Ca ∪ 〈v, w, x〉
28: else
29: # Relatedness(v,x)> Relatedness(v,w)
30: Ca ← Ca ∪ 〈v, x,w〉
31: # update the distance metric
32: Wa ← HOLLER(Wa, Ca, η)
33: if more data needed for distance learningthen
34: goto line 4
35: Learn a policy using an RL algorithm andW

during the last updated from the constraints, it is possiblethat more
data is needed forWa to converge. In this paper we instead run
the algorithm with different numbers of data collection episodes to
show how gathering additional data improves the estimate ofWa

and, therefore, the speed of learning (line 35).
In general, collecting data from the environment can be inter-

leaved with distance metric learning and with learning an action-
value function. Algorithm 1 simplifies this approach. Rather than
updating the distance metric on every time step, it is updated at the
end of every episode. This is primarily an implementation detail to
reduce the number of times the distance metric learning code(im-
plemented in MATLAB) was called by the simulator (implemented
in C).

3.2 Transition Similarity
Algorithm 1 reasons about pairs of vectors, where these vectors

describe transitions in the state space:s → s′. Algorithm 2 calcu-
lates the similarity of two vectors, given the current distance metric,
where the relatedness of two vectors is at most 1.0 (if they are iden-
tical in direction and magnitude). This similarity will be used in the
next section to calculate the distance metric under the assumption
that states that have similar transitions (for the same action) should
be closer in the state space than states that have dissimilartransi-
tions.

Algorithm 2 CALCRELATEDNESS(W,x, y)

1: ‖x‖ ←
√

xT Wx

2: ‖y‖ ←
p

yT Wy

3: m← min(‖x‖,‖y‖)
max(‖x‖,‖y‖)

4: c = xT Wy
‖x‖‖y‖

5: return c ·m

Algorithm 3 HOLLER(W,C, η)

1: for each constraint〈v, w, x〉 ∈ C do
2: Wnext←minimum over allWnext of:

Dℓd(Wnext, W )+η ·max(dWnext(v, w)−dWnext(v, x)+1, 0)

3: W ← Wnext

3.3 The HOLLER Algorithm
HOLLER (Hinge loss Online Logdet LEarner for Relative dis-

tances), as presented in Algorithm 3, is used to learn a distance
metricdW from a list of constraintsC and a learning rateη. Re-
call that each constraint〈v, w, x〉 indicates thatv should be closer
to w thanv is to x. The metric learning algorithm follows a stan-
dard online updating scheme: each constraint is visited once and
the metric is updated after seeing each constraint. As in most on-
line algorithms, we trade off conservativeness with correctiveness
when updating the metric. That is, we balance 1) keeping the metric
from changing too much from update to update, with 2) updating
the metric to satisfy the constraint. This tradeoff is controlled by
the learning rateη, and each update to the metric solves an opti-
mization problem that encodes this balance appropriately.

More specifically, we aim to learn a Mahalanobis distance func-
tion, which is parameterized by a positive semi-definite matrix W ,
and is given bydW (v, w) = (v − w)T W (v − w). Learning the
distance function corresponds to learning the matrixW . Note that
sinceW is positive semi-definite,W = GT G for some matrix
G, and it is straightforward to show that the Mahalanobis distance
functiondW is simply the squared Euclidean distance after apply-
ing the transformationG to the data points. When updatingW to
Wnext, we measure our conservativeness using the LogDet diver-
gence,

Dℓd(Wnext, W ) = tr(WnextW
−1)− log det(WnextW

−1)− n,

where tr refers to the matrix trace andn is the number of rows
or columns ofW . This divergence measure is natural since posi-
tive semi-definiteness ofW is automatically maintained, and it has
several properties such as scale-invariance which are desirable for
metric learning problems. Further, the LogDet divergence has been
used extensively in the context of metric learning (e.g., [4, 6]). For
correctiveness, we attempt to enforce the constraintdW (v, w) ≤
dW (v, x) − 1, or equivalently,dW (v, w) − dW (v, x) + 1 ≤ 0,
as is standard for relative-distance metric learning algorithms [19].
This constraint ensures that the distance betweenv andw should be
much smaller than the distance betweenv andx. Given these two
components, we attempt to find the updated distance parameterized
by Wnext that minimizes the sum of the LogDet divergence between
Wnext andW (conservativeness) plus the error ofWnext not satis-
fying the current constraint using the hinge loss (correctiveness),
where the sum is balanced by the learning rateη. In particular, we
look for a matrixWnext that minimizes

Dℓd(Wnext, W ) + η · ℓ(dWnext, v, w, x), (1)
whereℓ(dW , v, w, x) = max((dW (v, w) − dW (v, x) + 1, 0) is
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thehinge lossfor the constraintdW (v, w) ≤ dW (v, x) − 1. The
solution of the minimization problem to computeWnextcan be com-
puted in closed-form in a manner similar to the online metriclearn-
ing algorithm of [6]. In particular, a pleasant and surprising aspect
of the update for our algorithm is that the solution toWnext can
be computed as a rank-two update to the matrixW ; this can be
shown by taking the gradient of (1), setting it to zero, and solving
for Wnext. Details of the update can be found in our publicly avail-
able MATLAB code, which show how to handle the gradient at the
“hinge” location.1

One key advantage of the above online algorithm is that one
can prove online regret bounds for this algorithm with appropri-
ate learning rate selection that guarantee that the metric produced
by the online algorithm performs similarly to the output of the
best possible offline metric learning algorithm (i.e., an algorithm
that performs updates of the metric in a batch mode using all con-
straints). Briefly, one defines the total loss of an online algorithm
as the sum of the losses over allT timesteps/constraints. Denote
the sequence ofW matrices constructed by the online algorithm as
W1, ..., WT , and similarly denote the sequence ofv, w, andx vec-
tors from each constraint asv1, .., vT , w1, .., wT , andx1, ..., xT .
Then we can define the total loss as

TX
t=1

ℓ(Wt, vt, wt, xt).

Analyses of online learning algorithms focus on theregret, which
is the difference between the total loss of the online learning algo-
rithm with the total loss of the best possible offline algorithm:

Reg =

TX
t=1

ℓ(Wt, vt, wt, xt)− argminW∗

TX
t=1

ℓ(W∗, vt, wt, xt).

The goal is to bound the regret as a function ofT , the total num-
ber of constraints processed. Our approach, which combinesthe
hinge loss with a convex regularizer, can be viewed as a special case
of the online learning framework discussed in Shalev-Shwartz and
Singer [13] (see Section 6, equation 38). In particular, with the ap-
propriate selection of learning rates as discussed in Shalev-Shwartz
and Singer, we can achieve regret that is bounded byO(

√
T ). Fi-

nally, note that, while the proposed algorithm shares similarities to
existing methods (c.f., [6, 9]) and has been studied theoretically in
the context of a large class of online learning methods, we are not
aware of metric learning work based on LogDet conservativeness
and the standard hinge loss over relative distance constraints.

4. EMPIRICAL VALIDATION
This section introduces a set of six experiments showcasingthe

benefits of combining HOLLER with Fitted R-MAX .

4.1 2D Mountain Car Domain
This section introduces our experimental domain, a generalized

version of the well-studied mountain car task [14]. Mountain car is
particularly appropriate for this work as it is a simple domain with
continuous state space and can be easily parameterized to highlight
the strengths of HOLLER.

In mountain car, the agent must generalize across continuous
state variables in order to drive an underpowered car up a moun-
tain to a goal state. To make the problem more challenging than
the original formulation, the agent begins at rest at the bottom of
the hill.2 The reward for each time step is−1. The episode ends,

1Seecs.lafayette.edu/~taylorm/MetricLearn
2The mountain car task is typically deterministic: to introduce ran-
domness among trials, the initial position of the car in eachtrial’s

and the agent is reset to the start state, after 500 time stepsor if it
reaches the goal state.

In practice, one of the most difficult challenges for the agent is
to find the goal state the first time. After the goal state has been
seen at least once, RL algorithms are typically able to quickly learn
to consistently find the goal (albeit with different numbersof steps,
which determines reward). Effective exploration and generalization
is thus critical for agents to quickly find high-performing policies.

In the standard two dimensional mountain car task, two contin-
uous variables fully describe the agent’s state. The horizontal po-
sition (x) and velocity (̇x) are restricted to the ranges[−1.2, 0.6]
and [−0.07, 0.07] respectively. The state variables are automati-
cally scaled (linearly) to[−1, 1], as consistent with past work in
this domain [7, 14, 18]. If the agent reachesx = −1.2, (ẋ) is
set to zero, simulating an inelastic collision. On every time step
the agent selects from three actions, {Left, Neutral, Right},
which change the velocity by -0.001, 0, and 0.001, respectively.
Additionally, gravity is simulated by adding−0.025(cos(3x)) to
ẋ, which depends on the local slope of the mountain. The goal
states are those wherex ≥ 0.5. Our implementation mimics the
publicly available version of this task.3

4.2 Experimental Procedure
In order to learn in the 2D Mountain Car Domain, we first tune

the Fitted R-MAX learning parameters on the standard 2D task with-
out metric learning, and then tune the HOLLER learning parameters
on the standard 2D task. The primary consequence of this approach
is that the Fitted R-MAX parameters have not been tuned to take
advantage of the state variables after metric learning: results we
present are therefore biased against HOLLER. Additionally, neither
the Fitted R-MAX nor HOLLER parameters are tuned for the vari-
ants of the 2D mountain car problem, enabling a fair comparison
on the more complex task variants (discussed in Section 4.3).

1: The Standard 2D Mountain Car task is run where agents use
Fitted R-MAX with a variety of parameters. The parameters tuned
wereminFraction, which determines if the agent is allowed to end
its nearest neighbor approximation early,modelBreadth, which sets
how fine a uniform grid is used to generalize the state space, and
resolutionFactor, which determines the size of the regularly spaced
grid used to approximate saved instances. We found that values of
minFraction= 0.01,modelBreadth= 0.03, andresolutionFactor=
5 produced high-valued policies with few samples and allowed for
very fast experiments (in terms of wall clock time). These param-
eter settings are similar to those used in past experiments in this
domain and are explained in detail elsewhere [7, 17].

In order for HOLLER to learn a distance metric, it must have
data recorded from the task. To record this data, we allowed the
agent to explore the task (with a fully random policy) for differ-
ent numbers of episodes. The more episodes used for learningthe
metric, the more likely it will be accurate. However, the episodes
spent collecting data will count against the agent’s performance (as
discussed further in Section 4.3). After trying 6 differentvalues,
we decided to experiment with 1, 5, and 10 episodes of data for
HOLLER, affecting Algorithm 1, lines 33 and 34.

2: Given the data collected, HOLLER is then used to learn a dis-
tance metric. We experimented with 10 values ofη (a parameter
for Algorithm 1) from 0.0001–0.5 and found that 0.01 and 0.05
produced the best behavior on the 2D Mountain Car task for 1, 5,
and 10 episodes. The performance of 0.01 and 0.05 were not dis-

start state is perturbed by a random number in[−0.005, 0.005], as
was done previously in this domain [17].
3See http://library.rl-community.org/wiki/
Mountain_Car_(Java)
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tinguishable, suggesting that HOLLER’s performance is not overly
dependent on this parameter. Experiments in the following sections
useη = 0.05. We also tested four values ofNumPts, the parame-
ter that determines how many temporally similar states to compare,
and found that a value of 10 produced slightly better resultsthan 1,
5, or 20.

3: Although HOLLER is designed to be an on-line algorithm, it
can be run multiple times over the same constraints if the data is
not immediately discarded (Algorithm 1, line 32). In our experi-
ments we tried iterating over the collected data for 1, 2, 3, 5, and
10 times. For 1, 5, and 10 episodes, iterating over the data twice
produced slightly better results than the other parameters, but the
differences between the final performance (as measured in the fol-
lowing sections) were small. In our experiments, we run iterate
over the collected data twice.

4: Having determined all the necessary parameters, HOLLER can
be used to learn a distance metric. Initially we learned a single dis-
tance metric per action. However, in the Mountain Car domain,
the action outcomes are similar enough that the learned distance
metrics for the different actions were indistinguishable.Therefore,
the experiments below focus on learning a single distance metric,
WNeutral (using only instances where the agent randomly executed
theNeutral action) and using that metric for allWa when learn-
ing an action-value function.

5: To evaluate HOLLER, we then learn the 2D Mountain Car
task using Fitted R-MAX , with and without the learned distance
metrics. The effect of the distance metric is compared in thefol-
lowing sections by evaluating the final and total rewards using both
the Euclidean distance and using the learnedWa.

4.3 2D Mountain Car Results
First, consider the distance metric,W , learned by HOLLER from

10 episodes worth of data. Examining the 10 trials, we find that

W =

"
0.119 ± 0.012 −0.006± 0.003

−0.006± 0.003 0.096 ± 0.008

#
,

where the± terms show the standard error. The values on the diag-
onal show thatx, the first state variable, is slightly more important
thanẋ, the second state variable. The off-diagonal values are very
small, showing that linear combinations of the two state variables
are not critical in this domain. However, it is impossible tosay
whether this distance metric is “correct” – instead, the utility of
this metric is in the observed performance of the RL agent.

Figure 1(a) shows learning curves for learning the 2D Mountain
Car task with Fitted R-MAX , both with (for 1, 5, or 10 episodes
of data) and without (No Metric Learning) HOLLER. The x-axis
shows the episode and the y-axis shows the average reward forthat
episode number. Error bars show the standard error over 10 in-
dependent trials. All experiments are averaged over 10 trials and
all experiments in this section are ended after 100 episodes. The
three trials that use HOLLER after collecting data for 1, 5, and 10
episodes learn to reach the goal very quickly, quickly outperform-
ing learning with the no distance metric. However, this analysis
does not account for the number of episodes spent collectingdata
(Algorithm 1, lines 5–11).

Figure 1(b) explicitly shows the time spent collecting datafor
HOLLER; for instance, when collecting data for 10 episodes, the
learning curve begins on episode 10, as episodes 0-9 are assumed
to have reward -500. To make the graph more readable, a 5-episode
sliding window is used and error bars are not shown. Additionally,
the performance of Sarsa (a popular model-free learning algorithm)
with CMAC function approximation is compared by using the same
parameters as those in the literature [7, 14, 17]), showing that Sarsa

agents take longer to discover the goal state, but that eventually
achieve a slightly higher reward.

One reasonable dimension along which to evaluate the effective-
ness of HOLLER would be the average reward at a set amount of
data (e.g., after 100 episodes). However, such a metric ignores the
“speed” of learning — Sarsa has a higher performance at episode
100 but suffers from a slow start. Analyzing the cumulative rewards
also shows that using Fitted R-MAX with HOLLER learning from 1
episode of data outperforms the other learning methods.

In the standard 2D Mountain Car problem, HOLLER with 1, 5,
and 10 episodes of data outperforms Fitted R-MAX without HOLLER

in terms of the final average reward and the cumulative reward. Ad-
ditionally, the difference in cumulative rewards is statistically sig-
nificant. While Sarsa outperforms Fitted R-MAX on this test both
in terms of final and cumulative reward, previous work has shown
that it is difficult for Sarsa to scale to higher-dimensionalversions
of this problem [18]. Experiments showing the superiority of Fitted
R-MAX are replicated later in Section 4.4. A summary of this and
other experiments can be found in Table 1.

4.3.1 Variant 1: Inflated State Variable
As a second task, we consider the more general case where the

range of the second state variable is not known. The state variable
ẋ still ranges from [-0.007, 0.007], but we assume that in order to
ensure that all data is scaled so that all state variable ranges are
within the expected range of [-1, 1],̇x is divided by 0.7 (rather
than 0.007), causing the observed range to become [-0.01, 0.01].
Such non-optimal scaling could occur if the human designer did
not know the true variable range and was being careful. Alterna-
tively, the range could be automatically determined through sam-
pling the minimum and maximum values, but two noisy readings
(one high and one low) could throw off the scaling. As seen in the
previous subsection, thex andẋ state variables are both important
for accurately predicting the transition function and we would ex-
pect that Fitted R-MAX , using parameters set for the standard 2D
mountain car task, will not perform as well as when it is coupled
with a learned distance metric.

As shown in Figure 2(a), the episodes spent learning the distance
metric initially hurt the learners: Fitted R-MAX without a distance
metric initially outperform an agent that collected 10 episodes of
data for HOLLER. However, the final average reward and average
cumulative reward is better for all three settings of the HOLLER

agents, although the differences are only statistically significant
about half of the time (see Table 1 for Student’s t-test results).

4.3.2 Variant 2: Sensor and Actuator Noise
To test the efficacy of HOLLER in the presence of noise, we next

consider a variant of mountain car that includes partial observabil-
ity and stochasticity. As before, the position and velocitystate
variables are scaled to the range[−1, 1] and then Gaussian noise
is added to the agent’s observation, drawn randomly on each time
step fromN (0, 0.1). Similarly, on every time step, the agent’s ve-
locity is multiplied by zero-mean noise drawn fromN (0, 0.01).

Figure 2(b) shows that although the noise makes learning more
difficult for all learners (i.e., their reward is lower than agents in
Figure 1(b)), HOLLER is able to learn distance metric functions that
allow the agents to outperform the default scaling. This is apartic-
ularly important test as it shows that HOLLER is robust to noise,
as desired. Using HOLLER produces a higher final and cumulative
reward in all three cases, although only the differences between the
cumulative rewards are statistically significant.

4.3.3 Variant 3: Irregular Action Function
Next, consider the situation where the transition functionis highly
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Figure 1: These figures show the same learning curve data where the x-axis is the episode number and the y-axis shows the reward. In (a), the y-axis
shows the average reward on a given episode (higher is better) with the standard error. (b) also shows the average reward per episode, but accounts
for the episodes spent learning the distance metric and usesa 5-episode sliding window.

dependent on the state, as was done in the 2009 Reinforcement
Learning Competition (c.f.,http://2009.rl-competition.
org/ and [21]). In particular, the actions 0–2 (Left, Neutral,
and Right) were mapped such that the action executed by the
agent depended oṅx anda (the action selected by the agent). The
action executed by the car in the simulator was„

a +

„
ẋ + 0.07

0.14
· 99.0

««
mod 3.

As expected, Figure 3(a) shows that learning a metric significantly
improves learning, both in terms of the final reward and cumulative
reward, as the learned metric can automatically increase the reso-
lution to ẋ, allowing it to better approximate a transition function
significantly more complex than for the standard 2D mountaincar.

4.3.4 Variant 4: A Third, Irrelevant, State Variable
As a final variant for the 2D Mountain Car task, we consider

adding an additional irrelevant state variable. Although the transi-
tion and reward functions still depend only onx and ẋ, the agent
is provided a random number as a third feature on every time step.
This state variable is drawn uniformly in [-0.025, 0.025]. As Fig-
ure 3(b) shows, this additional state variable significantly degrades
the performance of Fitted R-MAX with a Euclidean distance met-
ric as it must now generalize its data over an extra dimension(i.e.,
it suffers from the“curse of dimensionality”). However, HOLLER

allows this third state variable to be de-valued, allowing the agents
learn almost as well as in the standard 2D mountain car task.

HOLLER is not dependent on the number of state variables: al-
though Fitted R-MAX can generally not scale to high-dimensional
spaces, using HOLLER would allow an experimenter to eliminate
irrelevant state variables, potentially enabling this andother meth-
ods to scale to much higher dimensional spaces.

4.4 4D Mountain Car
The 4D Mountain Car task extends the 2D task so that there are

four state variables (x, ẋ, y, ẏ) and the agent selects from five ac-
tions (Neutral, West, East, South, North) [18]. The transi-
tion function is similar to the 2D case, but now takes into account
the extra dimensions. Likewise, the goal region is nowx ≥ 0.5 and
y ≥ 0.5. Our task implementation is based on a publicly available
implementation.4 This task is much more difficult than the 2D task

4http://library.rl-community.org/wiki/
Mountain_Car_3D_(CPP)

because of the increased state space size and additional actions.
After initial experimentation without distance metric learning, we
set the parameters of Fitted R-MAX to be similar to past work [17]
minFraction= 0.3,modelBreadth= 0.3, resolutionFactor= 3, and
agents train for a total of 250 episodes.

As shown in Figure 3(c), the final and cumulative performance
of learners using HOLLER is higher than those that rely on the
Euclidean distance metric. Also, note that Sarsa, using thesame
parameters set in the literature [18], does much wore than Fitted
R-MAX , due to the high-dimensional space. Sarsa agents do not
consistently find the goal state until after 2,000 episodes,requiring
roughly two orders or magnitude more data than the instance-based
learning method (with or without metric learning).

Taken as a whole, and summarized in Table 1, these experiments
show that HOLLER can successfully improve learning performance
on a variety of tasks, both in terms of final and cumulative reward.

5. RELATED WORK
The most similar distance metric learning work has been dis-

cussed earlier in Sections 2.3 and 3.3. This section focuseson the
most relevant existing reinforcement learning algorithms.

Graph-based approaches to learning state representations, such
as usingproto-value functions[10], typically focus on using a known
connectivity graph (e.g., a transition function) to learn a(near-) op-
timal set of features. By using the eigenvectors of the connectiv-
ity graph’s Laplacian, very accurate representations of anMDP’s
value function can be learned. However, proto-value function work
does not typically consider the sample complexity of learning such
a connectivity graph — our work is directly concerned with mini-
mizing the amount of environmental samples needed to learn astate
representation and thus attempt to maximize the on-line reward.

The Bellman Error Basis Functions (BEBF) [12] method relies
on iteratively adding basis functions, where each basis function is
constructed to improve the Bellman error over the previous set of
basis functions. BEBF differs from the current work primarily in its
aim — while the BEBF work examines relatively simple RL tasks
with the goal of constructing very accurate value functionsfrom
hundreds of thousands of samples, HOLLER instead aims to con-
struct a distance metric with relatively little data that can be used to
both guide exploration and improve value function estimation.

In a supervised learning setting, unlike in RL, training sets pro-
vide the correct target label, enabling a more straightforward appli-
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Figure 2: A learned distance metric improves both the total and final
reward when the velocity state variable is incorrectly scaled (a) and
when there is noise in both the sensors and actuators (b).

cation of distance metric learning. For instance,Metric Learning
for Kernel Regression[20] (MLKR) is a metric learning method
designed for regression problems.

Three recent papers presented at ECML-10 also tackle similar
problems. Nouri and Littman [11] build upon MLKR to create
theDimension Reduction in Explorationalgorithm. The algorithm
constructs a set of “factorized” MLKR problems (F-MLKR), un-
der the assumption that individual state features for resulting states
are independent of each other, where one MLKR problem is con-
structed per state feature, per action, for a total of||A|| × ||S||
F-MLKR regressors. F-MLKR agents must also be provided the
reward function, unlike in HOLLER, where the reward is learned.
Additionally, agents that use HOLLER benefit from dimensionally
reduction as well as proper scaling of state variables, and can be
combined with existing RL methods.

The second recent paper, Jung and Stone [8], trains multiple
Gaussian processes in batches to approximate the transition func-
tion. The GP-RMAX algorithm requires a deterministic transition
function, must be provided the reward function. In contrastto
both F-MLKR and GP-RMAX, HOLLER learns a distance func-
tion for the entire state space based on few samples, which means
that HOLLER can quickly generalize over the entire state space.

The third paper [2] presents an actor-critic method to determine
where to place basis functions and what parameterization they should
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Figure 3: Figures (a) and (b) show howHOLLER produces better
learning in task with a custom action mapping and with an irrelevant
state variable, respectively. In (c), learning curves are averaged over
ten trials with a 10-episodes sliding window.

have, rather than learning a single metric that is useful across the
state space (independent of the function approximator parameteri-
zation). Additionally, we note that the authors test their algorithm
on an easier version of mountain car (where the agent starts at a ran-
dom state rather than the bottom of the hill, making exploration sig-
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Domain Algorithm Final Ave. Stat. Cumulative Stat.
Reward Sig. Reward Sig.

Fitted R-MAX -126 -17600
2D: HOLLER-1 -118 -13620 X

Standard HOLLER-5 -118 -14783 X
HOLLER-10 -117 -16440 X

Sarsa -106 X -19755 (X)
Fitted R-MAX -268 -28050

2D: HOLLER-1 -227 -25380
Scaled HOLLER-5 -199 X –24740 X

HOLLER-10 -199 X –26000
Fitted R-MAX -157 -23600

2D: HOLLER-1 -136 -16840 X
Noisy HOLLER-5 -141 -17240 X

HOLLER-10 –150 -18733 X
2D: Fitted R-MAX -260 -36190

Convoluted HOLLER-1 -154 X -19990 X
Actions HOLLER-5 -161 X –22660 X

HOLLER-10 -177 X -25460 X
3D: Fitted R-MAX -164 -26360

Irrelevant HOLLER-1 -128 X –14500 X
Feature HOLLER-5 -117 X -14840 X

HOLLER-10 -124 X -17630 X
Fitted R-MAX -291 -36190

4D: HOLLER-1 -225 -19990 X
Standard HOLLER-5 -239 -22663 X

HOLLER-10 -241 -25460 X
Sarsa -500 (X) -50000 (X)

Table 1: This table summarizes all experiments, averaging over ten
independent trials. The third column shows the average reward at the
end of the trial (250 episodes for the 4D task, 100 episodes for all oth-
ers). The fourth column has a check if the difference in the final reward
is statistically significantly different from learning wit h Fitted R-MAX

without a learned distance metric, as determined byp < 0.05 on Stu-
dent’s t-test results. The fifth and sixth columns report theaverage cu-
mulative reward and whether the difference in the cumulative rewards
and Fitted R-MAX are statistically significant.

nificantly easier), but their algorithm takes thousands of episodes to
converge.

6. CONCLUSION AND FUTURE WORK
This paper has introduced HOLLER and shown how it can be

combined with an off-the-shelf instance based RL algorithm. Em-
pirically, this novel distance metric learning algorithm significantly
improves learning efficacy in a number of different tasks, includ-
ing noise and irrelevant state variables. One of the key benefits of
HOLLER is that very little data is required to learn an appropriate
state representation and thus the on-line reward can be significantly
improved relative to learning with a Euclidean distance metric.

In the future, we intend to try to fully integrate learningW
and a control policy simultaneously. While such an integration
would not be critical in domains where the distance metric can be
quickly learned, it may prove useful in more complex and higher-
dimensional tasks. We also are interested in attempting to further
improving the efficacy of HOLLER by trying establish appropriate
decay rates forη (rather than using a fixed learning rate), combin-
ing the updates from multiple actions (rather than learningeachWa

in isolation), and trying to tune exploration to learnW as quickly as
possible (rather than relying on random exploration). Lastly, while
this paper has focused on Fitted R-MAX , we expect that HOLLER

would be beneficial to other instance-based RL methods, as well
as model-free methods. For instance, future work could examine
how W could be used by Sarsa to help select, or parameterize, its
function approximator so that the value function can bettermatch
the underlying topology of the state space without relying on hu-
man intuition or simple estimates of state variable ranges.Lastly,

it would be interesting to empirically compare our Mahalanobis
distance approach, with the LogDet loss function, to alternative ap-
proaches.
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ABSTRACT
The creation of Virtual Power Plants (VPPs) has been suggested in recent
years as the means for achieving the cost-efficient integration of the many
distributed energy resources (DERs) that are starting to emerge in the elec-
tricity network. In this work, we contribute to the development of VPPs by
offering a game-theoretic perspective to the problem. Specifically, we de-
signcooperatives(or “cooperative VPPs”—CVPPs) of rational autonomous
DER-agents representing small-to-medium size renewable electricity pro-
ducers, which coalesce to profitably sell their energy to theelectricity grid.
By so doing, we help to counter the fact that individual DERs are often ex-
cluded from the wholesale energy market due to their perceived inefficiency
and unreliability. We discuss the issues surrounding the emergence of such
cooperatives, and propose a pricing mechanism with certaindesirable prop-
erties. Specifically, our mechanism guarantees that CVPPs have the incen-
tive to truthfully report to the grid accurate estimates of their electricity
production, and that larger rather than smaller CVPPs form;this promotes
CVPP efficiency and reliability. In addition, we propose a scheme to allo-
cate payments within the cooperative, and show that, given this scheme and
the pricing mechanism, the allocation is in the core and, as such, no subset
of members has a financial incentive to break away from the CVPP. More-
over, we develop an analytical tool for quantifying the uncertainty about
DER production estimates, and distinguishing among different types of er-
rors regarding such estimates. We then utilize this tool to devise protocols
to manage CVPP membership. Finally, we demonstrate these ideas through
a simulation that uses real-world data.
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I.2.11 [Distributed Artificial Intelligence ]: Multiagent systems

General Terms
Economics, Experimentation
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1. INTRODUCTION
The vision of a“Smart Grid” [12], and the resulting creation of
a robust, intelligent electricity supply network which makes effi-
cient use of energy resources and reduces carbon emissions,is a
challenge that has been recently taken up by a growing numberof
researchers [6, 3, 7, 14, 15]. In this context, one of the mainprob-
lems facing the energy supply industry is how to best achievethe
utilization of thedistributed energy resources (DERs)that, in re-
cent years, have appeared in the electricity network. Such DERs
range from electricity storage devices to small and medium capac-
ity (2kW-2MW) renewable energy generators.

In principle, employing DERs to produce energy could reduce
reliance on conventional power plants even by half [10]. Unlike
conventional power plants that lie on the transmission network and
are “dispatched” (i.e., called in to produce energy when needed)
by the national electricity transmission network operators (termed
the Gridherein), DERs lie in the distribution network and, due to
their small size, they (and their capacity) are “invisible”to the Grid.
Thus, they cannot be easily dispatched to meet demand. Moreover,
due to their decentralized nature and small size, DERs are either
invisible to the electricity market as well, or, lack the capacity, flex-
ibility or controllability to participate in a cost-efficient way [10].

Now, thereliability of supplyis a major concern of the Grid. It
is essential that independent suppliers are reliable, since the failure
to meet production targets could seriously compromise the smooth
operation of the network as a whole. In contrast, given the unpre-
dictability of renewable energy sources, the DERs would usually
struggle to meet power generation targets when operating alone.
This normally prohibits them from striking profitable dealswith
the Grid, and keeps them out of the electricity market for fear of
suffering penalties specified in contracts (driving them tosign low-
profit contracts with third-party market participants instead) [10].
To address this issue, in recent years many countries (e.g.,in the
EU) have enacted policies that guarantee the sale of electricity from
small-scale producers to the Grid in pre-determinedfeed-in tariffs
that are generally above market prices. Such policies were con-
ceived by the need to promote the incorporation of renewableen-
ergy sources into the Grid, so that they generate appreciable per-
centages of total demand. However, with the number of DERs
expected to rise to hundreds of thousands, and with the variable
generation seen as another uncertainty to be addressed in real time
through active Grid management, this is clearly unsustainable.

To counter these problems, the creation ofVirtual Power Plants
(VPPs) to aggregate DERs into the virtual equivalent of a large
power station, and thus enable them to cost-efficiently integrate into
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the market, has been proposed in recent years. [7, 10]. A VPP is
a broad term that intuitively represents the aggregated capabilities
of a set of DERs. For example, it can be thought of as a portfolio
of DERs, as an independent entity or agent that coordinates DERs
pooling their resources together, or as an external aggregator that
“hires” DERs to profit from their exploitation.

In our work here, we propose that power-producing DERs co-
alesce together to formcooperativesof agents that can profitably
be integrated into the Grid, such a cooperative corresponding to
a virtual power plant. Viewing the DERs as autonomous agents
is natural, due to their distributed nature and inherent individual
rationality, and enables them to realize their full potential as self-
interested market units (as it allows for the possibility that even the
smallest of DERs can carry out certain communication and intelli-
gent decision making tasks on their own, but without imposing this
as a requirement). We call these coalitions of DER-agents “coop-
eratives” because of(a) their completely decentralized nature;(b)
their ability to sell their production without relying on any exter-
nal entity that profits by using their members’ resources; and (c)
the fact that members willingly participate in a coalition,as it is in
their best interests to do so. Of course, the mechanisms described
in this work can also be readily used by any company that wishes to
attract DERs as suppliers, aiming to resell their energy to the Grid.
In the rest of the paper, we will use the terms “cooperative” and
“cooperative VPP (CVPP)” interchangeably.

Given the issues discussed above, it is only natural that theGrid
should encourage the emergence of cooperatives, by guaranteeing
the purchase of CVPP energy at competitive rates. To this end, in
this paper we incorporate ideas from mechanism design and coop-
erative game theory, and put forward an energy pricing mechanism
to be employed by the Grid. The mechanism can be seen as an
efficient alternative to feed-in tariffs, and so promotes the incorpo-
ration of the DERs (as CVPPs) in the Grid. In some detail, our
mechanism promotes supply reliability, guaranteeing thatCVPPs
truthfully provide the Grid with estimates of their electricity pro-
duction that are as accurate as possible. Further, they are rewarded
for increased production, while the Grid maintains the ability to
decide the flexibility of the mechanism and its degree of indepen-
dence from market fluctuations. Building on that key contribution,
we then propose a payment scheme to allocate payments within
the cooperative, and show that, given this scheme and the pricing
mechanism, a CVPP can guarantee payments to its members such
that no subset of them has a financial incentive to form a CVPP
of its own. Formally, we guarantee that, provided DER production
estimates are accurate, the payments to CVPP members lie in the
set ofcore allocations of the corresponding coalitional game [9].
We then develop a method that quantifies the uncertainty regard-
ing DER production estimates and distinguishes between different
types of errors in predicted production (i.e., those specific to indi-
vidual DERs, and those common within whole DER clusters), and
employ it to devise CVPP membership management protocols.

This is the first paper to discuss the formation of VPPs from a
game-theoretic standpoint, extrapolating as it does mechanism de-
sign and cooperative game theory concepts and techniques tothis
domain. As such, this work demonstrates that multiagent research
can provide the energy industry with solutions regarding the suc-
cessful integration of DERs in the supply network. Note thatthis
research has the potential of short to mid-term applicability in re-
alistic settings, as several power trading companies that buy elec-
tricity from small scale producers to sell to the Grid already exist.
Examples includeFlexitricity in the UK andTata Power Trading
Company Ltd.in India (business description available online).

2. RELATED WORK
Here we briefly review existing related work that provides intelli-
gent agents—and, more generally, AI research—solutions toenergy-
related problems. To begin, we note that researchers in the com-
munity have recently presented economics-inspired work totackle
such problems. Specifically, Vytelingumet al.[15] proposed strate-
gies for the management of distributed micro-storage energy de-
vices that adapt to the electricity market conditions. In separate
work, they developed a market-based mechanism to automatically
manage the congestion within the system by pricing the flow of
electricity, and proposed strategies for traders in the Smart Grid [14].

However, ideas fromcooperative game theoryin particular—
i.e., from the branch of game theory that studies the problemof
forming coalitionsof cooperating agents—have been used in the
broader energy domain for more than a decade. Yeunget al. [16]
employ coalitional game theory in a multiagent system modelof
the trading process between market entities that generate,transmit
and distribute power. Also, Contreraset al. [2, 1] presented abilat-
eral Shapley valuenegotiation scheme to determine how to share
the costs for the expansion of power transmission networks among
coalescing rational agents.

Turning our attention to VPP-specific literature, Pudjianto et al.
[10] stress the need to integrate DERs into the electricity network
in an organized and controllable manner through participation in a
VPP structure, and discuss the subsequent technical and commer-
cial benefits to the electricity network as a whole. They alsoclearly
outline the economic advantages to DERs, demonstrating as they
do through specific examples that VPPs can be used to facilitate
DER access to the electricity market. Dimeas and Hatziargyriou [6]
also call for the emergence of VPPs, and essentially suggestan or-
ganizational structure that makes use of interacting coalitions to
this purpose. Similarly, Mihailescuet al. [8] propose the use of
coalition formation to build VPPs, but do not provide the details of
the formation process or offer specific game-theoretic solutions—
as they do not discuss issues of individual rationality or incentive
compatibility. Though all of those papers advocate the creation of
VPPs, they do not describe specific mechanisms for the market-
VPP interface or the interactions among VPP members.

In contrast, thePowerMatcher(see [7] for an overview) is a de-
centralized system architecture that has been proposed as ameans
to balance demand and supply in clusters of DERs. It attemptsto
implement optimal supply and demand matching by organizingthe
DER-agents into a logical tree, assigning them roles and prescrib-
ing strategies to use in their interactions. The aspect of this system
most relevant to us is the one proposing the aggregation of individ-
ual agents’ supply offers in a cluster, serving as a VPP through the
use of anobjective agent. Such an agent has the task of implement-
ing a “business logic” that would guide the VPP’s actions. How-
ever, the authors stop short of proposing a specific businesslogic.
Our approach can be seen as a detailed description of just such a
logic, employing game-theoretic ideas and tools to this purpose.

3. AGENT COOPERATIVES
An agent cooperative (CVPP) is a collection of participating DER
agents, each of which registers with the CVPP when joining. The
CVPP may possess and employ any rules, tools and functionality
necessary to ensure its unconstrained and profitable operation as an
enterprise. We now present briefly some key CVPP characteristics
and functionality most relevant to our work here.

In most countries, the day is divided into 48 half-hour electricity
trading intervals, orsettlement periods. For each of these, electric-
ity prices are set in the market, and specific electricity production
targets are specified for the various generators the day before, given
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predicted supply and demand. A DERi can estimate anexpected

productionvalue p̃rodi,tj
for any half-hour periodtj . This is the

energy it expects to be able to supply duringtj , given any known
external factors (such as the prevailing meteorological conditions)
and its expected technical state. Thus, the main profile parameter
that describes the production of a DERi throughout each day is

its expected production vector̃prodi = 〈p̃rodi,tj
〉, describing the

DER’s production for every half-hour period.
Note that, besides this estimated production, there is anactual

production vectorassociated with each DERi: prodi = 〈prodi,tj
〉.

The value for eachprodi,tj
, however, becomes known only after

the corresponding period elapses. We will be using the simplified
notationprodi and p̃rodi to refer toi’s production when the pe-
riod tj of reference is evident or of no significance. Furthermore,

we will be usingprodC and p̃rodC to denote the production and
expected production of a cooperativeC of DER agents. The differ-
ence between thetj-values of the estimated and actual production
vectors, gives the DER (or, similarly, CVPP)prediction error for
the tj period. Note thatprodC =

P
i prodi, as the total CVPP

production is just the sum of the production of its DERs. Further,
we assume that̃prodC =

P
i p̃rodi.

1

Now, essential functionality for the CVPP operation includes
rules and procedures for(a) the distribution of revenues,(b) the ag-
gregation of individual production estimates into CVPP-wide ones,
and (c) membership management (admitting and expelling mem-
bers). That functionality might be located on some central agent
responsible for “running” the CVPP, or it could be potentially dis-
tributed over several agents. The functionality localization details
are unimportant to our work here. Instead, we proceed to describe
the aforementioned CVPP operational activities in depth.

4. TRUTHFUL AND RELIABLE CVPPS
In this section, we present a payment mechanism that can be em-
ployed by the Grid to promote the formation of DER cooperatives.
The mechanism addresses the main hurdles the Grid faces withre-
spect to DERs’ integration—namely, theunreliability of their pro-
duction (given DERs’ dependance on uncontrollable factors, like
the weather), and theirlarge numbers(given that it is anticipated
that hundreds of thousands of DERs would be eventually embed-
ded within a given country’s distribution network).

To begin, we elucidate the main requirements of the Grid with
respect to its interaction with CVPPs, and proceed to show how
they translate into the features of our payment mechanism.
(a) Reliability of supply:The Grid operators are responsible for
compiling production schedules to pass to the large power plants.
Currently, these are based on the predicted demand for electricity.
As more supply originates from smaller generators, their predicted
output will also need to be incorporated into the Grid production
scheduling process. Hence, the Grid requires any entity interact-
ing with it (such as a DER or a CVPP) to provide it with reliable
production estimates, and to be able to honour any agreementto
supply a specific amount. Subsequently, the Grid would be willing
to reward producers that are proven to be reliable suppliers.

(b) Need to minimize the number of entities the Grid interacts
with: As already mentioned, widespread small-scale production
will result in a huge number of DERs being connected to the Grid.
However, the Grid would obviously prefer to interact with a small
number of electricity producers, as this makes it easier to manage
and settle accounts. This requirement mirrors the scenarioon the

1It is conceivable that CVPP-wide estimates donot necessarily
equal

P
i p̃rodi. This would have no impact in our results.

consumption side, where the Grid interacts with only a few large
utility companies, which, in turn, interact with the millions of in-
dividual consumers. Thus, it is imperative for the Grid to promote
the formation oflarge CVPPs, each with a sizeable production ca-
pacity. Larger CVPPs make it possible for the Grid to interact with
a smaller number of entities, and also promote supply reliability.

4.1 Payment Mechanism
With this list of requirements in mind, we now put forward a pric-
ing mechanism that the Grid can use when making payments to the
CVPPs for their contributed energy. As discussed, the CVPPspro-
vide their estimated production for each day-ahead settlement pe-
riod to the Grid authority. As stated above,̃prodC is the estimated
production declared by CVPPC, andprodC its actual production
in the given time interval. Letprice be the electricitybase price
(per kWh). The “Grid-to-CVPP” payment from the GridG to C is:

VG,C =
1

1 + α|p̃rodC − prodC |β
· log(prodC) · price · prodC

(1)
The three first factors of this payment function (or pricing mech-
anism) represent theactual pricebeing offered by the Grid toC.
Multiplying them with the actual CVPP production (the fourth fac-
tor, prodC ) gives the actual payment toC. The mechanism has
specific properties that satisfy the requirements mentioned above:

(1) The first factor, 1

1+α|p̃rodC−prodC |β
, depends on the accu-

racy of the estimates provided by the CVPP. Thisaccuracy fac-

tor is a bell-shaped function of̃prodC given the actual production
prodC parameter, as the one whose graph is depicted in Fig. 1. It

simplifies to1 whenprodC = p̃rodC , proportionally decreases as
the difference between them increases. Importantly, this decrease is
independent of whetherprodC is greater thañprodC or vice versa.
Parametersα andβ are functions ofprodC and determine the exact
shape of the curve, and can be tuned so that the factor approaches
zero forp̃rodC estimates that are at a distance ofprodC away from
the actualprodC production. The use of this factor guarantees that
the CVPP has the incentive to truthfully provide a highly accurate
estimate of its production, as acting otherwise leads to a loss of
revenue (at least in expectation).

(2) The second factor,log(prodC), increases with production
and thus encourages a large CVPP size. Therefore, CVPPs with
more DER members generate more energy and obtain a better over-
all price than smaller ones. Nevertheless, being alog function, the
factor flattens eventually at very high production amounts.This
means that, though the formation of large CVPPs is encouraged,
the emergence of a single CVPP containing all DERs is not a neces-
sary consequence. Even though small CVPPs have an incentiveto
merge initially, they will not mergead infinitum, as there is no visi-
ble benefit after some point due to the limit linearity of the function.
Of course, other reasons to prevent merging, such as geographical
or technical restrictions, might exist.

(3)The third factor,price, is determined by the Grid either through
supply and demand in the electricity market or through othermeans,
and will be the same for all CVPPs participating in the market.

It is evident that this pricing mechanism promotes cooperative
participation in the market, and captures the aforementioned list of
requirements. First, it promotes supplyreliability, by guarantee-
ing that CVPPs receive higher revenues for accurate estimates. A
CVPP has an incentive to provide as accurate an estimate as pos-
sible, and has no incentive to strategize about it, as the estimate is
only used by the function to check how far off the actual produc-
tion was from the promised supply target. As shown above, wilfully
providing a wrong or biased estimate does not improve and mostly
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Figure 1: An accuracy factor function diagram

decreases the payment to the CVPP for the same amount of actual
production. Thus, the mechanism promotestruthfulnesson behalf
of the CVPPs. Similarly, the mechanism also promotesefficiencyat
the Grid level by incentivizing the formation of large cooperatives,
each attaining a substantial production aggregate.

4.2 Truthful and Reliable DER-Agents
The above mechanism incentivises the CVPP to provide accurate
estimates about its production. As discussed earlier, the produc-
tion of a CVPP is nothing but the aggregate of the production of
all the DERs composing it. Therefore, the CVPP requires accurate
estimates of production from the DERs in order to be able to calcu-
late the production estimate to provide to the Grid. Given this, the
payment from the CVPP to the DERs should encourage the DERs
to truthfully provide good estimates of their production. Evidently,
this mirrors the scenario between the Grid and the CVPP. Taking
cue from that, we use the same principle for this “CVPP-to-DER”
payment function as the Grid-to-CVPP one. Thus, the payment
from CVPPC to memberi for supplied energyprodi is:

VC,i =
z

1 + α|p̃rodi − prodi|β
· prodi

prodC

· VG,C (2)

We now describe the function in detail, demonstrating how itelicits
truthful and as accurate as possible predictions from the DERs.

(1) As in Eq. 1, the first factor, z

1+α|p̃rodi−prodi|β
, is anaccuracy

factor, encouraging the DER to provide the CVPP with its best pos-
sible production estimate. It equalsz if the estimate was accurate,
and drops following a bell curve otherwise. Notice thatz is simply
a normalization factor used to redistribute the entireVG,C amount
back to the members. Redistribution is in proportion to the mem-
bers’ production and prediction accuracy—this can be easily seen
with z = prodCP

i prodi/(1+α|p̃rodi−prodi|β)
. Alternatively, the CVPP

can setz = 1 and use the residual profits to pay for maintenance
costs, recruiting new members, or other such purposes.

(2) The second factor,prodi
prodC

, gives the proportion of energy con-
tributed by this DER w.r.t. the total CVPP production, making the
payment distribution fair across all DERs.

(3) The last factor,VG,C , denotes the total amount that is to be
divided among the constituent DERs, and corresponds to the pay-
ment received by the CVPP from the Grid.2

To recap, by employing this payment function the CVPP pro-
motes truthful and highly accurate predictions from its constituent
DERs. A DER has an interest to truthfully and accurately report,

2Of course, this could be reduced by subtracting an amount if this
is required to account for CVPP fees or maintenance costs.

since otherwise it does not receive the full payment corresponding
to the energy it actually produced.

4.3 Payment Schemes Render Stable CVPPs
Here we provide a further, game-theoretic justification forthe pay-
ment scheme used by the Grid to reward CVPPs, and for that used
by a CVPP to reward its members. Specifically, we show that, given
the functions used to reward the cooperatives and the members pay-
ment scheme described above, and assuming that all CVPP mem-
bers’ stated production estimates are accurate, no members’ subset
has an incentive to break away and form a smaller cooperative. In
addition, this result promotes the goal of large CVPP sizes.

To demonstrate this, we employ the concept ofthe core[9], the
strongest of the game-theoretic solution concepts used to describe
coalitional stability. Some preliminaries from cooperative game
theory are in order. To begin, letN , |N | = n, represent a set of
players; acoalition is a subsetS ⊆ N . Then, a(transferable utility)
coalitional gameG(N ; v) is defined by itscharacteristic function
v : 2N 7→ R that specifies thevaluev(S) of each coalitionS [13].
Intuitively, v(S) represents the maximal payoff the members ofS
can jointly receive by cooperating, and the agents can distribute
this payoff among themselves in any way. While the characteristic
function describes the payoffs available to coalitions, itdoes not
prescribe a way of distributing these payoffs. Anallocation is a
vector of payoffsx = (x1, . . . , xn) assigning some payoff to each
i ∈ N . Then, thecore is the set ofx payoff allocations with the
property that no coalition of agents can guarantee all of itsmembers
a payoff higher to what they currently receive underx. As such, no
coalition would ever be motivated to break away from the grand
coalition of all agents. Now, letx(S) denote the payoff allocated
by x to agentsS ⊆ N , i.e.,x(S) =

P
i∈S xi. Then, formally,

DEFINITION 1. An allocationx is in thecoreof G(N ; v) iff
x(N) = v(N) and for anyS ⊆ N we havex(S) ≥ v(S).

That is, the valuev(N) of the grand coalition is efficiently dis-
tibuted byx among all agents, and the payments specified byx are
such that anyS already receives at least its valuev(S). The core of
a game can be non-empty. Worse than that, it is in generalNP-hard
to determine the non-emptiness of the core (see, for example, [5]).

Returning to our setting, consider the formation of a CVPP as
a coalitional game, with the characteristic function describing the
value that any subset of DERs can derive by working together as
a team, and the CVPP intuitively corresponding to the grand coali-
tion of all agents. In our case, interestingly, assuming truthful and
accurate DER estimates, the form of the characteristic function,
v(S) = log(prodS)·price·prodS , allows us to prove that the pay-
ments allocated by Eq. 2 constitute a core-stable allocation, which
also implies that the core of the game is always non-empty.

THEOREM 1. LetC = {1, . . . , n} be a cooperative of|C| = n
agents, and letG(C; v) be the coalitional game with characteristic
functionv(S) = log(prodS) ·prodS ·price determining the value
of each subsetS ⊆ C of agents. Consider the payoff allocationx
where each agenti in C is paid according to Eq. 2—i.e., propor-
tionally to i’s contribution to the production of the CVPP (given
p̃rodi = prodi). Then,x ∈ core(G).

PROOF. We will show thatx is in the core. We know thatx
distributes all payoff to the agents efficiently and thereforex(C) =
v(C), wherev(C) = VG,C , so the first condition of Def. 1 holds.
Assume for the sake of contradiction thatx is not in the core.
Then, there exists someS ⊆ C s.t. v(S) > x(S). But x(S) =P

i∈S xi = prodS
prodC

v(C) (this is easy to see by setting̃prodi =

prodi for all i in Eq. 2). Thus:v(S) >
prodS
prodC

·prodC ·log(prodC)·
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price⇔ prodS ·log(prodS)·price > prodS
prodC

·prodC ·log(prodC)·
price ⇔ log(prodS) > log(prodC). But, sinceS ⊆ C, this is
impossible. Thus,x is in the core ofG(C; v).

Thus, the choice of the Grid-to-CVPP and CVPP-to-DER payment
schemes described above is well justified from a game-theoretic,
coalitional stability point of view also.

5. QUANTIFYING PREDICTION ERRORS
In Section 4.1 we introduced the payment function of CVPPs to
their members, based partially on the accuracy of their predictions.
Here we propose several methods for quantifying the uncertainty
in DER predictions, and distinguishing between different types of
prediction errors. This will prove helpful for devising methods to
handle CVPP membership (in Section 6). To begin, consider the
examples of a virtual power plant that aggregates the supplyfrom
several DER wind farms (belonging to different stakeholders) dis-
tributed in a geographical area, or from a set of solar panelsin-
stalled by different houses in an extended neighbourhood. Each
DER can make an error in the prediction of its future output for a
given half-hour period. It is useful to distinguish betweentwo main
classes of errors:
(a) Systematic errors: This error type is caused by the inherent
uncertainty in predicting an outside variable that is used as an input
by several DERs while calculating their production estimates. For
renewables, this is most likely a weather-related variable, such as
wind speed or solar power. So, for example, if the meteorological
office is innacurate in its prediction of wind speed at a certain time
in a local area, then all the wind turbines in that area may register
an error in their predicted production. We call this type of error
systematic, as it is common to all energy resources that rely on that
factor, and it is outside the control of individual DERs.
(b) Residual errors (DER specific): Besides the systematic er-
rors, the predictions of an individual DER may be affected byer-
rors caused by factors specific to itself, and (at least partially) under
its control. In the example discussed above, even if a wind turbine
is supplied with very accurate predictions of wind speed, its predic-
tion of its actual output may not be that accurate (because itis an
older turbine, requires maintenance work, and so on).

Against this background, we now propose a statistical method
for distinguishing between the different types of prediction errors.
Consider a dataset consisting ofm DERs in a CVPP, which belong
to the same category of energy producers (e.g., wind turbines from
the same area). For each of these DERs,n half-hour data points are
available within some large time periodT = {1, . . . , n} (n can be
quite large as the data can span several days, weeks or months).

Formally, letp̃rodi,t andprodi,t denote the estimated and actual
production of DERi in a half-hour intervalt. Moreover, let∆i,t =

prodi,t − p̃rodi,t, ∀i = {1, . . . , m},∀t ∈ T denotei’s prediction
errors int. Given the 2-dimensional error matrix with entries∆i,t

as defined above, we can define theaverageprediction error across

all DERs for somet ∈ T as:µ∆
t =

Pm
i=1 ∆i,t

m
.

In what follows, we denote by∆i
T then-vector of errors corre-

sponding to energy produceri for every intervalt ∈ T (∆i
T is a

row of ∆i,t error matrix entries corresponding toi), and byµ∆
T the

n-vector containing the average prediction errors across all DERs
for all time stepst ∈ T . We can now compute thePearson corre-
lation coefficientρ∆

i between vectors∆i
T andµ∆

T as:

ρ∆
i =

cov(∆i
T , µ∆

T )

σ(∆i
T )σ(µ∆

T )
=

Pn
i=1(∆i,t −∆i)(µ∆

t − µ∆
t )qPn

i=1(∆i,t −∆i)2
qPn

i=1(µ
∆
t − µ∆

t )2

(3)

wherecov(∆i
T , µ∆

T ) denotes the statistical covariance between
the two vectors∆i

T andµ∆
T , σ(∆i

T ) andσ(µ∆
T ) are their standard

deviations, and∆i =
Pn

t=1 ∆i,t

n
andµ∆

t =
Pn

t=1 µ∆
t

n
their means.

Intuitively, for each energy produceri, ρ∆
i ∈ [0, 1] shows how

correlated its errors in predicted production were with theaverage
errors made by the energy producers in the same category in the
CVPP. In our wind turbine example, if the coefficientρ∆

i for wind
tubinei is high, it means that this turbine tends to make a prediction
error when all other wind turbines in its area make a prediction error
of similar proportions. Thus, its error is mostly of a “systematic”
nature. If there is an uncertain, outside factor (e.g., windspeed
prediction) causing an error for all these turbines, then the errors
can be assigned to this factor. Conversely, ifρ∆

i is low, the errors
of this wind turbine are caused by its own functioning/prediction
capabilities, and appear unrelated to those of similar producers.

With this at hand, statistical theory [4] allows us to define two
important measures for the error vector of each produceri: the
fraction of variance explainedby the systematic factor (also called
the coefficient of determination),FVE∆

i = (ρ∆
i )2, and thefrac-

tion of variance unexplained(or, the fraction of residual variance)
FVU∆

i = 1 − (ρ∆
i )2. In essence, these measures determine the

percentage of the variance in DERi’s prediction errors that can be
explained by systematic factors. Thus, we can separate the vari-
anceσ(∆i

T ) in the prediction errors of eachi over periodT into
the systematic and the residual variance, the latter definedas:

σres(∆
i
T ) = FVU∆

i σ(∆i
T ) = [1− (ρ∆

i )2]σ(∆i
T ) (4)

Thus, the residual variance provides us with a tool to determine
whether the prediction error of a specific DERi is due to factors
that do not affect other energy producers of the same nature and
in the same area. As we shall see, this tool can be used to inform
CVPP membership management decisions.

6. MANAGING CVPP MEMBERSHIP
In Section 4.3 we showed that, given the payment function de-
scribed in Eq. 1, coalitions representing CVPPs are stable,in the
sense that DERs do not have a financial incentive to abandon them.
However, this result only holds when the DERs composing the
coalition are always able to provide accurate, error-free estimates
of their production. In general, cooperatives do not have anincen-
tive to expel members, given that more members means greaterex-
pected production and thus greater expected revenues. At the same
time, given Eq. 1, it is also true that, if certain DER membersare
consistently unreliable in their production estimates, then the addi-
tional penalty that the CVPP suffers due to increased unreliability
can in the long term offset any benefits from an increased overall
production. Therefore, a CVPP should perform a regular evaluation
of its individual members’ performance, based on which it may de-
cide to expel some of them. In this section, we provide methods for
such an evaluation.

Formally, as in Section 5 above, we consider the performanceof
m DERs belonging to a CVPP in a discretized time periodT con-
sisting oft = 1, . . . , n half-hour periods. Furthermore, we denote
by C\i the CVPPC if DER i was not its member. Given the Grid-
to-CVPP payment of Eq. 1, we define themarginal contribution
(or marginal value) of DER i to cooperativeC in periodt to be:

V mg
i→C;t = VG,C;t − VG,C\i;t (5)

Intuitively, the marginal contribution of DERi to the cooperative at
any time interval is the difference between the payment thata co-
operative actually receives, and the payment it would have received
had i not been part of the cooperative.3 Note that this marginal
3Incidentally, although perhaps intuitively appealing, using the
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value is influenced by both the estimated and actual productions,
p̃rodi,t andprodi,t, of DERi (and, implicitly, by its errors∆i,t).

Given this, we now propose a method to assess the long-term
performance ofi within a time frame of interestT . The same
mechanism could be applied to the process of deciding whether
to accept a new member in the CVPP, if historical data regarding
its predictions’ reliability were available.

Note that a first, simple solution would be to assess the members’
performance by ranking them according to their marginal contribu-
tion during a time periodT consisting of intervalst = 1, . . . , n.
That is, we can simply add the marginal contributions of DERi for
the intervalst ∈ T : V mg

i→C;T =
P

t=1,...,n V mg
i→C;t. Then, each

producer can be ranked by its marginal contribution to the revenues
of the CVPP, as described byV mg

i→C;T across the periodT of inter-
est. This method captures the exact contributions of members, but
does not account for systematic errors. So, for example, a DER sit-
uated in an area with poor wind/solar power prediction for a given
period, would be penalized for elements outside its control.

A fairer method would be to use the residual variance specificto
each DER. Such a method involves ranking the producers accord-
ing to their residual variances, as computed in Eq. 4, over a period
T . The least accurate producers could then possibly be expelled
from the CVPP, as a high residual variance shows their prediction
accuracy underperforms that of others in the same area for a consid-
erable period of time. However, that would have the disadvantage
that it completely disregards the contributions of individual DERs
to the CVPP revenues. Indeed, a CVPP could be reluctant to ex-
pel a member that, though consistently inaccurate, still contributes
significantly to the CVPP production and, therefore, revenues.

Thus, here we propose a method that actuallyweighsthe marginal
contribution of a DER by its residual variance (normalized to [0, 1]
through division by the sum of residual variances across allm
agents). Specifically,C calculates, for eachi overT , the following:

scorei
T = (1− σres(∆

i
T )Pm

j=1 σres(∆
j
T )

)V mg
i→C;T (6)

Intuitively, DERs with higher residual variance have theirmarginal
contribution disregarded more, while still taking some credit for it.
The CVPP then ranks the DERs in terms of their score, and has the
option to expel members with low performance. The advantageof
this method is that it avoids punishing individual DERs for system-
atic errors, while taking into account their marginal contributions
at the same time.

7. EMPIRICAL EVALUATION
We tested our payment mechanisms by examining the incentives
of a set of individual DERs to form a cooperative, in the context
of a renewables generation scenario. The data used in our anal-
ysis comes from theSotaventoexperimental wind farm, in Gali-
cia, Spain, and is made freely available for research purposes from
their website (http://www.sotaventogalicia.com/). The farm pro-
duces roughly the energy required to serve 12,000 homes. In what
follows, we first discuss how we constructed individual windtur-
bine profiles from the available data, and describe our prediction

marginal contributions to distribute the CVPP revenues to the
DERs is problematic as an approach, because it compromises DER
truthfulness. Specifically, it provides agents with a reason to strate-
gize and base their reports on those of others, since their payment
would be based on whether they can accurately predict and “cor-
rect” the reports of others, so that they are awarded the marginal
gains resulting from improved CVPP performance. Though the
study of such collective “auto-correction” mechanisms is perhaps
interesting, it is out of the scope of this work.

scenarios. We then apply our mechanisms to this setting, demon-
strate the benefits to individual turbines from forming a coopera-
tive, and evaluate our method for ranking DERs according to pre-
diction performance.

To begin, the main characteristic of a wind turbine is itspower
curve, describing, for a given level of wind speed, its electricalout-
put (in MW). The generic power curve of wind turbines is typically
asigmoid function, with a threshold level, beyond which the power
output increases more sharply. A turbine’snominal capacityde-
scribes its maximum power (and, subsequently, energy produced
per hour) output for “optimal” wind speed.

The Sotavento farm contains 24 wind turbines, with an installed
nominal capacity of 17.5 MW which jointly produce an average
of 38,500 MWh yearly. The available dataset we used in our ex-
periments contains, for eachhourly slot for the entire year from 2
September 2009 to 2 September 2010, both the actual wind speeds
recorded, as well as the farm production (in kWh) for that time
slot. There are 8600 records/year provided in total, due to some
records being corrupt. Fig. 2 shows a scatter plot of all the yearly
data points from Sotavento, as well as the power curve (the sigmoid
function) we derived based on this data.

Next, we divided the derived curve for the entire farm (i.e.,in
our terminology, the CVPP) into 24 identical power curves, one for
each individual wind turbine (DER). Note that, while no detailed
data was available about individual turbines, consideringthem equal
in nominal production capacity is realistic, and sufficientto illus-
trate the functioning of our model. Therefore, based on the real
data, each of the 24 turbines has a nominal capacity of∼700 kW
(or, it can supply∼500 homes). Ifwt is the wind speed at an hourly
timepointt (in m/s), thegenericpower curve of each turbine is:

prodgeneric
i,t (wt) =

700

1 + e0.66∗(9−wt)
(7)

The shape of this function for each individual turbine is thesame
as that in Fig. 2, but with a maximal capacity of 700 kW.
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Figure 2: Scatter plot of the yearly data points from Sotavento.

7.1 Forming CVPPs of Wind Turbines
Although the Sotavento site provides real data about production
and wind speeds, it does not provide us with any long-term data
about thepredictionsof individual turbines. Furthermore, all wind
turbines in Sotavento are owned by the same entity (a government
agency). By contrast, our goal is to examine more decentralized
settings, with these turbines belonging to individual stakeholders.
Specifically, our aim here is to verify experimentally that,given
our payment mechanisms, “self-interested” turbines (DERs) with
different abilities have an incentive to coalesce into a CVPP.

To this end, we consider experimental scenarios in which the
main parameter varied is the prediction ability of individual tur-
bines regarding future production. Formally, given a wind speed
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Figure 3: Benefits from joining a CVPP vs. selling to the Grid as an independent producer (singleton): (a) symmetric case;(b)
asymmetric case: performance ofgood predictors; and (c) asymmetric case: performance ofpoor predictors. Averages are over
86,000 steps (8600 hourly time points available in a year & yearly simulation run 10 times). Error bars too small to be visible.

predictionwt, we first compute ageneric (idealized) production
prodgeneric

i,t of each wind turbinei at timet using Eq. 7.4 Then,
theactualproduction for each DERi = 1 . . . 24 is given by

prodi,t = prodgeneric
i,t · N (1, σsyst)

where the variance factorσsyst captures the systematic error that
is common to all turbines (i.e., the actual wind speed is not the
same as predicted). While the actual productions are drawn inde-
pendently for each DERi, the deviationσsyst of the normal pertur-
bation distribution is the same for all, reflecting the fact that they
are all subject to the same uncertain, outside factor (wind speed).

Now, the DERs can have rather different capabilities w.r.t.deriv-
ing future production estimates. This is captured by a DER-specific
(or residual) error factorσi

res. Then, the estimated production re-
ported by each DERi = 1 . . . 24 is:

p̃rodi,t = prodgeneric
i,t · N (1, σi

res)

Against this background, we use two simulation settings to ex-
plore the benefits to individual DERs from being in a CVPP. In both
settings, the number of DERs is fixed at 24 (as in Sotavento), each
with generic production functions as in Eq. 7, and with the system-
atic error variance set toσsyst = 0.1. We setprice = 0.05; this is
combined with the first two factors of Eq. 1 to give theactual price
in euros/kWh. We consider the following cases:

(a) The symmetric case:All DER-agents areequally goodor
equally badin predicting their own production. In other words, the
residual deviationσi

res is the same accross all agentsi.
(b) The asymmetric case:The agents in the cooperative are di-

vided into 2 classes: one ofgood predictors, having a low residual
deviationσres(low) = 0.05 regarding their production estimates,
and a second class ofpoor predictors, having a high residual devi-
ation ofσres(high) = 0.6. The relative proportion of the two class
sizes varies from 0/24 to 24/24 (out of the 24 agents in the CVPP).

For both scenarios, we ran a series of experiments where the
real wind data for all hourly intervals for an entire year wasused.
The simulation of the hourly wind speeds over the entire yearwas
repeated 10 times5 to reduce the outcomes’ variance, resulting to
86, 000 tests for each data point shown in the results of Fig. 3.
4As already discussed, our simulation uses the real wind speeds for
each hour for the 365 days in the year.
5The simulation parameters were chosen with the computational
requirements of the various experimental settings in mind,but in
all cases our results are statistically significant.

Joining a CVPP is beneficial in the symmetric case.
Turning our attention to Fig. 3(a) which depicts the resultsfor the
symmetric predictions scenario, we can see that, whatever the resid-
ual uncertainty in prediction is, individual DERs have an incentive
to join together to form a CVPP. For small values of the deviation
in prediction errorσi

res (i.e., when all agents predictions are almost
entirely accurate), this effect is due to the superadditivestructure
of the reward function of Eq. 1. This was not surprising, given
the result of Theorem 1. Interestingly, however, the impactof our
payment schemes is even more profound when highly inaccurate
DERs (i.e., those with high values of residual variance) arecon-
sidered. In this case, the revenue for singleton DERs more than
halves when compared to their average gains when participating in
a CVPP (from 1700 to 800 euro/day), as the agents are punishedby
the Grid for their inability to predict their production accurately.

As expected, when agents interact with the Grid as a CVPP, the
cooperative’s revenue also drops when its members become less
accurate in prediction. However, the drop is much smaller, from
2700 to about 2600 euro/day for each of the 24 members. This
is mainly because, if added over the entire cooperative, residual
prediction errors cancel each other. Thus, quite interestingly, even
a virtual power plant consisting of 24 DERs with poor prediction
ability is able to issue a reasonably accurate estimate to the Grid.

Results for the asymmetric case.
We now examine a setting in which DERs can be separated into
two distinct classes, one ofgoodand one ofpoor predictors (with
a residual variance ofσres(low) = 0.05 andσres(high) = 0.6 re-
spectively). The main experimental parameter varied here is the
number of agents of each type that make up the CVPP; these are
varied from 0 to 24.

Simulation results appear in Fig. 3(b) and 3(c). We observe that,
in general, both types are better off being in a CVPP than interact-
ing with the Grid as singletons. This is regardless of whether the
other participants are good predictors or poor. However, there are
some additional interesting observations to be made in thissetting.

Somewhat surprisingly,good predictorsactually do much bet-
ter if the rest of the cooperative members are poor. The reason for
this is the way the CVPP-to-DER payment redistribution function
works. If an agent is the only accurate one (or among the few accu-
rate ones) in the cooperative, it gets a large proportion of the joint
payments, as it is among the few with a low error factor, and thus
enjoys high returns following the (normalized to reward accuracy,
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as explained in Section 4.2) redistribution of CVPP’s revenues.
In general,poor predictorsalso have a strong incentive to join

the CVPP, as the results in Fig. 3(c) show. An interesting point
to note is that it would appear from these results that both poor
and good predictors prefer the other agents in the cooperative to be
poor predictors (unless their errors are all biased towardsthe same
direction and thus do not cancel out—an improbable scenariofor
large CVPPs). However, as shown in our figures, arandommember
of the cooperative would on average expect to do slightly better if
the number of good predictors is high, as the cooperative as awhole
gains more revenue on average in that case.

7.2 Ranking DERs by Prediction Performance
For the last set of results, we use a similar setting as the asym-
metric case described above. We divide the DER-agents into two
categories:good predictors(with σres(low) = 0.05) andpoor pre-
dictors(with σres(high) = 0.3). The number of each agent type in
the cooperative was varied from 1 to 23 (out of 24 agents in total).
Recall that in Section 6, two methods for assessing the contribu-
tion of a DERi to the CVPP were discussed: one based on only
its marginal contribution to the cooperative, and the othertaking
into account bothi’s marginal contribution and the residual error
varianceσres(∆

i
T ). In our experiments, we compare these two

methods, takingT to be one year of hourly data, as before.
The graph in Fig. 4 shows, for settings withk = 1 . . . 24 poor

predictors, the number ofreal poor predictors detected by each
method (i.e., how many actual poor predictors are among thek
lowest scoring agents returned by each method used). Note that
the ranking shown is actually an average over 25 runs, sufficient to
reduce the results’ variance to very low levels (since, in fact, each
data point represents the results from 25 years of real hourly data).
As we can see, the method that weighs marginal values by resid-
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Figure 4: Results for the efficiency of ranking measures.

ual variance (Eq. 6), making use of the techniques of Section5,
is clearly better in distinguishing poor predictors than ranking by
marginal contributions alone; in fact, it rarely identifiesa predictor
wrongly in this setting. In contrast, the strategy of ranking solely by
marginal values does degrade, especially when the number ofgood
predictors roughly equals that of poor ones. In any case, theresults
in this setting show that both methods manage to distinguishpoor
predictors from good ones with a very high degree of accuracy.

8. CONCLUSIONS
In this paper we applied several game-theoretic ideas in theenergy
domain. We presented a pricing mechanism that can be used as an
alternative to feed-in tariffs, in order to promote the creation and
cost-efficient operation of DER cooperatives. We also proposed
a method to allocate CVPP revenues to its members, and showed
that this method promotes CVPP stability (assigning payoffs that
are core-stable, under the condition of DER accuracy). We also

showed that the payment functions incentivize truth-telling when
CVPPs interact with the Grid and when DERs interact with the
CVPP; and that our methods promote supply reliability and produc-
tion efficiency. Moreover, we provided a generic method for CVPP
membership management, which was experimentally shown to be
successful in ranking DERs w.r.t. predictions’ accuracy. Crucially,
our ideas were evaluated on scenarios using data from a real-world
wind-farm. Our results confirm that joining CVPPs which make
use of our proposed payment schemes is almost always beneficial
to any individual DER.

In future work, we intend to study alternative pricing schemes
to the one proposed here. For instance, residual errors-related in-
formation could perhaps be incorporated in the payment function.
Doing so optimally and in a fair manner is not straightforward,
since determining the residual part of the error requires the study
of an agent’s performance over an extended period, while thepay-
ment function rewards the agent for its immediate performance. We
also intend to examine alternative ways to distribute rewards among
CVPP members, perhaps by utilizing theirShapley value[9]. Al-
though its exact calculation is an intractable problem, theuse ofbi-
lateral Shapley value approximation schemes could be an option.
Furthermore, assuming DERs could provide production estimates
in the form of a full distribution (rather than just an expected value),
it would be interesting to devisescoring rules[11] to elicit those es-
timates, and to reward both estimates that turn out to be accurate,
and those provided with high precision (low variance). Moreover,
we would be interested in implementing a web service to accom-
modate CVPP formation and member management activities.
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ABSTRACT
Traffic causes pollution and demands fuel. When it comes
to vehicle traffic, intersections tend to be a main bottle-
neck. Traditional approaches to control traffic at intersec-
tions have not been designed to optimize any environmental
criterion. Our objective is to design mechanisms for inter-
section control which minimize fuel consumption.

This is difficult because it requires a specialized infras-
tructure: It must allow vehicles and intersections to com-
municate, e.g., vehicles send their dynamic characteristics
(position, speed etc.) to the intersection more or less con-
tinuously so that it can estimate the fuel consumption. In
this context, the use of software agents supports the driver
by reducing the necessary degree of direct interaction with
the intersection.

In this paper, we quantify the fuel consumption with exist-
ing agent-based approaches for intersection control. Further,
we propose a new, agent-based mechanism for intersection
control, with minimization of fuel consumption as an explicit
design objective. It reduces fuel consumption by up to 26%
and waiting time by up to 98%, compared to traffic lights.
Thus, agent-based mechanisms for intersection control may
reduce fuel consumption in a way that is substantial.
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1. INTRODUCTION
Mobility is a challenge for public authorities. Traffic

causes pollution and – next to other factors – the climate
change. Further, emissions of vehicles are closely linked to
fuel consumption. The unsteady oil price and the expected
oil shortage in the future make fuel consumption not only
an issue for society but also for individual drivers.

When it comes to city traffic, intersections tend to be
a main bottleneck. Traditional approaches for intersection
control like traffic lights or roundabouts aim to increase
throughput and to reduce waiting time. But they have not
been designed with the intent to do any optimization with
regard to an environmental criterion. This, with regard to
fuel consumption, is the objective of this article.

If a vehicle does not know when it will be allowed to cross
an intersection, it approaches it and – if necessary – decel-
erates or stops just before. Afterwards, it accelerates again.
If a vehicle was informed about when to cross the inter-
section in advance, it could reach the intersection just in
time, with less deceleration and acceleration. This decreases
fuel consumption [7]. It also allows the intersection-control
mechanism to orchestrate vehicles entering from different di-
rections flexibly and efficiently. Thus, intersections should
inform vehicles about their exact time slot in advance.

Doing so not only allows a vehicle to arrive at the intersec-
tion just in time, but also with sufficient speed. This leads
to shorter time slots and to a higher throughput.

The fuel consumption of a vehicle depends on characteris-
tics like size, engine capacity and rolling resistance. Dy-
namic parameters like speed and acceleration are impor-
tant as well. With existing intersection-control mechanisms,
those various parameters are unknown to the mechanism.
The mechanisms envisioned have to consider not only static,
but also dynamic parameters which can change at any time.
Thus, the mechanisms sought require a specialized infras-
tructure both in vehicles and at intersections which allows
them to communicate.

Another observation that is important here is that it is
easy to arrive at the intersection at a certain time or with a
certain speed. But doing both is difficult for human drivers
without any driver-assistance system. This means that the
infrastructure does not only have to support communica-
tion, but should also provide sophisticated driver-assistance
techniques. The design and the validation of such an envi-
ronment is not trivial.
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Software agents are a key technology for the infrastruc-
ture envisioned. Intersection agents and what we call driver-
assistance agents can negotiate the time to cross an inter-
section in advance. Recent proposals already feature agent-
based intersection control, to reduce average waiting time
or other target variables [5, 16]. These approaches yield
good results. However, though the authors expect positive
environmental effects, they have not investigated them sys-
tematically.

The contribution of this article is twofold. First, we in-
vestigate the effects of existing agent-based mechanisms for
intersection control on fuel consumption. We show that
these mechanisms reduce fuel consumption by up to 28%
compared to traffic lights (TL). This is a significant reduc-
tion given that city traffic requires crossing intersections fre-
quently. Second, we propose a novel agent-based mechanism
for intersection control with minimization of fuel consump-
tion as an explicit design objective. The reduction is be-
tween 22% and 26% compared to TL. This is significant as
well, but less than what we had expected, in the light of
the first contribution. We further show that our new mech-
anism reduces average waiting time in certain situations by
up to 98% compared to TL and is better than the existing
approaches of [5] and [16]. Summing up, our study shows
that agent-based mechanisms for intersection control may
result in a reduction of fuel consumption that is substantial.

Paper outline: We discuss related work in Section 2. Then,
we describe agent-based intersection control in Section 3. In
Section 4, we present our estimation model for fuel consump-
tion. We introduce the various mechanisms for intersection
control in Section 5. We evaluate these mechanisms in Sec-
tion 6 and conclude in Section 7.

2. RELATED WORK
This section reviews related work on intersection control

whose purpose is to reduce fuel consumption. We start with
simple approaches which are already used in the real world,
like roundabouts with and without traffic lights, and con-
tinue with more complex ones. Finally, we review agent-
based approaches on intersection control.

[18] shows that roundabouts reduce fuel consumption by
28%, by avoiding waiting time during off-peak hours. On
the other side, the waiting time for some vehicles increases
during peak hours. This problem is addressed in [2], by
additional usage of traffic lights during peak hours. This
ensures that vehicles coming from directions with little traf-
fic do not have to wait too long. In this case the signals
are red when the vehicle queue in one direction reaches the
queue detector. This creates a gap in the circulation flow.

Another approach which does not need any construction
changes of the intersection is introduced in [11]. There, the
cycle length is optimized by minimization of a performance
index. This index does not only take into account the delay
and the number of stops but also the fuel consumption. Or-
thogonally to our approach, [11] examines the optimal cycle
length based on the traffic density and traffic volume. It is
however determined a priori and does not change with new
vehicles arriving. Our approach in turn determines dynami-
cally which vehicle should cross the intersection next, based
on the current state.

A more advanced way to optimize/synchronize the signal
settings is to use real-time video-traffic monitoring. [13] sug-
gests to use color-image sequences combined with a defini-

tion of search windows around areas of interest. This allows
to anticipate the arrival of vehicles at an intersection and
gives way to adaptive and predictive traffic-light control. A
high-level traffic-light controller can use these images to re-
duce waiting time and fuel consumption.

[8] combines the real-time video-traffic monitoring with
induction loops and a multi agent control system. Every
intersection is controlled by an autonomous agent, which
communicates with adjacent agents. Vehicle queues repre-
sent each incoming intersection lane. When a vehicle leaves
the intersection, the adjacent intersection agent in the di-
rection of the vehicle is informed about the probability that
the vehicle will arrive there. In this way, the intersection
agent can identify the best traffic-light phase possible.

3. AGENT-BASED INTERSECTION CON-
TROL

The mechanisms discussed in this paper use agent tech-
nology. It lets intersections and vehicles negotiate the time
slot when to cross an intersection, and vehicles can adapt
their speed autonomously when approaching an intersection.
As a prerequisite, vehicles are equipped with an additional
control unit, subsequently referred to as driver-assistance
system. Further, intersections have a traffic-control unit, re-
ferred to as intersection-control unit. These control units
consist of hardware and of software components.

Driver-assistance systems and intersection-control units
have to communicate. To this end, they use intersec-
tion agents, which represent intersection-control units, and
driver-assistance agents, which represent driver-assistance
systems. These agents are a software component of the re-
spective control unit.

While driving, a driver-assistance system can recommend
a certain speed to the driver. If the driver does not overrule
the driver-assistance system, it may also directly control the
driving behavior of the vehicle [17] (Figure 1).

Figure 1: Agent-based traffic control

The driver-assistance system can be seen as an extension
of an adaptive cruise control (ACC) system, which is state
of the art in vehicles. ACC systems assist the driver to
keep a certain distance to vehicles in front. He does not
have to react when vehicles in front accelerate or decelerate.
This is done by the ACC system. In addition, the driver-
assistance system described here also adjusts the speed to
reach the intersection at a certain time. [17] calls such a
system adaptive cruise and crossing control (A3C) system.

If vehicles are equipped with driver-assistance agents, we
can design mechanisms for intersection-control where driver-
assistance agents and intersection agents negotiate the right
to cross an intersection. A time slot is the right to cross an
intersection in a certain direction within a certain period of
time. Each driver-assistance agent tries to obtain its next
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free time slot, i. e., the earliest slot which the vehicle can
still reach in time, and which the intersection can assign to
the vehicle. Vehicles typically have different next free slots.

The intersection agent is responsible for the allocation of
a time slot. Because vehicles can cross an intersection con-
currently, the allocation of time slots follows certain rules.
There already exist various allocation rules like ’priority
to right’, ’four-way-stop’ or ’preference road’. For agent-
based intersection control, new allocation rules are possible.
[17] proposes four different allocation rules, with a distinc-
tion on the degree of concurrency allowed. To formulate
these rules in a clean way, we use the following terminology:
An intersection consists of several intersection lanes. If two
intersection lanes share common space, we say that they are
conflicting. We call the shared space conflict area. If two in-
tersection lanes emerge from one incoming lane, the conflict
area is diverging.

With intersection exclusive, the intersection agent allows
one vehicle to enter the intersection after all other vehicles
have left it. With lane exclusive, a vehicle may enter the in-
tersection only when all vehicles on the desired lane and on
all conflicting lanes have left the intersection. Lane shared
lets a vehicle enter the intersection if there are no more ve-
hicles on other conflicting intersection lanes. However, a
vehicle may enter the intersection while other vehicles cross
the intersection on conflicting intersection lanes with diverg-
ing conflict areas. Conflict-area exclusive only blocks the
conflict areas of an intersection. Vehicles may cross the in-
tersection concurrently as long as not more than one vehicle
is in each conflict area. Clearly, the possible throughput in-
creases from intersection exclusive to conflict-area exclusive.
Because lane shared is already state of the art, we only con-
sider lane shared and conflict-area exclusive in what follows.

These degrees of concurrency are particularly meaningful
in the context of agent-based intersection control. In prin-
ciple, it would be possible to build traffic lights as strict as
intersection or lane exclusive. However, traffic lights usually
allow vehicles to cross an intersection in a way similarly to
lane shared. Several vehicles can enter the intersection from
the same lane while they have green light. It is not possible
to use standard traffic lights for conflict-area exclusive. This
is because conflict-area exclusive switches between vehicles
from different directions too quickly.

4. MODELS TO ESTIMATE FUEL CON-
SUMPTION

To consider the fuel consumption of vehicles approaching
an intersection, we need an estimation model. In this section
we describe the model used here in detail.

4.1 Existing Models
Various models have been proposed in order to estimate

the fuel consumption of vehicles. These models can be cat-
egorized based on the parameters used to estimate the fuel
consumption. For example, average speed models are based
on the average speed of a vehicle [4]. In contrast, nonlinear
regression models distinguish between acceleration and de-
celeration phases of a drive [1]. Similarly to the nonlinear
regression models, modal models split a trip into four driving
modes: idle, acceleration, deceleration and cruising mode [4,
10]. The focus of these models is on the strict distinction
between the driving modes. However, they do not specify

explicitly the way to determine the fuel consumption within
a mode. Energy-based models take the energy demand of
a vehicle while driving as the basis for estimating the fuel
consumption [4, 12, 14, 15].

We have analyzed different models to estimate fuel con-
sumption. We have compared the necessary degree of detail
and the availability of calibration data. As a result, the In-
stantaneous Model [4], which is both an energy-based and a
modal model, has turned out to be most suitable within an
intersection-control mechanism.

4.2 Instantaneous Model
The Instantaneous Model [4] determines the fuel consump-

tion based on the energy demand of a vehicle. In order to
compute the energy demand it uses the instantaneous speed
v (in m/s) and acceleration a (in m/s2). In this way, it
reflects the different situations within a drive and is able to
provide a very accurate prediction of the fuel consumption
of an individual vehicle.

Using the Instantaneous Model, we can determine the fuel
consumption of a vehicle by the following equation:

F =

{
α+ β1Rtractv + [β2aRinertialv]a>0 for Rtract > 0

α for Rtract ≤ 0

where F is the fuel consumption in ml/s. This formula
combines three different fuel-demand types:

Idle.
The fuel consumption which is needed just to run the en-

gine is the idle fuel consumption α of a vehicle (in ml/s).

Movement.
The additional fuel consumption for the movement at con-

stant speed is the product of the efficiency parameter β1 (in
ml/J) and the tractive energy demand Rtract · v. Rtract de-
notes the tractive force. If it is not positive, the movement
causes no additional fuel consumption.

Acceleration.
The additional fuel consumption of an accelerating ve-

hicle is the product of the efficiency parameter β2 (in
ml/(J ·m/s2)) and the inertial energy demand a·Rinertial ·v.
Rinertial denotes the inertial force. If the acceleration is not
positive, no additional fuel consumption has to be taken into
account.

The tractive force Rtract is the sum of drag force Rdrag,
inertial force Rinertial and grade force Rgrade. Rdrag com-
prises rolling resistance Rrolling and air drag force Rair:
Rdrag = Rrolling + Rair. The inertial force Rinertial is the
product of vehicle mass m (in kg) and acceleration a:

Rinertial = m · a
Grade force combines gravitational acceleration (g =

9.81 m
s2 ), vehicle mass and road grade G (in %):

Rgrade = m · g ·G
4.3 Refinement of the Instantaneous Model

In [4], average values, calibrated on the basis of a certain
vehicle fleet, are used for idle fuel consumption α, air drag
force Rair and rolling resistance Rrolling. These average
values are not very accurate, because they only are aggregate
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values of a certain test fleet. Therefore, we compute the
actual values for each vehicle like speed, frontal area etc.
from the data available instead of using average values.

Idle fuel consumption.
The idle fuel consumption α (in ml/s) of a vehicle can be

derived from its engine capacity Vh (in l) [9]:

α =
0.220

103s
Vh − 0.0193

103s l
V 2

h

For trucks, we always use α = 0.7ml/s as idle fuel con-
sumption [3].

Air drag force.
The air drag force Rair is based on air density ρ (in

kg/m3), drag coefficient CD, frontal area A (in m2) and
instantaneous speed v of a vehicle:

Rair = 0.5 · ρ · CD ·A · v2

Air density relates to air temperature and to the height
above sea level. To keep things manageable, the temperature
is assumed to be 15◦C and the height above sea level 200m
[9]. According to [9], this results in an air density of ρ =
1.2 kg/m3. The drag coefficient as well as the frontal area of
a vehicle can be determined relatively easily, because they
are often stated in the specification of a vehicle. If the values
are not included in the specification at least the frontal area
can be derived for passenger cars from maximum height h
and maximum width w of the vehicle as follows [9]:

A = 0.9 · h · w

Rolling resistance.
The computation of the rolling resistance is intricate be-

cause it is based on properties like road surface and tires
used. Because this data is very hard to obtain, an average
value, calibrated in [4], is used:

Rrolling = 333N

5. MECHANISMS
In this section we present different mechanisms for inter-

section control. First, we describe the mechanism Traffic
Light (TL). Then, we describe Time-Slot Request (TSR)
which allocates the next free time slot to cross an inter-
section to the first driver-assistance agent which requests a
time slot from the intersection agent. Thereafter, we present
ITSA Valuation which allocates the next free time slot to the
vehicle with the highest valuation of reduced waiting time.
Then, we introduce a new environment-aware mechanism
ITSA Fuel Consumption. It allocates the next free time
slot to the vehicle which causes the minimal total increase
of fuel consumption. Finally, we describe ITSA Delay as a
variation of ITSA Fuel Consumption.

5.1 Traffic Light
Traffic lights (TL) are one of the most common

intersection-control mechanisms. Therefore, TL serves as
our yardstick for the environment-aware ITSA Fuel Con-
sumption.

Using TL the green light phases are computed in advance
based on the expected traffic volume. For TL we use a static
traffic-light mechanism. There also are dynamic mechanisms

which adapt the duration of the green light phases according
to the current traffic volume. Because the expected volume
does not change within a run of our evaluation, a static
mechanism is adequate. Note that our evaluation in turn
will cover different volumes of traffic.

The duration of a traffic-light phase depends on the ex-
pected traffic volume. To determine the adequate duration
of such a phase, we use the AKF Schema [6]. It considers the
traffic flows from all incoming to outgoing lanes. The AKF
Schema considers traffic flows which are in conflict with each
other and therefore have to pass the intersection in sequence.
For example, the vehicles driving on the left incoming lane
turning left are in conflict with vehicles from the opposite
direction going straight and cannot pass the intersection at
the same time. But if vehicles can go straight on several
lanes of a direction, the traffic lights of these lanes have to
be synchronized.

The so-called AKF Matrix is based on the conflicting traf-
fic flows. Each column contains the expected traffic volumes
of traffic flows which are in conflict. The values in every
column are added up, and the maximum column sum is de-
termined. For the intersection evaluated, the maximum col-
umn sum and, consequently, the traffic volume of the critical
traffic flows at a traffic density of 50 vehicles/hour on every
lane is 400. These values let us compute the time of circu-
lation and, consequently, the lengths of single phase dura-
tions. The time of circulation is the time between two green
phases of the same direction. It depends on the volumes
of the conflicting traffic flows, the saturation-traffic volume,
the minimum duration of a green light phase and the time
between the green light phases for two different directions,
called buffer time tz.

The buffer time combines intersection-crossing time tcr

(in seconds), intersection-clearance time tcl (in s) and
intersection-entering time te (in s): tz = tcr + tcl − te This
equation shows that tz is based on the crossing distance and
that it depends on the driving direction. To determine the
time of circulation of the traffic light the maximum value of
tz is chosen and decomposed into a yellow phase (typically
2-3 s), a yellow-red phase (typically 2-3 s) and a red phase
for all directions (typically 1-2 s).

Using the value of tz just determined, the time of circu-
lation tu is computed according to the following equation
given in [6]:

tu =

∑
i tz +

∑
i tmin

1− Qmax
Qs

where i is the number of conflicting traffic flows, tz is the
time between the end of the green phase for one direction
and the begin of the green phase for another direction, tmin

is the minimum duration of a green phase (10 s per conflict-
ing direction, according to [6]), Qmax is the traffic volume
of the conflicting traffic flows, which pass the intersection
(in vehicles/hour), and Qs is the saturation-traffic volume,
which describes the expected number of vehicles being able
to pass the intersection in all directions in one hour of green
phases (2000 vehicles/hour).

Using the prior values the circulation time for vehicles
going straight is

tz = 3 s+ 5.6 s− 2.25 s = 6.35 s ≈ 7 s

tu =
4 · 7 s+ 4 · 10 s

1− 400
2000

= 85 s
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This results in a green phase duration of 10 s +
(85 s−4·7 s−4·10 s)

4
= 14 s and a red phase duration of 85 s −

14 s = 71 s.

5.2 Time-Slot Request
[5] has proposed a mechanism which uses agent technol-

ogy for intersection control. [16] describes an extension of it
dubbed Time-Slot Request (TSR). With TSR, the intersec-
tion agent allocates the next free time slot to the first driver-
assistance agent which requests such a slot. In other words,
TSR uses a first-in first-out scheme to allocate slots. [5]
has shown that a system which uses such a scheme can out-
perform traffic lights regarding average waiting time. Note
that waiting time is different from standstill time because we
define waiting time as the difference of travel time and min-
imal travel time [17]. [5] does not evaluate environmental
measures. We will show that TSR reduces fuel consumption
compared to TL.

5.3 ITSA Valuation
The main idea of ITSA Valuation is to allocate the next

free time slot to the vehicle whose driver has the highest
valuation of reduced waiting time [16]. ITSA stands for
Initial Time-Slot Auction. It uses auctions to allocate the
next free slot to vehicles. With ITSA, a vehicle, once it has
received a slot, cannot trade it for another one.

ITSA Valuation executes two algorithms concurrently. Al-
gorithm 1 describes how driver-assistance agents contact the
intersection agent. Algorithm 2 shows how the intersection
agent chooses the driver-assistance agent to assign the next
slot.

Algorithm 1 (Contact Step).

1. Driver-assistance agents whose vehicles approach the
intersection request time slot from intersection agent

2. Intersection agent adds vehicle to virtual queue which
represents its incoming lane

3. Intersection agent confirms request but does not pro-
vide time slot immediately

The first vehicle in each queue which has not received a
time slot so far is called candidate. Candidates (from differ-
ent lanes) are the only vehicles which can receive the next
free time slot. The intersection agent executes allocations
rounds continuously, to allocate time slots to candidates (Al-
gorithm 2). In each allocation round, one candidate receives
a time slot.

Algorithm 2 (Allocation Round).

1. Intersection agent calls all vehicles currently queued
for bids

2. Vehicles reveal their valuation per second of reduced
waiting time, their current speed and distance to the
intersection

3. Intersection agent computes the queue with maximal
sum of valuations and assigns time slot to the candi-
date of the respective queue

4. Intersection agent removes candidate from the virtual
queue

While ITSA Valuation has been designed with the purpose
of reducing the average valuation-weighted waiting time [16]
we will show that it also curbs fuel consumption.

5.4 ITSA Fuel Consumption
The main idea of the novel environment-aware mecha-

nism ITSA Fuel Consumption is to consider the estimated
fuel consumption of each vehicle. To do so, the mechanism
chooses the vehicle whose intersection crossing results in the
minimum additional fuel consumption for all vehicles close
to the intersection. ITSA Fuel Consumption uses the same
protocol as ITSA Valuation. In contrast to ITSA Valuation,
vehicles do not have to report their valuation of reduced
waiting time. Instead, the intersection agent considers the
influence of the allocation of the next free time slot to each
candidate in each allocation round. I. e., the intersection
agent computes the increase of fuel consumption induced by
each allocation possible.

An allocation of a time slot typically delays other vehicles.
The delay dk

j is the time Vehicle j has to wait longer if the
intersection agent allocates the next free slot to Vehicle k.
Thus, the delay dk

j is the difference between the next free
slot of Vehicle j after an allocation to Vehicle k and the next
free slot of Vehicle j before the allocation.

Example 1. Let the next free time slots of Vehicles j and
k be tj = 20s and tk = 22s. Suppose that the intersection
agent allocates its next free time slot to Vehicle k. Further,
suppose that this changes the next free time slot of Vehicle j
to t∗j = 26s. Then, the delay is dk

j = t∗j−tj = 26s−20s = 6s.
Now suppose that Vehicle j and k can cross the intersec-

tion concurrently because the lanes used are non-conflicting,
an allocation to Vehicle k does not change the next free slot
of Vehicle j. Thus, the delay is dk

j = 0.

Note that vehicles waiting behind a candidate are not de-
layed if the intersection agent allocates the next free time
slot to ’their’ candidate.

A delay of a vehicle increases its fuel consumption. In
many cases it has to decelerate and accelerate. For each
candidate, the intersection agent computes and accumulates
the increase of fuel consumption of all other vehicles. To do
so, it uses the estimation model from Section 4.3.

Finally, the intersection agent compares the increase of
fuel consumption for all allocations possible and allocates
the next free time slot in the best way. Like with ITSA
Valuation, the vehicle waiting behind the former candidate
becomes a new candidate, and the intersection agent initi-
ates a new allocation round.

5.5 ITSA Delay
ITSA Fuel Consumption is rather complex because it

needs detailed information about each vehicle approaching.
Therefore, we propose ITSA Delay as a variant of ITSA Fuel
Consumption. ITSA Delay needs less information because
it does not compute the increase of total fuel consumption
but the increase of total waiting time. It computes the in-
crease of total waiting time for all allocations possible and
allocates the next free time slot in the best way.

6. EVALUATION
To evaluate all intersection-control mechanisms discussed,

we use a home-grown simulation framework. It allows the
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Figure 2: Average Waiting Time

Figure 3: Average Waiting Time (CAE only)

simulation of traffic at an intersection. In the simulation,
agent-based driver-assistance systems interact with agent-
based intersection-control units. The behavior of vehicles
and drivers is simulated.

6.1 Experimental Setup
For the evaluation we use a symmetric intersection consist-

ing of four directions. Each direction has two incoming and
two outgoing lanes. For each direction one incoming lane
(right) allows to turn right and to go straight, and the other
incoming lane (left) allows to turn left and to go straight.

To analyze the impact of traffic volume, every mechanism
is evaluated with traffic volumes between 25 vehicles/hour
and 275 vehicles/hour on every lane (in 25 vehicles/hour
steps) respectively between 200 vehicles/hour and
2200 vehicles/hour in total. We assume the traffic vol-
ume to be exponentially distributed with the desired traffic
volume as average. Each vehicle goes straight or turns right
respectively left with equal probability. The maximum
speed on the lanes is 50 km/h. The one on the intersection
is 45 km/h.

Our simulation is space-continuous and time-discrete. We
simulate 23 minutes in each simulation run. In the first

three minutes, vehicles fill the intersection, and we only con-
sider the vehicles of the last 20 minutes to avoid startup
effects. The simulation consists of several stochastic compo-
nents like interarrival times, valuations of reduced waiting
time, or route choice. We use a seed which configures the
stochastic components of a simulation run. To alleviate the
influence of this seed, we always execute five simulation runs
using the same five seeds (which of course are different) for
each setting. While different seeds lead to a different simu-
lation behavior, the average values remain the same for each
setting. This allows us a pairwise comparison of simulation
runs of different settings. We always compare simulations
runs with the same seed. I. e., we compare only simulation
runs with the same stochastic behavior.

6.2 Experiments
We use the same setting to evaluate the average wait-

ing time and the average fuel consumption of the follow-
ing intersection-control mechanisms. Next to Traffic Light
we evaluate TSR, ITSA Valuation, ITSA Fuel Consumption
and ITSA Delay for the two degrees of concurrency lane
shared (LS) and conflict-area exclusive (CAE).
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Figure 4: Average Fuel Consumption

Figure 5: Average Fuel Consumption (CAE only)

6.2.1 Waiting Time
Figure 2 describes the average waiting time of all nine

evaluated mechanisms: Traffic Light, TSR (LS), ITSA Valu-
ation (LS), ITSA Delay (LS), ITSA Fuel Consumption (LS),
TSR (CAE), ITSA Valuation (CAE), ITSA Delay (CAE),
ITSA Fuel Consumption (CAE). The results of the mech-
anisms which use CAE are very similar. Thus, Figure 2
does not allow to distinguish the results of the mechanisms
for CAE. Therefore, Figure 3 describes the average wait-
ing time of these mechanisms separately. The results show
that all mechanisms outperform Traffic Light for all traffic
volumes evaluated, except for TSR (LS) and ITSA Valua-
tion (LS) regarding average waiting time. TSR (LS) reduces
the average waiting time up to 1800 vehicles/hour and ITSA
Valuation (LS) up to 2000 vehicles/hour significantly.

As an example we list some average values and the 95%
confidence intervals for 2000 vehicles/hour in detail: The av-
erage waiting time is 50.36 s [48.03, 52.69] for Traffic Light,
4.04 s [3.37, 4.70] for ITSA Valuation (CAE), 3.52 s [2.83,
4.21] for TSR (CAE), 2.69 s [2.28, 3.09] for ITSA Fuel Con-
sumption (CAE), and 2.49 s [2.09, 2.90] for ITSA Delay
(CAE). I. e., ITSA Delay (CAE) is slightly but not sig-

nificantly better than ITSA Fuel Consumption (CAE). For
2000 vehicles/hour the relative reduction of the average wait-
ing time compared to Traffic Light is 95% for ITSA Fuel
Consumption (CAE) and ITSA Delay (CAE).

6.2.2 Fuel Consumption
Figure 4 describes the average fuel consumption of all

mechanisms evaluated. It does not allow to distinguish the
results of the mechanisms for CAE. Therefore, Figure 5 de-
scribes the average fuel consumption of these mechanisms
separately. All mechanisms outperform TL significantly re-
garding fuel consumption.

For 2000 vehicles/hour, the average fuel consumption is
9.98 l/100 km [9.75, 10.20] for Traffic Light, 7.56 l/100 km
[7.42, 7.69] for ITSA Valuation (CAE), 7.39 l/100 km [7.28,
7.51] ITSA Delay (CAE), 7.36 l/100 km [7.21, 7.50] for ITSA
Fuel Consumption (CAE), and 7.22 l/100 km [7.13, 7.32]
for TSR (CAE). I. e., TSR (CAE) is slightly better than
ITSA Fuel Consumption (CAE) and ITSA Fuel Consump-
tion (CAE) is slightly better than ITSA Delay (CAE).
But in both cases the difference is not significant. For
2000 vehicles/hour the relative reduction of the average fuel
consumption compared to Traffic Light is 26% for ITSA De-
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lay (CAE), 26% for ITSA Fuel Consumption (CAE), and
28% for TSR (CAE).

6.2.3 Conclusion
Taking the results both for average waiting time and fuel

consumption into account we come to the following conclu-
sions: TL performs worse than any other evaluated mecha-
nism in almost any case. The reduction of waiting time and
fuel consumption is considerable, e. g., for 2000 vehicles/hour
up to 95% respectively up to 28%.

As expected, all mechanisms for conflict-area exclusive
outperform the ones for lane-shared significantly. ITSA De-
lay and ITSA Fuel Consumption lead to very similar results.
ITSA Delay is slightly better regarding average waiting time,
ITSA Fuel Consumption is slightly better regarding average
fuel consumption. ITSA Valuation and TSR perform always
worse than ITSA Delay and ITSA Fuel Consumption except
for average fuel consumption using TSR (CAE). In this case
TSR (CAE) leads to the best results.

Given our evaluation, we recommend to use ITSA Delay
if one is interested in average waiting time and fuel con-
sumption. ITSA Delay is always best regarding the average
waiting time and nearly as good as ITSA Fuel Consump-
tion. Further, ITSA Delay needs no detailed information
about the actual vehicle type and can be computed more
easily than ITSA Fuel Consumption.

7. SUMMARY
Intersections are a main bottleneck in vehicle traffic. Traf-

fic causes pollution and fuel consumption. Existing mecha-
nisms for intersection control optimize throughput and wait-
ing time but not fuel consumption. To deal with this issue,
we have designed a novel, agent-based mechanism for inter-
section control. We compare it both to traffic lights and to
other mechanisms. For the comparison, we deploy a sophis-
ticated estimation model for fuel consumption.

We show that agent-based intersection-control mecha-
nisms outperform traffic lights both regarding waiting time
and fuel consumption. This even holds for mechanisms
which have not been designed with the explicit intention of
reducing fuel consumption. Compared to traffic lights, ITSA
Fuel Consumption (CAE) reduces fuel consumption by be-
tween 22% and 26%. ITSA Delay (CAE) reduces waiting
time by between 94% and 98%. This is a substantial reduc-
tion.

Our mechanisms can be adapted to other objectives.
Given appropriate estimation models, we can readily come
up with mechanisms which aim to reduce other environmen-
tal target variables, e. g., CO2 emissions or vehicle noise.
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ABSTRACT
Intelligent electricity grids, or ‘Smart Grids’, are being intro-
duced at a rapid pace. Smart grids allow the management
of new distributed power generators such as solar panels
and wind turbines, and innovative power consumers such as
plug-in hybrid vehicles. One challenge in Smart Grids is to
fulfill consumer demands while avoiding infrastructure over-
loads. Another challenge is to reduce imbalance costs: after
ahead scheduling of production and consumption (the so-
called ‘load schedule’), unpredictable changes in production
and consumption yield a cost for repairing this balance.

To cope with these risks and costs, we propose a decentral-
ized, multi-agent system solution for coordinated charging
of PHEVs in a Smart Grid. Essentially, the MAS utilizes
an “intention graph” for expressing the flexibility of a fleet
of PHEVs. Based on this flexibility, charging of PHEVs can
be rescheduled in real-time to reduce imbalances.

We discuss and evaluate two scheduling strategies for re-
ducing imbalance costs: reactive scheduling and proactive
scheduling. Simulations show that reactive scheduling is
able to reduce imbalance costs by 14%, while proactive schedul-
ing yields the highest imbalance cost reduction of 44%.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial
Intelligence - Coherence and coordination, Multiagent sys-
tems; J.7 [Computer Applications ]: Industrial control

General Terms
Algorithms, Economics, Experimentation

Keywords
Multi-agent systems, plug-in hybrid vehicles, Smart Grids.

1. INTRODUCTION
In recent years, there is a global evolution in the way

energy is generated and consumed due to climate change,
energy independence and the impending decay of fossil fu-
els. In Europe, these changes are reflected in the 20-20-20
targets: 20% carbon reduction, 20% rise in energy efficiency
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balance reduction in a Smart Grid, Stijn Vandael, Klaas De Craemer, Nelis
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and 20% production from renewables [1] by 2020. At the
present, two major evolutions are already visible.

The first evolution is the explosive growth in the amount
of small distributed generators (DG) connected to the local
distribution grid (e.g solar panels). By nature, this type of
renewable, dispersed electricity generation is unpredictable
and uncontrollable.

The second evolution is the increasing amount of PHEVs,
hybrid vehicles with a battery that can be charged through a
regular power socket. Recent research predicts that in 2030,
PHEVs will comprise 5% of the Belgian electricity consump-
tion [2]. Because of this large impact of PHEVs on the elec-
tricity infrastructure, controlled charging of PHEVs is an
important research topic. Apart from a challenge, PHEVs
offer a tremendous opportunity for managing fluctuations
caused by distributed generation.

Intelligent electricity grids or Smart Grids enable the man-
agement of such advanced production and consumption in
the electricity grid. In a Smart Grid, it becomes possible to
intelligently coordinate consumers to maintain the net bal-
ance and ensure an efficient, reliable and environmentally
friendly production, transmission and distribution of elec-
tricity.

Multi-agent systems have been identified by the IEEE
Power Engineering Society’s Multi-Agent Systems (MAS)
Working Group as a promising distributed control approach
in power engineering [3, 4]. The working group identified
the following key benefits of applying MAS in power engi-
neering:
- Flexibility : the ability to respond to dynamic situations.
- Extensibility : the ability to easily add new functionality
and augmenting or upgrading existing functionality.
- Fault tolerance: the ability of the system to meet its design
objectives in case of failure.

In this paper, a decentralized solution based on MAS is
proposed, discussed and evaluated for coordination of the
charging of PHEVs to reduce imbalances caused by DG.
The paper contributes to this research in three ways:

1. Assessment of the increasing imbalance costs due to
renewables and the potential of PHEVs as a means to
reduce these costs. (section 2)

2. Description of a multi-agent solution for large-scale
coordination of PHEV charging and the explanation
of different scheduling strategies to reduce imbalance
costs. (section 3)

3. Evaluation through simulation of the multi-agent so-
lution in scenarios with PHEVs and solar panels. (sec-
tion 4)
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2. BALANCE MANAGEMENT IN THE
ELECTRICAL GRID

The unpredictability of renewable DG incurs a risk for
traders on the electricity market, called the“imbalance cost”.
Especially day-ahead markets, where a load schedule has to
be predicted 12-36 hours in advance, pose a serious prob-
lem. An example are wind farms: even with state of the
art forecasting methods, the short-term electricity genera-
tion of wind farms cannot be predicted with a high degree
of accuracy [5].

At the same time, recent research suggests that PHEVs
will comprise 5% of the national electricity consumption [2].
Because cars are parked most of the day, opportunities arise
for shifting the charging of PHEVs in time. This way the
imbalance caused by unpredictable generation can be offset,
while ensuring that PHEVs are charged in time, i.e. before
their intended departure.

The management of the balance between production and
consumption in electrical grids entails a complex engineering
domain. In this section, we aim to identify the key elements
and procedures in this domain that are required to clearly
define the problem and motivate the solution.

2.1 TSO responsibilities
The electrical grid consists of a transmission grid and a

distribution grid. The transmission grid transfers electricity
from large power plants to the distribution grid, while the
distribution grid distributes electricity to individual house-
holds, factories and street lighting. In each country, the
transmission grid is maintained by a transmission system
operator (TSO) and the distribution grid by one or more
distribution system operators (DSO). While the responsi-
bilities of the DSO are mostly infrastructural and adminis-
trative, one of the main tasks of the TSO is to constantly
monitor and maintain the balance between supply and de-
mand within its control area.

To balance between supply and demand, the TSO needs
predictions of the energy that will be injected and withdrawn
at each access points to its transmission grid. Each access
point has a designated BRP (Balancing Responsible Party).
This BRP provides the TSO with a predicted load schedule
of the consumers and/or producers behind its respective ac-
cess point. Based on these load schedules, the TSO manages
electricity flows between the access points and the overall
balance between production and consumption in its control
area.

2.2 BRP responsibilities
The load schedule of a BRP is organized in fixed set-

tlement periods. The length of a settlement period varies
per country, but is typically 15 minutes (e.g Belgium and
the Netherlands), 30 minutes (e.g England and Wales) or 1
hour (e.g Sweden and Norway). Load schedules submitted
to the TSO must be balanced. This means that if a BRP
has declared a scheduled supply to another BRP, the reverse
transfer of energy must be found in the schedule of this other
BRP [6] or in the import/export schedule to another control
area.

BRPs need to provide their load schedule before a fixed
deadline, called the“gate closure”. Most European countries
utilize a day-ahead gate closure. For example, in Italy, the
gate closure is at 16h00 day-ahead for all settlement periods
of the next day (from 00h00 until 24h00). After gate closure,

the BRP’s load schedule cannot be changed anymore.1

2.3 Imbalance cost
During a settlement period, the TSO continually balances

supply and demand, taking into account finite network ca-
pacity. If there is insufficient supply to meet demand, the
TSO dispatches extra supply reserves and vice versa. The
costs (demand reserve) or revenues (supply reserve) for dis-
patching these reserves are settled with the BRPs causing
the imbalance. An BRP with negative imbalance (more con-
sumption or less production than planned) pays an imbal-
ance tariff to the TSO, while an BRP with a positive imbal-
ance (less consumption or more production than planned)
gets paid an imbalance tariff.2

From an BRP’s point of view, it is more profitable to sell
its production and buy its consumption on the day-ahead
market, because the imbalance tariffs for extra consumption
are typically high and for extra production low. These lost
revenues for an BRP are called the “imbalance price”. This
imbalance price is the difference between the before price
(day-ahead tariff) and the after price (imbalance tariff). In
economics, this is called an opportunity cost. The total im-
balance cost in each settlement period is calculated as the
difference between the metered energy volume with the con-
tracted energy volume, multiplied by the imbalance price:

Costimbalance = (Emeasured − Econtracted) · Priceimbalance

Obviously, it is a challenge for BRPs to accurately pre-
dict their load schedules. A BRP responsible for an access
point to a local distribution grid consisting of households,
typically predicts its load schedule based on synthetic load
profiles. For example, in Belgium, the local electricity regu-
lator provides these profiles for every day of the year before
the beginning of the year. Examples of a few different load
profiles are depicted in figure 1.
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Figure 1: SLPs (synthetic load profiles)

1The time interval between the gate closure and the actual
start of the corresponding period of operation varies between
countries. The gate closure can be within the same day
(intraday) or in the previous day (day-ahead) of the period
of operation. For example, gate closure in Denmark is half
an hour ahead (intraday), in the Netherlands one hour ahead
(intraday) and in Italy at 16h00 day-ahead [7]. For intraday,
the period of operation is one settlement period and for day-
ahead, the period of operation is one day (from 00h00 until
24h00).
2In extreme cases, for example, when there is a huge overpro-
duction from renewables, an BRP gets paid for consuming
electricity.
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3. A MULTI-AGENT SYSTEM SOLUTION
FOR IMBALANCE REDUCTION

Supported by the conclusions of the IEEE Power En-
gineering Society’s Multi-Agent Systems (MAS) Working
Group [3, 4], as well as by our own experience [8], we target
a decentralized, multi-agent system solution for the coordi-
nated charging of PHEVs to reduce imbalances. This so-
lution focuses on the actors and interactions aimed at mit-
igating the imbalance after gate closure. We assume that
before gate closure, the load schedule with predictions of
households and distributed generators was assembled by the
BRP.

The schematic overview of the multi-agent system is de-
picted in figure 2. A PHEV agent represents the software
managing the charging of a PHEV, a transformer agent con-
trols a low-voltage transformer and the BRP agent man-
ages the access point to the transmission grid. Each type of
agents has the following primary goals:

• PHEV agent: charge the battery of its PHEV in time.

• Transformer agent: prevent overloading of its trans-
former.

• BRP agent: minimize imbalance costs.

These goals are not independent from each other. For
example, a PHEV with an empty battery cannot be charged
in an hour, because this would cause overloading the low
voltage transformer and most likely cause imbalance; or a
BRP cannot reduce a negative imbalance when PHEVs are
about to leave and still need to be fully charged. The agents
need to coordinate with each other to meet the individual
goals of all agents.

3.1 Coordination mechanism
The agents are organized in a hierarchical structure (fig-

ure 3) and their basic coordination mechanism consist of
four steps:

1. The PHEV agents send their charge intentions to the
connecting transformer agents. Through aggregation
of these charge intentions at each transformer agent,
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Figure 2: Schematic overview of the MAS.

the BRP can assemble an intention graph of all PHEVs
in the distribution grid.

2. The BRP agent decides how much energy will be charged
in the next time step according to a suitable scheduling
strategy (see section 3.2, “scheduling strategies”).

3. The BRP agent informs the transformer agents about
the energy that will be charged in the next time step.
Accordingly, the transformer agents divide this energy
between their underlying PHEVs.

4. The PHEV agents start charging the accepted amount
of energy.

This coordination mechanism is executed at a frequency
dependent on the required adaptiveness of the considered
scenario. Initialization of the sequence is done by sending
a global synchronization signal from the BRP down to all
PHEVs.

The intention graph expresses the intentions of all PHEVs
and enables the BRP to estimate the total flexibility of its
PHEVs. In figure 4, the working of the intention graph is
depicted:

(A) In this figure, an intention graph is depicted for two
PHEVs at a given moment in time. The time-scale is
divided into time intervals of a quarter hour, while the
Y-axis indicates the amount of energy. As indicated in
the figure, PHEV A will leave after the second quarter,
while PHEV B will leave after the third quarter. Each
of the PHEVs still needs 1 kWh of charging energy
before they leave.

(B) In order to reduce imbalances (section 3.2), the BRP
decides to fully charge PHEV A and half of PHEV B
in the first quarter. Accordingly, PHEV A will charge
for 1 kWh in the first quarter (= 4 kW), while PHEV
B will charge for 0.5 kWh in the first quarter (= 2
kW).

(C) After the first quarter, PHEV A is fully charged and
PHEV B still needs to be charged for 0.5 kWh.
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Figure 3: The MAS coordination mechanism.
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Figure 4: Representation of PHEV intentions.

3.2 Scheduling strategies
The BRP uses a scheduling strategy to achieve its goals.

These goals have a strict order, which means that one goal
cannot be achieved without achieving the previous goal. In
order of importance:

1. Transformer and cable limits
To avoid infrastructure damage, the transformer and
cables have a power limit that cannot be overstepped.
For that purpose, the agents send their current and
maximum load towards the BRP agent (step 1 in the
coordination mechanism). In each strategy, this con-
straint is integrated. In the rest of the explanation, this
constraint is assumed, without repeated mentioning.

2. Charging of PHEVs
To ensure that PHEVs’ owners can fully benefit from
their electric car, PHEVs are charged before they de-
part. The intention graph incorporates this goal.

3. Minimal imbalance costs
When infrastructure limits are respected and PHEVs
can be fully charged, load can be shifted in order to
minimize imbalance costs in the BRPs perimeter. This
will be the focus of the proposed strategies.

All scheduling strategies presented in this paper are ex-
plained with the small example depicted in figure 5. In this
example, the BRP agent has to schedule the charging of 10
kWh in five settlement periods of 15 minutes. For this pur-
pose, the BRP agent uses a day-ahead load schedule and a
real-time schedule of the five settlement periods.

The day-ahead schedule consist of the sum of the pre-
dictions of non-PHEV load (households and DG) and PHEV
load. This schedule was submitted to the TSO before gate
closure (day-ahead) and doesn’t change during the operation
period.
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Figure 5: Scheduling example.

The real-time schedule only consists of the predictions
of the non-PHEV load (households and DG). PHEV load is
not included in this schedule, because the real-time schedule
is used to online schedule the PHEV load on top.

The BRP schedules the charging of PHEVs onto the real-
time schedule to approach the day-ahead schedule as closely
as possible to reduce imbalance costs. While we assume that
the real-time schedule doesn’t change in this small example,
this schedule can be updated with new information about
non-PHEV loads that become available. For example, new
weather information or load measurement data.

3.2.1 Reactive strategy
The reactive scheduling strategy is a strategy where im-

balances are postponed as long as possible. Figure 6 shows
the result of this strategy on the considered example. The
amount of energy (10 kWh) is scheduled in order to meet
the balancing requirements in the first three quarters. How-
ever, the imbalance is expected to increase from the fourth
quarter due to a PHEV charging shortage. In case of a sur-
plus of PHEV charging, reservations are made at the end of
the scheduling to postpone any imbalances. Although the
portfolio balancing strategy is reactive, PHEVs are ensured
to fully charge their battery before departure, given that the
transformer load constraints are respected. The PHEV in-
tentions are always reserved in ascending order of departure
time to ensure maximum utilization of flexibility.

Advantage: The portfolio is balanced as long as possible.

Disadvantage: The risk of a large future imbalance is
great. When high imbalance costs coincide with this large
imbalance, total imbalance costs will be high.
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Algorithm 1: Reactive scheduling

PHEVEnergyLeft = sum(intentions)
for T: 1 to endTime do

while prediction(T) < dayahead(T)
&& energyLeft > 0 do

PHEVEnergyLeft = reserve(T, PHEVEnergyLeft)
end while

end for
for T in range(endTime, 1) do

PHEVEnergyLeft = reserve(T, PHEVEnergyLeft)
end for

3.2.2 Proactive strategy
The proactive strategy is a strategy where imbalances are

equally distributed among the schedule. Figure 7 shows
the result of this strategy on the considered example. The
amount of energy (10 kWh) is scheduled in order to mini-
mize the average distance between the prediction and load
schedule. Again, to ensure maximum flexibility in the fu-
ture, the PHEVs were reserved in the order of their depar-
ture time. Note that the imbalance is the same as in the
previous strategy, but the imbalance risk is divided over all
timesteps. For example, in figure 7, when a large amount
of PHEVs connects to the grid after quarter 3, it is possible
that consumption becomes too high. In that case, the reac-
tive strategy would be better.

Advantage: The risk for high imbalance costs is divided
over the schedule.

Disadvantage: This strategy assumes a good prediction
without constant changes.

Algorithm 2: Proactive scheduling

PHEVEnergyLeft = sum(intentions)
while PHEVEnergyLeft > 0 do
if dayahead - prediction > 0 do
T = timeOfLargestImbalance()

else
T = timeOfSmallestImbalance()

end if
PHEVEnergyLeft = reserve(T, PHEVEnergyLeft)

end while

4. SIMULATION EXPERIMENT:
BALANCING SOLAR POWER

4.1 Experiment description
In this experiment, the proposed multi-agent system and

its strategies are evaluated and compared for the reduction
of imbalances caused by solar panels. The considered sce-
nario is a future situation of a residential area with solar
panels and PHEVs.

The scenario contains 200 households with consumption
profiles obtained from the Belgian distribution grid provider
Infrax [9]. These profiles contain actual measured household
consumption on a 15 minute base.
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Figure 6: Reactive strategy.
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Figure 7: Proactive strategy.

From 200 households, 64 households have solar panels in-
stalled. Again, profiles were obtained from the Belgian dis-
tribution grid provider Infrax [9] from actual measured data.

For a true representation of the load caused by PHEVs, a
realistic model of PHEV usage is utilized [10]. This model
represents the state of a car (home, driving ...) on a per
minute base. Furthermore, the Chevrolet Volt is chosen,
which is expected to go in production at the end of 2010.
In our simulations, we suppose that 50% of the vehicles are
able to charge at a charging station during the day.

Day-ahead load schedule
The day-ahead load schedule consists of predictions for house-
holds, solar panels and PHEVs (figure 8). For household
predictions, synthetic load profiles were used from the Flem-
ish Regulation Entity for the Electricity and Gas market
(VREG) [11].

For the production from PV (photovoltaic) panels, the so-
lar output trend can be predicted, but not the short-term
variations (due to moving clouds, shadow casting etc.). Ac-
cordingly, predictions for PV panels were made by applying
a moving average filter (of 15 quarter hour samples) on the
actual data (figure 9).
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Figure 9: Power prediction of one PV panel

Although PHEVs will be coordinated, their expected load
also has to be included in the day-ahead prediction. 50% of
the vehicles are only able to charge at home, while 50%
of the vehicles also have access to a daytime charging sta-
tion. Therefore, half of the expected PHEV load (calcu-
lated by their battery content) is allocated during the night,
while 50% of the PHEV load is allocated during the business
hours. During the night, electricity on the Belpex day-ahead
market3 is generally cheaper, which amounts to cheaper
electricity for the BRP. During business hours, solar pro-
duction is highest, which makes charging PHEVs at those
moments essential for balancing. Charging PHEVs during
evening peak hours, when the household load is high, must
be avoided at all costs to prevent overloading the infras-
tructure and paying high prices on the Belpex day-ahead
market.

Imbalance cost
The imbalance cost is an opportunity cost, caused by buying
or selling energy at an imbalance price instead of placing
correct bids on the day-ahead market. The imbalance cost
is calculated by using the day-ahead price (provided per hour
by the Belgian day-ahead market Belpex) and the imbalance
prices (provided per quarter hour by the Belgian TSO Elia).

3http://www.belpex.be

4.2 Simulation results
For simulating the described scenario, we built an open-

source multi-agent simulator [12]. Simulations show that the
reactive strategy is able to lower imbalance costs with 14%,
while the proactive strategy is able to lower imbalance costs
by 44%. The load imbalances for a typical simulation run
using the active and proactive strategy show the reason for
this difference (figure 10).

Between 10h00 and 13h30, a positive imbalance is visi-
ble for both strategies. This positive imbalance indicates a
lower off-take than expected. The reason is that the solar
panels are producing more than expected during these peri-
ods (figure 9), while the limited amount of PHEVs (figure 8)
is unable to charge more to compensate for the overproduc-
tion.

The reactive strategy maintains the instantaneous bal-
ance, while ignoring possible balancing problems in the fu-
ture. Accordingly, the active strategy immediately starts
fully charging its PHEVs at 10h00 to compensate for the
overproduction. The disadvantage is that the cars are fully
charged by 12h30 and a high imbalance from 12h30 until
13h30 is unavoidable. During this high imbalance, the TSO
was dispatching extra demand reserves, which leads to a high
imbalance price for production. In contrary, the proactive
strategy was able to avoid these high costs by spreading the
risk over the total imbalance period.
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Figure 10: Load imbalance

5. RELATED WORK
In several research studies, multi-agent systems have been

identified as the key technology in the future Smart Grid.
Examples of MAS applications in Smart Grids range from
island-mode control [13], micro-storage management [14] and
micro grids [15] to market-based control [16, 17].

In [16], a novel market-based mechanism and trading strate-
gies are proposed for a Smart Grid. In this mechanism, un-
foreseen demand or increased supply (not traded on the day-
ahead market) are coped with by real-time trading between
the actors (presented as agents) in the electricity market.
The market mechanism proposed in this paper complements
with our balancing mechanism in the sense that our balanc-
ing mechanism balances within the jurisdiction of one trader,
while the mechanism of Vytelingum et. al balances between
different traders through a market. Furthermore, because
different traders are located on the transmission grid, the
market mechanism includes congestion management by pric-
ing the flow of electricity.

In [18], multi-agent coalitions for electrical vehicles are de-
scribed for participation of these vehicles in the power reg-
ulation market. In the regulation market, electrical vehicles
are used to provide both regulation-up power and regulation-
down power. In this paper, regulation-up power was also
provided by V2G (vehicle-to-grid), where vehicles are dis-
charged onto the grid. Kamboj et. al modelled the coalition
formation problem and presented various coalition forma-
tion strategies. The point of view of this paper is from the
TSO’s perspective. While vehicles in our paper are used for
mitigating balancing cost of an BRP, Kamboj. et al actually
deploys vehicles as reserve capacities for the TSO.

The PowerMatcher [19] is a market-based control concept
for supply and demand matching in electricity networks.
The basic MAS architecture of the PowerMatcher is a tree-
structure similar to the one proposed in this paper. In the
PowerMatcher, agents buy (consumers) and sell (producers)
electricity on an electronic market by using a ‘bid function’.
This bid function expresses to what degree an agent is will-
ing to pay (consumer) or be paid (producer) for a certain

amount of electricity. By matching all these bid functions,
the equilibrium price is determined to match demand and
supply in a PowerMatcher cluster.

One of the field tests where the PowerMatcher was eval-
uated, is in the reduction of imbalance caused by trading of
wind power on the APX (Amsterdam Power Exchange), by
expanding an electricity trader’s wind portfolio with flexible
sources of demand and supply [20, 21]. For this purpose,
a programme agent was included in the multi-agent system
to push the market outcome to the programme value (the
day-ahead load schedule). While our proposed MAS and the
PowerMatcher are both used for reducing imbalance costs,
the approaches are fundamentally different. While the Pow-
erMatcher balances according to the degree an agent is will-
ing to pay, our MAS balances according to the charging in-
tentions of PHEVs. The contribution of the PowerMatcher
is that a price component is explicitly integrated to incen-
tivize consumers and producers, while our contribution is
that PHEVs are assured to be charged before a certain time.
Furthermore, while the PowerMatcher only represents short-
term flexibility (expressed in Power), our mechanism is able
to express long-term flexibility (expressed in Energy).

6. CONCLUSION AND FUTURE WORK
In the future, the coordinated charging of PHEVs will of-

fer opportunities to mitigate imbalance costs. Due to the
large scale and dynamic nature of the coordination prob-
lem, multi-agent systems are a promising technology in this
area. The multi-agent system presented in this article uses
an extendable, flexible and scalable technique for expressing
PHEV intentions and controlling their charging behavior.
Two scheduling strategies were proposed: reactive schedul-
ing and proactive scheduling.

The presented simulation case shows that the MAS is ca-
pable of coordinating PHEVs to cope with unpredictable
solar generation. Imbalance costs were decreased with 14-
44%. Simulations showed that in most cases the reactive
strategy was outperformed by the proactive strategy due to
the great risks of a concentrated imbalance.
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Future work will include the following aspects:

SCENARIOS. To more thoroughly evaluate solutions for
balancing with PHEVs, more scenarios need to be tested.
An important example is the integration of unpredictable
wind power generation. Furthermore, the scenario consid-
ered in this paper does not necessarily hold for each region.
For example, city regions will have different characteristics
compared to rural regions.

SCALABILITY. The local communication and simple ag-
gregation of intention graphs in the proposed MAS suggest
a good scalability in terms of communication and execu-
tion time. However, this quality should be evaluated explic-
itly. In previous work [8], the demand-side management of
PHEVs was evaluated against a reference solution based on
quadratic programming. The same comparison techniques
will be used for evaluation of the MAS in this article.
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ABSTRACT
Plug-in hybrid electric vehicles are expected to place a consid-
erable strain on local electricity distribution networks, requiring
charging to be coordinated in order to accommodate capacity con-
straints. We design a novel online auction protocol for this prob-
lem, wherein vehicle owners use agents to bid for power and also
state time windows in which a vehicle is available for charging.
This is a multi-dimensional mechanism design domain, with own-
ers having non-increasing marginal valuations for each subsequent
unit of electricity. In our design, we couple a greedy allocation al-
gorithm with the occasional “burning” of allocated power, leaving
it unallocated, in order to adjust an allocation and achieve mono-
tonicity and thus truthfulness. We consider two variations: burning
at each time step or on-departure. Both mechanisms are evaluated
in depth, using data from a real-world trial of electric vehicles in
the UK to simulate system dynamics and valuations. The mecha-
nisms provide higher allocative efficiency than a fixed price system,
are almost competitive with a standard scheduling heuristic which
assumes non-strategic agents, and can sustain a substantially larger
number of vehicles at the same per-owner fuel cost saving than a
simple random scheme.

Categories and Subject Descriptors
I.2.11 [AI ]: Distributed AI - multiagent systems

General Terms
Algorithms, Design, Economics

Keywords
electric vehicle, mechanism design, pricing

1. INTRODUCTION
Promoting the use of electric vehicles (EVs) is a key element in
many countries’ initiatives to transition to a low carbon economy
[4]. Recent years have seen rapid innovation within the automo-
tive industry [10], with designs such as plug-in hybrid vehicles
(PHEVs, which have both an electric motor and an internal com-
bustion engine) and range-extended electric vehicles (which have
an electric motor and an on-board generator driven by an internal
combustion engine) promising to overcome consumers’range anx-
iety1 and thereby increasing mainstream EV use (the Toyota ‘plug-

1Fear that a car will run out of electricity in the middle of nowhere.

Cite as: Online Mechanism Design for Electric Vehicle Charging, E.H.
Gerding, V. Robu, S. Stein, D.C. Parkes, A. Rogers and N.R. Jennings,
Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2011), Yolum, Tumer, Stone and Sonenberg (eds.), May,
2–6, 2011, Taipei, Taiwan, pp. 811-818.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

in’ Prius and the Chevrolet Volt are commercial examples of both,
which will be on the road in 2011). However, there are signifi-
cant concerns within the electricity distribution industries regard-
ing the widespread use of such vehicles, since the high charging
rates that these vehicles require (up to three times the maximum
current demand of a typical home) could overload local electricity
distribution networks at peak times [5]. Indeed, street-level trans-
formers servicing between 10-200 homes may become significant
bottlenecks in the widespread adoption of EVs [11].

To address these concerns, electricity distribution companies that
are already seeing significant EV use (such as the Pacific Gas and
Electric Company in California) have introduced time-of-use pric-
ing plans for electric vehicle charging that attempt to dissuade own-
ers from charging their vehicles at peak times, when the local elec-
tricity distribution network is already close to capacity2. While
such approaches are easily understood by customers, they fail to
fully account for the constraints on the local distribution networks,
and they are necessarily static since they require that vehicle owners
individually respond to this price signal and adapt their behaviour
(i.e., manually changing the time at which they charge their vehi-
cle). Looking further ahead, researchers have also begun to investi-
gate the automatic scheduling of EV charging. Typically, this work
allows individual vehicle owners to indicate the times at which the
car will be available for charging, allowing automatic scheduling
while satisfying the constraints of the distribution network [15, 2].
However, since these approaches separate the scheduling of the
charging from the price paid for the electricity (typically assuming
a fixed per unit price plan), they are unable to preclude the incentive
to misreport (e.g., an owner may indicate an earlier departure time
or further travel distances in order to receive preferential charging).

To address the above shortcomings, we turn to the field ofonline
mechanism design[12]. Specifically, we focus on mechanisms that
aremodel-free(which make no assumptions about future demand
and supply of electricity), and that allocate resources as they be-
come available (electricity isperishablesince installing alternative
storage capacity can be very costly). Now, existing mechanisms of
this kind assume that the preferences of the agents (representing the
vehicle owners) can be described by a single parameter, so-called
single-valueddomains. However, this assumption is not appropri-
ate for our problem, where agents have multi-unit demand with
marginal non-increasing valuations for incremental kilowatt hours
(kWh) of electricity.3 To this end, we extend the state of the art in

2See for examplewww.pge.com/about/environment/
pge/electricvehicles/fuelrates/.
3Marginal valuations are non-increasing in our domain because
distance and energy usage are uncertain, and therefore the first few
units of electricity are more likely to be used, and (in the case of
plug-in hybrid electric vehicles) any shortfall can be made up by
using the vehicle’s internal combustion engine.
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dynamic mechanism design as follows:

• We develop a formal framework and solution for the EV
charging problem, and show that it can be naturally modeled
as an online mechanism design problem where agents have
multi-unit demand with non-increasing marginal valuations.

• We develop the first model-free online mechanism for per-
ishable goods, where agents have multi-unit demand with
decreasing marginal valuations. To ensure truthfulness, we
show that this mechanism occasionally requires units to re-
main unallocated (we say that these units are ‘burned’), even
if there is demand for these units. This burning can be done
in two ways: at the time of allocation, or on departure of the
agent. The latter results in higher allocative efficiency and
allocations are easier to compute, but occasionally requires
the battery to be discharged which may not always be feasi-
ble in practice. Both variants are (weakly)dominant-strategy
incentive compatible(DSIC), which means that no agent has
an incentive to misreport their demand vector and the vehicle
availability, regardless of the others’ reports.

• We evaluate our mechanism through numerical simulation of
electric vehicle charging using vehicle use data taken from a
recent trial of EVs in the UK. In doing so, we show how the
agent valuations can be derived from real monetary costs to
the vehicle owners, by considering factors such as fuel prices,
the distance that the owner expects to travel, and the energy
efficiency of the vehicle. Experiments conducted in this re-
alistic setting show that the mechanism with on-departure
burning is highly scalable (it can handle hundreds of agents),
and both variants outperform any fixed price mechanism for
this problem in terms of allocative efficiency, while perform-
ing only slightly worse than a well known scheduling heuris-
tic, which assumes non-strategic agents.

Throughout this paper, we focus on measuring allocative efficiency
rather than seller profit, since our main design goal is to assure
that the capacity of the distribution network is not exceeded, and
that agents that need electricity most are allocated, rather than on
maximizing profits.

2. RELATED WORK
Online mechanism design is an important topic in the multi-agent
and economics literature and there are several lines of research in
this field. One of these aims to develop online variants of Vickrey-
Clarke-Groves (VCG) mechanisms [13, 7]. While these frame-
works are quite general, their focus is on (a slight strengthening
of) Bayesian-Nash incentive compatibility, whereas in this paper
we focus on the stronger concept of DSIC. Moreover, these works
rely on a model of future availability, as well as future supply (e.g.,
Parkes and Singh [13] use an MDP-type framework for predicting
future arrivals), while the mechanism proposed here is model-free.
Such models require fewer assumptions, and make computing allo-
cations more tractable than VCG-like approaches.

Model-free settings are considered by both Hajiaghayi et al. [8]
and Porter [14], who study the problem of online scheduling of
a single, re-usable resource over a finite time period. They char-
acterise truthful allocation rules for this setting and derive lower
bound competitive ratios. A limitation of this work [12, 8, 14] is
that they consider single-valued domains and, as we show, these ex-
isting approaches are no longer incentive compatible for our setting
where agents’ preferences are described by a vector of values.

Another related direction of work concerns designing truthful
multi-unit demand mechanisms for static settings. A seminal result
in this area is the sufficient characterisation of DSIC in terms of

weak monotonicity (WMON) [1]. Although this work is relevant
to our model (we briefly discuss the relationship between our mech-
anism and WMON in Section 4.3), it does not propose any specific
mechanism, and, more importantly, existing results do not imme-
diately apply to online domains where agents arrive over time and
report their arrival and departure times, as well as their demand.

A different approach for dynamic problems is proposed by Juda
and Parkes [9]. They consider a mechanism in which agents are al-
located options (a right to buy) for the goods, instead of the goods
themselves, and agents can choose whether or not to exercise the
options when they exit the market. The concept of options would
need to be modified to our setting with perishable goods, with
power allocated and then burned so that the final allocation reflects
only those options that would be allocated. It is not clear how our
online burning mechanism maps to their method.

In addition to theoretical results, several applications have been
suggested for online mechanisms, including: the allocation of Wi-
Fi bandwidth at Starbucks [6], scheduling of jobs on a server [14]
and the reservation of display space in online advertising [3]. How-
ever, this is the first work that proposes an online mechanism for
electric vehicle charging, and we show how our theoretical frame-
work naturally maps into this domain.

3. EV CHARGING MODEL
In this section we present a model for our problem, formally defin-
ing it as an online allocation problem.

(Supply) We consider a model with discrete and possibly infinite
time steps (e.g., hourly slots)t ∈ T . At each time step, a number of
units of electricity are available for vehicle charging as described
by thesupply functionS : T → N+

0 , whereS(t) describes the
number of units available at timet. Supply can vary over time
due to changes in electricity demand for purposes other than vehi-
cle charging, as well as changeable supply from renewable energy
sources, such as wind and solar.

Importantly, we assume that all vehicle batteries are charged at
the same rate.4 Thus, a unit of electricity corresponds to the total
energy consumed for charging a single vehicle in a single time step.
Note that, while there are multiple units of supply at each time
step (and agents have demand for multiple units), each agent can
be allocatedat mosta single unit per time step. These units are
allocated using a periodic multi-unitauction, one per time step.
Units of electricity areperishable, meaning that any unallocated
units at each time step will be lost.

(Agents and Preferences)Each vehicle owner is represented by
an agent. LetI = {1, . . . , n} denote the set of all agents. An agent
i’s (true) availability for charging is given by itsarrival timeai ∈ T
(i.e., the earliest possible time the vehicle can be plugged in), and
departure timedi ≥ ai, di ∈ T (i.e., after which the vehicle is
needed by the owner). We will sometimes useTi = {ai, . . . , di}
to indicate agenti’s availability and we say that agenti is active
in the market during this period. An agent has a positive value for
units allocated when the agent is active, and has zero value for any
units allocated outside of its active period. Furthermore, agents
have preferences which determine their value or utility for a certain
number of units of electricity. These preferences can change from
one agent to another, and depend on factors such as theefficiencyof
the vehicle, travel distance, uncertainty in usage, battery capacity
and local fuel prices. Formally, preferences are described by a val-
uation vectorvi = 〈vi,1, vi,2, . . . , vi,mi〉, wherevi,k denotes the
marginal valuefor the kth unit andmi is the maximum demand
from agenti. That is,vi,k = 0 for k > mi. We will often use
vi,k+1, which describes the value for the next unit when an agent

4We believe that our approach can be extended to address settings
with variable charge rates, but leave this for future work.
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already hask units of electricity. Note that the agent is indifferent
w.r.t. the precise allocation times, and merely cares about the total
number of units received over the entire active period. These com-
ponents together describe agenti’s typeθi = 〈ai, di,vi〉. We let
θ = {θ1, . . . , θn}, andθ−i is the types of all agents excepti. We
will often use the notation(θi, θ−i) = θ.

We assume that agents havenon-increasing marginal valuations,
i.e.,vi,k ≥ 0 andvi,k+1 ≤ vi,k. As we will show in Section 5, this
assumption is realistic in a setting with plug-in hybrid and range-
extended EVs, where the more a vehicle battery is charged, the less
it needs to rely on the fuel-consuming internal combustion engine.

(Reports and Mechanism)Importantly, we allow agents the op-
portunity to misreport their types. Let̂θi = {âi, d̂i, v̂i} denote an
agent’s report.5 Given this, amechanismtakes the agents’ reported
(or observed) types as input as they enter the system, and based
on these reports determines the allocation of resources, as well as
the payments to the agents. Our goal is then to design a mech-
anism which incentivises truthful reporting. Thedecision policy
then specifies an allocationπ〈t〉i (θ̂; k〈t〉) at each time pointt ∈ T

and for each agenti ∈ I, wherek〈t〉 = (k
〈t〉
1 , . . . , k

〈t〉
n ) denotes

the totalendowmentsof the agents at timet before the start of the
auction at timet. That is:

k
〈t〉
i =

t−1
∑

t′=âi

π
〈t′〉
i

(

θ̂i, θ̂−i|k〈t
′〉
)

.

The policyπ is subject to the constraint that units can only be al-
located to agents within their reported activation period. In what
follows, we will use the abbreviated notationπ〈t〉i (θ̂), leaving any
dependence on the current endowments implicit. Furthermore, let

πi(θ̂i, θ̂−i) =
∑d̂i

t=âi
π
〈t〉
i (θ̂i, θ̂−i) denote the total number of units

allocated to agenti in its (reported) active time period. We will
sometimes omit the arguments when this is clear from the con-
text. Furthermore, thepayment policyspecifies a payment func-
tion xi(θ̂i, θ̂−i|πi) for each agenti. Importantly, while allocations
occur at each time pointt ∈ T (since units are perishable), pay-
ments are calculated at the reported departure timed̂i (i.e., when
the owner physically unplugs the vehicle).

(Limited Misreports) As in [12], we assume that the agents
cannot report anearlier arrival, nor a later departure. Formally,
âi ≥ ai andd̂i ≤ di, and we say such a pair〈âi, d̂i〉 is admissible.
This is a valid assumption in our domain because the agent’s vehi-
cle has to be physically plugged into the system, and this cannot be
done if the vehicle is not available. However, it can still report an
earlier departure since the vehicle can be unplugged before the ve-
hicle is truly needed. Similarly, it can delay its effective arrival (i.e.,
after having arrived, the vehicle owner can delay actually plugging
in the vehicle).

(Agent Utility) Given its preferences, an agent’s utility by the
departure time is given by the valuation for its obtained units of
electricity, minus the payments to the mechanism. Formally:

ui(θ̂i; θi) =

πi(θ̂i,θ̂−i)
∑

k=1

vi,k − xi

(

θ̂i, θ̂−i|πi

(

θ̂i, θ̂−i

))

(1)

5In practice, reported arrival and departure correspond to times
when the vehicle is physically plugged into, and, respectively, un-
plugged from the network (which could differ from when the vehi-
cle is truly available), which can typically be observed by the sys-
tem. This is because we use a greedy-like scheduling approach (see
Section 4) which does not require agents to report their types, nor
have knowledge of their true types, in advance. Consequently, it is
straightforward to apply our approach to settings where agents do
not know their exact availability or this changes due to unexpected
events.

agent 1

agent 2

agent 3

t=1 t=2

v1 = 〈10, 4〉
v2 = 〈5〉

v3 = 〈2〉

Figure 1: Example showing arrivals, departures, and valuation
vectors of 3 agents.

4. THE ONLINE MECHANISM
In this section we consider the problem of designing a model-free
mechanism for the above setting. Now, in the case of single-unit
demand, a simple greedy mechanism with an appropriate payment
policy is DSIC [12]. However, we will show through an example,
that this is no longer the case in a multi-unit demand setting that we
consider. A greedy allocation is formally defined as follows:

DEFINITION 1 (GREEDY ALLOCATION). At each stept allo-
cate theS(t) units to the active agents with the highest marginal
valuations,v

i,k
〈t〉
i +1

, where ties are broken randomly.

Consider the example with 2 time steps and 3 agents in Figure 1,
showing the agents’ arrival, departure and valuations. Suppose fur-
thermore that supply isS(t) = 1 at each time step. Greedy would
then allocate both units to agent1, because agent1 has the highest
marginal valuation in both auctions.

Now, consider the question of finding a payment scheme that
makes greedy allocation truthful. How much should agent 1 pay?
To answer this, note that the payment for the unit allocated at time
t = 1 has to be at least 5. Otherwise, if agent 1 were present in the
market only at timet = 1 and had a valuationv1,1 ∈ (5 − ε, 5),
it would not be truthful, because it could reportv̂1,1 > 5 and still
win. Similarly, the payment for the unit allocated at timet = 2 has
to be at least 2. Thus, theminimumpayment of agent 1 if allocated
2 units isx1(θ̂|π1 = 2) = 7.

On the other hand, how much should agent 1 pay if it were allo-
cated only 1 unit instead? We argue no more than 2. Ifx1(θ̂|π1 =
1) = 2 + ε (whereε > 0), then if the agent’s first marginal value
was insteadv1,1 ∈ (2, 2 + ε), with remaining marginal values
zero, then it would win in period 2, but it would pay2 + ε and
hence have negative utility. However, ifx1(θ̂|π1 = 2) ≥ 7 and
x1(θ̂|π1 = 1) ≤ 2, then agent 1 wants only 1 unit, not 2, as al-
located by the greedy mechanism (its utility for one unit is greater
than for two, as10 − 2 > 10 + 4 − 7). Hence, online greedy
allocation cannot be made truthful.6

In order to address this, in our mechanism we extend the Greedy
decision policy by allowing the system to occasionally“burn” units
of electricity when necessary, in order to maintain incentive com-
patibility. By burning we mean that this unit is not allocated to
any agent, even when there is local demand. We consider two ap-
proaches:immediateburning, where the decisions to leave a unit
unallocated is made at each time step before charging, andon-
departureburning, where allocated units can be reclaimed by the
system when the agent leaves the market (i.e., the corresponding
amount of electricity is discharged from the battery on departure).

Each of these approaches has their own advantages and disad-
vantages. Burning on departure generally requires burning fewer
units in some cases, and thus it leads to a higher efficiency. More-
over, the current method we use to determine payments for im-
mediate burning can have a computational cost exponential in the
6Formally, this is because the decision policy violates a property
called weak monotonicity [1]. In this paper, we omit a detailed
discussion of this relationship, due to space restrictions.
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number of the agents present, whereas for on-departure burning,
the cost of determining payments is linear. However, in terms of
the application domain, fast discharging of a vehicle’s battery may
not be practical.

Note that, for both approaches, the energy that is burnt is not
necessarily wasted, but it is simply returned to the grid, to be used
for other purposes than electric vehicle charging. For immediate
burning, the unallocated electricity units are returned to the grid
before it is actually charged by the agent. For the mechanism with
on-departure burning, units may be charged first and then rapidly
discharged when the agent leaves the market. While this may result
in some loss, this is probably negligible w.r.t. the overall amount of
electricity allocated.

4.1 The Mechanism
Before we introduce the decision policy, we show how we can
compute a set of threshold values, which are used both to calcu-
late the payments and to decide when to burn a unit of electricity.

Let k〈t〉−i,j =
∑t−1

t′=aj
π
〈t′〉
j (θ−i) denote the endowment of an active

agentj at start timet, under the allocation we would havein the
absence of agenti (note that calculating this value requires recom-
puting allocations without agenti in the market fromai until the
current timet). Thenv

j,k
〈t〉
−i,j+1

is the marginal valuation of agent

j at timet in the absence of agenti. Given this, we definev(n)
−i,t to

be thenth highest of such valuations from all active agentsj 6= i.
Thenv

(S(t))
−i,t , for supplyS(t), is the lowest value that is still allo-

cated a unit at timet, if agenti were not present. Henceforth, we
refer tov

(S(t))
−i,t as themarginal clearing valuefor agenti in period

t, and we will often usev−i,t = v
(S(t))
−i,t for brevity.

Now, letp〈t〉−i = incr(v−i,ai , v−i,ai+1, . . . v−i,t) denote agent
i’s price vector at timet, whereai is the reported arrival time of
agenti andincr(.) is an operator which takes a vector of real values
as input and returns it in increasing order. In addition, letp−i =

p
〈di〉
−i denote the value of this vector at timedi when agenti leaves

the market.
Intuitively, in any round t, the pricept

−i,k that agenti is charged
for the k-th unit is the minimum valuation the agent could report
for thek-th unit and win it by timet, given the greedy allocation
policy with burning described below. Given this, the decision and
payment policies of our mechanism are as follows.

• Decision PolicyThe decision consists of two stages.
Stage 1At each time pointt, pre-allocateusing Greedy (see
Definition 1).
Stage 2We consider two variations in terms of when to de-
cide to burn pre-allocated units:

– Immediate Burning. Burn a unit whenever:

v
i,k

〈t〉
i +1

< p
〈t〉
−i,k

〈t〉
i +1

– On-Departure Burning. This type of burning occurs
on reported departure. For each departing agent, burn
any unitk ≤ πi wherevi,k < p−i,k.

• Payment PolicyPayment occurs on reported departure. Given
thatπi units are allocated to agenti at timet = d̂i, the pay-
ment collected fromi is:

xi(θ̂i, θ̂−i|πi) =
∑πi

k=1
p−i,k (2)

Burning occurs whenever the marginal value for an additional unit
is smaller than the marginal payment for that unit. Thus these val-
ues are effectively agent-specific threshold values, below which no

agent 1: agent 2: agent 3:
T1 = {1, 2, 3} T2 = {1} T3 = {2, 3}
v1 = 〈10, 4〉 v2 = 〈5〉 v3 = 〈2〉

t = 1 k
〈1〉
1 = 0 k

〈1〉
2 = 0

v−1,1 = 5 v−2,1 = 10

p
〈1〉
−1 = 〈5〉 p

〈1〉
−2 = 〈10〉

π
〈1〉
1 = 1 π

〈1〉
2 = 0

t = 2 k
〈2〉
1 = 1 k

〈2〉
3 = 0

v−1,2 = 2 v−3,2 = 4

p
〈2〉
−1 = 〈2, 5〉 p

〈2〉
−3 = 〈4〉

π
〈2〉
1 = 0 (IM) π

〈2〉
3 = 0

π
〈2〉
1 = 1 (OD)

t = 3 k
〈3〉
1 = 1 k

〈3〉
3 = 0

IM v−1,3 = 0 v−3,3 = 4

p
〈3〉
−1 = 〈0, 2, 5〉 p

〈3〉
−3 = 〈4, 4〉

π
〈3〉
1 = 1 π

〈3〉
3 = 0

t = 3 k
〈3〉
1 = 2 k

〈3〉
3 = 0

OD v−1,3 = 0 v−3,3 = 0

p
〈3〉
−1 = 〈0, 2, 5〉 p

〈3〉
−3 = 〈0, 4〉

π
〈3〉
1 = 0 π

〈3〉
3 = 1

Table 1: Example run of the mechanism with 3 agents and 3
time periods for immediate (IM) and on-departure (OD) burn-
ing. Grey cells indicate different values for IM and OD burning.

unit is allocated to that agent. Moreover, it is important to note that
the mechanism used for computing the prices mirrors the actual al-
location mechanism. So, for example, if immediate burning is used
in the decision policy, then for each agenti and for all timest, the
values of thep〈t〉−i vector are computed by re-running the market,
in the absence of agenti using immediate burning, based on the
reports of the other agents. Conversely, if on-departure burning is
used for the decision policy, the same mechanism should be used
in computing thep−i prices.

4.2 Example
To demonstrate how the mechanism works, we extend the previous
example shown in Figure 1 to include a third time step,t = 3. Both
agents1 and3 remain in the market att = 3 (i.e., d1 = d3 = 3)
and no new agents arrive. Furthermore,S(t) = 1 in t ∈ {1, 2, 3},
and so there are now 3 units to be allocated in total. Table 1 shows
the endowmentsk〈t〉i , the marginal clearing valuesv−i,t, thep

〈t〉
−i

vectors, and the allocation decisionsπ
〈t〉
i at different time periods.

We start by considering the allocations and payment usingimme-
diate burning. At time t = 1, Stage 1 of the mechanism allocates
the unit to agent1, and sincev1,1 = 10 ≥ p

〈1〉
−1,1 = 5, this unit is

not burnt in the second stage. At timet = 2, the unit again gets
pre-allocated to agent1 sincev1,2 = 4 > v3,1 = 2. However,
the marginal clearing valuev−1,2 is inserted at the beginning of the
p
〈2〉
−1 vector, and as a resultv1,2 = 4 < p

〈2〉
−1,2 = 5. Consequently,

this unit gets burnt and is allocated to neither of the agents. At
time t = 3, therefore, the marginal value of agent1 is still 4 (since
its endowment is unchanged), and this value is added to agent3’s
marginal clearing values. To calculate the marginal clearing value
of agent1, recall that the decision policy needs to be recomputed
with agent1 entirely removed from the market. In that case agent
3 would have been allocated a unit at timet = 2, and thus at time
t = 3 the marginal value of this agent is0. Thus, the value of0
is inserted in thep〈3〉−i vector. Att = 3, since agent1 still has the
highest marginal value, it is again pre-allocated the unit. However,
nowv1,2 = 4 ≥ p

〈3〉
−1,2 = 2, and therefore the unit is not burnt. So,

in case of immediate burning, 2 out of 3 units are allocated to agent
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1, and that agent paysp〈3〉−1,1 + p
〈3〉
−1,2 = 2.

Now consider the same setting but withon-departure burning.
The first two time steps are as before, except that there is no burning
at t = 2 (since this will be done on departure if needed). This
changes the endowment state of agent1 at t = 3, and therefore the
marginal value of agent1 at t = 3 is equal tov1,3 = 0. Therefore,
the unit is allocated to agent3, and the payment for this unit is
p−3,1 = 0. The vectorp〈3〉−1 remains unchanged compared to the
immediate burning case. At this point, there is no longer a need
to burn one of the units of agent 1, since it has receivedk = 2
units, the same allocation as with immediate burning, and note that
v1,2 > p−1,2.

Still, it is possible to construct examples where, both with on-
departure and immediate burning, half of the units need to be burnt.
Furthermore, note that this unit cannot go to agent3, because pay-
ment would have beenp〈3〉−3,1 = 4, which would result in a negative
utility for agent3.

4.3 Properties
In this section we prove that the above mechanism is DSIC. We
will first establish DSIC with respect to valuations only, and prove
truthful reporting of arrival and departure times separately. In more
detail, we proceed in the following 3 stages: (i) We define the con-
cept of a threshold policy, and show that, when coupled with an
appropriate payment function, and given any admissible pair〈âi,
d̂i〉, if a decision policy is a threshold policy, then the mechanism
is DSIC with respect to the valuations (Lemma 1). (ii) We show that
our decision policy is a threshold policy (Lemma 2). (iii) Finally,
we show that, if agents truthfully report their valuations, reporting
âi = ai, d̂i = di is a weakly dominant strategy (Lemma 3). These
results are combined in Theorem 1 to show that our policy is DSIC.

DEFINITION 2 (THRESHOLDPOLICY). A decision policyπ
is a threshold policy if, for a given agenti with fixed〈âi, d̂i〉 and
θ̂−i, there exists a marginally non-decreasing threshold vectorτ ,
independent from the report̂vi made by agenti, such that following
holds:∀k, v̂i: πi(θ̂i, θ̂−i) ≥ k if and only if v̂i,k ≥ τk.

In other words, a threshold policy has a (potentially different) thresh-
old τk for eachk, such that agenti will receive at leastk units if
and only if its (reported) valuation for thekth item is at leastτk.7

Importantly, the vectorτ has to be non-decreasing, i.e.,τk+1 ≥
τk, and should be independent of the reported valuation vectorv̂i.
Note that both of these properties are satisfied by thep−i vector,
and we will use this to show that our mechanism is a threshold
policy. First, however, we show that a threshold policy with appro-
priate payments is DSIC with respect to the valuations.

LEMMA 1. Fixing admissible〈â, d̂〉 andθ̂−i, if π is a threshold
policy coupled with a payment policy:

xi(θ̂i, θ̂−i) =
∑πi(θ̂i,θ̂−i)

k=1 τk,

then ifvi is marginally non-increasing, reportingvi truthfully is a
weakly dominant strategy.

7A threshold policy satisfies weak-monotonicity (WMON) [1], and
is therefore sufficient for truthfulness in this domain since we have
bounded agent valuations and the domain is completely ordered,
meaning that all payoff types agree on the same weak preference
ordering on all allocations (i.e., more is always weakly better than
less), and indifference to the way goods are allocated to other
agents. We show that our decision policy has the threshold prop-
erty, and thus the WMON, and that it also handles misreports of
arrivals and departures.

PROOF. Agenti’s utility can be rewritten as:

ui(θ̂i; θi) =
∑πi(θ̂i,θ̂−i)

k=1 (vi,k − τk)

Sinceτ is independent of̂vi, agenti can only potentially bene-
fit by changing the allocation,πi(θ̂i, θ̂−i). Since the values of
τk+1 ≥ τk (non-decreasing threshold vector) andvi,k+1 ≤ vi,k

(non-increasing marginal values), by definition 2 we havevi,k −
τk ≥ 0 for anyk ≤ πi(θi) andvi,k − τk ≥ 0 for anyk > πi(θi).
Suppose that, by misreporting agenti is allocatedπi(θ̂i) > πi(θi),
thenui(θ̂i; θi) < ui(θi; θi) since:

∑πi(θ̂i,θ̂−i)

k=πi(θi,θ̂−i)+1
(vi,k − τk) < 0

Similarly, misreporting such thatπi(θ̂i, θ̂−i) < πi(θi, θ̂−i) results
in ui(θ̂i; θi) < ui(θi; θi) since:

∑πi(θi,θ̂−i)

k=πi(θ̂i,θ̂−i)+1
(vi,k − τk) ≥ 0

If misreporting has no effect on the allocation, the utility remains
the same. Therefore, there is no incentive for agenti to misreport
its valuations.

Note that Greedy (as per Definition 1) is not a threshold policy.
To see this, consider the example from Figure 1. As we saw earlier,
Greedy allocates 2 units to agent 1, and the required thresholdτ2

for winning the second unit is2 (below which Greedy would allo-
cate 1 unit). However, if agent1 had valuationv1 = 〈4, 4〉, Greedy
would allocate only 1 unit, even thoughv2 > τ2, which conflicts
with the requirement of a threshold policy.

The next lemma shows that the threshold condition holds if we
include burning, and if we set the threshold values toτk = p−i,k.

LEMMA 2. Given non-increasing marginal valuations, the de-
cision policyπ in Section 4.1 is (for either burning policy) a thresh-
old policy whereτk = p−i,k.

PROOF. First, from the definition of vectorp〈t〉−i andp−i from

Section 4.1, the values ofp〈t〉−i are independent of the reportŝvi

made by agenti. This is because each of its component values
v−i,ai , . . . v−i,t are computed based only on the reports of the
other agents, by first removing agenti from the market.

Second, we need to show two inequalities, thus the proof is done
in two parts.Part 1: Whenevervi,k ≥ p−i,k, πi allocatesat least
k units to agenti. Part 2: Whenevervi,k < p−i,k, πi allocates
strictly lessthank units to agenti.

Part 1: Let vi,k ≥ p−i,k. Suppose that agenti has the same
marginal values,vi,k, for the firstk units (i.e.,vi,1 = vi,2 = . . . =
vi,k), then it will win exactly those auctions wherevi,k ≥ v−i,t,
t ∈ Ti in Stage 1 of the mechanism (ignoring tie breaking). Note
that even when, by winning an auction, agenti displaces the losing
marginal value to a future auction, since this value is less or equal to
vi,k, it will not affect the future auctions for agenti since it will still
outbid that agent in the next auction. Now, becausep−i,j ≤ p−i,k

for j ≤ k (by definition), there must be at leastk auctions where
p−i,k ≥ v−i,t in the periodt ∈ T , and sincevi,k ≥ p−i,k, agenti
wins at leastk auctions in Stage 1.

Furthermore, each time an auction is won, the clearing values
appear as one of thej first elements of thept

−i vector, wherej is
the number of auctions so far (since these are the auctions with the
lowest clearing values, and the clearing values are ordered ascend-
ingly). Because agenti wins an auction in Stage 1 if and only if
vi,k ≥ v−i,t, it follows thatvi,k = vi,j ≥ p−i,j whenever it wins
an auction in Stage 1. Therefore, there is no burning in Stage 2.
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The above holds if agenti has uniform marginal values ofvi,k

for the firstk units. In fact, however, because of non-increasing
valuations, we havevi,j ≥ vi,k, for all 1 ≤ j ≤ k, and thus the
decision policy will allocateat leastk units to agenti.

Part 2: Let vi,k < p−i,k. First consider theon-departure burn-
ing case. As per the definition of Stage 2 of the mechanism, unit
k is burnt. However, we still need to show that any unitsj > k
are burnt as well. Sincep−i,j ≥ p−i,k andv−i,j ≤ v−i,k for all
j > k, it follows thatvi,j < p−i,j for all j > k. Therefore even
if Stage 1 allocatesk or more units, these will be burnt in Stage 2,
and thus strictly less thank units remain.

Now consider theimmediate burning case. Note thatp−i,k ≤
p
〈t〉
−i,k for (ai + k − 1) ≤ t ≤ di. That is, threshold values can

only decrease over time. Thus it follows thatv−i,k < p
〈t〉
−i,k for

any(ai + k − 1) ≤ t ≤ di. Consider a case where, at timetk, the
kth unit is allocated in Stage 1. Becausev−i,k < p

〈tk〉
−i,k, this unit

will always be burnt in Stage 2 of the decision policy. Therefore,
the final result is an allocation of strictly less thank units.

By settingτk = p−i,k, the payment function in Equation 2 corre-
sponds to the payment function in Lemma 1. Therefore the pro-
posed mechanism is shown to be DSIC in valuations. We now
complete the proof by showing that truthful reporting of the ar-
rival and departure times are also DSIC (given limited misreports),
given truthful reporting ofvi.

LEMMA 3. Given limited misreports, and assuming that truth-
fully reporting v̂i = vi is a dominant strategy for any given pair
of arrival/departure reports〈âi, d̂i〉, then it is a dominant strategy
to report âi = ai and d̂i = di.

PROOF. Let p〈âi,d̂i〉
−i denote the vector of increasingly ordered

marginal clearing values (computed withouti), given the agent re-
portsθ̂i = 〈âi, d̂i,vi〉. By reporting typêθi, the agent is allocated

πi(θ̂i) items, and its total payment is:
∑πi(θ̂i)

j=1 p
〈âi,d̂i〉
−i,j . For each

agenti, misreporting fromθi to θ̂i results in one of two cases:
πi(θ̂i) = πi(θi): Misreporting by agenti has no affect on the

marginal clearing valuesv−i,t, but can only decrease the size of
the p−i vector. In particular, due to limited misreports we have

âi ≥ ai andd̂i ≤ di, and thusp〈âi,d̂i〉
−i contains asubsetof the ele-

ments fromp
〈ai,di〉
−i . As these vectors are by definition increasingly

ordered, it follows thatp〈âi,d̂i〉
−i,j ≥ p

〈ai,di〉
−i,j , ∀j ≤ (d̂i − âi + 1).

Since the payment consists of the firstki = k̂i elements, this can
only increase by misreporting.
πi(θ̂i) 6= πi(θi): First, we show thatπi(θ̂i) > πi(θi) could

never occur. Since the marginal clearing values remain the same,
but the number of auctions in which the agent participates decreases
by misreporting, Stage 1 of the mechanism can only allocate fewer

or equal items. Furthermore, sincep
〈âi,d̂i〉
−i,j ≥ p

〈ai,di〉
−i,j , the possi-

bility of burning can only increase in Stage 2. Thus, it always holds
thatπi(θ̂i) ≤ πi(θi).

Now, we consider the caseπi(θ̂i) < πi(θi). First, as shown for

the caseπi(θ̂i) = πi(θi) above, we know that
∑πi(θ̂i)

j=1 p
〈ai,di〉
−i,j ≤

∑πi(θ̂i)
j=1 p

〈âi,d̂i〉
−i,k (i.e., the payment for those units won can only in-

crease by misreporting arrival and/or departure). Furthermore, we
know that the allocationπi(θi) is preferable to any other alloca-
tion πi(θ̂i) < πi(θi), otherwise reporting the true valuation vector
vi would not be a dominant strategy. Since the payment for these
items is potentially even higher when misreporting, the agent can-
not benefit by winning fewer items.

We are now ready to present the main theoretical result:

THEOREM 1. Given non-increasing marginal valuations and
limited misreports, Greedy with on-departure and immediate burn-
ing and with payment function according to Equation 2 are DSIC.

PROOF. The proof of this theorem follows directly from the
above lemmas. Lemmas 1 and 2 show that, for any pair of ar-
rival/departure (mis)-reports〈âid̂i〉 the decision policy is truthful in
terms of the valuation vectorvi, given an appropriate payment pol-
icy. Furthermore, the payments in Equation 2 correspond to those
in Lemma 2, and therefore they truthfully implement the mecha-
nism. Finally, Lemma 3 completes this reasoning, by showing that
for a truthful report of valuation vectorvi, agents cannot benefit by
misreporting arrivals/departures.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate our proposed mechanism empirically.
In doing so, we seek to answer a number of pertinent questions.
First, since our greedy approach does not generally find the opti-
mal allocation, we are interested in how close it comes to this in
realistic settings. Second, we investigate the extent to which unit
burning occurs in practice (i.e., how often units of electricity need
to be burned by our decision policies, in order to ensure truthful-
ness). This is critical, as it may negatively affect efficiency. Finally,
we compare our mechanism to a range of simpler truthful mecha-
nisms that employ fixed pricing, as well as to a well-known online
scheduling approach. These serve as benchmarks for our mecha-
nism — fixed pricing is a common mechanism for selling goods in
a wide range of settings, while the scheduling approach highlights
what a non-truthful mechanism could achieve.

5.1 Experimental Setup
Our experimental setup is based on data collected during the first
large-scale UK trial of EVs. In December 2009, 25 EVs were pro-
vided to members of the public as part of the CABLED (Coventry
And Birmingham Low Emissions Demonstration) project.8 The
aim of this trial was to investigate real-world usage patterns of
EVs. To this end, they were equipped with GPS and data loggers
to record comprehensive usage information, such as trip durations
and distances, home charging patterns and energy consumption.

We use the data published by this project for the first quarter
of 2010 to realistically simulate typical behaviour patterns. More
specifically, in each of our experiments, we simulate a single 24
hour day, where charging periods are divided into hourly time in-
tervals. For the purpose of the experiments, a simulated day starts
at 15:00, as vehicle owners begin to arrive back from work. To de-
termine the arrival time of each agent, we randomly draw samples
from the home charging start times reported by the project. These
are highest after 18:00 and then quickly drop off during the night.
Likewise, to simulate departures, we sample from data recording
journey start times.

In order to simulate realistic marginal valuation vectors for the
agents, we combine data from the project about journey distances
with a principled approach for calculating the expected economic
benefit of vehicle charging. In particular, we can calculate the ex-
pected utility of a given amount of charge (in kWh),ce, given a
price of fuel (in £/litre),pp, an internal combustion engine effi-
ciency (in miles/litre),ep, an electric efficiency (in miles/kWh),ee,
and a probability density function,p(m), that describes the dis-
tance to be driven the next day:

E(u(ce)) =

∫ ∞

0

pp

ep
·m·p(m)dm−

∫ ∞

ce·ee

pp

ep
·m·p(m)dm, (3)

8Seehttp://cabled.org.uk/.
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where the first term is the expected fuel cost without any charge,
and the second term is the expected cost with a battery charge of
ce. Given this, and a charging rate (in kW),re, it is straight-forward
to calculate the marginal valuation of thekth hour of charging time:
vk = E(u(k · re))− E(u((k − 1) · re)).

To generate a variety of marginal valuations, we note thatee

andep depend on the specific make and type of the EV and thus
vary between households, whilep(m) depends on the driving be-
haviour of the car owner. We drawee uniformly at random from
2 – 4 miles/kWh andep is drawn from 9 – 18 miles/litre. Further-
more, we createp(m) from daily driving distances presented in the
CABLED report. These distances are typically short, with a daily
mean of 23 miles, but the distribution has a long tail with a maxi-
mum of 101 miles. Next, we draw the capacity of a car battery from
15 – 25 kWh and set the charging rate to3 kW. These and earlier
specifications are all based on the Chevrolet Volt, the first mass-
produced range-extended EV to be on the road in 2011. However,
we include some variance to account for other vehicle types.

Finally, to derive the supply functionS, we consider a realis-
tic neighbourhood-basedsupply function using the average energy
consumption of a UK household over time.9 In this setting, the total
energy available for charging depends on the number of households
in the neighbourhood and the constraints of the local transformer.
Hence, available supply during the night is significantly higher than
during the day. Furthermore, we tested a range of other supply
functions and valuation distributions, where we observed the same
general trends as discussed in the remainder of this section. How-
ever, we omit the details here for brevity.

5.2 Benchmark Mechanisms
In addition to the two decision policies developed within this paper
— Greedy with Immediate Burning(Immediate)and Greedy with
On-Departure Burning(On-Departure)— we benchmark the fol-
lowing strategies that have been widely applied in similar settings:

Fixed Price allocates units to those agents that value them higher
than a fixed pricep. The price they pay for this unit isp. When de-
mand is greater than supply, units are allocated randomly between
all agents with a sufficiently high valuation. This mechanism is
DSIC and so it constitutes a direct comparison to our mechanisms.
However, to optimise the performance of the fixed price mecha-
nism,p must be carefully chosen. Thus, we test all possible values
(in steps of £0.01) and select thep that achieves the highest average
efficiency (over 1000 trials) for a given setting. Thus, when show-
ing the results ofFixed Price, this constitutes an upper bound of
what could be achieved with this mechanism. We use the special
casep = 0 as a baseline benchmark and denote this asRandom.

Heuristic allocates units such that a weighted combination of an
agent’s valuation and urgency (proximity to its departure time) is
maximised. Here, anα ∈ [0, 1] parameter denotes the importance
of the urgency, such thatα = 1 corresponds to the well-known
earliest-deadline-first heuristic in scheduling, whileα = 0 indi-
cates that units are always allocated to the agent with the highest
valuation. This is not a truthful mechanism and we do not impose
payments here, as its primary purpose is as a benchmark for our
approach. Again, we always select the bestα.

Optimal allocates units to agents to maximise the overall alloca-
tion efficiency, assuming complete knowledge of future arrivals and
supply. Clearly, this mechanism is not practical and it is also not
truthful (again we impose no payments), but it serves as an upper
bound for the efficiency that could be achieved.

Having described the valuation calculation, the experimental set-
ting, and the benchmarks, we now describe our results.

9We use the average evaluated during a work day in winter, avail-
able athttp://www.elexon.co.uk/.
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Figure 2: Results for a small neighbourhood with 30 houses (a)
and a large one with 200 houses (b).

5.3 Results
For our experiments, we consider two possible neighbourhood sizes
— one with 30 households and one with 200 households. In these
settings, the capacity of the local transformer is constrained, so that
only a couple of cars can charge at the same time in the 30 house-
hold case and up to 16 with 200 households. We choose such highly
constrained settings here, because they are intrinsically more chal-
lenging and interesting than settings where all cars can be fully
charged overnight. Across the experiments, we vary the number
of these households that own an EV. Note here that we only show
results forImmediateburning up to 15 agents, because our current
implementation of this is computationally expensive. This is be-
cause the vector of marginal clearing valuesp

〈t〉
−i at timet depends

on which units are burned ini’s absence (and as this vector is used
to determine when burning takes place, it recursively depends on
the corresponding vectors of all agents that are allocated ini’s ab-
sence). Thus, we may potentially need to evaluate all subsets of
agents, which grows exponentially withn. Although it may be
possible to prune the search space efficiently in practice, we leave
these computational aspects to future work. It is interesting that
this does not apply toOn-Departureburning, because here burning
does not influence the agents’ marginal clearing values.

The results for both settings are given in Figure 2. First, the top
row shows the average10 efficiency, normalised to the performance
of Optimal (when there are more than 30 EV owners,Optimalbe-
comes intractable and so we normalise results to the performance
of Heuristicin those cases as a close approximation). Here, we note
that our two burning policies consistently outperform (or match) all
other truthful benchmarks. The improvement compared toRandom
is particularly pronounced, but our approach still achieves a sig-
nificant improvement over theFixed Pricemechanism. For small
neighbourhoods, this is almost 10%, while in larger neighbour-

10All results are averaged over 1000 trials. We plot 95% confidence
intervals, and significant differences reported are att < 0.05 level.
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hoods, it is up to 5%. This is a promising result, because setting
the optimal price for the fixed price strategy requires knowledge
about the distributions of agents types, but our approach makes no
such assumptions.

This improvement is due the ability of our mechanism to allocate
the agents with the highest marginal valuations, whileFixed Price
randomises over those that meet its price. Our approach is also
responsive to changes in demand over time, consistently allocating
units even when the highest valuations are low. In contrast,Fixed
Price must be tuned to operate at any particular balance of supply
and demand. Thus, it does not allocate when its price is unmet. It
performs better in the larger setting because it is more likely that at
least some of the agents meet the fixed price in this case.

Next, our mechanism also performs close to theOptimal and
Heuristic, consistently achieving 95% or better, which indicates
that our greedy approach performs well in realistic settings even
without having access to complete information (such as departure
times or even future arrivals). The lowest relative efficiency to the
optimal is achieved when there are few EVs (about 20% of the
neighbourhood). Here, scheduling constraints are most critical,
as it may sometimes be optimal to prioritise an agent with lower
valuations over one with higher valuations, but a longer deadline.
This becomes less critical when there are more agents, as there are
typically sufficiently many with high valuations. Finally, we see
thatImmediateburning achieves a slightly lower average efficiency
thanOn-Departure. This is due to higher levels of burning, but the
difference is small (and, in fact, not statistically significant).

In the second row of Figure 2, the average utility of each EV
owner’s allocation (not including the payments to the mechanism)
is shown. This corresponds directly to the fuel costs that a single
EV owner saves by using electricity instead of fuel. Initially, this is
high (around £2), as there is little competition, but starts dropping
as more EV owners compete for the same amount of electricity. Of
key interest here is the horizontal separation between the different
mechanisms. For a given fuel saving per agent, our mechanism
can sustain a significantly larger number of agents than the other
incentive-compatible mechanisms. For example, to save at least
£1 per agent in the small neighbourhood,Randomcan support up
to 10 EV owners, whileImmediateandOn-Departureachieve the
same threshold for up to 14 EV owners (a 40% improvement). In
the large neighbourhood, our mechanism can support around 60
additional vehicles in some cases (to achieve a £0.65 threshold).

Finally, the last row shows the average number of units that are
burned by our two decision policies, as a percentage of the overall
(tentatively) allocated units. Again, due to computational limita-
tions, full results for theImmediateburning policy are only shown
up to 15 agents. For up to 18 agents, results from only 100 trials
are shown (resulting in larger confidence intervals).On-Departure
burning clearly burns significantly fewer units thanImmediate, as
the latter sometimes unnecessarily burns units. There is also a
clear maximum in the number of burned units when around 20%
of households are EV owners. This is because there is a signif-
icant amount of competition, with many agents that have similar
marginal valuations, and this induces burning. However, when the
number of agents rises further, burning drops again. This is be-
cause agents are increasingly less likely to be allocated more than
a single unit in these very competitive settings and so there is no
need for burning. It should be noted that burning is generally low
(for On-Departureburning), with typically only 1-2% of allocated
units being burned (and always less than 10%).

6. CONCLUSIONS
This paper proposes a novel online allocation mechanism for a
problem that is of great practical interest for the smart grid com-
munity, that of integrating EVs into the electricity grid. Our contri-

bution to existing literature is two-fold. On the theoretical side, we
extend model-free, online mechanism design with perishable goods
to handle multi-unit demand with decreasing marginal valuations.

On the practical side, we empirically evaluate our mechanism
in a real-world setting, and showed that the proposed mechanism
is highly robust, and achieves better allocative efficiency than any
fixed-price benchmark, while only being slightly suboptimal w.r.t.
an established cooperative scheduling heuristic.

For future work we plan to look at several issues. First, in this
paper we assumed all EVs have a uniform charging rate, but in the
future we plan to extend the allocation model to deal with heteroge-
neous maximal charging rates (corresponding to different types of
EVs). Second, it would be interesting to compare the performance
of the model-free online mechanism proposed in this paper to a
model-based approach, such as the one in [13]. Finally, this paper
looked at performance in terms of a realistic application scenario,
but we also plan to study the worst-case bounds on allocative effi-
ciency and number of items our mechanism burns in future work.
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ABSTRACT
Distance rationalizability is a framework for classifying voting rules
by interpreting them in terms of distances and consensus classes. It
can also be used to design new voting rules with desired properties.
A particularly natural and versatile class of distances that can be
used for this purpose is that of votewise distances [12], which “lift”
distances over individual votes to distances over entire elections
using a suitable norm. In this paper, we continue the investigation
of the properties of votewise distance-rationalizable rules initiated
in [12]. We describe a number of general conditions on distances
and consensus classes that ensure that the resulting voting rule is
homogeneous or monotone. This complements the results of [12],
where the authors focus on anonymity, neutrality and consistency.
We also introduce a new class of voting rules, that can be viewed
as “majority variants” of classic scoring rules, and have a natural
interpretation in the context of distance rationalizability.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
I.2.4 [Knowledge representation formalisms and methods]

General Terms
Theory

Keywords
voting, distance rationalizability, monotonicity, homogeneity

1. INTRODUCTION
In collaborative environments, agents often need to make joint

decisions based on their preferences over possible outcomes. Thus,
social choice theory emerges as an important tool in the design and
analysis of multiagent systems [13]. However, voting procedures
that have been developed for human societies are not necessarily
optimal for artificial agents and vice versa. For instance, there
are voting rules that allow for polynomial-time winner determina-
tion (and thus are suitable for autonomous agents), yet have been
deemed too complicated to be comprehended by an average voter
in many countries; an example is provided by Single Transferable
Vote. Further, unlike an electoral committee in a human society,
Cite as: Homogeneity and Monotonicity of Distance-Rationalizable Vot-
ing Rules, E. Elkind, P. Faliszewski, A. Slinko, Proc. of 10th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2011),
Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei, Tai-
wan, pp. 821-828.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the designer of a multi-agent voting system is usually unencum-
bered by legacy issues or the need to appeal to the general public,
and can choose a voting rule that is most suitable for the application
at hand, or, indeed, design a brand-new voting rule that satisfies the
axioms that he deems important.

A recently proposed distance rationalizability framework [17,
10, 12, 11] is ideally suited for such settings. Under this frame-
work, one can define a voting rule by a class of consensus elections
and a distance over elections; the winners of an election are defined
as the winners in the nearest consensus. In other words, for any
election this rule seeks the most similar election with an obvious
winner (where the similarity is measured by the given distance),
and outputs its winner. Examples of natural consensus classes in-
clude strong unanimity consensus, where all voters agree on the
ranking of all candidates, and Condorcet consensus, where there is
a candidate that is preferred by a majority of voters to every other
candidate. Combined with the swap distance (defined as the num-
ber of swaps of adjacent candidates that transforms one election
into the other), these consensus classes produce, respectively, the
Kemeny rule and the Dodgson rule.

The examples above illustrate that the distance rationalizabil-
ity framework can be used to interpret (rationalize) existing voting
rules in terms of a search for consensus (see [17] for a comprehen-
sive list of results in this vein). It can also be applied to design new
voting rules: for instance, in [10] the authors investigate the rule ob-
tained by combining the Condorcet consensus with the Hamming
distance. Further, by decomposing a voting rule into a consensus
class and a distance we can hope to gain further insights into the
structure of the rule. This decomposition is especially useful when
the distance reflects changes in voters’ opinions in a simple and
transparent way. This is the case for the so-called votewise dis-
tances introduced in [12]. These are distances over elections that
are obtained by aggregating distances between individual votes us-
ing a suitable norm, such as `1 or `∞. Indeed, paper [12] shows
that one can derive conclusions about anonymity, neutrality and
consistency of votewise rules (i.e., rules rationalized via votewise
distances) from the basic properties of the underlying distances on
votes, norms, and consensus classes.

In this paper we pick up this thread of research and study two
important properties of voting rules not considered in [12], namely,
monotonicity and homogeneity. Briefly put, monotonicity ensures
that providing more support to a winning candidate cannot turn him
into a loser, and homogeneity ensures that the result of an election
depends on the proportions of particular votes and not on their ab-
solute counts. Both properties are considered highly desirable for
reasonable voting rules. We focus on the four standard consensus
classes considered in the previous work (strong unanimity S, una-
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nimity U , majority M and Condorcet C) and `1- and `∞-norms.
Our aim is to identify distances on votes that, combined with these
norms and consensus classes, produce homogeneous and/or mono-
tone rules.

Of the four consensus classes considered in this paper, the major-
ity consensus M received relatively little attention in the existing
literature. Thus, in order to study the homogeneity and monotonic-
ity of the rules that are distance-rationalizable with respect to M,
we need to develop a better understanding of such rules. Our main
result here is a characterization of all voting rules that are rational-
izable with respect to M via a neutral distance on votes and the
`1-norm. It turns out that such rules have a very natural interpre-
tation: they are “majority variants” of classic scoring rules. This
characterization enables us to analyze the homogeneity of the rules
in this class, leading to a dichotomy result.

As argued above, a votewise distance-rationalizable rule can be
characterized by three parameters: a distance on votes, a norm, and
a consensus class. From this perspective, it is interesting to ask how
much the voting rule changes if we vary one or two of these param-
eters. We provide two results that contribute to this agenda. First,
we show that essentially any rule that is votewise-rationalizable
with respect to M can also be rationalized with respect to U , by
modifying the norm accordingly. This enables us to answer a ques-
tion left open in [11]. Second, we show that, for any consensus
class and any distance on votes, replacing the `1-norm with the
`∞-norm produces a voting rule that is an n-approximation of the
original rule, where n is the number of voters. For the Dodgson
rule, this transformation produces a rule that is polynomial-time
computable and homogeneous. This line of work also emphasizes
the constructive aspect of the distance rationalizability framework:
we are able to derive new voting rules with attractive properties by
combining a known consensus class with a known distance mea-
sure in a novel way.

Related work. The formal theory of distance rationalizability was
put forward by Meskanen and Nurmi [17], though the idea, in one
shape or another, appeared in earlier papers as well (see, e.g., [18,
2, 16, 15]). The goal of Meskanen and Nurmi was to seek best pos-
sible distance-rationalizations of classic voting rules. This research
program was advanced by Elkind, Faliszewski, and Slinko [10, 12,
11], who, in addition to further classification work, also suggested
studying general properties of distance-rationalizable voting rules.
In particular, in [11] they identified an interesting and versatile class
of distances—which they called votewise distances—that lead to
rules whose properties can be meaningfully studied.

The study of distance rationalizability is naturally related to the
study of another—much older—framework, which is based on in-
terpreting voting rules as maximum likelihood estimators (the MLE
framework). This framework could be dated back to Condorcet and
has been pursued by Young [21], and, more recently, in [8], [7],
and [19]. To date, most of the research on the MLE framework
was concerned with determining which of the existing voting rules
can be interpreted as maximum likelihood estimators; however, pa-
per [19] also shows that the MLE approach can be used to deduce
new useful voting rules.

This paper is loosely related to the work of Caragiannis et al. [6],
where the authors give a monotone, homogeneous voting rule that
calculates scores which approximate candidates’ Dodgson scores
up to an O(m logm) multiplicative factor, where m is the number
of candidates. The relation to our work is twofold. First, we also fo-
cus on monotonicity and homogeneity, although our goal is to come
up with a general method of constructing monotone and homoge-
neous rules and not to approximate particular rules. Second, in the
course of our study we discover a homogeneous and polynomial-

time computable voting rule that approximates the scores of candi-
dates in Dodgson elections up to a multiplicative factor of n, where
n is the number of voters. While the number of voters is usually
much bigger than the number of candidates, and thus our algorithm
is usually inferior to that of [6], it illustrates the power of the dis-
tance rationalizability framework.

The rest of the paper is organized as follows. Section 2 contains
preliminary definitions regarding voting rules in general and the
distance-rationalizability framework specifically. In Section 3 we
provide a detailed study of rules that are votewise rationalizable
with respect to the majority consensus. Sections 4 and 5 present our
results on, respectively, homogeneity and monotonicity of votewise
rules. We conclude in Section 6. We omit most proofs.

2. PRELIMINARIES
2.1. Basic notation. An election is a pair E = (C, V ), where
C = {c1, . . . , cm} is the set of candidates and V = (v1, . . . , vn)
is the set of voters. Voter vi is identified with a total order �i over
C, which we will refer to as vi’s preference order, or ranking. We
write cj �i c` to denote that voter vi prefers cj to c`. We denote
by P(C) the set of all preference orders over C. For a voter v, we
denote by top(v) the candidate ranked first by v, and setP(C, c) =
{v ∈ P(C) | top(v) = c}. For any voter vi ∈ V and a candidate
c ∈ C, we denote by rank(vi, c) the position of c in vi’s ranking.
For example, if top(vi) = c then rank(vi, c) = 1. A voting rule
is a mapping R that for any election (C, V ) outputs a non-empty
subset of candidates W ⊆ C called the election winners. Given
an election E = (C, V ) and s ∈ N, we denote by sE the election
(C, sV ), where sV is obtained by concatenating s copies of V .

Two important properties of voting rules that will be studied in
this paper are homogeneity and monotonicity.

Homogeneity. A voting ruleR is homogeneous if for each election
E = (C, V ) and each positive s ∈ N we have R(E) = R(sE).

Monotonicity. A voting rule R is monotone if for every election
E = (C, V ), every c ∈ R(E) and every E′ = (C, V ′) obtained
from E by moving c up in some voters’ rankings (but not changing
their rankings in any other way) we have c ∈ R(E′).

2.2. Voting rules. We will now define the classic voting rules
discussed in this paper, namely, scoring rules, (Simplified) Bucklin,
and Dodgson.

Scoring rules In this paper, we will use a somewhat nonstandard
definition of a scoring rule. Any vector α = (α1, . . . , αm) ∈
(R+ ∪ {0})m defines a partial voting rule Rα for elections with a
fixed number m of candidates. Under this rule, for each preference
order u ∈ P(C), |C| = m, a candidate c ∈ C gets αrank(u,c)

points (as is standard) and these values are summed up to obtain
the score of c. However, we define the winners to be the candidates
with the lowest score (rather than the highest, as is typical when dis-
cussing scoring rules). A sequence of scoring vectors (α(m))m∈N,
where α(m) ∈ (R+ ∪ {0})m, defines a voting rule R(α(m)) which
is applicable for any number of alternatives.

For example, in this notation the Borda rule is defined by a fam-
ily of scoring vectors α(m) = (0, 1, . . . ,m−1) and the k-approval
is the family of scoring vectors given by α(m)

i = 0 for i ≤ k,
α

(m)
i = 1 for i > k. The 1-approval rule is also known as Plu-

rality. The traditional model, where the winners are the candidates
with the highest score, can be converted to our notation by setting
α′i = αmax − αi, where αmax = maxm

i=1 αi. The reason for this
deviation is that in the context of this paper it will be much more
convenient to speak of minimizing one’s score. Note that, in gen-
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eral, we do not require α1 ≤ · · · ≤ αm, although this assumption
is obviously required for monotonicity.

Note that vectors (α1, . . . , αm) and (βα1, . . . , βαm) define the
same voting rule for any β > 0; the same is true for (α1, . . . , αm)
and (α1+γ, . . . , αm+γ) for any γ ≥ 0. Thus, in what follows, we
normalize the scoring vectors by requiring their smallest coordinate
to be 0, and the smallest non-zero coordinate to be 1.
Bucklin Under the Bucklin rule, we first determine the smallest
value of k such that some candidate is ranked in top k positions by
more than half of the voters. The winner(s) are the candidates that
are ranked in the top k positions the maximum number of times.
Under the Simplified Bucklin rule RsB , the winners are all candi-
dates ranked in top k positions by a majority of voters.
Dodgson To define the Dodgson rule, we need to introduce the
concept of a Condorcet winner. A Condorcet winner is a candidate
that is preferred to any other candidate by a majority of voters. The
Dodgson score of a candidate c is the smallest number of swaps of
adjacent candidates that have to be performed on the votes to make
c the Condorcet winner. The winner(s) under the Dodgson rule are
the candidates with the lowest Dodgson score.

2.3. Norms and Metrics. A norm on Rn is a mappingN : Rn →
R that has the following properties for all x, y ∈ Rn: (1)N(αx) =
|α|N(x) for all α ∈ R; (2) N(x) ≥ 0 and N(x) = 0 if and only if
x = (0, . . . , 0); (3) N(x+ y) ≤ N(x) +N(y).

Two important properties of norms that will be of interest to us
are symmetry and monotonicity. We say that a norm N is sym-
metric if for each permutation σ : [1, n] → [1, n] it holds that
N(x1, . . . , xn) = N(xσ(1), . . . , xσ(n)). For monotonicity, we
make use of the definition proposed in [3]. Specifically, we say that
a norm N is monotone in the positive orthant, or Rn

+-monotone,
if for any two vectors (x1, . . . , xn), (y1, . . . , yn) ∈ Rn

+ such that
xi ≤ yi for all i ≤ n we have N(x1, . . . , xn) ≤ N(y1, . . . , yn).

A well-studied class of norms are the `p-norms given by

`p(x1, . . . , xn) = (|x1|p + · · ·+ |xn|p)
1
p

for p ∈ N. This definition can be extended to p = +∞ by setting
`∞(x1, . . . , xn) = max{x1, . . . , xn}. Observe that for any p ∈
N ∪ {+∞} the `p norm is, in fact, a family of norms, i.e., it is
well-defined on Ri for any i ∈ N. Also, any such norm is clearly
symmetric and monotone in the positive orthant.

A metric, or distance, on a set X is a mapping d : X2 → R that
satisfies the following conditions for all x, y, z ∈ X: (1) d(x, y) ≥
0; (2) d(x, y) = 0 if and only if x = y; (3) d(x, y) = d(y, x); (4)
d(x, z) ≤ d(x, y) + d(y, z). A function that satisfies conditions
(1), (3) and (4), but not (2), is called a pseudodistance.

Given a distance d on X and a norm N on Rn, we can define a
distance N ◦ d on Xn by setting

(N ◦ d)(x,y) = N(d(x1, y1), . . . , d(xn, yn))

for all vectors x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Xn. A
distance defined in this manner is called a product metric.

In this paper, we will study distances over votes and their ex-
tensions to distances over elections via product metrics. Some ex-
amples of distances over votes are given by the discrete distance
ddiscr, the swap distance dswap, and the Sertel distance dser, de-
fined as follows. For any set of candidatesC and any u, v ∈ P(C),
we set ddiscr(u, v) = 0 if u = v and ddiscr(u, v) = 1 otherwise.
The swap distance dswap is given by dswap(u, v) = 1

2
|{(c, c′) ∈

C2 | c �u c′, c′ �v c}|, where �u and �v are the preference
orders associated with u and v, respectively. The Sertel distance
between u and v is defined as the smallest value of i such that for
all j > i voters u and v rank the same candidate in position j.

A distance d on P(C) is called neutral if for any u, v ∈ P(C)
and any permutation π : C → C we have d(u, v) = d(π(u), π(v)),
where π(x) denotes the vote obtained from x by moving candidate
ci into position rank(x, π(ci)), for i = 1, . . . , |C|. Clearly, all
distances listed above are neutral.

2.4. Distance Rationalizability. Intuitively, a consensus class
is a collection of elections with an obvious winner. Formally, a
consensus class is a pair (E ,W) where E is a set of elections and
W : E → C is a function that for each election E ∈ E outputs
the alternative called the consensus winner. The following four
consensus classes have been considered in the previous work on
distance rationalizability:

Strong unanimity. Denoted S, contains elections E = (C, V )
where all voters report the same preference order. The con-
sensus winner is the candidate ranked first by all voters.

Unanimity. Denoted U , contains all elections E = (C, V ) where
all voters rank the same candidate first. The consensus win-
ner is the candidate ranked first by all voters.

Majority. Denoted M, contains all elections E = (C, V ) where
more than half of the voters rank the same candidate first.
The consensus winner is the candidate ranked first by the
majority of voters.

Condorcet. Denoted C, contains all elections E = (C, V ) with a
Condorcet winner. The consensus winner is the Condorcet
winner.

We say that a voting ruleR is compatible with a consensus class
K if for any consensus election E ∈ K it holds that W(E) =
R(E). Similarly, R is said to be weakly compatible with K if for
any E ∈ K we have W(E) ∈ R(E). Essentially all well-known
voting rules are weakly compatible with S, U andM, but there are
rules that are not compatible with any of these consensus classes
(e.g., k-approval for k > 1). The rules that are compatible with
C are also known as Condorcet-consistent rules; we use the term
“compatibility” rather than “consistency” to avoid confusion with
the consistency property of voting rules.

We are now ready to define the concept of distance rationaliz-
ability. Our definition below is taken from [12], which itself was
inspired by [17, 10].

DEFINITION 2.1. Let d be a distance over elections and let
K = (E ,W) be a consensus class. The (K, d)-score of a candidate
c in an election E is the distance (according to d) between E and
a closest election E′ ∈ E such that c ∈ W(E′). A voting rule R
is distance-rationalizable via a consensus class K and a distance d
over elections (is (K, d)-rationalizable) if for each election E the
set R(E) consists of all candidates with the smallest (K, d)-score.

A particularly useful class of distances to be used in distance ra-
tionalizability constructions is that of votewise distances, which are
obtained by combining a distance over votes with a suitable norm.
Formally, given a set of candidates C, consider a distance d over
P(C) and a family of norms N = (Ni)

∞
i=1, where Ni is a norm

over Ri. We define a distance cdN over elections with the set of
candidates C as follows: for any E = (C, V ), E′ = (C, V ′),
we set cdN (E,E′) = (Ni ◦ d)(V, V ′) if |V | = |V ′| = i, andcdN (E,E′) = +∞ if |V | 6= |V ′|. A voting ruleR is said to beN -
votewise distance-rationalizable (or simply N -votewise) with re-
spect to a consensus class K if there exists a distance d over votes
such that R is (K, cdN )-rationalizable. When N is the `p-norm
for some p ∈ N ∪ {+∞}, we write bdp instead of cd`p , and when
N = `1, we omit the index altogether and write bd. It is known
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that any voting rule is distance-rationalizable with respect to any
consensus class that it is compatible with [12]. However, some vot-
ing rules are not N -votewise distance-rationalizable with respect
to standard consensus classes for any reasonable norm N [11].

Let us now consider some examples of distance-rationalizations
of voting rules. Nitzan [18] was the first to show that Plurality is
(U , bddiscr)-rationalizable and Borda is (U , bdswap)-rationalizable. It
is easy to see that Dodgson is (C, bdswap)-rationalizable and Ke-
meny is (S, bdswap)-rationalizable. The distance dd∞ser, combined
with the majority consensus, yields the Simplified Bucklin rule [12].

For any set of candidates C with |C| = m and a scoring vector
α = (α1, . . . , αm), paper [12] defines a (pseudo)distance dα(u, v)
on P(C) as as dα(u, v) =

Pm
j=1 |αrank(u,cj) − αrank(v,cj)|, and

shows that if—in our notation—α1 ≤ αk for all k > 1 then Rα is
(U , bdα)-(pseudo)distance-rationalizable.

3. M-SCORING RULES
The majority consensus is a very natural notion of agreement in

the society. However, it has received little attention in the literature
so far. Here we will show that it leads to a series of interesting rules
with nice properties.

DEFINITION 3.1. For any scoring vector α = (α1, . . . , αm),
let M-Rα be a partial voting rule defined on the profiles with
m alternatives as follows. Given an election E = (C, V ) with
|C| = m and V = (v1, . . . , vn), for each candidate c ∈ C, we
define theM-score of c as the sum of

¨
n
2

˝
+1 lowest values among

αrank(v1,c), . . . , αrank(vn,c). The winners are the candidates with
the lowestM-Rα scores. As in the classic case, a family of scoring
vectors (α(i))i∈N defines an M-scoring rule M-R(α(i)).

We will refer to voting rules from Definition 3.1 as M-scoring
rules. Such rules (or their slight modifications) are often used for
score aggregation in real-life settings; for example, it is not unusual
for a professor to grade the students on the basis of their five best
assignments out of six or in some sport competitions to select win-
ners on the basis of one or more of their best attempts.

It is not hard to see that M-Plurality is equivalent to Plurality:
under both rules, the winners are the candidates with the maximum
number of first-place votes. However, essentially all other scoring
rules differ from their M-counterparts.

PROPOSITION 3.2. Consider a normalized scoring vector α =
(α1, . . . , αm). The rule M-Rα coincides with Rα if and only if
(i) α1 = . . . = αm or (ii) αi = 0 for some i ∈ {1, . . . ,m} and
αj = 1 for all j 6= i.

TheM-scoring rules tend to ignore extremely negative opinions.
Therefore, intuitively, they are less susceptible to manipulation: if a
voter v ranks a candidate c lower than the majority of other voters,
v cannot manipulate against c by moving her to the bottom of their
ranking. In this section we will show that these rules are also very
interesting from the distance rationalizability point of view: it turns
out that they essentially coincide with the class of rules that are `1-
votewise rationalizable with respect to M.

We will first need to generalize a result from [12] to pseudodis-
tances and weak compatibility.

PROPOSITION 3.3. Any voting rule that is pseudodistance-ra-
tionalizable with respect to a consensus class K is weakly compat-
ible with K.

Now, we can characterizeM-scoring rules that are (pseudo)distance-
rationalizable with respect to M.

PROPOSITION 3.4. Let α = (α1, . . . , αm) be a normalized
scoring vector. The rule M-Rα is `1-votewise distance-rationali-
zable with respect toM if and only ifα1 = 0, αj > 0 for all j 6= 1.
Further, M-Rα is `1-votewise pseudodistance-rationalizable with
respect to M if and only if α1 = 0.

We remark that our proof generalizes to scoring rules and U , thus
answering a question left open in [10], namely, whether scoring
rules with αi = αj for i, j > 1 can be distance-rationalized (rather
than pseudodistance-rationalized). Further, in [10] the authors con-
sider only monotone scoring rules, i.e., rules that satisfy—in our
notation—α1 ≤ · · · ≤ αm, while our result holds for all scoring
vectors.

The following lemma explains how to find an M-consensus that
is nearest to a given election with respect to a given `1-votewise
distance.

LEMMA 3.5. LetR be a voting rule that is (M, bd)-rationalized.
Let E = (C, V ) be an arbitrary election where V = (v1, . . . , vn)

and let E′ = (C,U) be an M-consensus such that bd(E,E′) is
minimal among all n-voter M-consensuses over C. Let c ∈ C
be the consensus winner of (C,U). Then, for each i = 1, . . . , n,
either ui ∈ arg minx∈P(C,c) d(x, vi) or ui = vi.

Combining Lemma 3.5 with the argument in the proof of Theo-
rem 4.9 in [12], we can show that the converse of Proposition 3.4 is
also true: any voting rule that can be pseudodistance-rationalized
via M and a neutral `1-votewise pseudodistance is, in fact, an M-
scoring rule. Also, any M-scoring rule is obviously neutral. We
can summarize these observations in the following theorem.

THEOREM 3.6. Let R be a voting rule. There exists a neutral
`1-votewise pseudodistance bd such thatR is (M, bd)-rationalizable
if and only if R can be defined as an M-scoring rule M-R(α(i))

such that α(i)
1 ≤ α

(i)
j for all j > 1 and all i ∈ N.

The discussion above suggests that using the majority consensus to
rationalize a voting rule is similar to using the unanimity consen-
sus, except that we only take into account the best “half-plus-one”
votes. In fact, it turns out that under very weak assumptions we can
translate a votewise rationalization of a rule with respect to M to a
votewise rationalization of that rule with respect to U .

DEFINITION 3.7. Let N = (Ni)
∞
i=1 be a family of functions

where for each i, i ≥ 1, Ni is a mapping from Ri to R. We define
a family NM = (NM

i )∞i=1 as follows. For each i ≥ 1, NM
i is a

mapping from Ri to R given by

NM
i (x1, . . . , xi) = Nb i

2 c+1(|xπ(1)|, . . . , |xπ(b i
2c+1)|),

where π is a permutation of [1, i] such that |xπ(1)| ≥ |xπ(2)| ≥
· · · ≥ |xπ(i)|.

For a family of symmetric norms N = (Ni)
∞
i=1 that are mono-

tone in the positive orthant, the family NM is also a family of
norms, which we will call the majority variant of N .

PROPOSITION 3.8. Let N = (Ni)
∞
i=1 be a family of norms,

where each Ni is a symmetric norm on Ri that is monotone in the
positive orthant. Then the familyNM = (NM)∞i=1 is also a family
of symmetric norms that are monotone in the positive orthant.

As an immediate corollary we get the following result.
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COROLLARY 3.9. Let N be a family of symmetric norms that
are monotone in the positive orthant and let d be a distance over
votes. LetR be a voting rule that is (M, cdN )-rationalizable. Then

R is (U , d̂NM)-rationalizable.

This discussion illustrates that when a rule can be rationalized in
several different ways, the right choice of a consensus class plays
an important role, as it may greatly simplify the underlying norm
and hence the distance. This is why it pays to keep a variety of
consensus classes available and search for the best distance ratio-
nalizations possible. Corollary 3.9 also has a useful application:
Paper [11] shows that STV1 cannot be rationalized with respect to
S, C or U by any neutralN -votewise distance, whereN is a family
of symmetric norms monotone in the positive orthant. Corollary 3.9
allows us to extend this result toM, thus showing that STV cannot
be rationalized by a “reasonable” votewise distance with respect to
any of the standard consensus classes.

4. HOMOGENEITY
Homogeneity is a very natural property of voting rules. It can be

interpreted as a weaker form of another appealing property, namely,
consistency. Recall that a voting ruleR is said to be consistent if for
any two elections E1 = (C, V1) and E2 = (C, V2) with R(E1) ∩
R(E2) 6= ∅ it holds thatR(C, V1+V2) = R(E1)∩R(E2), where
V1 + V2 denotes the concatenation of V1 and V2. Thus, loosely
speaking, homogeneity imposes the same requirement as consis-
tency, but only for the restricted case V1 = V2. Now, consistency
is known to be hard to achieve: by Young’s theorem [20], the only
voting rules that are simultaneously anonymous, neutral and con-
sistent are the scoring rules (or their compositions). In contrast, we
will now argue that for many consensus classes and many values of
p ∈ N ∪ {+∞}, the rules that are `p-votewise rationalizable with
respect to these classes are homogeneous. We start by showing that
this is the case for `p, p ∈ N, and consensus classes S and U .

THEOREM 4.1. For any distance d on votes, the voting rule R
that is (K, bdp)-rationalizable for K ∈ {S,U} and p ∈ N is homo-
geneous.

For M, the conclusion of Theorem 4.1 is no longer true. How-
ever, we can fully characterize homogeneous rules that can be ratio-
nalized viaM and a neutral `1-votewise pseudodistance (recall that
by Theorem 3.6 all such rules are necessarily M-scoring rules).
For convenience, we state the following theorem for scoring vec-
tors that satisfy α1 ≤ · · · ≤ αm; it is not hard to show that this can
be done without loss of generality.

THEOREM 4.2. A voting rule M-Rα with a normalized scor-
ing vector α = (α1, . . . , αm) that satisfies α1 ≤ · · · ≤ αm is
homogeneous if and only if αm = 1 or αdm

2 e = 0.

PROOF SKETCH. Set h = dm
2
e. We skip the easy proof of the

case when αm = 1 (remember that the smallest non-zero coordi-
nate is also 1). When αh = 0, then by the pigeonhole principle
either there exists a candidate that is ranked in top h positions by a
majority of voters (and its score is 0), or each candidate is ranked
in top h positions by exactly half of the voters. In both cases, it is
easy to show that the rule is homogeneous; we omit the details.

We will now show that if αm > 1 and αh > 0, the rule M-Rα

is not homogeneous. We will only consider the case α3 > 1 (note

1We skip the description of STV due to space,but we mention that STV is
one of the very few nontrivial voting rules used in real-life political systems.

that this implies α2 = 1); by careful padding, the construction in
this proof can be modified to work for the general case.

Set α = α3; we have α1 = 0, α2 = 1. We start by consid-
ering the case m = 3; later, we will generalize our construction
to m > 3. Suppose first that α = p

q
is a rational number written

in its lowest terms. We construct an election E = (C, V ), where
C = {a, b, c} and V consists of the following votes:

1. 2p+ q + 1 votes a � b � c,

2. 2q + p+ 1 votes b � c � a, and

3. p+ q − 2 votes c � b � a.

We observe that |V | = 4(p + q), and the M-scores of a and b
are equal to p, and the M-score of c is at least p + q + 3. Hence,
both a and b are winners of E. On the other hand, in the election
2E = (C, 2V ), the M-scores of candidates a and b are, respec-
tively, (2q − 1)α = 2p − α and 2p − 1. Since α > 1, it cannot
be the case that both a and b are winners of 2E. Thus, in this case
M-Rα is not homogeneous.

Now, if α is irrational, consider its continued fraction expan-
sion α = (a0, a1, . . . ), and the successive convergents hi

ki
, i =

0, 1, . . . , where h0 = a0, k0 = 1, h1 = a1h0 + 1, k1 = a1, and
hi = aihi−1 + hi−2, ki = aiki−1 + ki−2 for i ≥ 2. We know
that for even values of i we have hi

ki
< α and |α − hi

ki
| < 1

kiki+1
.

Also, it is not hard to show that for any N > 0 there exists an even
value of i such that ki+1 > N . Thus, we pick an even i such that
ki+1 >

2
α−1

(recall that α > 1). We obtain

0 < α− hi

ki
<

1

kiki+1
<
α− 1

2ki
.

Now, set p = hi, q = ki, let ε = α − p
q

, and use the same
construction as above. In E, the M-score of a is qα, the M-score
of b is p < qα, and the M-score of c exceeds that of a and b, so b
is the unique winner. On the other hand, in 2E the M-score of a
is (2q − 1)α = 2p + 2qε − α, while the M-score of b is 2p − 1.
We have ε < α−1

2q
, so a has a lower M-score than b, and hence b

cannot be the winner of 2E. Thus, in this case, too, our rule is not
homogeneous.

Form > 3, we modify this construction by addingm−3 dummy
candidates that each voter ranks last (in some arbitrary order).

We have seen that many voting rules that are `1-votewise distance-
rationalizable with respect to M are not homogeneous. However,
homogeneity appears to be easier to achieve if we use the `∞-norm
instead of `1. For example, Simplified Bucklin has been shown to
be (M,dd∞ser)-rationalizable [12] and it can be shown to be homoge-
neous. Indeed, this follows from a more general result stating that
`∞-votewise rules are homogeneous as long as they are rational-
ized via a consensus class that satisfies a fairly weak requirement.

DEFINITION 4.3. A consensus class K is split-homogeneous if
the following two conditions hold:

(a) If U is a K-consensus then for every positive integer s it
holds that sU is a K-consensus with the same winner;

(b) If U and W are two profiles, with n votes each, such that
U +W is a K-consensus, then at least one of U and W is a
K-consensus with the same winner as U +W .

It turns out that combining a split-homogeneous consensus class
with an `∞-votewise distance produces a homogeneous rule.
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THEOREM 4.4. For any split-homogeneous consensus class K
and any pseudodistance d on votes, the voting rule that is rational-
ized via K and cd∞ is homogeneous.

It is not hard to see that the consensus classes S, U and M are
split-homogeneous. Thus, we obtain the following corollary.

COROLLARY 4.5. For anyK ∈ {S,U ,M} and any pseudodis-
tance d on votes, the voting rule that is rationalized via K and cd∞
is homogeneous.

In contrast, the Condorcet consensus is not split-homogeneous.

EXAMPLE 4.6. Consider the following election E = (C, V )
with C = {a, b, c, d, e} and V = (v1, . . . , v12):

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
a b c d e c e a b c d c
b c d e a a d e a b c a
c d e a b b c d e a b b
d e a b c d b c d e a d
e a b c d e a b c d e e

Voters v1, . . . , v5 form a Condorcet cycle, and voters v7, . . . , v11
are obtained from voters v1, . . . , v5 by reversing their preferences.
Voters v6 and v12 are identical and rank c first. It is not hard to ver-
ify that c is the Condorcet winner in E. On the other hand, in elec-
tions E1 = (C, V1) and E2 = (C, V2), where V1 = (v1, . . . , v6)
and V2 = (v7, . . . , v12), c is not a Condorcet winner both in E1

and in E2.

Indeed, we can construct an `∞-votewise distance that combined
with C yields a nonhomogeneous rule.

PROPOSITION 4.7. There exists a distance d on votes such that
that rule rationalized by C and cd∞ is not homogeneous.

The combination of C and an `1-votewise distance does not nec-
essarily lead to a homogeneous rule either: it is well known that the
Dodgson rule is not homogeneous (see, e.g., [4] for a recent survey
of Dodgson rule deficiencies), yet it is (C, bdswap)-rationalizable.
In fact, we are not aware of any homogeneous voting rule that is
`1-votewise distance-rationalizable with respect to C. In contrast,
we can construct a homogeneous rule that is `∞-votewise distance-
rationalizable with respect to C by replacing `1 with `∞ in the ra-
tionalization of the Dodgson rule. We will call the resulting rule
Dodgson∞; the next section will explain the name of the rule. To
prove that Dodgson∞ is homogeneous, we will first explain how to
determine the winners under this rule. It turns out that, in contrast
to the Dodgson rule itself, Dodgson∞ admits a polynomial-time
winner determination algorithm.

PROPOSITION 4.8. The problem of computing the (C, cd∞swap)-
score of a given candidate c in an election E = (C, V ) is in P.

PROOF. It can be verified that the following algorithm runs in
polynomial time and computes the (C, cd∞swap)-score of c.

1. Set k = 0.
2. If c is a Condorcet winner of E then return k.
3. For each vote where c is not ranked first, swap c and its pre-

decessor.
4. Increase k by 1 and go to Step 2.

Using the algorithm given in the proof of Proposition 4.8, it is not
hard to show that Dodgson∞ is homogeneous.

PROPOSITION 4.9. Dodgson∞ is homogeneous.

The Dodgson∞ rule has some desirable properties that the Dodg-
son rule itself is lacking. Thus, it is interesting to ask if the fomer
can be used to approximate the latter, in the sense of Caragiannis
et al. [5, 6]. It turns out that the answer is “yes”: each `∞-votewise
rule approximates the corresponding `1-votewise rule. However,
the approximation ratio is often quite large.

THEOREM 4.10. For any consensus class K ∈ {S,U ,M, C}
and any distance d on votes, let R and R∞ be the voting rules
rationalized via K and bd and cd∞, respectively. Let scoreRE (c)

(respectively, scoreR
∞

E (c)) denote the (K, bd)-score (respectively,
(K, cd∞)-score) of a candidate c in an election E = (C, V ). Then
for each election E = (C, V ) and each candidate c ∈ C we have

scoreR
∞

E (c) ≤ scoreRE (c) ≤ |V | · scoreR
∞

E (c).

For the majority consensus we can strengthen the approximation
guarantee from |V | to d |V |

2
+ 1e using the fact that we only need

the majority of the voters to rank a candidate first for him to be the
M-winner.

Of course, these approximations are very weak as they depend
linearly on the number of voters; their appeal is in their generality.
Further, since for the Dodgson rule its `∞-variant is homogeneous
and polynomial-time computable, an appealing conjecture is that
replacing `1 with `∞ in the rationalization of a voting rule is a gen-
eral recipe for designing voting rules that are homogeneous and
admit an efficient winner determination algorithm. It is unlikely
that this conjecture holds unconditionally, but it would be very in-
teresting to identify sufficient conditions for it to hold.

5. MONOTONICITY
Monotonicity is a very desirable property of voting rules: it stip-

ulates that campaigning in favor of a candidate should not hurt him.
While homogeneity seems to be essentially a function of the norm
and the consensus class (as illustrated by Theorem 4.1 and The-
orem 4.4, which hold for any distance d on votes), monotonicity
seems to be most closely related to the properties of the distance
on votes. Therefore, in this section we propose several notions of
monotonicity for distances on votes that, combined with appropri-
ate norms and consensus classes, produce a monotone rule. We do
not consider the Condorcet consensus in this section: even a very
well-behaved distance such as bdswap may produce a non-monotone
rule when combined with C (recall that the resulting rule is Dodg-
son, which is known to be non-monotone (see, e.g., [4]). Also, for
simplicity, we focus on `1-votewise rules and `∞-votewise rules.

Let C be a set of candidates and let d be a distance on votes.
How can we specify a condition on d so that voting rules rational-
ized using this distance are monotone? Consider an election with
a winner c, a vote y, a vote x ∈ P(C, c) and a vote z ∈ P(C, a)
for some a 6= c. It is tempting to require that for any vote y′ ob-
tained from y by pushing c forward it holds that d(y′, x) ≤ d(y, x)
and d(y′, z) ≥ d(y, z). However, this condition turns out to be
so strong that no reasonable distance can satisfy it. Indeed, sup-
pose that y ranks c in position three or lower, and y′ is obtained
from y by shifting c by one position. Then y does not rank c in the
first position, and our condition should hold for z = y′, implying
d(y, y′) ≤ 0, which is clearly impossible.

Thus, we need to relax the condition above. There are two ways
of doing so. First, we can require that when we move c forward in
the vote, the distance to x declines faster than the distance to z. Al-
ternatively, instead of imposing this condition for all x ∈ P(C, c)
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and z ∈ P(C, a), we can require that it holds for the closest vote
that ranks c first, and the closest vote that ranks a first, respectively.
We will now show that both relaxations, which we call, respec-
tively, relative monotonicity and min-monotonicity, lead to mean-
ingful conditions that are satisfied by some natural distances, and,
combined with appropriate consensus classes, result in monotone
voting rules. We consider relative monotonicity first.

DEFINITION 5.1. Let C be a set of candidates. We say that a
distance d on P(C) is relatively monotone if for each c ∈ C, every
two preference orders y and y′ such that y′ is identical to y except
that y′ ranks c higher than y, and every two preference orders x
and z such that x ranks c first and z does not, it holds that

d(x, y)− d(x, y′) ≥ d(z, y)− d(z, y′).

As a quick sanity check, we note that the swap distance, dswap,
satisfies the relative monotonicity condition. Indeed, let d = dswap

and let C be a set of candidates, c be a candidate in C, and let
y, y′, x, and z be as in the definition of relative monotonicity. In
addition, let k be a positive integer such that y′ is identical to y
except in y′ candidate c is ranked k positions higher. We need
k swaps to transform y into y′ so d(y, y′) = k. We first note
that d(x, y) − d(x, y′) = k. This is so because the swap distance
measures the number of inverses between two preference orders.
As x ranks c on top and y′ ranks it k positions higher than y does
(without any other changes), the number of inverses between x and
y′ is the same as that between x and y less k. By the triangle
inequality d(z, y) ≤ d(z, y′) + d(y′, y) = d(z, y′) + k, hence
d(z, y)− d(z, y′) ≤ k and this completes the proof.

Relative monotonicity of a distance on votes naturally translates
to the monotonicity of the resulting voting rule, provided we use `1
as a norm and either S or U as a consensus.

THEOREM 5.2. Let R be a voting rule rationalized by (K, bd),
where K ∈ {S,U} and d is a relatively monotone distance on
votes. Then R is monotone.
However, relative monotonicity is a remarkably strong condition,
not satisfied even by very natural distances that are, intuitively,
monotone.

EXAMPLE 5.3. Consider a scoring vector α = (0, 1, 2, 3, 4, 5)
that corresponds to the 6-candidate Borda rule and a candidate set
C = {c, d, x1, x2, x3, x4}. Consider the following four votes:

x : c > d > x1 > x2 > x3 > x4,

z : x1 > c > x2 > x3 > x4 > d,

y : x1 > x2 > d > c > x3 > x4,

y′ : x1 > x2 > c > d > x3 > x4.

Note that y and y′ are identical except that in y′ candidate c is
ranked one position higher, and that c is ranked on top in x and is
not ranked on top in z. We verify that dα(x, y) − dα(x, y′) = 0
but dα(z, y)−dα(z, y′) = 2. Thus, dα is not relatively monotone.

Our second approach to monotone distances, i.e., min-monotonicity,
captures the intuition that dα in the example above should be clas-
sified as monotone. We first define min-monotonicity formally.

DEFINITION 5.4. Let C be a set of candidates. We say that a
distance d on P(C) is min-monotone if for every candidate c ∈ C
and every two preference orders y and y′ such that y′ is the same
as y except that it ranks c higher, for each a ∈ C \ {c} we have:

min
x∈P(C,c)

d(x, y) ≥ min
x′∈P(C,c)

d(x′, y′),

min
z∈P(C,a)

d(z, y) ≤ min
z′∈P(C,a)

d(z′, y′).

We will now argue that for any non-decreasing scoring vector α the
distance dα is min-monotone.

PROPOSITION 5.5. Let α = (α1, . . . , αm) be a normalized
scoring vector. (Pseudo)distance dα is min-monotone if and only if
α is nondecreasing.

Proposition 5.5, combined with the proof of Theorem 4.9 of [12]
gives the next corollary.

COROLLARY 5.6. A voting rule R is (U, bd)-rationalizable for
some min-monotone neutral pseudodistance d on votes if and only
if R can be defined via a family of nondecreasing scoring vectors
(one for each number of candidates).

In essence, Proposition 5.5 ensures that for every nondecreas-
ing scoring vector α, Rα is `1-votewise rationalizable with respect
to U via a min-monotone distance over votes, and the definition
of min-monotonicity ensures that the scoring vector derived in the
proof of Theorem 4.9 of [12] is nondecreasing.

Min-monotonicity is also useful in the context of the majority
consensus: for M, we can show an analogue of Theorem 5.2 both
for `1-votewise rules and for `∞-votewise rules.

THEOREM 5.7. Let d be a min-monotone distance on votes,
and let R be the voting rule rationalized by (M, cdN ), where N ∈
{`1, `∞}. Then R is monotone.

However, it is not clear how to apply the notion of min-monotonicity
in the context of the strong unanimity consensus. The reason is that
given a profile V of voters over some candidate set C, finding an
S-consensus closest to V requires finding a single preference or-
der u that minimizes the aggregated distance from V to this order.
However, it need not be the case that u is a preference order that
minimizes the distance from some vote v ∈ V to a preference order
that ranks top(u) first.

Finally, we remark that we can combine both relaxations consid-
ered in this section, obtaining a class of distances that includes both
relatively monotone distances and min-monotone distances.

DEFINITION 5.8. Let C be a set of candidates. We say that a
distance d on P(C) is relatively min-monotone if for each candi-
date c ∈ C and each two preference orders y and y′ such that
y′ is identical to y except that y′ ranks c higher than y, for each
candidate a ∈ C \ {c} it holds that

min
x∈P(C,c)

d(x, y)− min
x′∈P(C,c)

d(x′, y′) ≥

min
z∈P(C,a)

d(z, y)− min
z′∈P(C,a)

d(z′, y′).

PROPOSITION 5.9. Each distance on votes that is relatively mo-
notone or min-monotone is relatively min-monotone.

PROOF. Due to lack of space, we only give the proof for rela-
tively monotone distances. Let C be a set of candidates, c, a ∈ C,
and let y, y′ ∈ P(C) be identical, except y′ ranks c higher than y.
Pick x̂ ∈ arg minx′∈P(C,c) d(x

′, y), ẑ ∈ arg minz′∈P(C,a) d(z
′, y′).

Then

min
x∈P(C,c)

d(x, y)− min
x′∈P(C,c)

d(x′, y′) ≥ d(x̂, y)− d(x̂, y′) ≥

d(ẑ, y)− d(ẑ, y′) ≥ min
z∈P(C,a)

d(z, y)− min
z′∈P(C,a)

d(z′, y′).

Thus, d is relatively min-monotone.

For U the proof of Theorem 5.2 extends to relatively min-monotone
distances (and hence to min-monotone distances).

COROLLARY 5.10. Any voting rule rationalized by U and bd,
where d is relatively min-monotone distance on votes, is monotone.

827



6. CONCLUSIONS
We have discussed homogeneity and monotonicity of voting rules

that are distance-rationalizable via votewise distances, focusing on
`p-votewise rules, p ∈ N∪{+∞}. A quick summary of our results
is given in Tables 1 and 2.

S U M C
`1 Y (Th. 4.1) Y (Th. 4.1) Y/N (Th. 4.2) n (Dodgson)
`∞ Y (Th. 4.4) Y (Th. 4.4) Y (Th. 4.4) y (Prop. 4.9)/

n (Prop. 4.7)

Table 1: (Homogeneity) Y at the intersection of column K and
row N indicates that for any distance d on votes the (K,ddN )-
rationalizable rule is homogeneous. Y/N refers to a di-
chotomy result, and y/n refer to examples of homogeneous/non-
homogeneous rules.

S U M
`1 rel-mon rel-min-mon min-mon

(Th. 5.2) (Cor. 5.10) (Th. 5.7)
`∞ ? ? min-mon

(Th. 5.7)

Table 2: (Monotonicity) At the intersection of column K and
row N , we indicate a sufficient condition on d (relative mono-
tonicity, min-monotonicity, relative min-monotonicity) for the
(K,ddN )-rationalizable rule to be monotone.

Motivated by our goal, we obtained a number of results, that,
while not directly related to the primary topic of our study, con-
tribute to the general understanding of votewise rationalizable rules.
In particular, we identified a natural family of voting rules, which
we called M-scoring rules. These rules constitute a (provably dis-
tinct) variant of scoring rules that, when counting points for a given
candidate, ignore the less favorable half of the votes. We have
shown that M-scoring rules have a natural interpretation in the
context of distance rationalizability. By establishing a relationship
between rules that are rationalizable with respect to U and M, we
resolved (in the negative) an open question about votewise ratio-
nalizability of STV posed in [11]. Also, our study of monotonicity
allowed us to refine a result of [12] characterizing the class of scor-
ing rules in terms of distance-rationalizability (our Corollary 5.6).

Our work leads to several open problems. First, we are far from
having a complete understanding of homogeneity of the rules that
are votewise distance-rationalizable with respect to the Condorcet
consensus; even less is known about the monotonicity of such rules.
Also, it would be interesting to know whether there are distances
d 6= dswap for which the winner determination for the (C, cd∞)-
rationalizable rule is easier than for the (C, bd)-rationalizable rule;
the same question can be asked for the consensus class S. We are
also very much interested in finding less demanding, yet practically
useful, conditions on distances that lead to monotone rules.
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ABSTRACT

In a voting system, sometimes multiple new alternatives will join

the election after the voters’ preferences over the initial alternatives

have been revealed. Computing whether a given alternative can

be a co-winner when multiple new alternatives join the election is

called the possible co-winner with new alternatives (PcWNA) prob-

lem and was introduced by Chevaleyre et al. [6]. In this paper, we

show that the PcWNA problems are NP-complete for the Buck-

lin, Copeland0, and maximin (a.k.a. Simpson) rule, even when the

number of new alternatives is no more than a constant. We also

show that the PcWNA problem can be solved in polynomial time

for plurality with runoff. For the approval rule, we examine three

different ways to extend a linear order with new alternatives, and

characterize the computational complexity of the PcWNA problem

for each of them.

Categories and Subject Descriptors

J.4 [Computer Applications]: Social and Behavioral Sciences–

Economics; I.2.11 [ Distributed Artificial Intelligence]: Multia-

gent Systems

General Terms

Algorithms, Economics, Theory

Keywords

Computational social choice, possible co-winner with new alterna-

tives

1. INTRODUCTION
In many real-life situations, multiple voters have to choose a

common alternative out of a set that can grow during the process.

For instance, when a committee wants to decide which proposal

should be approved, some applications might arrive late (due to un-

expected delay in the mailing system, etc). Suppose that we have

already elicited the preference of the voters (members of the com-

mittee) on the initial proposals. It is important for the applicants to

know whether they are already out (so that they can submit the same

proposal to other founding sources right away without waiting for

the committee members to make the final decision). A recent paper

Cite as: Possible Winners When New Alternatives Join: New Results
Coming Up!, Lirong Xia, Jérôme Lang and Jérôme Monnot, Proc. of 10th
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei,
Taiwan, pp. 829-836.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

by Chevaleyre et al. [6] considers the following problem: suppose

that the voters’ preferences about a set of initial alternatives have

already been elicited, and we know that a given number k of new

alternatives will join the election; we ask who among the initial al-

ternatives can possibly win the election in the end. This problem is

a special case of the possible winner problem [18, 21, 20, 3, 4, 2],

restricted to the case where the incomplete profile consists of a col-

lection of full rankings over the initial alternatives (nothing being

known about the voters’ preferences about the new alternatives).

It is somehow dual of another special case of the problem where

the incomplete profile consists of a collection of full rankings over

all alternatives for a subset of voters (nothing being known about

the remaining voters’ preferences), which itself is equivalent to the

coalitional manipulation problem. The problem is also related to

control by adding candidates [1, 11, 14, 12], as discussed in [6].

Ideally, given a voting rule, we would hope to find a polynomially-

computable characterization which would allow us to quickly iden-

tify the possible (co)winners given an incomplete profile P and a

number of new alternatives. Chevaleyre et al. [6] give such charac-

terizations for plurality and Borda for an arbitrary number of new

candidates, as well as for K-approval when there is a single new

candidate. They show that these positive results do not extend to

scoring rules in general, not even to K-approval, and show that

computing possible (co)winners for 3-approval is NP-hard with

three new candidates, as well as for some more sophisticated scor-

ing rules, for a single new candidate. These results were further

extended in [7], where a polynomial algorithm (but not an easy

characterization) was proposed for 2-approval, as well as for K-

approval for 2 new candidates.

The results given in [6] and [7] do not go beyond scoring rules.

In this paper we go further by considering major voting rules that

are outside the family of scoring rules, namely approval, Bucklin,

Copeland, maximin and plurality with runoff. We will give two

positive results, namely polynomially-computable characterization

of possible (co)winners with new alternatives, for plurality with

runoff and, with some specific assumptions we shall discuss later,

for approval. However, for all other rules considered in this paper,

we will show that finding such a characterization is hopeless, as we

show that the possible (co)winner problem with new alternatives

for these rules is NP-hard.

The reason why it is worth exploring the computational com-

plexity of the possible (co)winner problem with new alternatives

for various voting rules is threefold. First, it helps understanding

the various possible (co)winner problems better, by comparing our

results to complexity results of the possible (co)winner in the gen-

eral case [21] as well as as in the specific case corresponding to the

unweighted coalitional manipulation problem (see e.g., [13, 15]).

Second, these results help deciding which voting rules to apply
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in situations where we know beforehand that new candidates may

come after the initial ones and where we want to know which of the

initial ones can win the election. Voting rules for which we have

an easy (polynomial) way to compute these possible winners are

better suited to this class of situations. Third, on the other hand,

hardness results can also be considered positive in settings where

we want a voting rule to be hard to control by adding candidates

without the chair knowing a priori the voters’ preferences on these

candidates. (We shall say more about this in Section 3).

We start by giving some background in Section 2. In Section 3

we recall the possible co-winner problem with respect to the addi-

tion of new alternatives (PcWNA). Each of the following sections

is devoted to the PcWNA problem for a specific voting rule.

In Section 4 we focus on approval voting. Since the notion of a

complete profile (including the new alternatives) extending a partial

profile over the initial alternatives is not straightforward, we inves-

tigate three possible definitions, which we think are the three most

reasonable definitions. To the best of our knowledge, two of these

definitions are new. We show that PcWNA problems are trivial for

two of these definitions, and NP-complete for the third one.

In Sections 5, 6 and 7 we show that the problem is NP-complete

for, respectively, the Bucklin rule, the Copeland rule, and the max-

imin (a.k.a. Simpson) rule, and finally in Section 8 we focus on

plurality with runoff, for which we give a polynomially computable

characterization.

2. PRELIMINARIES
Let C be the set of alternatives (or candidates), with |C| = m.

Let I(C) denote the set of votes. Most often, the set of votes is the

set of all linear orders over C. An n-profile P is a collection of n
votes for some n ∈ N, that is, P ∈ I(C)n. A voting rule r is a

mapping that assigns to each profile a set of winning alternatives1,

that is, r is a mapping from {∅} ∪ I(C) ∪ I(C)2 ∪ . . . to 2C . For

any profile P , the alternatives in r(P ) are called co-winners for P .

If r(P ) = {c}, then c is the unique winner for P .

Some common voting rules are listed below. For all of them

(except the approval rule), I(C) is the set of all linear orders over

C; for the approval rule, the set of votes is the set of all subsets of

C, that is, I(C) = {S : S ⊆ C}.

• (Positional) scoring rules: Given a scoring vector

~v = (v(1), . . . , v(m)), for any vote V ∈ L(C) and any c ∈ C,

let s(V, c) = v(j), where j is the rank of c in V . For any pro-

file P = (V1, . . . , Vn), let s(P, c) =
Pn

i=1 s(Vi, c). The rule

will select c ∈ C so that s(P, c) is maximized. Some examples of

positional scoring rules are Borda, for which the scoring vector is

(m− 1, m− 2, . . . , 0); l-approval (l ≤ m), for which the scoring

vector is v(1) = . . . = v(l) = 1 and vl+1 = . . . = vm = 0; and

plurality, for which the scoring vector is (1, 0, . . . , 0).

• Approval: Each voter submits a set of alternatives (that is, the

alternatives that are “approved” by the voter). The winner is the

alternative approved by the largest number of voters. Note that

the approval rule is different from the l-approval rule, in that for

the l-approval rule, a voter must approve l alternatives, whereas

for the approval rule, a voter can approve an arbitrary number of

alternatives.

• Bucklin: The Bucklin score of an alternative c, denoted by

BP (c) is the smallest number t such that more than half of the votes

rank c among top t positions. A Bucklin winner has the lowest

Bucklin score and is ranked within top BP (c) for most times.

1Such a function is often called a voting correspondence rather
than a voting rule. We will however stick to the terminology “rule”
throughout the paper.

• Copelandα (0 ≤ α ≤ 1): For any two alternatives ci and cj ,

we can simulate a pairwise election between them, by seeing how

many votes prefer ci to cj , and how many prefer cj to ci; the winner

of the pairwise election is the one preferred more often. Then, an

alternative receives one point for each win in a pairwise election,

α points for each tie, and zero point for each loss. The alternatives

that have the highest score win.

• maximin (a.k.a. Simpson): Let NP (ci, cj) denote the number

of votes that rank ci ahead of cj in P . The maximin score of alter-

native c ∈ C in profile P is defined as SimP (c) = min{NP (c, c′) :
c′ ∈ C \ {c}}. A maximin winner maximizes the maximin score.

• Plurality with runoff: The election has two rounds. In the first

round, all alternatives are eliminated except the two with the high-

est plurality scores. In the second round (runoff), the winner is the

alternative that wins the pairwise election between them. Here we

use the parallel-universe tie-breaking mechanism [8], where an al-

ternative c is a co-winner, if there exists a way to break ties in both

rounds to make c win.

In this paper, all NP-hardness results are proved by reductions

from the EXACT COVER BY 3-SETS problem (denoted by X3C) or

the 3-DIMENSIONAL MATCHING problem (denoted by 3DM). An

instance I = (S ,V) of X3C consists of a set V = {v1, . . . , v3q}
of 3q elements and t ≥ q 3-sets S = {S1, . . . , St} of V , i.e., for

any i ≤ t, Si ⊆ V and |Si| = 3. Without loss of generality,

we assume that for each v ∈ V , there exists S ∈ S such that

v ∈ S. For any v ∈ V , let dI(v) denote the number of 3-sets

containing element v in instance I . Let ∆(I) = maxv∈V dI(v).

We are asked whether there exists a subset J ⊆ {1, . . . , t} such

that |J | = q and
S

j∈J Sj = V (indeed, the sets Sj for j ∈ J form

a partition of V). This problem is known to be NP-complete, even

if ∆(I) ≤ 3 (problem [SP2] page 221 in [16]). In this paper, we

will use a special case of 3DM that is also a special case of X3C,

defined as follows.2 Given A,B, X, where A = {a1, . . . , aq},

B = {b1, . . . , bq}, X = {x1, . . . , xq}, T ⊆ A × B × X, T =
{S1, . . . , St} with t ≥ q. We are asked whether there exists M ⊆
T such that |M | = q and for any (a1, b1, x1), (a2, b2, x2) ∈ M ,

we have a1 6= a2, b1 6= b2, and x1 6= x2. That is, M corresponds

to an exact cover of V = A ∪ B ∪ X. This problem with the

restriction where no element of A ∪ B ∪ X occurs in more than

3 triples (i.e., ∆(I) ≤ 3) is known to be NP-complete (problem

[SP1] page 221 in [16]).

To prove our NP-hardness results, we first prove that another

useful special case of 3DM (as well as X3C) remains NP-complete.

Proposition 1 3DM is NP-complete, even if q is even, t = 3q/2,

and ∆(I) ≤ 6.

PROOF. Let I = (T, A × B × X) be an instance of 3DM with

A = {a1, . . . , aq}, B = {b1, . . . , bq}, X = {x1, . . . , xq}, T ⊆
A×B×X, T = {S1, . . . , St} and ∆(I) ≤ 3. We next show how

to build an instance I ′ = (T ′, A′×B′×X ′) of 3DM in polynomial

time, with |A′| = |B′| = |X ′| = q′, T ′ ⊆ A′ × B′ × X ′ and

|T ′| = t′ such that q′ is even, t′ = 3q′/2, and ∆(I ′) ≤ 6.

• If q is odd, then we add to the instance 3 new elements {a′1, b′1, x′1}
with A′ = A ∪ {a′1}, B′ = B ∪ {b′1}, X ′ = X ∪ {x′1} and one

new triplet (a′1, b
′
1, x

′
1).

• Suppose that q is even. If t > 3q/2, then we add 6(t− 3q/2)
new elements {a′1, . . . , a′2(t−3q/2)} to A, {b′1, . . . , b′2(t−3q/2)} to

B, {x′1, . . . , x′2(t−3q/2)} to X and 2(t− 3q/2) new triples

{S′
1, . . . , S

′
2(t−3q/2)}, where for any i ≤ 2(t − 3q/2), S′

i =

(a′i, b
′
i, x

′
i). If t < 3q/2, then we add 3q/2 − t dummy triples

to T by duplicating 3q/2 − t triples of T once each. We note that

t ≥ q implies that t ≥ 3q/2− t.

2Generally, 3DM is not a special case of X3C.
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It is easy to check that in I ′, q′ is even, t′ = 3q′/2, and ∆(I ′) ≤
6. The size of the input of the new instance is polynomial in the

size of the input of the old instance. Moreover, I is a yes-instance

if and only if I ′ is also a yes-instance. 2

3. POSSIBLE (CO)WINNERS WITH NEW

ALTERNATIVES
Let C denote the set of original alternatives, let Y denote the set

of new alternatives. For any linear order V over C, a linear order

V ′ over C∪Y extends V , if in V ′ the pairwise comparison between

any pair of alternatives in C is the same as in V . That is, for any

c, d ∈ C, c ≻V d if and only if c ≻V ′ d.

Given a voting rule r, an alternative c, and a profile P over C,

we are asked whether there exists a profile P ′ over C ∪Y such that

P ′ is an extension of P and c ∈ r(P ′). This problem is called the

possible co-winner with new alternatives (PcWNA) problem [6, 7].

Similarly, we let PWNA denote the problem in which we are

asked whether c is a possible (unique) winner, that is, r(P ′) = {c}.

Up to now, the PcWNA and PWNA problems are well-defined for

all voting rules studied in this paper (except the approval rule). For

the approval rule, we will introduce three types of extension, and

discuss the computational complexity of the PcWNA and PWNA

problems under these extensions.

We denote by PWNAr(P, k) (respectively PcWNAr(P, k)) the

set of possible winners (respectively co-winners) for voting rule r
and profile P with respect to the addition of k new alternatives.

It is straightforward to check that the PcWNA (respectively,

PWNA) problems for all voting rules studied in this paper are in

NP, because given an extension of a profile P , it takes polynomial

time to verify if the given alternative c is a co-winner (respectively,

the unique winner) for all rules studied in this paper. Therefore, in

this paper, we do not show that PcWNA and PWNA are in NP for

individual voting rules. (That is, we only show either polynomiality

or NP-hardness proofs.)

Chevaleyre et al. [6, 7] discuss the relationship between the

P(c)WNA problem and two related problems, namely control via

adding candidates and candidate cloning. It is argued that the main

difference between the three problems is that in the problem of con-

trol via adding candidates, the chair knows how the voters would

rank the new candidates that can possibly be added by her; in the

problem of candidate cloning, the chair only knows that every voter

will order all the clones of a candidate contiguously in her vote,

that is, every voter’s preferences between a clone of c and another

candidate d must be the same as her preferences between c and

d; whereas in the P(c)WNA problem, the chair does not have any

information about how the voters would rank the new candidates.

Even though it has been defined primarily as a problem deal-

ing with voting with incomplete knowledge, the possible co-winner

problem with new alternatives can also be seen as a constructive

control problem, for the class of situations where the chair can add

a number of new candidates without knowing how the voters will

rank them: if the chair’s preferred candidate x is not a co-winner

for the current profile P , the chair has an incentive to add a num-

ber of new candidates for which x becomes a possible co-winner

of the profile before the new alternatives are added. Of course the

chair cannot guarantee that x must be a co-winner after the new

alternatives are added3 , but at least x has some hope to win. The

chair could find, even further, the number of new candidates k such

that not only x becomes a possible co-winner, but also such that the

number of possible co-winners is as low as possible.

3This actually corresponds to the necessary co-winner problem, to
which the answer is trivial in the setting of this paper.

4. APPROVAL
Since the input of the approval rule is different from the in-

put of other voting rules studied in this paper, we have to define

the set of possible extensions of an approval profile over C. Let

PC = (V1, . . . , Vn) be an approval profile over C, where each Vi

is a subset of C. An extension of PC over C ∪ Y is a collection

(V ′
1 , . . . , V ′

n) where V ′
i ⊆ C ∪ Y is an extension of Vi. Now, we

define what it means to say that V ′ ⊆ C ∪ Y is an extension of

V ⊆ C. We can think of three natural definitions as follows.

Definition 1 (extension of an approval vote, definition 1) V ′ ⊆
C ∪ Y is an extension of V ⊆ C if V ′ ∩ C = V .

In other words, under this definition, V ′ is an extension of V if

V ′ = V ∪ Y ′, where Y ′ ⊆ Y . This definition coincides with the

definition used in [19] (Definition 4.3) for the control of approval

voting by adding candidates. The problem with Definition 1 is that

it assumes that any alternative approved in V is still approved in V ′.
However, in some contexts, extending the choice with alternatives

of Y may change the “approval threshold”. Moreover, since we

have more alternatives, this threshold should either stay the same or

move upward: some alternatives that were approved initially may

become disapproved. This leads to the following definition of ex-

tension.

Definition 2 (extension of an approval vote, definition 2) V ′ ⊆
C ∪ Y is an extension of V ⊆ X if one of the following condi-

tions holds: (1) V = V ′; (2) V ′ ∩ Y 6= ∅ and V ′ ∩ C ⊆ V .

Lastly, we may also allow the acceptance threshold to move

downward, even though the set of alternatives grows, especially in

the case where the new alternatives are particularly bad, thus ren-

dering some alternatives in C acceptable after all. This leads to the

third definition of extension.

Definition 3 (extension of an approval vote, definition 3) V ′ ⊆
C ∪ Y is an extension of V ⊆ C if one of the following condi-

tions holds: (1) V ′ ∩ C ⊂ V and V ′ ∩ Y 6= ∅; (2) V ⊂ V ′ ∩ C,

and Y \ V ′ 6= ∅; (3) V ′ ∩ C = V .

Under Definition 3, either the threshold moves upward, in which

case all alternatives which were disapproved in V are still disap-

proved in V ′, and obviously, at least one alternative in Y should

be approved; or the threshold moves downward, in which case all

alternatives that were approved in V are still approved in V ′, and

obviously not all alternatives in Y should be approved. Note that

in the case where V ′ ∩ C = V , the threshold can move upward, or

downward, or remain the same4.

Let us give a brief summary of the three definitions of extension.

Definition 1 assumes that the threshold cannot move; Definition 2

assumes that the threshold can stay the same or move upward (be-

cause the set of alternatives grows); and Definition 3 assumes that

the threshold can stay the same, move upward, or move downward.

Next, we show an example that illustrates these definitions. Let

C = {a, b, c, d}, Y = {y1, y2}, and V = {a, b}.

4The rationale behind Definition 3 is that the threshold may de-
pend on the average quality of the alternatives, and therefore may
go down after some bad new alternatives have been added. For
instance, suppose a voter hates red meat, and has the preference
relation tofu ≻ fish ≻ chicken ≻ beef ≻ mutton; if the
initial set of alternatives is {tofu, fish, chicken}, it is per-
fectly reasonable that he should approve {tofu, fish }, while
he would approve {tofu, fish, chicken} after beef and
mutton have been added to the set of alternatives. This is per-
fectly in agreement with the notion of sincere ballot in approval
voting (see, e.g., [5, 10, 11] and references therein).
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• V ′
1 = {a, b} and V ′

2 = {a, b, y1} are extensions of V under

all three definitions;

• V ′ = {a, y1} is an extension of V under definitions 2 and 3

but not under definition 1 (the threshold has moved upward, since

b was approved in V and is no longer approved in V ′);
• V ′ = {a, b, c, y1} is an extension of V under definition 3 but

neither under definitions 1 nor 2 (the threshold has moved down-

ward, since c was not approved in V and becomes approved in

V ′—note that, intuitively, y2 must be a very unfavorable alterna-

tive for this to happen);

• V ′ = {a, b, c} is an extension of V under definitions 3 but

neither under definitions 1 nor 2, for the same reason as above;

• V ′ = {a} is not an extension of V under any of the definitions:

to have b disapproved in V ′ and approved in V , the threshold has

to move upward, which cannot be the case if no alternative of Y is

approved;

• V ′ = {a, b, c, y1, y2} is not an extension of V under any of

the definitions: to have c disapproved in V and approved in V ′, the

threshold has to move downward, which cannot be the case where

all alternatives in Y are disapproved;

• V ′ = {a, c, y1} is not an extension of V under any of the

definitions: the threshold cannot simultaneously move upward and

downward.

It is straightforward to check that the PcWNA and PWNA prob-

lems are in P for approval under definition 1: an alternative c ∈ C
is a possible (co-)winner in P if and only if it is a (co-)winner for

approval in P (this is because for any V ∈ P , the scores of alter-

natives in C will not change from V to its extension V ′). However,

when we adopt definition 2 of extension, the problems become NP-

complete.

Theorem 1 Under Definition 2, the PcWNA and PWNA problems

are NP-complete for the approval rule.
PROOF. We first prove the hardness of the PcWNA problem by

a reduction from X3C. For any X3C instance I = (S ,V), we

construct the following PcWNA instance.

Alternatives: V ∪ {c} ∪ Y , where Y = {y1, . . . , yt−q}.

Votes: for any i ≤ t, we have a vote Vi = Si; and we have an

additional vote Vt+1 = {c}. That is, P = (V1, . . . , Vt, Vt+1).

Suppose the X3C instance has a solution, denoted by {Si1 , . . . ,
Siq}. Then, take the following extension P ′ of P : for any j ≤ q,

let V ′
ij

= Vij . For any i ≤ t such that i 6= ij for all j ≤ q, we

let V ′
i be a singleton containing exactly one of the new alternatives.

Let V ′
t+1 = {c}. For any v ∈ V , because v appears exactly in

one Sij , v is approved by exactly one voter. So is c. Now, there

are exactly t − q votes Vi where i is not equal to one of the ij’s.

Therefore, the total approval score of the new alternatives is t −
q, and it suffices to approve every new alternative exactly once.

Therefore c is a co-winner in P ′, and thus a possible co-winner in

P .

Conversely, suppose c is a possible co-winner for P and let P ′

be an extension of P for which c is a co-winner. We note that c is

approved at most once in P ′. Therefore, every alternative in V ∪Y
must be approved at most once. Without loss of generality, assume

that every vote V ′
i in P ′ is either of the form Vi or of the form {yj}

(if not, remove every alternative (except one yj ) from V ′
i ; c will

still be a co-winner in the resulting profile). Since we have t − q
new alternatives, each being approved at most once in P ′, we have

at least q votes V ′
i in P ′ such that V ′

i = Vi. If we had more than

q votes V ′
i such that V ′

i = Vi, then more than 3q points would

be distributed to 3q alternatives and one of them would get at least

2, which means that c would not be a co-winner in P ′. Therefore

we have exactly q votes V ′
i such that V ′

i = Vi, and 3q points dis-

tributed to 3q alternatives; since none of them gets more than one

point, they get one point each, which implies that the collection of

all Si such that Vi = V ′
i forms an exact cover of C.

For the PWNA problem, we add one more vote Vt+2 = {c} to

the profile P . 2

Now, let us consider Definition 3. Notice that the profile P ′

where every voter adds c to her vote (if she was not already vot-

ing for c) is an extension of P , and obviously c is a co-winner in

P ′. Therefore, every alternative in C is a possible co-winner for P ,

which trivialize the problem.

5. BUCKLIN

Theorem 2 The PWNA and PcWNA problems are NP-complete

for Bucklin, even when there are three new alternatives.

PROOF. We prove the NP-hardness of both PcWNA and PWNA

by the same reduction from the special case of 3DM mentioned

in Proposition 1. Given any 3DM instance where |A| = |B| =
|X| = q, q is even, t = 3q/2, and no element in A ∪ B ∪ X
appears in more than 6 elements in T , we construct a PcWNA

(PWNA) instance as follows. Without loss of generality, assume

q ≥ 5; otherwise the instance 3DM can be solved directly.

Alternatives: A∪B ∪X ∪Y ∪D∪{c}, where Y = {y1, y2, y3}
is the set of new alternatives, and D = {d1, . . . , d9q2} is the set of

auxiliary alternatives.

Votes: For any i ≤ 2q + 1, we define a vote Vi. Let P =
(V1, . . . , V2q+1). Instead of defining these votes explicitly, below

we give the properties that P satisfies. The votes can be constructed

in polynomial time.

(i) For any i ≤ q, c is ranked in the first position. Suppose Si =
(a, b, x). Then, let a, b, x be ranked in the (3q + 1)th, (3q + 2)th,

and (3q + 3)th positions in Vi, respectively.

(ii) For any i such that q < i ≤ 3q/2 = t, c is ranked in the

(3q + 4)th position. Suppose Si = (a, b, x). Then, let a, b, x be

ranked in the (3q + 1)th ,(3q + 2)th, and (3q + 3)th positions in

Vi, respectively.

(iii) For any i such that 3q/2 < i ≤ 2q + 1, let c be ranked in

the (3q + 4)th position, and no alternative in A∪B ∪X is ranked

in the (3q + 1)th, (3q + 2)th, or (3q + 3)th position in Vi.

(iv) For any c′ ∈ A ∪ B ∪ X, c′ is ranked within top 3q + 3
positions for exactly q + 1 times in P ; and c′ is never ranked in the

(3q + 4)th position.

(v) For any d ∈ D, d is ranked within top 3q + 4 positions at

most once.

The existence of a profile P that satisfies (iv) is guaranteed by the

assumption that in the 3DM instance, q ≥ 5, no element is covered

more than 6 times, and there are enough positions within top 3q+3
positions in all votes to ensure that each alternatives in C appears

exactly q + 1 times. We note that there are in total 9q2 auxiliary

alternatives, and the total number of top 3q + 4 positions in all

votes is (3q + 4)(2q + 1) < 9q2. Therefore, (v) can be satisfied. It

follows that there exists a profile P that satisfies (i), (ii), (iii), (iv),

and (v), and such a profile can be constructed in polynomial time

(by first putting the alternatives to their positions defined in (i), (ii),

and (iii), then filling out the positions using remaining alternatives

to meet conditions (iv) and (v)). The Bucklin score of c is 3q +4 in

P . For any j ≤ q, the Bucklin score of aj (resp., bj , xj) is at most

3q+3 in P , and for any j ≤ 9q2, the Bucklin score of dj ∈ D is at

least 3q +4 in P . Observe that the Bucklin score of any alternative

cannot be decreased in any extension of P .

Suppose that the 3DM instance has a solution, denoted by {Sj :
j ∈ J}, where J ⊆ {1, . . . , t}. For any j ∈ J , we let V ′

j be

the extension of Vj in which y1, y2, y3 are ranked in the (3q +
1)th, (3q + 2)th, and (3q + 3)th positions, respectively. For any
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j ∈ {1, . . . , 2q + 1} \ J , we let V ′
j be the extension of Vj where

{y1, y2, y3} are ranked in the bottom positions. Let P ′ = (V ′
1 ,

. . . , V ′
2q+1). It follows that in P ′, the Bucklin score of c is 3q + 4

and c is ranked within top 3q +4 for 3q/2 times; the Bucklin score

of any other alternative is at least 3q + 4, and none of them is

ranked within top 3q + 4 for more than q + 1 times. Therefore, c
is the unique winner for Bucklin for P ′, which means that there is

a solution to the PcWNA (PWNA) instance.

Conversely, suppose that there is a solution to the PcWNA (PWNA)

instance, denoted by P ′ = (V ′
1 , . . . , V ′

2q+1). We recall that in or-

der for c to be a co-winner, the Bucklin score of any alternative in

A ∪ B ∪ X must be at least 3q + 4 (since the Bucklin score of c
cannot decrease in P ′). Therefore, for every a ∈ A, there exists

i ≤ t such that a is ranked within top 3q + 3 positions in Vi, and

is ranked lower than the (3q + 3)th position in V ′
i . Consequently,

in each of such V ′
i , the new alternatives must be ranked within top

3q + 3 positions. Because |A| = q, each new alternative must

be ranked within top 3q + 3 positions in V1, . . . , Vt for q times.

Because c is a co-winner, no alternative in Y is ranked within top

3q + 3 positions in P ′ for more than q times. Therefore, in exactly

q votes in P ′, the alternatives in Y are ranked within top 3q + 3
positions. Let {V ′

i1 , . . . , V ′
iq
} denote these votes.

We claim that {Si1 , . . . , Siq} is a solution to the 3DM instance.

If not, then there exists e ∈ B ∪X that does not appear in any Sij .

However, it follows that e is ranked within top 3q + 3 positions for

exactly q times, which means that the Bucklin score of e is at most

3q + 3. Therefore, the Bucklin score of e is lower than the Bucklin

score of c. This contradicts the assumption that c is a co-winner

for P ′. Therefore, the PcWNA (PWNA) problem is NP-hard for

Bucklin. 2

6. COPELAND0

For any profile P , the Copeland score of an alternative c ∈ C in

profile P is denoted by CSP (c) = |{c′ ∈ C : NP (c, c′) > n/2}|
(recall that we focus on Copeland0, which means that the tie in a

pairwise election gives 0 point to both participating alternatives).

We have the following straightforward observation.

Property 1 For any profile P ′ over C ∪ {y} that is an extension of

profile P , the following inequalities hold:

∀c ∈ C, CSP (c) ≤ CSP ′(c) ≤ CSP (c) + 1 (1)

We prove that a useful restriction of X3C remains NP-complete.

Proposition 2 X3C is NP-complete, even if t = 2q−2 and ∆(I) ≤
6.

PROOF. The proof is similar to the proof for Proposition 1. Let

I = (S ,V) be an instance of X3C, where V = {v1, . . . , v3q}
and S = {S1, . . . , St}. We next show how to build an instance

I ′ = (S ′,V ′) of X3C in polynomial time, with |V ′| = 3q′ and

|S ′| ≤ 6 such that t′ = 2q′ − 2 and ∆(I ′) ≤ 6.

• If t < 2q − 2, then we add 2q − 2− t dummy 3-sets to S by

duplicating 2q − 2 − t sets of S once each. It follows from t ≥ q
that 2q − 2− t ≤ q − 2 < t.
• If t > 2q − 2, then we add 3(t − 2q + 2) new elements

v′1, . . . , v
′
3(t−2q+2) and t− 2q + 2 3-sets {v′1, v′2, v′3}, . . .,

{v′3(t−2q+2)−2, v
′
3(t−2q+2)−1, v

′
3(t−2q+2)}.

The size of the input of the new instance is polynomial in the size

of the input of the old instance. Moreover, I is a yes-instance if and

only if I ′ is also a yes-instance. Finally, in the new instance I ′, we

have: |V ′| = |V| = 3q and t′ = |S ′| = t+(2q−2−t) = 2q−2 =
2q′− 2 in the first case, while 3q′ = |X ′| = 3q + 3(t− 2q + 2) =
3(t− q + 2) and t′ = |S ′| = t + (t− 2q + 2) = 2(t− q + 1) =

2(q′ − 1) in the second case. Moreover, dI′(v) ≤ 2dI(v) ≤ 6 if

v ∈ V , and dI′(v) = 1 if v ∈ V ′ \ V . 2

Theorem 3 The PcWNA problem is NP-complete for Copeland0,

even when there is one new alternative.

PROOF. The proof is by a reduction from X3C. Let I = (S ,V),

where t = 2q−2 and ∆(I) ≤ 6 be an instance of X3C as described

in Proposition 2. As previously, we can assume q ≥ 8; hence

∆(I) ≤ q − 2. For any X3C instance, we construct the following

PcWNA instance for Copeland0.

Alternatives: V ∪ D ∪ Y ∪ {c}, where D = {d1, . . . , dt} and

Y = {y} is the set of the new alternative.

Votes: For any i ≤ t, we define the following 2t votes.

Vi = [di ≻ (D \ {di}) ≻ (V \ Si) ≻ c ≻ Si]

V ′
i = [rev(Si) ≻ rev(V \ Si) ≻ rev(D \ {di}) ≻ c ≻ di]

Here the elements in a set are ranked according to the order of their

subscripts, i.e., if Si = {v2, v5, v7}, then the elements are ranked

as v2 ≻ v5 ≻ v7. For any set X such that X ⊂ V or X ⊂ D, let

rev(X) denote the linear order where the elements in X are ranked

according to the reversed order of their subscripts. For example,

rev({v2, v5, v7}) = v7 ≻ v5 ≻ v2.

We also define the following t = 2q − 2 votes.

W1 = . . . = Wq−1 = [V ≻ D ≻ c]

W ′
1 = . . . = W ′

q−1 = [rev(D) ≻ rev(V) ≻ c]

Let P = (V1, V
′
1 , . . . , Vt, V

′
t , W1, W

′
1, . . . , Wq−1, W

′
q−1).

We note that there are 3t votes in the instance. We recall that by

assumption, 3t/2 = 3q − 3. We make the following observations

on the function NP .

• For any d ∈ D, d beats c: this holds because NP (c, d) = 1.

• For any v ∈ V , v beats c: this holds because NP (c, v) =
dI(v) ≤ q − 2 < 3q − 3.

• For any d ∈ D and v ∈ V , d and v are tied: this holds because

NP (v, d) = t + q − 1 = 3q − 3.

• For any v, v′ ∈ V (v′ 6= v), v and v′ are tied.

• For any d, d′ ∈ D (d′ 6= d), d and d′ are tied.

From these observations we have the following calculation on

the Copeland scores:

• CSP (c) = 0.

• For any v ∈ V , CSP (v) = 1.

• For any d ∈ D, CSP (d) = 1.

Now, assume that I = (S ,V) is a yes-instance of X3C; hence,

there exists J ⊂ {1, . . . , t} with |J | = q and
S

j∈J Sj = V .

Next, we show how to make c a co-winner by introducing one new

alternative y.

• For any j ∈ J , we let eVj = [dj ≻ D \ {dj} ≻ V \ Sj ≻ c ≻
y ≻ Sj ] be the completion of Vj .

• For any i ≤ t, we let eV ′
i = [rev(Si) ≻ rev(V \Si) ≻ rev(D \

{di}) ≻ c ≻ y ≻ di] be the completion of V ′
i .

• For any vote not mentioned above, we put y in the top position.

• Finally, let P ′ denote the profile obtained in the above way.

It follows that y loses to c in their pairwise election, and for any

other alternative c′ ∈ C (c′ 6= y and c′ 6= c), c′ and y are tied in

their pairwise election. Therefore, the Copeland score is 1 for c,

any alternative in V , and any alternative in D; the Copeland score

of y is 0. It follows that c is a co-winner.

Next, we show how to convert a solution to the PcWNA instance

to a solution to the X3C instance. Let P ′ = (eV1, . . . , eVt, eV ′
1 , . . . , eV ′

t ,fW1,fW ′
1, . . . ,fWq−1,fW ′

q−1) be a profile with the new alternative,

such that c becomes a co-winner according to the Copeland0 rule.
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We denote P ′
1 = (eV1, . . . , eVt), P ′

2 = (eV ′
1 , . . . , eV ′

t ) and P ′
3 =

(fW1,fW ′
1, . . . ,fWq−1,fW ′

q−1). It follows from the above observa-

tions on Copeland scores of alternatives in profile P and inequali-

ties (1) of Property 1, that CSP ′(c) = 1, ∀c′ ∈ D∪V , CSP ′(c) = 1
and CSP ′(y) ≤ 1.

We now claim the following.

(a) ∀v ∈ V , NP ′(v, y) ≤ 3q − 3, NP ′(y, c) = 3q − 2 and

∀d ∈ D, NP ′(d, y) = 3q−3. NP ′
2
(c, y) = t = 2q−2. Moreover,

for any i ≤ t, c ≻ y ≻ di in eV ′
i .

(b) ∀v ∈ V , NP ′
2∪P ′

3
(v, y) ≥ NP ′

2∪P ′
3
(c, y).

For (a). Since c is a co-winner for P ′, c must beat y in their

pairwise election. Meanwhile, any c′ ∈ V∪D cannot beat y in their

pairwise elections. Therefore, we must have that NP ′(c, y) ≥ 3q−
2, and for any c′ ∈ V ∪D, NP ′(c′, y) ≤ 3q − 3. For any di ∈ D,

in profile P ′, we have that di ≻ c except in eV ′
i , which means that

NP ′(di, y) ≥ NP ′(c, y) − 1 by transitivity in each vote. Hence,

3q − 3 ≥ NP ′(di, y) ≥ NP ′(c, y) − 1 ≥ 3q − 3, which means

that NP ′(di, y) = 3q − 3 and NP ′(c, y) = 3q − 2. From these

equalities, we deduce that ∀d ∈ D, NP ′(d, y) = NP ′(c, y) − 1

and then, for any i ≤ t, we have that c ≻ y ≻ di in eV ′
i . It follows

that NP ′
2
(c, y) = t = 2q − 2.

For (b). For any v ∈ V , because in any vote in P ′
2 ∪ P ′

3 v ≻ c,

by transitivity we have NP ′
2∪P ′

3
(v, y) ≥ NP ′

2∪P ′
3
(c, y).

Let J = {j ≤ t : c ≻ y in eVj}. We will prove that |J | = q and

∪j∈JSj = V . First, note that |J | ≤ q because |J | = NP ′
1
(c, y) ≤

NP ′(c, y)−NP ′
2
(c, y) = q from item (a).

Now, for any v ∈ V let Jv = {j ≤ t : y ≻ v in eVj}. We

claim: ∀v ∈ V , J ∩ Jv 6= ∅. Otherwise, there exists v∗ ∈ V
with J ∩ Jv∗ = ∅. This means that c ≻ y implies v∗ ≻ y in

votes in P ′
1. Hence, NP ′

1
(v∗, y) ≥ NP ′

1
(c, y). By adding this

inequality with the inequality in item (b) (let v = v∗), we obtain

that NP ′(v∗, y) ≥ NP ′(c, y). Now, combining the inequalities in

item (a), we have that 3q−3 ≥ NP ′(v∗, y) ≥ NP ′(c, y) = 3q−2,

which is a contradiction. Therefore, for all v ∈ V , J ∩ Jv 6= ∅.

Finally, since |V| = 3q, |Si| = 3 and |J | ≤ q, we deduce that

|J | = q and J = {j ≤ t : c ≻ y ≻ Sj in eVj}. Also, because

for all v ∈ V , J ∩ Jv 6= ∅, we have
S

j∈J Sj = V . In conclusion,

I = (S ,V) is a yes-instance of X3C. This completes the NP-

hardness proof for the PcWNA problem for Copeland0. 2

7. MAXIMIN
To prove the NP-hardness of the PcWNA problem for Maximin,

we first make the following observation, whose proof is straightfor-

ward.

Property 2 Let P be a profile over C, P ′ be a profile over C ∪ {y}
such that P ′ is an extension P . The following (in)equalities hold:

(i) ∀c ∈ C, SimP ′(c) = min{SimP (c), NP ′(c, y)}.

(ii) ∀c ∈ C, SimP ′(c) ≤ SimP (c).

Theorem 4 PcWNA and PWNA problems are NP-complete for

maximin, even when there is one new alternative.

PROOF. We first prove the NP-hardness for the PcWNA problem

by a reduction from X3C. Let I = (S ,V) with t = 2q − 2 and

∆(I) ≤ 6 be an instance of X3C as described in Proposition 2.

Without loss of generality, assume q ≥ 8; in particular, we deduce

∆(I) ≤ q − 2. We define a PcWNA instance for maximin as

follows:

Alternatives: V ∪ {c, d} ∪ {y}, where y is the new alternative.

Votes: For any i ≤ t, we define the following vote. Vi = [(V \
Si) ≻ d ≻ c ≻ Si]. Let W1 = · · · = Wq−1 = [c ≻ rev(V) ≻ d]

and Wq = [rev(V) ≻ d ≻ c]. Let P1 = (V1, . . . , Vt), P2 =
(W1, . . . , Wq), and P = P1 ∪ P2.

We make the following observation on the maximin scores of the

alternatives before y is added.

• SimP (c) = q − 1. Indeed, NP (c, d) = q − 1 and ∀v ∈ V ,

NP (c, v) = q − 1 + dI(v) ≥ q.

• SimP (d) ≤ 6 ≤ q − 2. This is because for any v ∈ V , v is

covered by the 3-sets for no more than q− 2 times (the assumption

of the input X3C instance), which means that in P1, d ≻ v for at

most q − 2 times, i.e., NP (d, v) = dI(v) ≤ 6 ≤ q − 2.

• For any v ∈ V , SimP (v) ≥ q. Actually, NP (v, d) > NP (v, c) =
t−dI(v)+1 ≥ q. For any i < j ≤ 3q, NP (vi, vj) = NP1(vi, vj) ≥
t − dI(v) ≥ 2q − 2 − (q − 2) = q and if i > j, NP (vi, vj) ≥
NP2(vi, vj) = q.

Now, suppose the X3C instance has a solution J ⊂ {1, . . . , t}
with |J | = q and

S
j∈J Sj = V . We show how to make c a co-

winner by introducing one new alternative y.

• For any j ∈ J , we let V ′
j = [(V \ Sj) ≻ d ≻ c ≻ y ≻ Sj ].

• For any j ∈ {1, . . . , t} \J , we let V ′
j = [y ≻ (V \Sj) ≻ d ≻

c ≻ Sj ].
• For any j ≤ q − 1, we let W ′

j = [c ≻ y ≻ rev(V) ≻ d].
• Let W ′

q = [y ≻ rev(V) ≻ d ≻ c].
• Finally, let P ′ = (V ′

1 , . . . , V ′
t , W ′

1, . . . , W
′
q).

In P ′, the maximin score of y is q−1 (via c), because t = 2q−2,

which means that t − q + 1 = q − 1; the maximin score of c is

q − 1 (via d); the maximin score of d is no more than q − 1 (via

any of v ∈ V); and the maximin score of any v ∈ V is q − 1 (via

y). Therefore, c is a co-winner for the maximin rule.

Next, we show how to convert a solution P ′ to the above PcWNA

instance for the maximin rule to a solution to the X3C instance.

Let P ′ = (V ′
1 , . . . , V ′

t , W ′
1, . . . , W

′
q) be an extension of P with

one new alternative y, and c is the maximin winner for P ′. Let

P ′
1 = (V ′

1 , . . . , V ′
t ) and P ′

2 = (W ′
1, . . . , W

′
q).

We make the following observations.

(a) ∀v ∈ V , NP ′(v, y) ≤ q − 1,

(b) NP ′(y, c) ≤ q − 1 and NP ′(y, d) ≥ q,

(c) y ≻ c in W ′
q.

For item (a): Because c is a co-winner, for any v ∈ V , SimP ′(v) ≤
SimP ′(c). We recall that SimP (c) = q − 1 and SimP (v) ≥ q.

Thus, by Property 2 we have the following calculation.

min{NP ′(v, y), q} ≤ SimP ′(v) ≤ SimP ′(c) ≤ SimP (c) = q−1

For item (b): First from (a), we deduce that for any v ∈ V ,

NP ′(y, v) ≥ t + q −NP ′(v, y) > q. Thus, we obtain:

SimP ′(y) = min{NP ′(y, c), NP ′(y, d)}
≤ SimP ′(c) ≤ SimP (c) = q − 1

(2)

Now, assume NP ′(y, d) ≤ q − 1. Then, NP ′
2
(d, y) = q −

NP ′
2
(y, d) ≥ q − NP ′(y, d) ≥ 1. Hence, there exists i ≤ q such

that in W ′
i , we have that for any v ∈ V , v ≻ d ≻ y. Moreover,

NP ′
1
(d, y) = t − NP ′

1
(y, d) ≥ 2q − 2 − (q − 1) = q − 1. Let

J0 ⊆ {1, . . . , t} (with |J0| = q − 1) be the subscripts of arbitrary

q − 1 votes in P ′
1, where d ≻ y. Because |V| = 3q and |Sj | = 3,

there exists v∗ ∈ V \ Sj∈J0
Sj . We deduce that for all j ∈ J0,

v∗ ≻ y in V ′
j . In conclusion, NP ′(v∗, y) ≥ |J0| + 1 = q, which

contradicts item (a). Using inequality (2), item (b) follows.

For item (c): Otherwise, by the definition of Wq, we deduce:

∀v ∈ V, NP ′
2
(v, y) ≥ 1 (3)

On the other hand, using NP ′
1
(y, c) ≤ NP ′(y, c) and item (b),

we have NP ′
1
(c, y) = t−NP ′

1
(y, c) ≥ t−NP ′(y, c) ≥ t− (q −
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1) = q − 1. Let J0 ⊆ {1, . . . , t} (with |J0| = q − 1) be the

subscripts of arbitrary q − 1 votes in P ′
1, where c ≻ y. We have

V \ Sj∈J0
Sj 6= ∅ since |V| = 3q and |Si| = 3. Hence, there

exists v∗ ∈ V \Sj∈J0
Sj such that:

NP ′
1
(v∗, y) ≥ |J0| = q − 1 (4)

Summing up inequalities (3) (let v = v∗) and (4), we reach a

contradiction with item (a).

From items (b) and (c), we get

NP ′
1
(y, c) = NP ′(y, c)−NP ′

2
(y, c) ≤ q − 1− 1 = q − 2

Thus, NP ′
1
(c, y) = t − NP ′

1
(y, c) ≥ t − (q − 2) = q. Let J

denote the subscripts of arbitrary q votes in P ′
1 where c ≻ y. We

claim
S

j∈J Sj = V . Otherwise, there exists v∗ ∈ V \Sj∈J Sj . It

follows that for any j ∈ J , v∗ ∈ (V \Sj∈J Sj) ⊆ V \ Sj , which

means that v∗ ≻ c ≻ y in Vj . Hence, NP ′(v∗, y) ≥ NP ′
1
(v∗, y) ≥

|J | = q, which contradicts item (a). In conclusion, I = (S ,V)
is a yes-instance of X3C. Therefore, PcWNA is NP-complete for

maximin.

For the PWNA problem, we make the following change. Let

Wq = [rev(V) ≻ c ≻ d]. Then, before the new alternative is

introduced, the maximin score of c is q. Then, similarly we can

prove the NP-hardness of the PWNA problem. 2

8. PLURALITY WITH RUNOFF
In this section, we adopt the parallel-universe tie-breaking. If a

tie occurs in the first round, then all possible compatible second

rounds are considered: for instance, if the plurality scores, ranked

in decreasing order, are x1 7→ 8, x2 7→ 6, x3 7→ 6, x4 7→ 5 . . .,
then the set of co-winners contains the majority winner between x1

and x2 and the majority winner between x1 and x3. We show a

necessary and sufficient condition for a given alternative c to be a

possible co-winner with new alternatives for plurality with runoff.

This condition can be easily converted to a polynomial-time algo-

rithm that computes PcWNA for plurality with runoff. For any

profile P and any alternative x ∈ C, we let SP (x) denote the

plurality score of x in P , that is, the number of times where x
is ranked in the first position in votes in P . We let X−

P (c) denote

the set of alternatives that lose to c in their pairwise elections, and

let X+
P (c) = C \ (X−

P (c) ∪ {c}).

Proposition 3 For any profile P and any alternative c, c is a pos-

sible co-winner with k new alternatives under P for plurality with

runoff, if and only if one of the two following conditions holds:

1. there exists an alternative d ∈ X−
P (c) such thatP

x∈C\{c,d} max(0, SP (x)− θ) ≤ kθ,

where θ = min
`
SP (d), SP (c)

´
.

2.
P

x∈C\{c} max(0, SP (x)−SP (c)) ≤ ⌊n/2⌋+(k−1)SP (c).

PROOF. Let P = (V1, . . . , Vn) be a profile over C and P ′ =
(V ′

1 , . . . , V ′
n) be a completion of P with k new alternatives. c is a

co-winner in P ′ if one of the following conditions hold:

1. c and d ∈ C \ {c} are possible second round competitors,

and c (weakly) beats d in their pairwise election under P ′.

2. c and y ∈ Y are possible second round competitors, and c
(weakly) beat y in their pairwise election under P ′.

Let �P
M denote a weak majority relations under P , defined as fol-

lows. For any pair of alternatives a, b, a �P
M b if at least half of

the voters in P prefers a to b. �P ′
M is defined similarly. Let us

first analyze the situations in which 1 occurs. First, in order to have

c �P ′
M d we must have c �P

M d (because the relative positions of c
and d are the same in Vi and V ′

i ). Thus, 1 occurs if and only there

exists an alternative d that loses to c in their pairwise elections and

such that c and d can compete in the second round. Fix such d. In

order for c and d to be possible second round competitors, we must

have min(SP ′
(c), SP ′

(d)) ≥ SP ′
(x) for every x ∈ C\{c, d}∪Y .

Without loss of generality, we can assume that the scores of c and d
are the same in P and P ′, and similarly for the scores of any x ∈ C
such that SP (C) ≤ min(SP (c), SP (d)), since these alternatives

do not need to lose any point to allow a possible second round be-

tween c and d. Let Ĉc,d be the set of all candidates x in C \ {c, d}
such that SP (x) > min(SP (c), SP (d)). Each candidate x ∈ Ĉc,d

has to lose at least SP (x) − min(SP (c), SP (d)) points, and for

this we need
P

x∈Ĉc,d
SP (x) − min(SP (c), SP (d)) points to be

given to the new candidates. Therefore, to have c and d (possi-

bly) in the second round, the number of points we must distribute

to new candidates is σ =
P

x∈C\{c,d} max(0, SP (x)− θ), where

θ = min(SP (c), SP (d)). Now, we also need the score of any new

alternative y to be at most θ, therefore we need σ ≤ kθ. This leads

to the condition 1 in the statement of the proposition.

Now, let us analyze the conditions allowing condition 2 to oc-

cur. In order to have c in the second round and none of the alter-

natives in C \ {c} enter the second round, we need to distribute

κ =
P

x∈C\{c} max(0, SP (x) − θ) points to the candidates in C.

Let y∗ be the new alternative that enters the second round together

with c. y∗ can take at most ⌊n/2⌋ points, otherwise y∗ will beat c
in their pairwise election. For any other new alternative y′ can take

at most SP (c) points. Therefore, we must have that

κ ≤ ⌊n/2⌋+ (k − 1)SP (c)
It is straightforward that if the above equation holds, then there

exists a way to extend P to P ′ with k new alternatives such that c
is the winner for plurality with runoff. This leads to condition 2 in

the statement of the proposition.

Therefore, c is a PcWNA if and only if one of the two conditions

in the statement of the proposition holds. 2

Example 1 Let P be the following 4-candidate, 18-voter profile:

4 votes of a ≻ b ≻ c ≻ d, 3 votes of b ≻ a ≻ c ≻ d, 7 votes

of d ≻ a ≻ c ≻ b, 2 votes of d ≻ c ≻ b ≻ a and 2 votes

of c ≻ a ≻ b ≻ d. We want to determine if c is a possible co-

winner with k new alternatives for plurality with runoff. Note that

X−
P (c) = {b, d}. For condition 1 to be satisfied, it suffices to

consider d as the competitor for c. Then, θ = 2 and condition 1

is satisfied if 3 ≤ 2k, i.e., k ≥ 2. For condition 2 to be satisfied,

we have
P

x∈C\{c} max(0, SP (x) − SP (c)) = 10, ⌊n/2⌋ = 9.

Therefore, condition 2 is satisfied if and only if k ≥ 2. It follows

that as soon as we have at least two new candidates, c is a possible

co-winner.

We also obtain a similar proposition for PWNA, whose proof is

similar to the proof of Proposition 3, therefore is omitted.

Proposition 4 For any profile P and any alternative c, c is a pos-

sible winner with k new alternatives under P for plurality with

runoff, if and only if one of the three following conditions holds:

1. there exists an alternative d ∈ X−
P (c) such that SP (d) ≥

SP (c) and
P

x∈C\{c,d} max(0, SP (x)−SP (c)+1) ≤ k(SP (c)−
1);

2. there exists an alternative d ∈ X−
P (c) such that SP (d) <

SP (c) and
P

x∈X−
P

(c)\{d} max(0, SP (x)− SP (d))

+
P

x∈X+
P

(c)
max(0, SP (x)− SP (d) + 1) ≤ kSP (d);
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3.
P

x∈C\{c} max(0, SP (x) − SP (c) + 1) ≤ ⌊(n + 1)/2⌋ +

(k − 1)(SP (c)− 1).

Corollary 1 Determining whether c ∈ C is a possible (co-)winner

for plurality with runoff is in P.

9. CONCLUSION
In this paper we have gone beyond existing results on the com-

plexity of the possible (co-)winner problem with new alternatives.

While [6, 7] focused on scoring rules, we have identified three

new rules for which the PcWNA problem is NP-complete (Buck-

lin, Copeland, and maximin). We also showed that the PcWNA

problem has a polynomial time algorithm for plurality with runoff,

and as far as approval voting is concerned, we examined three defi-

nitions of the extension of a profile to new alternatives and showed

that depending on which definition we chose, the problem can be

trivial or NP-complete. Our NP-completeness proofs and algo-

rithms for the PcWNA problems, except for Copeland0, can be

extended to the PWNA problems for approval, Bucklin, maximin,

and plurality with runoff. The results are summarized in the fol-

lowing table. These results can be compared with results for

Voting rule PcWNA PWNA

Borda P [7]

2-approval P [7]

l-approval, l ≥ 3 NP-complete 2 [7]

Approval

P (Def. 1)

NP-complete (Def. 2)

Trivial (Def. 3)

Bucklin NP-complete 2

Copeland0 NP-complete 3 ?

maximin NP-complete 3

Plurality with runoff P

Table 1: Complexity of PcWNA and PWNA problems for some

common voting rules.

control by adding candidates and cloning. Control by adding can-

didates is NP-complete for most of voting rules considered here,

namely Copeland [14], maximin [12], Borda, plurality with runoff

and l-approval for l ≥ 2 [9]; on the other hand, approval voting

is immune to control by adding candidates [17]. Manipulability

by cloning with positive probability (0-cloning) is polynomial for

Borda, maximin and plurality with runoff, and NP-complete for

Copeland and l-approval for l ≥ 2 [9]. This shows that P(c)WNA,

when viewed as a control problem, shows a resistance to strategic

behaviour globally stronger than cloning and weaker than control

by adding candidates.

An obvious and interesting direction for future research is study-

ing the computational complexity of the PcWNA (PWNA) prob-

lems for more common voting rules, including STV, Copelandα

(for some α 6= 0), ranked pairs, and voting trees. Even for Copeland0,

the complexity of the PWNA problem still remains open. More-

over, viewing P(c)WNA problem as a control problem where the

chair can add new candidates but do not know the preferences of

the voters over the new candidates, it is interesting to know which

voting rules are more resistant to this type of control from a non-

computational viewpoint.
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ABSTRACT
Electoral control models ways of changing the outcome of
an election via such actions as adding/deleting/partitioning
either candidates or voters. These actions modify an elec-
tion’s participation structure and aim at either making a
favorite candidate win (“constructive control”) or prevent a
despised candidate from winning (“destructive control”). To
protect elections from such control attempts, computational
complexity has been used to show that electoral control,
though not impossible, is computationally prohibitive. Re-
cently, Erdélyi and Rothe [10] proved that Brams and San-
ver’s fallback voting [5], a hybrid voting system that com-
bines Bucklin with approval voting, is resistant to each of
the standard types of control except five types of voter con-
trol. They proved that fallback voting is vulnerable to two
of those control types, leaving the other three cases open.

We solve these three open problems, thus showing that
fallback voting is resistant to all standard types of control
by partition of voters—which is a particularly important and
well-motivated control type, as it models “two-district gerry-
mandering.” Hence, fallback voting is not only fully resistant
to candidate control [10] but also fully resistant to construc-
tive control, and it displays the broadest resistance to con-
trol currently known to hold among natural voting systems
with a polynomial-time winner problem. We also show that
Bucklin voting behaves almost as good in terms of control
resistance. Each resistance for Bucklin voting strengthens
the corresponding control resistance for fallback voting.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity;
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems
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Economics, Theory

Keywords
Voting protocols, Social Choice Theory, Computational So-
cial Choice, Bucklin voting, fallback voting

∗Work done in part at HHU Düsseldorf.

Cite as: The Complexity of Voter Partition in Bucklin and Fallback Vot-
ing: Solving Three Open Problems, Gábor Erdélyi, Lena Piras, and Jörg
Rothe,Proc. of 10th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonenberg
and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 837-844.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Elections have been used for preference aggregation not

only in the context of politics and human societies, but
also in artificial intelligence, especially in multiagent sys-
tems, and other topics in computer science (see, e.g., [8, 14,
7]). That is why it is important to study the computational
properties of voting systems. In particular, complexity can
be used to protect elections against tampering attempts in
control, manipulation, and bribery attacks by showing that
such attacks, though not impossible in principle, can be com-
putationally prohibitive.

Since the seminal paper of Bartholdi et al. [2], the com-
plexity of electoral control—changing the outcome of an elec-
tion via such actions as adding/deleting/partitioning either
candidates or voters—has been studied for a variety of voting
systems. Unlike manipulation [1, 6], which models attempts
of strategic voters to influence the outcome of an election via
casting insincere votes, control models ways of an external
actor, the “chair,” to tamper with an election’s participa-
tion structure so as to alter its outcome. Another way of
tampering with the outcome of elections is bribery [11, 12],
which shares with manipulation the feature that votes are
being changed, and with control the aspect that an external
actor tries to change the outcome of the election. For more
background on complexity results for control, manipulation,
and bribery in approval voting and its variants, we refer to
the survey of Baumeister et al. [3].

Regarding control, a central question is to find voting sys-
tems that are computationally resistant to as many of the
common 22 control types as possible, where resistance means
the corresponding control problem is NP-hard. Each control
type is either constructive (the chair seeking to make some
candidate win) or destructive (the chair seeking to make
some candidate end up not winning). Erdélyi and Rothe [10]
recently proved that fallback voting [5], a hybrid voting sys-
tem combining Bucklin with approval voting, is resistant to
each of these 22 standard control types except five types of
voter control. They proved that fallback voting is vulnera-
ble to two of those control types (i.e., these control problems
are polynomial-time solvable), leaving the other three cases
open. We solve these three open problems by showing that
fallback voting is resistant to constructive and destructive
control by partition of voters in the tie-handling model “ties
promote” and to destructive control by partition of voters
in the “ties eliminate” model. Partition of voters is a par-
ticularly important and well-motivated control type, as it
models “two-district gerrymandering.” Control-by-partition
cases are the most difficult control types to deal with; their
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resistance proofs require the most involved constructions.
Thus fallback voting is fully resistant not only to candi-

date control [10] but also to constructive control. In terms
of the total number of proven resistances it even outnumbers
“sincere-strategy preference-based approval voting” (SP-AV,
a modification [9] of another hybrid system proposed by
Brams and Sanver [4]): Fallback voting has the most (20
out of 22) proven resistances to control among natural vot-
ing systems with a polynomial-time winner problem. Among
such systems, only SP-AV (with its 19 proven control re-
sistances [9]) and plurality voting were previously known
to be fully resistant to candidate control [2, 15], and only
Copeland voting and SP-AV were previously known to be
fully resistant to constructive control [12, 9]. However, plu-
rality has fewer resistances to voter control, Copeland vot-
ing has fewer resistances to destructive control, and SP-AV
is missing one destructive voter partition resistance and—
perhaps more importantly—is arguably less natural a sys-
tem than fallback voting, since in SP-AV (as modified by
Erdélyi and Rothe [9]) it may happen that votes are rewrit-
ten to ensure admissibility (for further details see [3, 9]).

We also study the control complexity of Bucklin voting
itself and show that it has (at least) 19 resistances to control,
thus drawing level with SP-AV. In particular, also Bucklin
voting is—like SP-AV and fallback voting—fully resistant to
constructive control and to candidate control. Since Bucklin
voting is a special case of fallback voting, each resistance
result for Bucklin strengthens the corresponding resistance
result for fallback voting.

2. PRELIMINARIES

Elections and Voting Systems.
An election (C, V ) is given by a finite set C of candidates

and a finite list V of votes over C. A voting system is a rule
that specifies how to determine the winner(s) of any given
election. The two voting systems considered in this paper
are Bucklin voting and fallback voting.

In Bucklin voting, votes are represented as linear orders
over C, i.e., each voter ranks all candidates according to
his or her preferences. For example, if C = {a, b, c, d} then
a vote might look like c d a b, i.e., this voter (strictly)
prefers c to d, d to a, and a to b. Given an election (C, V )
and a candidate c ∈ C, define the level i score of c in
(C, V ) (denoted by score i

(C,V )(c)) as the number of votes
in V that rank c among their top i positions. Denoting the
strict majority threshold for a list V of voters by maj (V ) =
⌊‖V ‖/2⌋ + 1, the Bucklin score of c in (C, V ) is the smallest
i such that score i

(C,V )(c) ≥ maj (V ). All candidates with
a smallest Bucklin score, say k, and a largest level k score
are the Bucklin winners (BV winners, for short) in (C, V ).
If some candidate becomes a Bucklin winner on level k, we
call him or her a level k BV winner in (C,V ). Note that a
level 1 BV winner must be unique, but there may be more
level k BV winners than one for k > 1, i.e., an election may
have more than one Bucklin winner in general.

Brams and Sanver [5] proposed fallback voting as a hybrid
voting system that combines Bucklin with approval voting.
In approval voting, votes are represented by approval vec-
tors in {0, 1}‖C‖ (with respect to a fixed order of the candi-
dates in C), where 0 stands for disapproval and 1 stands
for approval. Given an election (C, V ) and a candidate
c ∈ C, define the approval score of c in (C, V ) (denoted

by score(C,V )(c)) as the number of c’s approvals in (C, V ),
and all candidates with a largest approval score are the ap-
proval winners in (C, V ). Note that an election may have
more than one approval winner. Fallback voting combines
Bucklin with approval voting as follows. Each voter provides
both an approval vector and a linear ordering of all approved
candidates. For simplicity, we will omit the disapproved can-
didates in each vote. For example, if C = {a, b, c, d} and a
voter approves of a, c, and d but disapproves of b, and prefers
c to d and d to a, then this vote will be written as: c d a.
We will always explicitly state the candidate set, so it will
always be clear which candidates participate in an election
and which of them are disapproved by which voter (namely
those not occurring in his or her vote). Given an election
(C, V ) and a candidate c ∈ C, the notions of level i score of c
in (C, V ) and level k fallback voting winner (level k FV win-
ner, for short) in (C, V ) are defined analogously to the case
of Bucklin voting, and if there exists a level k FV winner for
some k ≤ ‖C‖, he or she is called a fallback winner (FV win-
ner, for short) in (C, V ). However, unlike in Bucklin voting,
in fallback voting it may happen that no candidate reaches
a strict majority for any level, due to voters being allowed to
disapprove of (any number of) candidates, so it may happen
that for no k ≤ ‖C‖ a level k FV winner exists. In such a
case, every candidate with a largest (approval) score is an
FV winner in (C,V ). Note that Bucklin voting is the spe-
cial case of fallback voting where each voter approves of all
candidates. As a notation, when a vote contains a subset
of the candidate set, such as c D a for a subset D ⊆ C,
this is a shorthand for c d1 · · · dℓ a, where the elements
of D = {d1, . . . , dℓ} are ranked with respect to some (tacitly
assumed) fixed ordering of all candidates in C. For example,
if C = {a, b, c, d} is assumed to be ordered lexicographically
and D = {b, d} then “c D a” is a shorthand for c b d a.

Types of Electoral Control.
There are eleven types of electoral control, each coming

in two variants. In constructive control [2], the chair tries to
make his or her favorite candidate win; in destructive control
[15], the chair tries to prevent a despised candidate’s victory.
We refrain from giving a detailed discussion of natural, real-
life scenarios for each of these 22 standard control types that
motivate them; these can be found in, e.g., [2, 15, 12, 16, 9,
3]. However, we stress that every control type is motivated
by an appropriate real-life scenario.

When we define our 22 standard control types as deci-
sion problems, we assume that each election or subelection
in these control problems will be conducted with the voting
system at hand (i.e., either Bucklin or fallback voting) and
that each vote will be represented as required by the corre-
sponding voting system. We also assume that the chair has
complete knowledge of the voters’ preferences and/or ap-
proval strategies. This assumption may be considered to be
unrealistic in certain settings, but is reasonable and natural
in certain others, including small-scale elections among hu-
mans and even large-scale elections among software agents.
More to the point, assuming the chair to have complete in-
formation makes sense for our results, as most of our results
are NP-hardness lower bounds showing resistance of a vot-
ing system against specific control attempts and complexity
lower bounds in the complete-information model are inher-
ited by any natural partial-information model (see [15] for a
more detailed discussion of this point).
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All our decision problems are formally described in the
standard Instance-Question format. As an explicit example,
we define the decision problem corresponding to control by
partition of voters with the tie-handling rule “ties promote”
(TP), see [15]. This control type produces a two-stage elec-
tion with two first-stage and one final-stage subelections.
The constructive variant of this problem is defined as:

Constructive Control by Partition of Voters (TP)

Instance: A set C of candidates, a list V of votes over C,
and a designated candidate c ∈ C.

Question: Can V be partitioned into V1 and V2 such that c
is the unique winner of the two-stage election in which
the winners of the two first-stage subelections, (C, V1)
and (C, V2), run against each other in the final stage?

The destructive variant of this problem is defined analo-
gously, except it asks whether c is not a unique winner of
this two-stage election. In both variants, if one uses the tie-
handling model TE (“ties eliminate,” see [15]) instead of TP
in the two first-stage subelections, a winner w of (C,V1) or
(C, V2) proceeds to the final stage if and only if w is the only
winner of his or her subelection. Each of the four problems
just defined can be seen as a way of modeling “two-district
gerrymandering.”

There are many ways of introducing new voters into an
election—think, e.g., of “get-out-the-vote” drives, or of low-
ering the age-limit for the right to vote, or of attracting new
voters with certain promises or even small gifts), and such
scenarios are modeled as Constructive/Destructive
Control by Adding Voters: Given a set C of candidates,
two disjoint lists of votes over C (one list, V , corresponding
to the already registered voters and the other list, W , corre-
sponding to the as yet unregistered voters whose votes may
be added), a designated candidate c ∈ C, and a nonnegative
integer k, is there a subset W ′ ⊆ W such that ‖W ′‖ ≤ k
and c is (is not) the unique winner in (C, V ∪W ′)?

Disenfranchisement and other means of voter suppression
is modeled as Constructive/Destructive Control by
Deleting Voters: Given a set C of candidates, a list V
of votes over C, a designated candidate c ∈ C, and a non-
negative integer k, can one make c the unique winner (not
a unique winner) of the election resulting from deleting at
most k votes from V ?

Having defined these eight standard types of voter control,
we now turn to the 14 types of candidate control. Now, the
control action seeks to influence the outcome of an election
by either adding, deleting, or partitioning the candidates,
again for both the constructive and the destructive variant.

In the adding candidates cases, we distinguish between
adding, from a given pool of spoiler candidates, an unlim-
ited number of such candidates (as originally defined by
Bartholdi et al. [2]) and adding a limited number of spoiler
candidates (as defined by Faliszewski et al. [12], to stay in
sync with the problem format of control by deleting candi-
dates and by adding/deleting voters). Constructive/De-
structive Control by Adding (a Limited Number of)
Candidates, is defined as follows: Given two disjoint candi-
date sets, C and D, a list V of votes over C∪D, a designated
candidate c ∈ C, and a nonnegative integer k, can one find
a subset D′ ⊆ D such that ‖D′‖ ≤ k and c is (is not) the
unique winner in (C ∪ D′, V )? The “unlimited” version of
the problem is the same, except that the addition limit k
and the requirement “‖D′‖ ≤ k” are being dropped, so any

subset of the spoiler candidates may be added.
Constructive/Destructive Control by Deleting

Candidates is defined by: Given a set C of candidates,
a list V of votes over C, a designated candidate c ∈ C, and
a nonnegative integer k, can one make c the unique winner
(not a unique winner) of the election resulting from deleting
at most k candidates (other than c in the destructive case)
from C?

Finally, we define the partition-of-candidate cases, again
using either of the two tie-handling models, TP and TE, but
now we define these scenarios with and without a run-off.
The variant with run-off, Constructive/Destructive
Control by Run-Off Partition of Candidates, is anal-
ogous to the partition-of-voters control type: Given a set C
of candidates, a list V of votes over C, and a designated can-
didate c ∈ C, can C be partitioned into C1 and C2 such that
c is (is not) the unique winner of the two-stage election in
which the winners of the two first-stage subelections, (C1, V )
and (C2, V ), who survive the tie-handling rule run against
each other in the final stage? The variant without run-off
is the same, except that the winners of first-stage subelec-
tion (C1, V ) who survive the tie-handling rule run against
all members of C2 in the final round (and not only against
the winners of (C2, V ) surviving the tie-handling rule). As
an example, think of a sports tournament in which certain
teams (such as last year’s champion and this year’s hosting
team) are given an exemption from qualification.

Immunity, Susceptibility, Resistance, Vulnerability.
Let CT be a control type. We say a voting system is

immune to CT if it is impossible for the chair to make the
given candidate the unique winner in the constructive case
(not a unique winner in the destructive case) via exerting
control of type CT. We say a voting system is susceptible
to CT if it is not immune to CT. A voting system that is
susceptible to CT is said to be vulnerable to CT if the control
problem corresponding to CT can be solved in polynomial
time, and is said to be resistant to CT if the control problem
corresponding to CT is NP-hard. These notions are due to
Bartholdi et al. [2] (except that we follow the now more
common approach of Hemaspaandra et al. [16] who define
resistant to mean “susceptible and NP-hard” rather than
“susceptible and NP-complete”).

Fallback voting is susceptible to each of our 22 control
types [10]. It is easy to see that the same holds true for
Bucklin voting. The proof is omitted.

Lemma 2.1. Bucklin voting is susceptible to each of the
22 control types defined in this section.

3. PARTITION OF VOTERS IN BV AND FV
Table 1 shows in boldface our results on the control com-

plexity of fallback voting for three cases of voter partition
(the other results for fallback voting being due to Erdélyi
and Rothe [10]) and of Bucklin voting for all 22 standard
control types. For comparison, this table also shows the re-
sults for approval voting due to Hemaspaandra et al. [15],
and for SP-AV due to Erdélyi et al. [9].

In this section, we solve the three questions left open
in [10]. We start with the proof that fallback voting is
resistant to constructive control by partition of voters in
model TP (see Corollary 3.2). We do so by proving in The-
orem 3.1 that even Bucklin voting is resistant to this type of
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Fallback Voting Bucklin Voting SP-AV Approval
Control by Const. Dest. Const. Dest. Const. Dest. Const. Dest.

Adding Candidates (unlimited) R R R R R R I V
Adding Candidates (limited) R R R R R R I V
Deleting Candidates R R R R R R V I
Partition of Candidates TE: R TE: R TE: R TE: R TE: R TE: R TE: V TE: I

TP: R TP: R TP: R TP: R TP: R TP: R TP: I TP: I
Run-off Partition of Candidates TE: R TE: R TE: R TE: R TE: R TE: R TE: V TE: I

TP: R TP: R TP: R TP: R TP: R TP: R TP: I TP: I
Adding Voters R V R V R V R V
Deleting Voters R V R V R V R V
Partition of Voters TE: R TE: R TE: R TE: R TE: R TE: V TE: R TE: V

TP: R TP: R TP: R TP: S TP: R TP: R TP: R TP: V

Table 1: Overview of results. Key: I = immune, S = susceptible, R = resistant, V = vulnerable, TE = ties
eliminate, and TP = ties promote. Results new to this paper are in boldface.

control. As our reduction works also for the TE tie-handling
model, this strengthens the corresponding result for fallback
voting from [10].

Our reductions in the proof of Theorem 3.1 are from the
NP-complete problem Exact Cover by Three-Sets, which
is defined as follows (see, e.g., [13]):

Exact Cover by Three-Sets (X3C)

Instance: A set B = {b1, b2, . . . , b3m}, m ≥ 1, and a col-
lection S = {S1, S2, . . . , Sn} of subsets Si ⊆ B with
‖Si‖ = 3 for each i, 1 ≤ i ≤ n.

Question: Is there a subcollection S ′ ⊆ S such that each
element of B occurs in exactly one set in S ′?

Theorem 3.1. Bucklin voting is resistant to constructive
control by partition of voters in both model TE and model TP.

Proof. Susceptibility holds by Lemma 2.1. To show NP-
hardness we reduce X3C to our control problems. Let (B,S)
be an X3C instance with B = {b1, b2, . . . , b3m}, m ≥ 1, and
a collection S = {S1, S2, . . . , Sn} of subsets Si ⊆ B with
‖Si‖ = 3 for each i, 1 ≤ i ≤ n. We define the election (C, V ),
where C = B ∪{c, w, x}∪D ∪E ∪F ∪G is the set of candi-
dates with D = {d1, . . . , d3nm}, E = {e1, . . . , e(3m−1)(m+1)},
F = {f1, . . . , f(3m+1)(m−1)}, and G = {g1, . . . , gn(3m−3)},
and where w is the distinguished candidate. Let V consist
of the following 2n + 2m voters:

1. For each i, 1 ≤ i ≤ n, there is one voter of the form:
c Si Gi (G−Gi) F D E (B − Si) w x,

where Gi = {g(i−1)(3m−3)+1, . . . , gi(3m−3)} for each i,
1 ≤ i ≤ n.

2. For each i, 1 ≤ i ≤ n, there is one voter of the form:
Bi Di w G E (D −Di) F (B −Bi) c x,

where, letting ℓj = ‖{Si ∈ S | bj ∈ Si}‖ for each j,
1 ≤ j ≤ 3m, we define Bi = {bj ∈ B | i ≤ n − ℓj} and
Di = {d(i−1)3m+1, . . . , d3im−‖Bi‖}.

3. For each k, 1 ≤ k ≤ m + 1, there is one voter of the
form: x c Ek F (E − Ek) G D B w,
where Ek = {e(3m−1)(k−1)+1, . . . , e(3m−1)k} for each k,
1 ≤ k ≤ m + 1.

4. For each l, 1 ≤ l ≤ m − 1, there is one voter of the
form: Fl c (F − Fl) G D E B w x,
where Fl = {f(3m+1)(l−1)+1, . . . , f(3m+1)l}, for each l,
1 ≤ l ≤ m− 1.

In this election, candidate c is the unique level 2 BV winner
with a level 2 score of n + m + 1.

We claim that S has an exact cover S ′ for B if and only
if w can be made the unique BV winner of the resulting
election by partition of voters (regardless of the tie-handling
model used).

From left to right: Suppose S has an exact cover S ′ for
B. Partition V the following way. Let V1 consist of:

• the m voters of the first group that correspond to the
exact cover (i.e., those m voters of the form
c Si Gi (G−Gi) F D E (B − Si) w x

for which Si ∈ S ′) and

• the m + 1 voters of the third group (i.e., all voters of
the form x c Ek F (E − Ek) G D B w.

Let V2 = V − V1. In subelection (C, V1), candidate x is the
unique level 1 BV winner. In subelection (C, V2), candidate
w is the first candidate who has a strict majority and moves
on to the final round of the election. Thus there are w and
x in the final run-off, which w wins with a strict major-
ity on the first level. Since both subelections, (C,V1) and
(C, V2), have unique BV winners, candidate w can be made
the unique BV winner by partition of voters, regardless of
the tie-handling model used.

From right to left: Suppose that w can be made the unique
BV winner by exerting control by partition of voters (for
concreteness, say in TP). Let (V1, V2) be such a success-
ful partition. Since w wins the resulting two-stage election,
w has to win at least one of the subelections (say, w wins
(C, V1)). If candidate c participates in the final round, he
or she wins the election with a strict majority no later than
on the second level, no matter which other candidates move
forward to the final election. That means that in both sub-
elections, (C, V1) and (C,V2), c must not be a BV winner.
Only in the second voter group candidate w (who has to
be a BV winner in (C, V1)) gets points earlier than on the
second-to-last level. So w has to be a level 3m + 1 BV win-
ner in (C, V1) via votes from the second voter group in V1.
As c scores already on the first two levels in voter groups 1
and 3, only x and the candidates in B can prevent c from
winning in (C, V2). However, since voters from the second
voter group have to be in V1 (as stated above), in subelection
(C, V2) only candidate x can prevent c from moving forward
to the final round. Since x is always placed behind c in all
votes except those votes from the third voter group, x has
to be a level 1 BV winner in (C,V2). In (C,V1) candidate w
gains all the points on exactly the (3m + 1)st level, whereas
the other candidates scoring more than one point up to this
level receive their points on either earlier or later levels, so
no candidate can tie with w on the (3m + 1)st level and w
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is the unique level 3m + 1 BV winner in (C,V1). As both
subelections, (C, V1) and (C, V2), have unique BV winners
other than c, the construction works in model TE as well.

It remains to show that S has an exact cover S ′ for B.
Since w has to win (C, V1) with the votes from the second
voter group, not all voters from the first voter group can be
in V1 (otherwise c would have n points already on the first
level). On the other hand, there can be at most m voters
from the first voter group in V2 because otherwise x would
not be a level 1 BV winner in (C, V2). To ensure that no
candidate in B has the same score as w, namely n points,
and gets these points on an earlier level than w in (C, V1),
there have to be exactly m voters from the first group in V2

and these voters correspond to an exact cover for B. ❑

Since Bucklin voting is a special case of fallback voting,
we can answer one of the questions raised in [10] as follows:

Corollary 3.2. Fallback voting is resistant to construc-
tive control by partition of voters in model TP.

The following construction will be used to handle the de-
structive case of control by partition of voters in model TP
for fallback voting (see Theorem 3.5 below). The construc-
tion starts from an instance of Restricted Hitting Set, a
restricted version of the NP-complete problem Hitting Set
(see, e.g., [13]), which is defined as follows:

Name: Restricted Hitting Set (RHS).
Instance: A set B = {b1, b2, . . . , bm}, a collection S =

{S1, S2, . . . , Sn} of nonempty subsets Si ⊆ B such that
n > m, and a positive integer k with 1 < k < m.

Question: Does S have a hitting set of size at most k, i.e.,
is there a set B′ ⊆ B with ‖B′‖ ≤ k such that for each
i, Si ∩B′ 6= ∅?

Note that by dropping the requirement “n > m > k > 1,”
we obtain the (unrestricted) Hitting Set problem. It is
easy to see that Restricted Hitting Set is NP-complete.

Construction 3.3. Let (B,S , k) be a given instance of
RHS, with a set B = {b1, b2, . . . , bm}, a collection S =
{S1, S2, . . . , Sn} of nonempty subsets Si ⊆ B, and an in-
teger k with 1 < k < m < n. Define election (C, V ),
where C = B ∪ D ∪ E ∪ {c, w} is the candidate set with
D = {d1, . . . , d2(m+1)} and E = {e1, . . . , e2(m−1)} and where

V consists of the following 2n(k + 1) + 4m + 2mk voters:1

1. For each i, 1 ≤ i ≤ n, k+1 voters approve of w Si c.

2. For each j, 1 ≤ j ≤ m, one voter approves of c bj w.

3. For each j, 1 ≤ j ≤ m, k − 1 voters approve of bj .

4. For each p, 1 ≤ p ≤ m + 1, one voter approves of
d2(p−1)+1 d2p w.

5. For each r, 1 ≤ r ≤ 2(m−1), one voter approves of er.

6. n(k + 1) + m− k + 1 voters approve of c.

7. mk + k − 1 voters approve of c w.

8. One voter approves of w c.

1Recall: Disapproved candidates are omitted and approved
candidates are ranked in the votes of a fallback election.

Note that maj (V ) = n(k + 1) + 2m + mk + 1. In elec-
tion (C, V ), only the two candidates c and w reach a strict
majority, w on the third level and c on the second level (see
Table 2). Thus c is the unique level 2 FV winner of election
(C, V ). Lemma 3.4 will be used in the proof of Theorem 3.5.

c dp ∈ D er ∈ E

score1 n(k + 1) + 2m + mk ≤ 1 1
score2 n(k + 1) + 2m + mk + 1 1 1
scorem+2 2n(k + 1) + 2m + mk + 1 1 1

w bj ∈ B

score1 n(k + 1) + 1 k − 1
score2 n(k + 1) + mk + k ≤ k + n(k + 1)
scorem+2 n(k + 1) + 2m + mk + k + 1 ≤ k + n(k + 1)

Table 2: Level i scores in (C, V ) for i ∈ {1, 2, m+2}.

Lemma 3.4. In election (C, V ) from Construction 3.3, for
every partition of V into V1 and V2, candidate c is an FV
winner of (C, V1) or (C, V2).

Proof. For a contradiction, suppose that in both subelec-
tions, (C, V1) and (C, V2), candidate c is not an FV win-
ner. Since score1

(C,V )(c) = ‖V ‖/2, the two subelections sat-
isfy that both ‖V1‖ and ‖V2‖ are even numbers, and that
score1

(C,V1)(c) = ‖V1‖/2 and score1
(C,V2)(c) = ‖V2‖/2. Other-

wise, c would have a strict majority already on the first level
in one of the subelections and would win that subelection.
For each i ∈ {1, 2}, c already on the first level has only one
point less than the strict majority threshold maj (Vi) in sub-
election (C, Vi), and c will get a strict majority in (C, Vi) no
later than on the (m + 2)nd level. Thus, for both i = 1 and
i = 2, there must be candidates whose level m + 2 scores in
(C, Vi) are higher than the level m + 2 score of c in (C, Vi).
Table 2 shows the level m + 2 scores of all candidates in
(C, V ). Only w and some bj ∈ B have a chance to beat c on
that level in (C, Vi), i ∈ {1, 2}.

Suppose that c is defeated in both subelections by two
distinct candidates from B (say, bx defeats c in (C, V1) and
by defeats c in (C,V2)). Thus the following must hold:2

scorem+2
(C,V1)(bx) + scorem+2

(C,V2)(by) ≥ scorem+2
(C,V )(c) + 2

2n(k + 1) + 2k − n(k + 1) ≥ 2n(k + 1) + mk + 2m + 3

2k ≥ n(k + 1) + mk + 2m + 3,

which contradicts our basic assumption m > k > 1. Thus
the only possibility for c to not win any of the two subelec-
tions is that c is defeated in one subelection, say (C, V1), by
a candidate from B, say bx, and in the other subelection,
(C, V2), by candidate w. Then it must hold that:2

scorem+2
(C,V1)(bx) + scorem+2

(C,V2)(w) ≥ scorem+2
(C,V )(c) + 2,

which is equivalent to

2n(k + 1) + 2k + 2m + mk + 1− n(k + 1) − 1

≥ 2n(k + 1) + mk + 2m + 3,

i.e., 2k ≥ n(k + 1) + 3. Since n > 1, this cannot hold, so c
must be an FV winner in one of the subelections. ❑

2For the left-hand sides of the inequalities, note that each
vote occurs in only one of the two subelections. To avoid
double-counting those votes that give points to both candi-
dates, we first sum up the overall number of points each can-
didate scores and then substract the double-counted points.
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Theorem 3.5. Fallback voting is resistant to destructive
control by partition of voters in model TP.

Proof. Susceptibility holds by [10, Lemma 3.4]. To prove
NP-hardness in the TP case, we reduce RHS to our control
problem. Consider the election (C, V ) constructed according
to Construction 3.3 from a given RHS instance (B,S , k),
where B = {b1, . . . , bm} is a set, S = {S1, . . . , Sn} is a
collection of nonempty subsets Si ⊆ B, and k is an integer
with 1 < k < m < n.

We claim that S has a hitting set B′ ⊆ B of size k if and
only if c can be prevented from being the unique FV winner
by partition of voters in model TP.

From left to right: Suppose B′ ⊆ B is a hitting set of size k
for S . Partition V into V1 and V2 as follows. Let V1 consist of
those voters of the second group where bj ∈ B′ and of those
voters of the third group where bj ∈ B′. Let V2 = V −V1. In
(C, V1), no candidate reaches a strict majority (see Table 3),
where maj (V1) = ⌊k2

/2⌋ + 1, and candidates c, w, and each
bj ∈ B′ win the election with an approval score of k.

c w bj ∈ B′ bj 6∈ B′

score1 k 0 k − 1 0
score2 k 0 k 0
score3 k k k 0

Table 3: Level i scores in (C, V1) for i ∈ {1, 2, 3} and
all candidates in B ∪ {c, w}.

c bj ∈ B′

score1 n(k + 1) + 2m− k + mk 0
score2 n(k + 1) + 2m− k + mk + 1 ≤ n(k + 1)
score3 ≥ n(k + 1) + 2m− k + mk + 1 ≤ n(k + 1)

w bj 6∈ B′

score1 n(k + 1) + 1 k − 1
score2 n(k + 1) + mk + k ≤ k + n(k + 1)
score3 n(k + 1) + mk + 2m + 1 ≤ k + n(k + 1)

Table 4: Level i scores in (C, V2) for i ∈ {1, 2, 3} and
all candidates in B ∪ {c, w}.

The level i scores in election (C,V2) for i ∈ {1, 2, 3} and
all candidates in B ∪ {c, w} are shown in Table 4. Since in
(C, V2) no candidate from B wins, the candidates participat-
ing in the final round are B′∪{c, w}. The scores in the final
election (B′ ∪ {c, w}, V ) can be seen in Table 5. Since can-
didates c and w with the same level 2 scores are both level 2
FV winners, candidate c has been prevented from being the
unique FV winner by partition of voters in model TP.

c w

score1 n(k + 1) + 2m + mk n(k + 1) + m + 2
score2 n(k + 1) + 2m + mk + 1 n(k + 1) + 2m + mk + 1

bj ∈ B′

score1 k − 1
score2 ≤ k + n(k + 1)

Table 5: Level i scores in the final-stage election
(B′ ∪ {c, w}, V ) for i ∈ {1, 2}.

From right to left: Suppose candidate c can be prevented
from being a unique FV winner by partition of voters in
model TP. From Lemma 3.4 it follows that candidate c par-
ticipates in the final round. Since c has a strict majority
of approvals, c has to be tied with or lose against another
candidate by a strict majority at some level. Only candidate
w has a strict majority of approvals, so w has to tie or beat

c at some level in the final round. Because of the low scores
of the candidates in D and E we may assume that only can-
didates from B are participating in the final round besides c
and w. Let B′ ⊆ B be the set of candidates who also partic-
ipate in the final round. Let ℓ be the number of sets in S not
hit by B′. As w cannot reach a strict majority of approvals
on the first level, we consider the level 2 scores of c and w:
score2

(B′∪{c,w},V )(c) = n(k+1)+2m+mk+1+ℓ(k+1), and

score2
(B′∪{c,w},V )(w) = n(k + 1) + 2m + mk + k − ‖B′‖+ 1.

Since c has a strict majority already on the second level, w
must tie or beat c on this level, so the following must hold:

score2
(B′∪{c,w},V )(c)− score2

(B′∪{c,w},V )(w) ≤ 0

‖B′‖ − k + ℓ(k + 1) ≤ 0.

This is possible only if ℓ = 0 (i.e., all sets in S are hit by B′),
so ‖B′‖ ≤ k. Thus S has a hitting set of size at most k. ❑

Finally, we turn to destructive control by partition of vot-
ers in model TE. The proof of Theorem 3.6 (which employs
a reduction from Dominating Set) is omitted due to space.

Theorem 3.6. Bucklin voting (and thus fallback voting
as well) is resistant to destructive control by partition of
voters in model TE.

4. CANDIDATE CONTROL IN BV
Theorem 4.1 strengthens the corresponding result for fall-

back voting [10].

Theorem 4.1. Bucklin voting is resistant to each of the
14 standard types of candidate control.

For the hardness proofs showing Theorem 4.1, we again
use the RHS problem defined in Section 3.

In this section, all reductions except one (namely that
used to prove Lemma 4.2) will apply Construction 4.3 below.
We first handle this one exception.

Lemma 4.2. Bucklin voting is resistant to constructive
control by deleting candidates.

Proof. Susceptibility holds by Lemma 2.1. To prove NP-
hardness of our control problem, we give a reduction from
RHS. Let (B,S , k) be a RHS instance with a set B =
{b1, b2, . . . , bm}, a collection S = {S1, S2, . . . , Sn} of nonempty
subsets Si ⊆ B, and a positive integer k satisfying k < m <
n. Let si = n + k − ‖Si‖, 1 ≤ i ≤ n, and s =

Pn
i=1 si. Note

that all si are positive, since m < n.
Define election (C, V ) with candidate set

C = B ∪ C′ ∪ D ∪E ∪ F ∪ {w},
where C′ = {c1, c2, . . . , ck+1}, D = {d1, d2, . . . , ds}, E =
{e1, e2, . . . , en}, F = {f1, . . . , fn+k}, and let w be the dis-
tinguished candidate. Note that the number of candidates
in D is s = n2 + kn −Pn

i=1 ‖Si‖. For each i, 1 ≤ i ≤ n, let
Di = {d

1+
Pi−1

j=1 sj
, . . . , dPi

j=1 sj
}, so ‖Di‖ = si.

Define V to consist of the following 2(n+k+1)+1 voters:

1. For each i, 1 ≤ i ≤ n, there is one voter of the form:
Si Di w C′ E (D −Di) (B − Si) F.

2. For each j, 1 ≤ j ≤ k + 1, there is one voter of the
form: E (C′ − {cj}) cj B D w F.
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3. There are k+1 voters of the form: w F C′ E B D.

4. There are n voters of the form: C′ D F B w E.

5. There is one voter of the form: C′ w D F E B.

There is no unique BV winner in election (C, V ), since w
and the candidates in C′ are level n + k + 1 BV winners.

We claim that S has a hitting set of size k if and only if
w can be made the unique BV winner by deleting at most
k candidates.

From left to right: Suppose S has a hitting set B′ of size k.
Delete the corresponding candidates. Now, w is the unique
level n + k BV winner of the resulting election.

From right to left: Suppose w can be made the unique
BV winner by deleting at most k candidates. Since k + 1
candidates other than w have a strict majority on level n +
k +1 in election (C, V ), after deleting at most k candidates,
there is still at least one candidate other than w with a strict
majority of approvals on level n + k + 1. However, since
w was made the unique BV winner by deleting at most k
candidates, w must be the unique BV winner on a level lower
than or equal to n + k. This is possible only if in all n votes
of the first voter group w moves forward by at least one
position. This, however, is possible only if S has a hitting
set B′ of size k. ❑

Construction 4.3 will be applied to prove the remaining
13 cases of candidate control stated in Theorem 4.1.

Construction 4.3. Let (B,S , k) be a given instance of
RHS, where B = {b1, b2, . . . , bm} is a set, S = {S1, . . . , Sn}
is a collection of nonempty subsets Si ⊆ B such that n >
m, and k < m is a positive integer. (Thus, n > m >
k > 1.) Define election (C, V ), where C = B ∪ {c, d, w}
is the candidate set and where V consists of the following
6n(k + 1) + 4m + 11 voters:

1. 2m + 1 voters: c d B w.

2. 2n + 2k(n − 1) + 3 voters: c w dB.

3. 2n(k + 1) + 5 voters: w c d B.

4. For each i, 1 ≤ i ≤ n, 2(k+1) voters: d Si c w (B − Si).

5. For each j, 1 ≤ j ≤ m, two voters: d bj w c (B − {bj}).
6. 2(k + 1) voters: dw c B.

We now prove Theorem 4.1 (except for the case already
handled separately in Lemma 4.2) via Construction 4.3, mak-
ing use of the following lemma.

Lemma 4.4. Consider the election (C,V ) constructed ac-
cording to Construction 4.3 from a RHS instance (B,S , k).

1. c is the unique level 2 BV winner of ({c, d,w}, V ).

2. If S has a hitting set B′ of size k, then w is the unique
BV winner of election (B′ ∪ {c, d, w}, V ).

3. Let D ⊆ B ∪ {d, w}. If c is not a unique BV winner
of election (D∪{c}, V ), then there exists a set B′ ⊆ B
such that

(a) D = B′ ∪ {d, w},
(b) w is a level 2 BV winner of (B′ ∪ {c, d, w}, V ),

(c) B′ is a hitting set for S of size at most k.

Proof. For the first part, note that there is no level 1 BV
winner in election ({c, d, w}, V ) and we have the following
level 2 scores in this election:

score2
({c,d,w},V )(c) = 6n(k + 1) + 2(m− k) + 9,

score2
({c,d,w},V )(d) = 2n(k + 1) + 4m + 2k + 3,

score2
({c,d,w},V )(w) = 4n(k + 1) + 2m + 10.

Since n > m (which implies n > k), we have:

score2
({c,d,w},V )(c)− score2

({c,d,w},V )(d)

= 4n(k + 1)− (2m + 4k) + 6 > 0,

score2
({c,d,w},V )(c)− score2

({c,d,w},V )(w)

= 2n(k + 1)− (2k + 1) > 0.

Thus, c is the unique level 2 BV winner of ({c, d, w}, V ).
For the second part, suppose that B′ is a hitting set for

S of size k. Then there is no level 1 BV winner in election
(B′ ∪ {c, d, w}, V ), and we have the following level 2 scores:

score2
(B′∪{c,d,w},V )(c) = 4n(k + 1) + 2(m− k) + 9,

score2
(B′∪{c,d,w},V )(d) = 2n(k + 1) + 4m + 2k + 3,

score2
(B′∪{c,d,w},V )(w) = 4n(k + 1) + 2(m− k) + 10,

score2
(B′∪{c,d,w},V )(bj) ≤ 2n(k + 1) + 2 for all bj ∈ B′.

It follows that w is the unique level 2 BV winner of election
(B′ ∪ {c, d, w}, V ).

For the third part, let D ⊆ B ∪ {d, w}. Suppose c is not
a unique BV winner of election (D ∪ {c}, V ).

(3a) Other than c, only w has a strict majority of votes
on the second level and only w can tie or beat c in
(D ∪ {c}, V ). Thus, since c is not a unique BV win-
ner of election (D ∪ {c}, V ), w is clearly in D. In
(D ∪ {c}, V ), candidate w has no level 1 strict ma-
jority, and candidate c has already on level 2 a strict
majority. Thus, w must tie or beat c on level 2. For a
contradiction, suppose d /∈ D. Then

score2
(D∪{c},V )(c) ≥ 4n(k + 1) + 2m + 11;

score2
(D∪{c},V )(w) = 4n(k + 1) + 2m + 10,

which contradicts the observation that w ties or beats
c on level 2. Thus, D = B′ ∪ {d, w}, where B′ ⊆ B.

(3b) This part follows immediately from the proof of (3a).

(3c) Let ℓ be the number of sets in S not hit by B′. We
have that score2

(B′∪{c,d,w},V )(w) = 4n(k + 1) + 10 +

2(m − ‖B′‖) and score2
(B′∪{c,d,w},V )(c) = 2(m − k) +

4n(k+1)+9+2(k+1)ℓ. From part (3b) we know that

score2
(B′∪{c,d,w},V )(w) ≥ score2

(B′∪{c,d,w},V )(c),

so 4n(k + 1) + 10 + 2(m− ‖B′‖) ≥ 2(m− k) + 4n(k +
1) + 9 + 2(k + 1)ℓ. This inequality implies 1 > 1

2
≥

‖B′‖ − k + (k + 1)ℓ. Since T = ‖B′‖ − k + (k + 1)ℓ is
an integer, we have T ≤ 0. If T = 0 then ℓ = 0 and
‖B′‖ = k. Now assume T < 0. If ℓ = 0, B′ is a hitting
set with ‖B′‖ < k, and if ℓ > 0 then (k + 1)ℓ > k,
which contradicts T = ‖B′‖−k+(k+1)ℓ < 0. In each
possible case, we have a hitting set (as ℓ = 0) of size
at most k. ❑
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Proof of Theorem 4.1. In each case, susceptibility holds
by Lemma 2.1. For the four adding-candidates cases, NP-
hardness follows immediately from Lemma 4.4.

NP-hardness for constructive control by deleting candi-
dates has been shown in Lemma 4.2. To show the problem
NP-hard in the destructive case, let (C,V ) be the election
resulting from a RHS instance (B,S , k) according to Con-
struction 4.3, and let c be the distinguished candidate. We
claim that S has a hitting set of size at most k if and only
if c can be prevented from being a unique BV winner by
deleting at most m− k candidates.

From left to right: Suppose S has a hitting set B′ of size k.
Delete the m− k candidates B −B′. Now, both candidates
c and w have a strict majority on level 2, but

score2
({c,d,w}∪B′,V )(c) = 4n(k + 1) + 2(m− k) + 9,

score2
({c,d,w}∪B′,V )(w) = 4n(k + 1) + 2(m− k) + 10,

so w is the unique level 2 BV winner of this election.
From right to left: Suppose that c can be prevented from

being a unique BV winner by deleting at most m− k candi-
dates. Let D′ ⊆ B ∪ {d, w} be the set of deleted candidates
(so c /∈ D′) and D = (C −D′)−{c}. It follows immediately
from Lemma 4.4 that D = B′∪{d, w}, where B′ is a hitting
set for S of size at most k.

To show that Bucklin voting is resistant to constructive
(or destructive) control by partition/run-off partition of can-
didates in TE and TP, map the instance (B,S , k) to the in-
stance ((C,V ), w) (or ((C,V ), c)), where (C,V ) is the elec-
tion from Construction 4.3. NP-hardness now follows from
Lemma 4.4; the detailed argument is omitted due to space
limitations (note that, in particular, if S has a hitting set
of size k, partitioning C = (C1, C2) into C1 = B′ ∪ {c, d, w}
and C2 = C − C1 will be successful). ❑ Theorem 4.1

5. ADDING/DELETING VOTERS IN BV
Finally, we turn to control by adding voters and by delet-

ing voters for Bucklin voting. As with fallback voting [10],
we have resistance in the constructive cases and vulnerabil-
ity in the destructive cases. Since Bucklin voting is a special
case of fallback voting, the two resistance results in Theo-
rem 5.1 (which both are shown via a reduction from X3C)
strengthen the corresponding results for fallback voting [10]
and the two vulnerability results immediately follow from
the corresponding results for fallback voting [10]. The proof
of Theorem 5.1 is omitted due to space limitations.

Theorem 5.1. Bucklin voting is resistant to constructive
control by adding voters and by deleting voters and is vulner-
able to destructive control by adding voters and by deleting
voters.

6. CONCLUSIONS
Solving the three open questions of Erdélyi and Rothe [10],

we have shown that fallback voting is fully resistant to con-
trol by partition of voters. Thus, among natural voting
systems with a polynomial-time winner problem, fallback
voting has the most proven resistances to control. SP-AV
is known to have an almost as broad control resistance [9];
however, fallback voting is arguably more natural than SP-
AV. We have also studied the control complexity of Bucklin
voting, thus improving the corresponding resistance results

for fallback voting. One case of control by partition of voters
(namely, the destructive case in model TP) remains open for
Bucklin voting. It would also be interesting and challenging
to complement our worst-case hardness results by theoreti-
cal and empirical typical-case studies of these problems.
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ABSTRACT
We introduce a new algorithm for the Unweighted CoalitionalMa-
nipulation problem under the Maximin voting rule. We prove that
the algorithm gives an approximation ratio of1 2

3
to the correspond-

ing optimization problem. This is an improvement over the previ-
ously known algorithm that gave a 2-approximation. We also prove
that its approximation ratio is no better than1 1

2
, i.e., there are in-

stances on which a1 1
2
-approximation is the best the algorithm can

achieve. Finally, we prove that no algorithm can approximate the
problem better than to the factor of1 1

2
, unlessP = NP .

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence—
Multiagent Systems

General Terms
Algorithms

Keywords
Social choice theory, Algorithms, Approximation

1. INTRODUCTION
In recent years, the importance of game-theoretic analysisas a

formal foundation for multiagent systems has been widely recog-
nized in the agent research community. As part of this research
agenda, the field ofcomputational social choicehas arisen to ex-
plore ways in which multiple agents can effectively (and tractably)
use elections to combine their individual, self-interested prefer-
ences into an overall choice for the group.

In an election, voters (agents) submit linear orders (rankings, or
profiles) of the candidates (alternatives); avoting rule is then ap-
plied to the rankings in order to choose the winning candidate. In
the prominent impossibility result proven by Gibbard and Satterth-
waite [8, 11], it was shown that for any voting rule, a) which is not
a dictatorship, b) which is onto the set of alternatives, andc) where
there are at least three alternatives, there exist profiles where a voter
can benefit by voting insincerely. Submitting insincere rankings in
an attempt to benefit is calledmanipulation. Exploring the compu-
tational complexity of, and algorithms for, thismanipulation prob-

Cite as: An Algorithm for the Coalitional Manipulation Problem un-
der Maximin, Michael Zuckerman, Omer Lev and Jeffrey S. Rosenschein,
Proc. of 10th Int. Conf. on Autonomous Agents and MultiagentSys-
tems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.), May,
2–6, 2011, Taipei, Taiwan, pp. 845-852.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

lem is one of the most important research areas in computational
social choice.

There are several ways to circumvent the Gibbard-Satterthwaite
result, one of which is by using computational complexity asa bar-
rier against manipulation. The idea behind this technique is as
follows: although there may exist a successful manipulation, the
voter mustdiscoverit before it can be used—but for certain voting
rules, discovering a successful manipulation might be computation-
ally hard. This argument was used already in 1989 by Bartholdi et
al. [2], and in 1991 by Bartholdi and Orlin [1], where they proved,
respectively, that second-order Copeland and Single Transferable
Vote are bothNP-hard to manipulate.

Later, the complexity of coalitional manipulation was studied by
Conitzer et al. [3]. In the coalitional manipulation problem, a coali-
tion of potentially untruthful voters try to coordinate their ballots so
as to make some preferred candidate win the election. Conitzer et
al. studied the problem where manipulators are weighted: a voter
with weightl counts asl voters, each of weight1. This problem was
shown to beNP-hard, for many voting rules, even for a constant
number of candidates. However, it has been argued that a more
natural setting is the unweighted coalitional manipulation (UCM)
problem, where all voters have equal power. In a recent paper[13],
Xia et al. established as one of their main results that UCM isNP-
hard under the Maximin voting rule, even for 2 untruthful voters.

In 2009, Zuckerman et al. [14] defined a natural optimization
problem for the unweighted setting (i.e., Unweighted Coalitional
Optimization, UCO), namely finding the minimal number of ma-
nipulators sufficient to make some predefined candidate win.It is
proven, as a corollary of their results, that the heuristic greedy al-
gorithm proposed in the paper gives a2-approximation to the UCO
problem under Maximin. Here, we further study the UCO problem
under Maximin, proposing a new greedy algorithm that gives a1 2

3
-

approximation to the problem.1 We then provide an example show-
ing that the approximation ratio of the algorithm is no better than
1 1

2
. Furthermore, since this gap (between1 2

3
and1 1

2
) is due to the

fact that the size of the manipulating coalition is rounded upwards,
the actual bound on the ratio between the size of the coalition re-
turned by the algorithm, and the minimum size of manipulating
coalition, tends to1 1

2
as the number of voters tends to infinity.

2. RELATED WORK
Behavior designed to alter outcomes in the Maximin voting rule

has been widely studied. Perhaps the closest work to the UCM

1Strictly speaking, our algorithm is for thedecisionproblem, but
since the conversion of our algorithm to one for the optimization
problem is straightforward, we consider it an approximation algo-
rithm for the optimization problem.
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problem is control by adding voters (AV), which has been studied
by Faliszewski et al. [6]. The difference between AV controland
UCM is that in the latter, manipulative voters can vote whatever
they like in order to make their preferred candidate win, whereas in
the former, the votes in the additional set are fixed. Faliszewski et
al. proved that AV control in Maximin (as well as DV [Delete Vot-
ers] control and constructive AC [Add Candidates] control)isNP-
complete. In contrast, they showed polynomial-time algorithms for
a combination of ACu (a variant of Adding Candidates) and DC
(Delete Candidates), and for a combination of destructive AC and
DC control.

In another paper, Elkind et al. studied control of electionsby
cloning candidates [5]. For prominent voting rules (including Max-
imin) they characterized preference profiles for which there exist a
successful cloning manipulation. For Maximin, a profile is manipu-
lable by cloning if and only if the preferred candidate does not win,
but is Pareto optimal. The authors also provided a simple linear-
time algorithm for solving the cloning manipulation problem under
Maximin.

Yet another topic that involves outcome-altering behaviorin elec-
tions is bribery. In their paper [4], Elkind et al. investigated a model
of bribery where the price of each vote depends on the amount of
change that the voter is asked to implement. They showed thatfor
their model, bribery isNP-complete for Maximin, as well as for
some other voting rules.

3. MAXIMIN VOTING, MANIPULATION
An election consists of a setC = {c1, . . . , cm} of candidates,

and a setS = {v1, . . . , v|S|} of voters. Each voter provides a total
order on the candidates (i.e., each voter submits a linear ranking of
all the candidates). The setting also includes avoting rule, which is
a function from the set of all possible combinations of votesto C.

The Maximin voting rule is defined as follows. For any two
distinct candidatesx and y, let N(x, y) be the number of vot-
ers who preferx over y. The Maximin scoreof x is S(x) =
miny 6=x N(x, y). The candidate with the highest Maximin score
is the winner.

DEFINITION 3.1. In the CONSTRUCTIVECOALITIONAL UN-
WEIGHTED MANIPULATION (CCUM) problem, we are given a
setC of candidates, with a distinguished candidatep ∈ C, a set
of (unweighted) votersS that have already cast their votes (these
are the non-manipulators), and a setT of (unweighted) voters that
have not yet cast their votes (these are the manipulators). We are
asked whether there is a way to cast the votes inT so thatp wins
the election.

DEFINITION 3.2. In the UNWEIGHTED COALITIONAL OPTI-
MIZATION (UCO) problem we are given a setC of candidates,
with a distinguished candidatep ∈ C, and a set of (unweighted)
votersS that have already cast their votes (the non-manipulators).
We are asked for theminimal n such that a setT of sizen of (un-
weighted) manipulators can cast their votes in order to makep win
the election.

REMARK 3.3. We implicitly assume here that the manipulators
have full knowledge about the non-manipulators’ votes (this is the
common assumption in the literature). Unless explicitly stated oth-
erwise, we also assume that ties are broken adversarially tothe
manipulators, so that ifp ties with another candidate,p loses.
The latter assumption is equivalent to formulating the manipula-
tion problems in theirunique winnerversion, when one assumes
that all candidates with maximal score win, but asks thatp be the
only winner.

Throughout this paper we will use the convention, unless explic-
itly stated otherwise, that|C| = m, |S| = N and |T | = n. We
will denote Ni(x, y) = |{j | x ≻j y,≻j∈ S ∪ {1, . . . , i}}|.
That is, Ni(x, y) will denote the number of voters fromS and
from the firsti voters ofT that preferx over y (assumingS is
fixed, and fixing some order on the voters ofT ). Furthermore, we
will denote bySi(c) the accumulated score of candidatec from
the voters ofS and the firsti voters ofT . By definition, for each
x ∈ C, Si(x) = miny 6=x Ni(x, y). Also, we denote forx ∈ C,
MIN i(x) = {y ∈ C \ {x} | Si(x) = Ni(x, y)}. We denote
for 0 ≤ i ≤ n, ms(i) = maxc∈C\{p} Si(c). That is,ms(i) is
the maximum score of the opponents ofp afteri manipulators have
voted.

DEFINITION 3.4. The Condorcet winnerof an election is the
candidate who, when compared with every other candidate, ispre-
ferred by more voters.

Next we give a lower bound on the approximation ratio of any
polynomial-time algorithm for the UCO problem under Maximin.

PROPOSITION 3.5. No polynomial-time algorithm approximat-
ing the UCO problem under Maximin can do better than1 1

2
, unless

P = NP .

PROOF. Suppose, for contradiction, that there exists a polynomial-
time approximation algorithmA to the UCO problem under Max-
imin having approximation ratior < 1 1

2
. Then whenopt = 2,

the minimal size of manipulating coalition returned byA is n ≤
r · opt < 3. Since the size of the coalition is an integer, it fol-
lows thatn = 2. Therefore,A can decide the CCUM problem for
the coalition of 2 manipulators, which contradicts the factthat this
problem isNP-complete [13] (unlessP = NP).

4. THE ALGORITHM
Our algorithm for the CCUM problem under the Maximin vot-

ing rule is given as Algorithm 1 (see the final page of the pa-
per). The intuition behind Algorithm 1 is as follows. The algo-
rithm tries in a greedy manner to maximize the score ofp, and to
minimize the scores ofp’s opponents. To achieve this, for alli,
manipulatori putsp first in his preference list, making the score
of p grow by 1. He then builds a digraphGi−1 = (V, Ei−1),
whereV = C \ {p}, (x, y) ∈ Ei−1 iff ( y ∈ MIN i−1(x) and
p /∈ MIN i−1(x)). He tries first to rank candidates without any out-
going edges from them, since their score will not grow this way
(because their score is achieved vs. candidates who were already
ranked above them). When there are no candidates without out-
going edges, the algorithm tries to find a cycle with two adjacent
vertices having the lowest score. If it finds such a cycle, then it
picks the front vertex of these two. Otherwise, any candidate with
the lowest score is chosen. After ranking each candidate, the edges
in the graph are updated, so that all candidates whose minimal can-
didate has already been ranked will be with outgoing degree 0. For
an edge(x, y), if y has already been ranked, we remove all the
edges going out ofx, since if we rankx now, its score will not go
up, and so it does not depend on other candidates in MINi−1(x).
There is no need of an edge(x, y) if p ∈ MIN i−1(x), since for
all x ∈ C \ {p}, p is always ranked abovex, and so whethery is
ranked abovex or not, the score ofx will not grow.

Let us note a few points regarding the algorithm:

• When picking a candidate with an out-degree 0, the algo-
rithm first chooses candidates with the lowest score (among
the candidates with an out-degree 0). It appears that this issue
is critical for getting the approximation ratio of1 2

3
.
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• The candidates with out-degree 0 are kept in stacks in or-
der to guarantee a DFS-like order among candidates with the
same score (this is needed for Lemma 6.4, below, to work).

• After a candidateb is added to the manipulator’s preference
list, for each candidatey who has an outgoing edge(y, b),
the algorithm removes all the outgoing edges ofy, puts it
into the appropriate stack, and assignsb to bey’s “father”.
Essentially, the assignmenty.father ← b means that due to
b the score ofy did not grow. The “father” relation is used to
analyze the algorithm.

• Note the subtle difference between calculating the scores in
Algorithm 1 in this paper, as compared to Algorithm 1 in [14].
In the latter, the manipulatori calculates what the score would
be of the current candidatex if he putx at the current place
in his preference list; in the algorithm we are now presenting,
manipulatori just calculatesSi−1(x). This difference is due
to the fact that here, when we calculate the score ofx, we
know whetherdout(x) > 0, i.e., we know whether the score
of x will grow by 1 if we put it at the current available place.
So we separately compare the scores of candidates with out-
degree> 0, and the scores of candidates with out-degree 0.

DEFINITION 4.1. We refer to an iteration of the mainfor loop
in lines 3–37 of Algorithm 1 as astageof the algorithm. That is, a
stage of the algorithm is a vote of any manipulator.

DEFINITION 4.2. In the digraphGi built by the algorithm, if
there exists an edge(x, y), we refer toNi(x, y) = Si(x) as the
weightof the edge(x, y).

5. 2-APPROXIMATION
We first prove that Algorithm 1 has an approximation ratio of 2.

We then use this result in the subsequent proof of the1 2
3

approxi-
mation ratio.

THEOREM 5.1. Algorithm 1 has a2-approximation ratio for
the UCO problem under the Maximin voting rule.

To prove the above theorem, we first need the following two lem-
mas. In the first lemma, we prove that a certain sub-graph of the
graph built by the algorithm contains a cycle passing through some
distinguished vertex. We first introduce some more notation.

Let Gi = (V, Ei) be the directed graph built by Algorithm 1 in
stagei + 1. For a candidatex ∈ C \ {p}, let Gi

x = (V i
x , Ei

x) be
the graphGi reduced to the vertices that were ranked belowx in
stagei + 1, includingx.

Let V i(x) = {y ∈ V i
x | there is a path inGi

x from x to y}.
Also, letGi(x) be the sub-graph ofGi

x induced byV i(x).

LEMMA 5.2. Let i be an integer,0 ≤ i ≤ n− 1. Letx ∈ C \
{p} be a candidate. Denotet = ms(i). Suppose thatSi+1(x) =
t + 1. ThenGi(x) contains a cycle passing throughx.

PROOF. First of all note that for allc ∈ V i(x), Si(c) = t. It
follows from the fact that by definitionSi(c) ≤ t. On the other
hand,Si(x) = t, and all the other vertices inV i(x) were ranked
belowx. Together with the fact that the out-degree ofx was greater
than 0 whenx was picked, it gives us that for allc ∈ V i(x),
Si(c) ≥ t, and so for allc ∈ V i(x), Si(c) = t. We claim that
for all c ∈ V i(x), MIN i(c) ⊆ V i(x). If, by way of contradiction,
there existsc ∈ V i(x) s.t. there isb ∈ MIN i(c) whereb /∈ V i(x),
then b /∈ V i

x , since otherwise, ifb ∈ V i
x , then fromc ∈ V i(x)

and(c, b) ∈ Ei
x we get thatb ∈ V i(x). Sob /∈ V i

x , which means

that b was ranked byi + 1 abovex. After we rankedb we re-
moved all the outgoing edges fromc, and so we chosec beforex
sincedout(c) = 0 anddout(x) > 0 (since the score ofx increased
in stagei + 1). This contradicts the fact thatc ∈ V i(x) ⊆ V i

x .
Therefore, for every vertexc ∈ V i(x) there is at least one edge in
Gi(x) going out fromc. Hence, there is at least one cycle inGi(x).
Since at the time of pickingx by voteri + 1, for all c ∈ V i(x),
dout(c) > 0, and by the observation that for allc ∈ V i(x),
Si(c) = t, we have that the algorithm picked the vertexx from
a cycle (lines 21–22 of the pseudocode).

In the following lemma, we show an upper bound on the growth
rate of the scores ofp’s opponents.

LEMMA 5.3. For all 0 ≤ i ≤ n− 2, ms(i + 2) ≤ ms(i) + 1.

PROOF. Let 0 ≤ i ≤ n − 2. Let x ∈ C \ {p} be a candidate.
Denotet = ms(i). By definition,Si(x) ≤ t. We would like to
show thatSi+2(x) ≤ t + 1. If Si+1(x) ≤ t, thenSi+2(x) ≤
Si+1(x) + 1 ≤ t + 1, and we are done. So let us assume now that
Si+1(x) = t + 1.

Let V i(x) andGi(x) be as before. By Lemma 5.2,Gi(x) con-
tains at least one cycle. LetU be one such cycle. Leta ∈ U be
the vertex that was ranked highest among the vertices ofU in stage
i + 1. Let b be the vertex beforea in the cycle:(b, a) ∈ U . Since
b was ranked belowa in stagei + 1, it follows that Si+1(b) =
Si(b) ≤ t.

Suppose, for contradiction, thatSi+2(x) > t+1. Then the score
of x increased in stagei + 2, and so whenx was picked byi + 2,
its out-degree in the graph was not 0.x was ranked byi + 2 at
places∗. Thenb was ranked byi + 2 aboves∗, since otherwise,
when we had reached the places∗, we would not pickx sinceb
would be available (with out-degree 0, or otherwise—with score
Si+1(b) ≤ t < t + 1 = Si+1(x))—a contradiction.

Denote byZ1 all the vertices inV i(x) that have an outgoing
edge tob in Gi(x). For all z ∈ Z1, b ∈ MIN i(z), i.e.,Si(z) =
Ni(z, b). We claim that allz ∈ Z1 were ranked byi + 2 above
x. If, by way of contradiction, there isz ∈ Z1, s.t. until the place
s∗ it still was not added to the preference list, then two cases are
possible:

1. If (z, b) ∈ Ei+1, then afterb was added toi+2’s preference
list, we removed all the outgoing edges ofz, and we would
put inz (with out-degree 0) instead ofx, a contradiction.

2. (z, b) /∈ Ei+1. Since(z, b) ∈ Ei, we haveSi(z) = Ni(z, b).
Also sincez was ranked byi + 1 below x, it follows that
Si(z) = t. So from(z, b) /∈ Ei+1, we have thatSi+1(z) =
t andNi+1(z, b) = t + 1. Therefore, when reaching the
places∗ in the i + 2’s preference list, whetherdout(z) = 0
or not, we would not pickx (with the scoreSi+1(x) = t+1)
sincez (with the scoreSi+1(z) = t) would be available, a
contradiction.

Denote byZ2 all the vertices inV i(x) that have an outgoing
edge inGi(x) to some vertexz ∈ Z1. In the same manner we can
show that all the vertices inZ2 were ranked in stagei + 2 above
x. We continue in this manner, by defining setsZ3, . . . , where the
setZl contains all vertices inV i(x) that have an outgoing edge to
some vertex inZl−1; the argument above shows that all elements
of these sets are ranked abovex in stagei + 2. As there is a path
from x to b in Gi(x), we will eventually reachx in this way, i.e.,
there is somel such thatZl contains a vertexy, s.t.(x, y) ∈ Ei(x).

Now, if (x, y) ∈ Ei+1(x), then sincey was ranked byi + 2
abovex, we haveSi+2(x) = Si+1(x) = t + 1, a contradiction.
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And if (x, y) /∈ Ei+1(x), then since(x, y) ∈ Ei(x) we get that
Ni+1(x, y) = t + 1 andSi+1(x) = t, a contradiction.

We are now ready to prove Theorem 5.1.

PROOF OFTHEOREM5.1. Let opt denote the minimum size
of coalition needed to makep win. It is easy to see thatopt ≥
ms(0) − S0(p) + 1. We setn = 2ms(0) − 2S0(p) + 2 ≤ 2opt.
Then, by Lemma 5.3:

ms(n) ≤ ms(0) +
⌈n

2

⌉

= 2ms(0) − S0(p) + 1.

Whereas:

Sn(p) = S0(p) + n = 2ms(0)− S0(p) + 2 > ms(n).

Sop will win when the coalition of manipulators is of sizen.

6. 12
3
-APPROXIMATION

Our next goal is to prove that Algorithm 1 has an approximation
ratio of 1 2

3
when there are no 2-cycles in the graphs built by the

algorithm.

THEOREM 6.1. For instances where there are no 2-cycles in the
graphsGi built by Algorithm 1, it gives a1 2

3
-approximation of the

optimum.

Let us give a general short overview of the proof of the above
theorem (we will give an intuitive description rather than afor-
mal/rigorous one). In Lemmas 6.2–6.5 we aim to prove that the
maximum score ofp’s opponents grows 3 times slower than the
score ofp, at the most. After proving this, the theorem will easily
follow. Recall that we proved in Lemma 5.2 that there is a cycle
passing throughx after i stages. Then we prove that at least one
such cycle stays after stagei + 1 (Lemma 6.2). In this cycle there
are 2 consecutive vertices with a low score (= t) (Lemma 6.3).
During stagei + 2 only the score of one of them will increase (at
the most), so the score of the second one will remaint (Lemma 6.4).
Then, in stagei + 3 this second vertex will be ranked abovex, and
the score ofx will not grow (and remaint + 1) (Lemma 6.5). This
way, during 3 stages the score ofx increases only by 1, whereas the
score ofp grows by 1 every stage.

Let us now state and prove the lemmas more formally.

LEMMA 6.2. Letx ∈ C\{p} be a candidate such thatSi+1(x) =
t + 1 (wheret = ms(i)). Let Gi(x) be as before. Then at least
one cycle inGi(x) that passes throughx will stay after stagei+1,
i.e., inGi+1.

PROOF. In Lemma 5.2 we have proved that inGi(x) at least
one cycle passes throughx. Sincex appears in the preference list
of i + 1 above all the MINi(x), it follows that each edge going
out of x in Gi(x), stays also inGi+1. After we addedx to the
preference list ofi + 1, all the vertices in all the cycles passing
throughx were added in some order to the preference list ofi + 1,
while they were with out-degree 0 at the time they were picked(it
can be proved by induction on the length of the path from the vertex
to x). Therefore, their “father” field was not null when they were
picked. We have to prove that there is at least one cycle whose
vertices were added in the reverse order (and then all the edges of
the cycle stayed inGi+1). Let z1 ∈ C \ {p, x} be some vertex
such that(x, z1) ∈ Gi(x) and there is a path inGi(x) from z1 to
x. Let z2 = z1.father. As observed earlier,z2 6= null. We first
show that whenz2 was picked byi + 1, it was with out-degree 0.
Indeed, if, by contradiction, we suppose otherwise, thenz2 would
have been picked afterz1 (the proof is by induction on the length of

the shortest path from vertex tox, that each vertex such that there is
a path from it tox was picked beforez2), and this is a contradiction
to the fact thatz2 = z1.father. Therefore, the “father” field ofz2

after stagei + 1 is not null.
Let z3 = z2.father. If z3 = x then we are done because we

have found a cyclex → z1 → z2 → z3 = x which was ranked in
stagei + 1 in the reverse order. Otherwise, by the same argument
as before, we can show that whenz3 was picked, its out-degree was
0. This way we can pass from a vertex to its father until we reach
p or null. We now show that we cannot reachp this way. Indeed,
if, by contradiction, we reachp, then there is a path fromx to p
in Gi, and so all the vertices in this path, includingx, were picked
when their out-degree was 0, and this is a contradiction to the fact
that the score ofx went up in stagei + 1. Therefore, we cannot
reachp when we go from a vertex to its father starting withz1.
Now, let zj be the last vertex before null in this path. We would
like to show thatzj = x. If, by contradiction,zj was picked before
x by voteri + 1, then all the verticeszj−1, . . . , z2, z1 would have
been picked beforex, when their out-degree is 0, and thenx would
have been picked when its out-degree is 0. This is a contradiction
to the fact thatx’s score increased in stagei + 1. Now suppose by
contradiction thatzj was picked afterx in stagei + 1. Then all
the vertices that have a path from them tox, includingz1, would
have been picked beforezj in stagei + 1, since the out-degree of
zj was greater than 0 when it was picked. This is a contradiction
to the fact thatzj was picked beforez1. So,zj = x. This way we
got a cyclex → z1 → . . . → zj−1 → x which was ranked in the
reverse order in stagei + 1.

LEMMA 6.3. Suppose that there are no 2-cycles in the graphs
built by the algorithm. Letx ∈ C \ {p} be a candidate such that
Si+1(x) = t+1 (wheret = ms(i)), and letGi(x) be as described
before Lemma 5.2. For each cycleU in Gi(x), if U exists inGi+1,
i.e., after stagei + 1, then there are 3 distinct verticesa, b, c, s.t.
(c, b) ∈ U , (b, a) ∈ U andSi+1(b) = Ni+1(b, a) = Si+1(c) =
Ni+1(c, b) = t.

PROOF. Let U ⊆ Ei(x) be a cycle which stays also afteri + 1
stages. Leta be the vertex which in stagei + 1 was chosen first
among the vertices ofU . Let b be the vertex beforea in U , i.e.,
(b, a) ∈ U , and letc be the vertex beforeb in U , i.e.,(c, b) ∈ U .
Since there are no 2-cycles,a, b, c are all distinct vertices. Recall
that for eachy ∈ V i(x), Si(y) = t. Sinceb was ranked below
a in stagei + 1, we haveSi+1(b) = Ni+1(b, a) = Ni(b, a) =
Si(b) = t. If c was chosen afterb in stagei + 1, thenSi+1(c) =
Ni+1(c, b) = Ni(c, b) = t and we are done. We now show thatc
cannot be chosen beforeb in stagei + 1. If, by way of contradic-
tion, c were chosen beforeb, since after rankinga, dout(b) = 0, it
follows that whenc was picked, its out-degree was also 0. Hence,
there existsd ∈ MIN i(c) which was picked byi + 1 beforec. And
so,Si+1(c) = t. On the other hand, sincec was picked beforeb,
we haveNi+1(c, b) = t+1 > Si+1(c), and so the edge(c, b) does
not exist inGi+1, a contradiction to the fact that the cycleU stayed
after stagei + 1.

LEMMA 6.4. Suppose that there are no 2-cycles in the graphs
built by the algorithm. Letx ∈ C \ {p} be a candidate such that
Si+1(x) = t+1 (wheret = ms(i)). Then after stagei+2 at least
one of the following will hold:

1. There will be a vertexw in Gi+2 s.t. p ∈ MINi+2(w) and
there will be a path fromx to w.

2. There will be a vertexw in Gi+2 withSi+2(w) ≤ t, s.t. there
will be a path fromx to w.
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PROOF. 1. If there is a vertexw s.t. p ∈ MIN i+1(w) and
there is a path fromx to w in Gi+1, w.l.o.g. let us assume
thatw was picked first in stagei+2 among all such vertices.
It is easy to see thatp ∈ MIN i+2(w). If x = w, then trivially
condition 1 holds, and we are done. Otherwise, in stagei +
2, w was ranked abovex. Let us build a chain of vertices,
starting fromx, by passing from a vertex to its father, as
was assigned in the stagei + 2. The chain stops when we
reachp or null. If we reachp this way then we are done,
becausea = b.father means that there is an edge(b, a) in
Gi−1, and it stayed inGi+2 (becausea was ranked aboveb).
Now we show that we can’t reach null this way. Suppose,
for contradiction, that we reach null, and letz be the vertex
before null in the chain. Ifz was ranked abovew in stage
i+2, then we get a contradiction since at the time of ranking
z, dout(w) = 0, whereasdout(z) > 0, and we would prefer
w overz. On the other hand, ifw was ranked abovez, then
x should have been ranked abovez too, since there is a path
in Gi+1 from x to w whereasdout(z) > 0. So we got a
contradiction since, by definition,z was ranked abovex.

2. Now suppose that the condition in the first item does not
hold. If there is a vertexw, s.t.Si+1(w) < t and there is
a path inGi+1 from x to w, again, w.l.o.g. let us assume that
w was picked first in stagei + 2 among all such vertices.
ThenSi+2(w) ≤ t, and similarly to item 1 above, there is a
path inGi+2 from x to w.

Now let us suppose that the above conditions do not hold.
Let us look at the vertexy which in stagei + 2 was picked
first from a cycleU s.t. there is a path fromx to U , and
there are two consecutive edges inU , each with weightt.
By Lemma 6.3 and Lemma 6.2 such a vertexy exists. Ac-
cording to the algorithm (lines 21–22) and to the definition
of y, beforey only vertices s.t. there is no path fromx to
them, could be picked. Therefore, there is no path fromy to
earlier-picked vertices. So wheny was picked, its out-degree
was> 0, and hence all the edges going out ofy stayed after
stagei + 2. According to the algorithm (lines 21–22), there
is a vertexw s.t.Si+1(w) = Ni+1(w, y) = t and there is a
path fromy to w in Gi+1. Let W be the set of all such ver-
ticesw. According to the algorithm (lines 17–18), in stage
i + 2, all the vertices inW will be picked before all the ver-
ticesz with Si+1(z) = Ni+1(z, y) = t + 1.

Now let us go from a vertex to its father, starting withx (like
in Lemma 6.2) till we reach null (we cannot reachp this way
since condition 1 does not hold). Similarly to Lemma 6.2,
it can be verified that the last vertex before null isy. If we
passed this way through some vertexw ∈ W then we are
done, since we got a path fromx to w, andSi+2(w) = t
(becausew was picked in stagei + 2 aftery). Otherwise we
are in the next situation: the path fromx to U , connects to
U through the vertexy (if this is not the case then we will
pass through somew ∈ W since according to the algorithm
(lines 16–18 and 32), all the vertices which have a path from
them tow will be picked before all other verticesw′ with an
edge(w′, y) with weightt + 1 and a path fromy to w′). Let
b be a vertex s.t.(y, b) ∈ Gi+1 (and so also(y, b) ∈ Gi+2)
and there is a path inGi+1 from b to somew ∈ W . Sinceb
belongs to a cycle with two edges of the weightt and there
is a path fromx to b, it follows thatb was picked byi + 2
aftery. As there is a path fromb to w, it follows thatb was
picked whendout(b) = 0, and henceb.father 6= null. Like
in Lemma 6.2, we go from a vertex to its father, starting with

b, until we reachw. This way we got a path inGi+2 from x
throughy andb tow, and as mentioned earlier,Si+2(w) = t.

The next lemma is central in the proof of Theorem 6.1. It states
that the maximum score ofp’s opponents grows rather slowly.

LEMMA 6.5. If there are no 2-cycles in the graphs built by the
algorithm, then for alli, 0 ≤ i ≤ n− 3 it holds thatms(i + 3) ≤
ms(i) + 1.

PROOF. Let i, 0 ≤ i ≤ n − 3. Let x ∈ C \ {p} be a candi-
date. Denotems(i) = t. We need to prove thatSi+3(x) ≤ t + 1.
If Si+1(x) ≤ t, then similarly to Lemma 5.3 we can prove that
Si+3(x) ≤ t + 1. So now we assume thatSi+1(x) = t + 1. By
Lemma 5.3, we have thatSi+2(x) = t + 1. Suppose by contradic-
tion thatSi+3(x) = t + 2. x was ranked in stagei + 3 at the place
s∗. By Lemma 6.4 there exists a vertexw s.t. there is a path in
Gi+2 from x to w, andp ∈ MIN i+2(w) or Si+2(w) ≤ t. Thenw
was ranked in stagei+3 above the places∗, because the score ofx
increased in stagei + 3, and if, by contradiction,w was not ranked
above the places∗, then when we got to the places∗ we would pre-
fer w overx. It is easy to see that all the vertices that have a path
in Gi+2 from them tow, and which were ranked beloww in stage
i+3, did not have their scores increased in that stage (since we took
them one after another in the reverse order on their path tow when
they were with out-degree 0). And asx was ranked beloww, its
score did not increase as well, and soSi+3(x) = Si+2(x) = t+1,
a contradiction.

LEMMA 6.6. If the minimum number of manipulators needed
to makep win is equal to 1, then Algorithm 1 performs optimally,
i.e., finds the manipulation forn = 1.

PROOF. Let us denote byopt the minimum number of manip-
ulators needed to makep win the election. LetS∗

i (a) denote the
score ofa ∈ C afteri manipulators voted in the optimal algorithm,
and letms∗(i) be the maximum score ofp’s opponents afteri ma-
nipulators voted in the optimal algorithm. Assume thatopt = 1. If
S0(p) > ms(0) thenopt = 0, a contradiction. On the other hand,
if S0(p) < ms(0), thenS∗

1 (p) ≤ ms(0) ≤ ms∗(1), sop is not a
unique winner after the manipulator voted, a contradiction. There-
fore, S0(p) = ms(0). Also, S∗

1 (p) = ms(0) + 1 andms∗(1) =
ms(0) (otherwise,p would not be a unique winner of the election).
We need to show thatms(1) = ms(0). Let x ∈ C \ {p}. If
S0(x) < ms(0) then trivially S1(x) ≤ ms(0) and we are done.
Now suppose thatS0(x) = ms(0). Suppose, by contradiction, that
S1(x) = ms(0) + 1. Then whenx was ranked by the first manip-
ulator,dout(x) > 0. Denote, as before, byV 0

x the candidates that
were ranked by Algorithm 1 belowx, includingx, in stage 1. For
eachy ∈ V 0

x , S0(y) = ms(0) anddout(y) > 0. Therefore, if
we puty instead ofx, its score will increase toms(0) + 1. Let
b ∈ V 0

x be the candidate ranked highest among candidates inV 0
x

by the optimal algorithm. Thenms∗(1) ≥ S∗
1 (b) = ms(0) + 1,

contradicting the fact thatms∗(1) = ms(0).

We are now ready to prove the main theorem.

PROOF OFTHEOREM 6.1. Letopt be as before. It is easy to see
thatopt ≥ ms(0)−S0(p)+1. We shall prove first that Algorithm 1

will find a manipulation forn =
⌈

3ms(0)−3S0(p)+3
2

⌉

≤ ⌈

3
2
opt

⌉

.

And indeed, by Lemma 6.5,

ms(n) ≤ ms(0) +

⌈

n

3

⌉

= ms(0) +

⌈

ms(0)− S0(p) + 1

2

⌉

.
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Figure 1: Example for lower bound on approximation ratio

Whereas,

Sn(p) = S0(p) + n

= S0(p) + (ms(0)− S0(p) + 1) +

⌈

ms(0)− S0(p) + 1

2

⌉

= ms(0) + 1 +

⌈

ms(0)− S0(p) + 1

2

⌉

> ms(0) +

⌈

ms(0)− S0(p) + 1

2

⌉

≥ ms(n).

Now, by Lemma 6.6, whenopt = 1, the algorithm performs op-
timally (i.e., finds the manipulation forn = 1). We have just
proved that foropt = 2 the algorithm finds the manipulation when
n ≤ ⌈

3
2
opt

⌉

= 3. Whenopt = 3, the algorithm finds the ma-
nipulation whenn ≤ ⌈

3
2
opt

⌉

= 5. It is easy to see that for all
opt > 3,

⌈

3
2
opt

⌉

< 5
3
opt. Therefore, the approximation ratio of

Algorithm 1 is≤ 5
3

= 1 2
3
.

It is worth noting that from the proof above we have that asopt
tends to infinity, the bound on the ratio between the size of the
manipulating coalition returned by Algorithm 1 andopt tends to
1 1

2
, sincen is bounded by

⌈

1 1
2
opt

⌉

.

THEOREM 6.7. The1 2
3
-approximation ratio of Algorithm 1 is

valid also when there are 2-cycles in the graphs built by the algo-
rithm.

We omit the proof of the above theorem due to space limitations.

7. LOWER BOUND ON THE APPROXIMA-
TION RATIO OF THE ALGORITHM

THEOREM 7.1. There is an asymptotic lower bound of1 1
2

to
the approximation ratio of Algorithm 1.

PROOF. Consider the following example (see Figure 1). Let
m = |C| be of the formm = 3t + 1 for an integert ≥ 2. De-
note l = 3t−1 = m−1

3
. Let C = {p, a0, b0, c0, a1, b1, c1, . . . ,

al−1, bl−1, cl−1}. Let N be a multiple of 3,N ≥ 6. Let k = N
3

.
S0(p) = 0; for all j, 0 ≤ j ≤ l − 1: S0(aj) = N0(aj , bj) =
S0(bj) = N0(bj , cj) = S0(cj) = N0(cj , aj) = k. In addi-
tion, for eachj, 0 ≤ j ≤ l − 2: N0(aj , aj+1) = k + 1, and
N0(al−1, a0) = k + 1. We first show that there exists a profile
of non-manipulators that induces the above scores. We will have
non-manipulator voters of 6 types;N−3

3
voters of each of the types

(1), (2) and (3), and one voter of each of the types (4), (5) and(6).
In all types,p is ranked in last place. To conserve space, we denote
by Aj the fragmentaj ≻ cj ≻ bj of the preference, byBj the
fragmentbj ≻ aj ≻ cj , and byCj the fragmentcj ≻ bj ≻ aj .
When showing the preference lists of the voters, it is convenient

to use the trinary representation of the indices. We have candidates
{p, a0, b0, c0, a1, b1, c1, . . . , a22...2, b22...2, c22...2}. For preference
list of type (1), we define the order0 ≻1 2 ≻1 1. In this preference
list, we have the fragmentsAj ordered by the order≻1, andp is
at the end. In type (2), we have the fragmentsCj ordered by the
order2 ≻2 1 ≻2 0, with p at the end. In type (3), we have the
fragmentsBj ordered by the order1 ≻3 0 ≻3 2, with p at the end.
In type (4), we have the fragmentsAj ordered by0 ≻4 1 ≻4 2,
with p at the end. In type (5), we have the fragmentsCj ordered by
1 ≻5 2 ≻5 0, with p at the end. Finally, in type (6) there are the
fragmentsBj ordered by2 ≻6 0 ≻6 1, with p at the end.

For instance, the next example illustrates the above profilefor
t = 3 (m = 28), and it easily generalizes to anyt ≥ 2.

(1):A0 ≻ A2 ≻ A1 ≻ A20 ≻ A22 ≻ A21 ≻ A10 ≻ A12 ≻ A11 ≻ p

(2):C22 ≻ C21 ≻ C20 ≻ C12 ≻ C11 ≻ C10 ≻ C2 ≻ C1 ≻ C0 ≻ p

(3):B11 ≻ B10 ≻ B12 ≻ B1 ≻ B0 ≻ B2 ≻ B21 ≻ B20 ≻ B22 ≻ p

(4):A0 ≻ A1 ≻ A2 ≻ A10 ≻ A11 ≻ A12 ≻ A20 ≻ A21 ≻ A22 ≻ p

(5):C11 ≻ C12 ≻ C10 ≻ C21 ≻ C22 ≻ C20 ≻ C1 ≻ C2 ≻ C0 ≻ p

(6):B22 ≻ B20 ≻ B21 ≻ B2 ≻ B0 ≻ B1 ≻ B12 ≻ B10 ≻ B11 ≻ p

It could be verified that the graphG0 which matches the above
profile looks as in Figure 1 (we omitted some of the dotted edges).

Now we will show that for the above example the approxima-
tion ratio of the algorithm is at least1 1

2
. Consider the following

preference list of the manipulators:

p ≻ Al−1 ≻ Al−2 ≻ . . . ≻ A0

p ≻ Al−2 ≻ Al−3 ≻ . . . ≻ A0 ≻ Al−1

p ≻ Al−3 ≻ Al−4 ≻ . . . ≻ A0 ≻ Al−1 ≻ Al−2

. . .

It can be verified that in the above preference list, the maximum
score ofp’s opponents (ms(i)) grows by 1 everym−1

3
stages (start-

ing with k + 1). In addition,p’s score grows by 1 every stage.
Therefore, when we apply the voting above, the minimum num-
ber of stages (manipulators)n∗ needed to makep win the election
should satisfyn∗ > k + 1 +

⌈

3n∗
m−1

⌉

. Since
⌈

3n∗
m−1

⌉

< 3n∗
m−1

+ 1,
the sufficient condition for makingp win is:

n∗ > k + 1 +
3n∗

m− 1
+ 1.

So, we have,

(m− 1)n∗ > (m− 1)(k + 2) + 3n∗

(m− 4)n∗ > (m− 1)(k + 2)

n∗ >
(m− 1)(k + 2)

m− 4
.

For large-enoughm, (m−1)(k+2)
m−4

< k + 3, and son∗ = k + 3
would be enough to makep win the election.

Now let us examine what Algorithm 1 will do when it gets this
example as input. One of the possible outputs of the algorithm
looks like this:

p ≻ C0 ≻ C1 ≻ . . . ≻ Cl−1

p ≻ B1 ≻ B2 ≻ . . . ≻ Bl−1 ≻ B0

p ≻ A2 ≻ A3 ≻ . . . ≻ Al−1 ≻ A0 ≻ A1

p ≻ C3 ≻ C4 ≻ . . . ≻ Cl−1 ≻ C0 ≻ C1 ≻ C2

. . .
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It can be verified that in the above preference list,ms(i) grows
by 1 every 3 stages, andp’s score grows by 1 every stage. There-
fore, the number of stagesn returned by Algorithm 1 that are needed
to makep win the election satisfiesn > k +

⌈

n
3

⌉

. Since
⌈

n
3

⌉ ≥ n
3

,
the necessary condition for makingp win the election is:

n > k +
n

3
.

And then we have,

3n > 3k + n

2n > 3k

n >
3

2
k

So we find that the ration
n∗ tends to1 1

2
asm andN (andk) tend

to infinity.

8. DISCUSSION
In spite of the popularity of the approach of using computational

complexity as a barrier against manipulation, this method has an
important drawback: although for some voting rules the manipu-
lation problem has been proven to beNP-complete, these results
apply only to the worst case instances; for most instances, the prob-
lem could be computationally easy. There is much evidence that
this is indeed the case, including work by Friedgut et al. [7], and
Isaksson et al. [9]. They prove that a single manipulator canmanip-
ulate elections with relatively high probability by simplychoosing
a random preference. This is true when the voting rule is far from
a dictatorship, in some well-defined sense.

Additional evidence for the ease of manipulating electionson
average is the work of Procaccia and Rosenschein [10], and Xia and
Conitzer [12]. They connected the frequency of manipulation with
the fraction of manipulators out of all the voters. Specifically, they
found that for a large variety of distributions of votes, when n =
o(
√

N), then with high probability the manipulators can affect the
outcome of the elections. The opposite is true whenn = ω(

√
N).

The current work continues this line of research. It strength-
ens the results of Zuckerman et al. [14], giving an algorithmwith
a better approximation ratio for the Unweighted Coalitional Opti-
mization (UCO) problem under Maximin. Equivalently, it narrows
the error window of the algorithm for the decision problem CCUM
under Maximin. The result can be viewed as another argument in
favor of the hypothesis that most rules are usually easy to manipu-
late.

9. CONCLUSIONS AND FUTURE WORK
We introduced a new algorithm for approximating the UCO prob-

lem under the Maximin voting rule, and investigated its approxima-
tion guarantees. In future work, it would be interesting to prove or
disprove that Algorithm 1 presented in [14] has an approximation
ratio of 1 2

3
, for those instances where there is no Condorcet win-

ner.2 Another direction is to implement both algorithms, so as to
empirically measure and compare their performance.
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Algorithm 1 Decides CCUM for Maximin voting rule

1: procedure MAXIMIN (C, p, XS, n) ⊲ XS is the set of preferences of voters inS, n is the number of voters inT
2: X ← ∅ ⊲ Will contain the preferences ofT
3: for i = 1, . . . , n do ⊲ Iterate over voters
4: Pi ← (p) ⊲ Putp at the first place of thei-th preference list
5: Build a digraphGi−1 = (V, Ei−1) ⊲ V = C \ {p}, (x, y) ∈ Ei−1 iff ( y ∈ MIN i−1(x) andp /∈ MIN i−1(x))
6: for c ∈ C \ {p} do ⊲ This for loop is used in the algorithm’s analysis
7: if dout(c) = 0 then
8: c.father← p
9: else

10: c.father← null
11: end if
12: end for
13: while C \ Pi 6= ∅ do ⊲ while there are candidates to be added toi-th preference list
14: Evaluate the score of each candidate based on the votes ofS andi− 1 first votes ofT
15: if there exists a setA ⊆ C \ Pi with dout(a) = 0 for eacha ∈ A then ⊲ if there exist vertices in the digraphGi−1 with

out-degree 0
16: Add the candidates ofA to the stacksQj , where to the same stack go candidates with the same score
17: b← Q1.popfront() ⊲ Retrieve the top-most candidate from the first stack—with the lowest scores so far
18: Pi ← Pi + {b} ⊲ Add b to i’s preference list
19: else
20: Lets← minc∈C\Pi

{Si−1(c)}
21: if there is a cycleU in Gi−1 s.t. there are 3 verticesa, b, c, s.t.(c, b), (b, a) ∈ U , andSi−1(c) = Si−1(b) = s then
22: Pi ← Pi + {b} ⊲ Add b to i’s preference list
23: else
24: Pickb ∈ C \ Pi s.t.Si−1(b) = s ⊲ Pick any candidate with the lowest score so far
25: Pi ← Pi + {b} ⊲ Add b to i’s preference list
26: end if
27: end if
28: for y ∈ C \ Pi do
29: if (y, b) ∈ Ei−1 then ⊲ If there is a directed edge fromy to b in the digraph
30: Remove all the edges ofEi−1 originating iny
31: y.father← b ⊲ This statement is used in the algorithm’s analysis
32: Addy to the front of the appropriate stackQj—according toSi−1(y)
33: end if
34: end for
35: end while
36: X ← X ∪ {Pi}
37: end for
38: XT ← X
39: if argmaxc∈C{Score ofc based onXS ∪XT } = {p} then
40: return true ⊲ p wins
41: else
42: return false
43: end if
44: end procedure
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ABSTRACT
A possible winner of an election is a candidate that has, in
some kind of incomplete-information election, the possibility
to win in a complete extension of the election. The first type
of problem we study is the Possible co-Winner with re-
spect to the Addition of New Candidates (PcWNA)
problem, which asks, given an election with strict prefer-
ences over the candidates, is it possible to make a designated
candidate win the election by adding a limited number of
new candidates to the election? In the case of unweighted
voters we show NP-completeness of PcWNA for a broad
class of pure scoring rules. We will also briefly study the case
of weighted voters. The second type of possible winner prob-
lem we study is Possible Winner/co-Winner under Un-
certain Voting System (PWUVS and PcWUVS). Here,
uncertainty is present not in the votes but in the election rule
itself. For example, PcWUVS is the problem of whether,
given a set C of candidates, a list of votes over C, a distin-
guished candidate c ∈ C, and a class of election rules, there
is at least one election rule from this class under which c
wins the election. We study these two problems for a class of
systems based on approval voting, the family of Copelandα

elections, and a certain class of scoring rules. Our main re-
sult is that it is NP-complete to determine whether there is
a scoring vector that makes c win the election, if we restrict
the set of possible scoring vectors for an m-candidate elec-
tion to those of the form (α1, . . . , αm−4, x1, x2, x3, 0), with
xi = 1 for at least one i ∈ {1, 2, 3}.
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1. INTRODUCTION
A central task in computational social choice is the study

of the algorithmic and computational properties of voting
systems (see, e.g., the bookchapters [15, 4]). One of the
classical problems in this field is the Manipulation prob-
lem, which deals with the question of whether a voter can
benefit from strategic behavior. The celebrated Gibbard–
Satterthwaite theorem [18, 23] says that in every nondicta-
torial voting system a strategic voter can alter the outcome
of an election to his or her advantage by voting insincerely.
Bartholdi et al. [2, 1] were the first to show that computa-
tional complexity can be used as a barrier to protect elec-
tions from manipulation attempts: In some voting systems,
though manipulable in principle, it is computationally hard
to compute successful manipulative preferences to cast.

Conitzer, Sandholm, and Lang [11] defined a more gen-
eral version of this problem, called Coalitional Weighted
Manipulation, where voters have weights and a whole group
of voters can coordinate their strategic efforts. The com-
plexity of this problem has been studied for many voting
systems, including plurality, Borda, veto, Copeland, STV,
maximin, plurality with run-off, regular cup, randomized
cup, and including a dichotomy result for the class of pure
scoring rules [11, 19]. In the case of unweighted voters the
complexity of coalitional manipulation is still unknown for
most pure scoring rules.

Another generalization of Manipulation is the Possible
Winner (PW) problem, which was first introduced by Kon-
czak and Lang [21]. Here the voters do not provide linear
orders over the candidates, but partial orders. The question
is whether there is an extension of the partial orders into lin-
ear ones such that a distinguished candidate wins the elec-
tion. Manipulation is the special case of PW in which all
voters but one report linear orders and one voter reports no
preference at all. This implies that NP-hardness results for
the Manipulation problem carry over to the PW problem.
For the important class of pure scoring rules and the case
of unweighted voters, the computational complexity of this
problem is also settled by a full dichotomy result (see [6, 5]):
It is solvable in polynomial time for plurality and veto, and
NP-complete for all other pure scoring rules. These results
also hold for PcW, the corresponding co-winner problem.

One variant of the PW problem was defined by Chevaleyre
et al. [9] and also studied by Xia et al. [25]: Possible co-
Winner with respect to the Addition of New Can-
didates (PcWNA). In this setting the voters report linear
orders over an initial set of candidates and after reporting
their preferences some new candidates are introduced. The
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problem is to determine whether one distinguished candidate
among the initial ones can be a winner if the voters’ prefer-
ences are extended to linear orders over the initial and the
new candidates. PcWNA is a special case of PcW and is in
some sense dual to the coalitional manipulation problem [9,
25]. In particular, the NP-hardness results for the PcW
problem are not inherited by PcWNA. Note that PcWNA
is also closely related to—but different from—the problem
of control via adding candidates [3, 20] and to the cloning
problem in elections [13].

We study the problem PcWNA in the case of unweighted
voters and pure scoring rules, giving a deeper insight into a
question raised by Chevaleyre et al. [9]. They showed that
if one new candidate is added in the case of unweighted vot-
ers, PcWNA is polynomial-time solvable for a certain class
of pure scoring rules but is NP-complete for one specific
pure scoring rule (see Table 1), and they asked if that re-
sult can be extended to other pure scoring rules. Our main
result in Section 3 establishes NP-completeness of PcWNA
for a whole class of pure scoring rules if one new candidate
is added. This result is obtained even for the case of un-
weighted voters. In addition, we briefly study the complex-
ity of the PcWNA problem in the case of weighted voters.

In the second setting we consider, the possible winner
problem is related to uncertainty about the election rule
used. A similar setting has been previously studied by sev-
eral authors. Conitzer, Sandholm, and Lang [11] showed
that the computational complexity of manipulation can be
increased by using a random instantiation for the cup pro-
tocol. Pini et al. [22] studied the problem of determining
winners by sequential majority voting if preferences may be
incomplete and the agenda is uncertain.

In general, we study the problem Possible Winner/co-
Winner under Uncertain Voting System (PWUVS and
PcWUVS), which asks whether a distinguished candidate,
after all votes have been cast, can be made a winner of the
election by choosing one election rule from a given class of
rules. Specifically we will consider this problem with respect
to a class of systems based on approval voting, the family
of Copelandα elections [14], and a certain class of scoring
rules. Walsh [24] proposed to investigate PWUVS for the
class of scoring rules, but to the best of our knowledge this
issue has not been studied before. As a main result in Sec-
tion 4, we show that PcWUVS and PWUVS are NP-hard
for scoring rules if we restrict the set of possible scoring vec-
tors for an m-candidate election, m ≥ 4, to those of the
form (α1, . . . , αm−4, x1, x2, x3, 0), with xi = 1 for at least
one i ∈ {1, 2, 3}. Note that some important scoring rules,
such as Borda and veto for m ≥ 4 candidates, are contained
in this restricted set of scoring vectors.

A motivation for uncertainty about the voting system used
is that this may prevent the voters from attempting to ma-
nipulate the election, since reporting an insincere preference
might result in a worse outcome for them. For example,
consider an election with three candidates (a, b, and c), nine
sincere voters (six cast the vote c > a > b, two b > a > c,
and one b > c > a), and three strategic voters (whose true
preferences are a > b > c). If the strategic voters would
know for sure that the election is held under the plurality
rule (which values a first position by one point and all other
positions by zero points), they might have an incentive to
not waste their votes by voting sincerely (a > b > c) but
rather to help their second preferred candidate, b, to tie for

winner with c by casting the three votes b > a > c. However,
if the election is held under the Borda rule (which, for three
candidates, values a first position by two points, a second
position by one point, and a last position by zero points),
casting the three insincere votes b > a > c would make
their most despised candidate c win with 13 points in total
(leaving b second with 12 points and a last with 11 points),
whereas the three sincere votes a > b > c would make their
favorite candidate a win with 14 points in total (leaving c
second with 13 points and b last with 9 points). This means
that uncertainty about the scoring rule may give the voters
a strong incentive to reveal their true preferences.

2. DEFINITIONS AND NOTATION
An election (C, V ) is given by a set C of candidates and a

list V of votes over C. In preference-based voting systems,
each vote in V is a (strict) linear ordering of the candidates
in C, where the underlying binary relation > on C is total
(either c > d or d > c for all c, d ∈ C, c 6= d), transitive (for
all c, d, e ∈ C, if c > d and d > e then c > e), and asym-
metric (for all c, d ∈ C, if c > d then d > c does not hold).
Here, c > d means that candidate c is (strictly) preferred to
candidate d. A voting system is a rule to determine the win-
ner(s) of an election. We will consider three different types
of voting systems: (pure) scoring rules, Copelandα elections,
and (variants of) approval voting.

Scoring rules (a.k.a. scoring protocols): Each scor-
ing rule with m candidates is specified by an m-dimensional
scoring vector ~α = (α1, α2, . . . , αm) satisfying that

α1 ≥ α2 ≥ · · · ≥ αm, (1)

where each weight αj is a nonnegative integer. For an elec-
tion (C, V ), a candidate c ∈ C ranked at jth position in a
vote v ∈ V receives αj points from v. The score of c in
(C, V ), denoted by score(C,V )(c), is the sum of all points c
receives from all voters in V , and the winners of (C, V ) are
the candidates with maximum score. We may assume that
the last weight, αm, in the scoring vector is always zero, since
each scoring rule not satisfying this condition can easily be
transformed into one that satisfies it (see [19]). Adopting a
notion introduced by Betzler and Dorn [6], we say a scor-
ing rule is pure if for each m ≥ 2, the scoring vector for
m candidates can be obtained from the scoring vector for
m− 1 candidates by inserting one additional weight at any
position subject to satisfying (1). One class of pure scoring
rules is k-approval. Here the scoring vector has a one in
the first k positions and a zero in all remaining positions.
1-approval—which may be better known under the name
plurality—has the vector (1, 0, . . . , 0), and (m− 1)-approval
for m candidates—which may be better known under the
name antiplurality or veto—has the vector (1, . . . , 1, 0). An-
other prominent scoring rule is the Borda rule, which has
the scoring vector (m− 1, m− 2, . . . , 1, 0) for m candidates.

Copelandα, for a rational number α, 0 ≤ α ≤ 1:
The winners are determined by pairwise comparisons of the
candidates. For each c ∈ C, let win(c) denote the num-
ber of candidates c beats in a pairwise comparison, and let
tie(c) denote the number of candidates c ties with in a pair-
wise comparison. The Copelandα score of a candidate c is
win(c) + α · tie(c), and the candidates with maximum score
win the election.

Approval voting: Every voter either approves or disap-
proves of each candidate, and the approval score of a candi-
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date is the sum of his or her approvals. The candidates with
the highest approval score win the election.

In the above voting systems, if there is only one candidate
with maximum score, he or she is the unique winner.

The Possible co-Winner with respect to the Ad-
dition of New Candidates problem for a given voting
system E is defined as follows:

Name: E-Possible co-Winner with respect to the
Addition of New Candidates (E-PcWNA).

Given: A set of candidates C = {c1, . . . , cm}, a list of votes
V = {v1, . . . , vn} that are linear orders over C, a set
C′ with |C′| = k, k ∈ N, of new candidates, and a
distinguished candidate c ∈ C.

Question: Is there an extension of the votes in V to linear
orders over C∪C′ such that c is a winner of the election
held under voting system E .

In contrast to the above-defined problem where uncer-
tainty is in the preferences, in Section 4.1 we will study
another possible winner problem where uncertainty is in the
voting system itself. This is the Possible co-Winner un-
der Uncertain Voting System problem for a given class
V of voting systems, which formally is defined as follows:

Name: V-Possible co-Winner under Uncertain Vot-
ing System (PcWUVS).

Given: An election E = (C, V ), with the set of candidates
C, a list of voters V consisting of linear orders over C,
and a distinguished candidate c ∈ C.

Question: Is there a voting system E in V such that c is a
winner of the election held under E?

The problem is stated for the co-winner case. The unique-
winner variant, PWUVS, is defined analogously by replac-
ing “a winner” by “the unique winner” in the Question field
above.

For the study of the computational complexity of the
problems defined above, we will always assume that vot-
ers are unweighted and that the number of both voters and
candidates is unbounded, unless stated otherwise.

3. POSSIBLE WINNER WRT. THE ADDI-
TION OF NEW CANDIDATES

3.1 Unweighted Voters
In this section we study the problem PcWNA for pure

scoring rules in the case of unweighted voters. Table 1 shows
the results about the complexity of PcWNA for pure scor-
ing rules that are already known from earlier work [9, 10,
25], where it is always assumed that voters are unweighted
and that the number of initial candidates is unbounded.
In particular, PcWNA is in P for the Borda rule for any
fixed number of candidates, yet is NP-complete for the scor-
ing vector (3, 2, 1, 0, . . . , 0) when the number of candidates
is unbounded. Thus, this NP-completeness result is about
a more general problem and does not contradict with the
polynomial-time solvability of Borda in the restricted case
of four candidates.

We now extend the result of Chevaleyre et al. [9] that
PcWNA is NP-complete for pure scoring rules with vector
(3, 2, 1, 0, . . . , 0) when one new candidate is added by show-
ing that NP-completeness of PcWNA holds even for the
class of pure scoring rules of the form (α1, α2, 1, 0, . . . , 0)
with α1 > α2 > 1.

Scoring rule PcWNA

Plurality in P (see [9])
Veto in P (see [9])
Borda in P (see [9])
2-Approval in P (see [10])
k-Approval, |C′| ≤ 2 in P (see [9, 10])
k-Approval, k ≥ 3, |C′| ≥ 3 NP-complete (see [9, 10])
(αi − αi+1) ≤ (αi+1 − αi+2), in P (see [9])

1 ≤ i ≤ m− 2
(3, 2, 1, 0, . . . , 0), |C′| = 1 NP-complete (see [9])

Table 1: Previous results on the complexity of
PcWNA for pure scoring rules.

Theorem 3.1. PcWNA is NP-complete for pure scoring
rules of the form (α1, α2, 1, 0, . . . , 0) with α1 > α2 > 1, if
one new candidate is added.

Proof. Membership in NP is obvious, and the proof of
NP-hardness is by a reduction from the NP-complete 3-DM
problem, which is defined as follows (see [17]):

Name: Three-Dimensional Matching (3-DM).
Given: A set M ⊆ W × X × Y , with W = {w1, . . . , wq},

X = {x1, . . . , xq}, and Y = {y1, . . . , yq}.
Question: Is there a subset M ′ ⊆ M with |M ′| = q, such

that no two elements of M ′ agree in any coordinate?

Let M ⊆ W ′×X ′×Y ′ be an instance of 3-DM with W ′ =
{w′

1, . . . , w
′
q}, X ′ = {x′1, . . . , x′q}, and Y ′ = {y′1, . . . , y′q},

where m = |M |. Let p(s) be the number of elements in M
in which s ∈ W ′ ∪X ′ ∪ Y ′ occurs.

Construct an instance of the PcWNA problem with the
election (C, V ) having the set C = W ∪X ∪ Y ∪ {b, c} ∪D
of candidates, with W = {w1, . . . , wq}, X = {x1, . . . , xq},
and Y = {y1, . . . , yq}. The new candidate to be added is a,
so C′ = {a}. D contains only dummy candidates, needed
to pad the votes so as to make the reduction work. Table 2
shows the list V = V1∪V2 ∪V3∪V4 of votes. Note that only
the first three candidates of each vote will be specified, since
all other candidates do not receive any points. The numbers
behind each vote denote their multiplicity. All places that
need to be filled by a dummy candidate will be indicated
by d (with no explicit subscript specified). Note that it is
possible to substitute the d’s by a polynomial number of
dummy candidates such that none of them receives more
than qα1 points.

V1 wi>xj>yk 1, ∀(w′
i, x

′
j , y

′
k) ∈ M

wi> d > d q + m + 1− p(w′
i), ∀wi ∈ W

V2 d > d >xi (q + m)α1 + (2− p(x′i))α2 − 1, ∀xi ∈ X
d > d >yi (q + m)α1 + α2 + 1− p(y′i), ∀yi ∈ Y

V3
c > d > d q + m
d > c > d 1

V4 d > d > b (q + 2m)α1 + 2α2

Table 2: Construction for the proof of Theorem 3.1.
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The scores of the single candidates in election (C, V ) are:

score(C,V )(c) = (q + m)α1 + α2,

score(C,V )(wi) = (q + m + 1)α1, 1 ≤ i ≤ q,

score(C,V )(xi) = (q + m)α1 + 2α2 − 1, 1 ≤ i ≤ q,

score(C,V )(yi) = (q + m)α1 + α2 + 1, 1 ≤ i ≤ q,

score(C,V )(b) = (q + 2m)α1 + 2α2,

score(C,V )(d) < (q + m)α1 + α2, ∀d ∈ D.

Note that score(C,V )(d) < score(C,V )(c) for all dummy
candidates d ∈ D.

We claim that c is a possible winner (i.e., a can be inserted
such that c wins in the election held over the candidates
C ∪C′) if and only if there is a matching M ′ for the 3-DM
instance M .

(⇐) Assume that there exists a matching M ′ for M . Ex-
tend the votes in V to V ′, where a is inserted at a position
with zero points in all votes of V2 and V3, and the votes in
V1 and V4 are extended as shown in Table 3:

V1
a > wi > xj > yk 1, ∀(w′

i, x
′
j , y

′
k) ∈ M ′

wi > xj > yk > a 1, ∀(w′
i, x

′
j , y

′
k) ∈ M \M ′

V4
d > d > a > b mα1 + α2

d > d > b > a (q + m)α1 + α2

Table 3: Showing (⇐) in the proof of Theorem 3.1.

Then all candidates except the dummy candidates have
exactly (q+m)α1 +α2 points. Hence c has the highest score
and is a winner of the election.

(⇒) Assume that c is a winner of the election (C∪C′, V ′),
where V ′ is an extension of the linear votes in V . This
implies that the score of all other candidates in this election
is less than or equal to the score of c. The score of c will
always be (q+m)α1 +α2, since c gets all of his or her points
from the voters in V3, where he or she is placed at the top
position in m + q votes and at second position in one vote.

Since score(C,V )(wi) = (q + m + 1)α1 points, each of the
candidates wi, 1 ≤ i ≤ q, must lose at least α1 − α2 points
when inserting a. Due to the requirement that α1 > α2, each
wi has to take at least one second position in a vote where
he or she was ranked first originally. For the candidates xi,
1 ≤ i ≤ q, we have score(C,V )(xi) = (q + m)α1 + 2α2 − 1.
Again, since α2 > 1, each xi must lose at least α2−1 points,
and since score(C,V )(yi) = (q +m)α1 +α2 +1, each yi must
lose at least one point so as to not beat c.

The new candidate a can get at most (q + m)α1 + α2

points, since otherwise a would beat c.
To prevent wi, 1 ≤ i ≤ q, from beating c, a must be

placed in a first position in q votes of V1 or V2. Then a
can get at most mα1 + α2 points from the remaining votes
without beating c. In the current situation, b would beat c
by mα1+α2 points. So a must take mα1+α2 third positions
in these votes such that b has a score of (q+m)α1+α2. Then
the score of a is (q + m)α1 + α2. Since we assumed that c
is a winner of the election, every xi, 1 ≤ i ≤ q, must end
up having α2 − 1 points less, and every yi, 1 ≤ i ≤ q, must
end up having one point less. This is possible only if a is
at the first position in some vote from V1. Hence the q first
positions of a must shift every candidate xi and yi by one
position to the right. Then the triples corresponding to the
three elements wi, xj , and yk corresponding to these q votes
must form a matching for the 3-DM instance M . ❑

3.2 Weighted Voters
In this section we study the case of weighted voters for

the PcWNA problem. Obviously, all NP-hardness results
obtained for PcWNA in the case of unweighted voters also
hold in the case of weighted voters. However, the polynomial-
time algorithms for the case of unweighted voters cannot di-
rectly be transferred to the weighted-voters case. In fact,
we will show NP-hardness of PcWNA in the weighted case
for some voting rules where this problem is known to be
polynomial-time solvable in the unweighted case. Specifi-
cally, we will consider the plurality rule for weighted voters
in this section. For plurality, polynomial-time algorithms
are known for PW in the case of unweighted voters, and
for Manipulation both in the unweighted-voters and in
the weighted-voters case. In contrast, we now show that
PcWNA is NP-complete for plurality in the case of weighted
voters, even if there are only two initial candidates and one
new candidate to be added.

Theorem 3.2. PcWNA is NP-complete for plurality in
the case of weighted voters, even if there are only two initial
candidates and one new candidate to be added.

Proof. Membership in NP is obvious. To show NP-hardness
of PcWNA for plurality in the case of weighted voters,
we now give a reduction from the NP-complete Partition
problem, which is defined as follows (see [17]):

Name: Partition.
Given: A nonempty, finite sequence (s1, s2, . . . , sn) of pos-

itive integers.
Question: Is there a subset A′ ⊂ A = {1, 2, . . . , n} such

that X
i∈A′

si =
X

i∈A\A′
si ?

For a given Partition instance (s1, . . . , sn), let
P
i∈A

si =

2K, where A = {1, 2, . . . , n}. We construct an election
(C, V ) with the set of candidates C = {c, d}, where c is the
distinguished candidate, and the list of votes V = V1 ∪ V2

with the corresponding weights as shown in Table 4.

V1 c > d one vote of weight K
V2 d > c one vote of weight si for each i ∈ A

Table 4: Construction for the proof of Theorem 3.2.

The new candidate to be added is a, so C′ = {a}. In the
initial situation, the score of candidate c is K, and candidate
d receives 2K points and hence wins the election. We now
show that c can be made a winner by introducing candidate
a into the election if and only if there is a partition for the
given Partition instance.

(⇐) Assume that there is a subset A′ ⊂ A such thatP
i∈A′

si =
P

i∈A\A′
si. If the new candidate a is placed at the

first position in each of those votes from V2 that correspond
to the i ∈ A′, and at the last position in all remaining votes,
then the score of all three candidates is exactly K, and c is
a co-winner of the election.

(⇒) Assume that c is a winner of the election, after can-
didate a has been introduced. It must hold that candidates
a and d receive at most K points. Hence candidate d must
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lose K points due to inserting candidate a. This is possible
only if a is placed at the first position in some votes from V2

with a total weight of K. These votes now correspond to a
valid partition. ❑

Next, we study 2-approval and give in Theorem 3.3 a re-
sult for the case of weighted voters and an unbounded num-
ber of candidates.

Theorem 3.3. PcWNA is NP-complete for 2-approval
in the case of weighted voters, where the number of candi-
dates is unbounded and one new candidate is to be added.

Proof. To prove the problem NP-hard, we again give a
reduction from Partition, which was defined in the proof of
Theorem 3.2. Let (s1, . . . , sn) be an instance of Partition
with

P
i∈A

si = 2K, where A = {1, 2, . . . , n}.
We introduce a set C of n + 3 candidates:

• c (the candidate we want to win),

• b (the candidate who wins the original election), and

• a set {d0, d1, . . . , dn} of dummy candidates.

The votes are specified as follows:

• For each sj , we define a vote dj > b > C with weight
sj , where C denotes the set of candidates not yet
mentioned in the vote, so in this case we have C =
C \ {b, dj}. Note that the ranking of the candidates C
cannot influence the outcome of the election, since we
deal with 2-approval.

• There is one vote c > d0 > C with weight K.

Since
P

j∈A

sj = 2K, candidate b has a score of 2K and wins

the election.
We now prove that c can be made a winner by adding one

new candidate, a, if and only if there is a subset A′ ⊂ A
that induces a valid partition for the given instance.

(⇐) Suppose we have a partition A′ ⊂ A. By putting a
in the first position of each vote having a weight of si and
for which i ∈ A′, a will get exactly K points. Furthermore,
b loses these K points, since he or she moves to the third
position in these votes. Now there is a tie between a, b, c,
and d0, each having K points. Since sj ≤ K, 1 ≤ j ≤ n, no
candidate dj , 1 ≤ j ≤ n, has a higher score. Thus, c is a
co-winner of the election.

(⇒) Suppose that c can be made a winner by adding can-
didate a. It follows that b has to lose at least K points.
Hence, a has to be added in the votes of the form dj > b > C
at first or second position. Thus, a gets each point that b
loses. But since c is made a winner by inserting a, the new
candidate a can get no more than K points. Therefore, we
have to insert a in a subset of votes such that the weights of
these votes sum up to exactly K. Consequently, there exists
a partition.

Since Partition is NP-complete, this proves NP-hardness.
Membership in NP is straightforward. Thus PcWNA is NP-
complete for 2-approval. ❑

It is easy to see that the proof of Theorem 3.3 can be
transferred to k-approval: In each vote k − 2 dummy can-
didates are added in the first k − 2 positions, which gives a
total number of (k− 1)(n+1)+2 initial candidates and one
new candidate. Thus we can state the following corollary.

Corollary 3.4. PcWNA is NP-complete for k-approval
in the case of weighted voters where the number of candidates
is unbounded and one new candidate is to be added.

Note that, in Corollary 3.4, the k in k-approval cannot
depend on the number of candidates, since the proof is for
an unbounded number of candidates. Table 5 summarizes
the results of this section.

Scoring rule PcWNA

Plurality, |C| = 2, |C′| = 1 NP-complete
k-Approval, |C′| = 1 NP-complete

Table 5: New results on the complexity of PcWNA
in the case of weighted voters.

4. UNCERTAINTY ABOUT THE VOTING
SYSTEM

4.1 Scoring Rules
In this section we study the Possible Winner under

Uncertain Voting System problem with respect to the
class of scoring rules. Recall that c is the distinguished can-
didate we want to make a winner in the given m-candidate
election, by specifying the values αi of the scoring vector
(α1, . . . , αm) appropriately. In the proof of Theorem 4.3 be-
low we will need the following notions.

Definition 4.1. For an election E = (C, V ), let posi(x)
denote the total number of times candidate x ∈ C is at po-
sition i, 1 ≤ i ≤ |C|, in the list V of votes, and for all
a ∈ C \ {c}, let plus(c,i)(a) = posi(a)− posi(c).

If the election is held under scoring vector (α1, . . . , αm),
candidate c wins if and only if for each a ∈ C \ {c}, we haveP|C|

i=1 plus(c,i)(a) · αi ≤ 0 in the co-winner case. For the
unique-winner case, replace the zero on the right-hand side
of the inequality by one.

In the following lemma we will show how to construct a list
of votes for given values plus(c,i)(a) under some conditions.
Let M(d,i) denote a circular block of |C|−1 votes, where can-
didate d is always at position i and all other candidates take
all the remaining positions exactly once, by shifting them in
a circular way. For example, for the set C = {d, c1, . . . , cm}
of candidates the circular block M(d,1) looks as follows:

d > c1 > c2 > . . . > cm−1 > cm

d > c2 > c3 > . . . > cm > c1

...
...

...
...

...
...

d > cm > c1 > . . . > cm−2 > cm−1

Lemma 4.2. Let C be a set of m candidates, c ∈ C be a
distinguished candidate, d ∈ C be a dummy candidate, and
let the values plus(c,i)(a) ∈ Z, 1 ≤ i ≤ m− 1, for all candi-
dates a in C \ {c, d} be given. Let ~α = (α1, α2, . . . , αm) be
an arbitrary scoring vector with αm = 0. One can construct
in time polynomial in m a list V of votes satisfying that:

1. Every candidate a ∈ C \ {c, d} has the given values
plus(c,i)(a), 1 ≤ i ≤ m− 1, in election (C, V ), and

2. candidate d cannot beat candidate c in election (C,V ).
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Proof. Let m = |C| be the number of candidates. For each
positive value plus(c,i)(a), 1 ≤ i ≤ m − q, a ∈ C \ {c, d},
we construct two types of circular blocks of votes. The first
block is of type M(d,i), except that in the vote in which
candidate a is at position m, the positions of a and d are
swapped. For this block it holds that plus(c,i)(a) = 1, and
all other values plus(c,j)(b) and plus(c,j)(a), b ∈ C \{c, d, a},
1 ≤ j ≤ m − 1, remain unchanged. These blocks will be
added with multiplicity plus(c,i)(a). To ensure that candi-
date d has no chance to beat candidate c, we add the votes of
the circular block M(d,m) with multiplicity m · plus(c,i)(a).
Clearly, this block does not affect the values plus(c,j)(b),
1 ≤ j ≤ m− 1, b ∈ C \ {c, d}.

If plus(c,i)(a) is negative, we add the block of type M(d,m),
where the places of a and d are swapped in the vote in
which a is at position i, with multiplicity −plus(c,i)(a). The
effect is that plus(c,i)(a) is decreased by 1 for each of these
blocks. Again, to ensure that candidate d will not be able
to beat candidate c, we add the circular block M(d,m) with
multiplicity −plus(c,i)(a) + 1.

By construction, the values plus(c,i)(d), 1 ≤ i ≤ n, are
never positive, so obviously d has no chance to beat or to
tie with c in the election whatever scoring rule will be used.
Since the votes can be stored as a list of binary integers
representing their corresponding multiplicities, these votes
can be constructed in time polynomial in m. ❑

To make use of Lemma 4.2, we assume succinct represen-
tation of the election (see [16]) in the following theorem. As
mentioned in the above proof, this means that the votes are
not stored ballot by ballot for all voters, but as a list of
binary integers giving their corresponding multiplicities.

Theorem 4.3. Let S be the class of scoring rules with
m ≥ 4 candidates that are defined by a scoring vector of
the form α = (α1, . . . , αm−4, x1, x2, x3, 0), with xi = 1 for
at least one i ∈ {1, 2, 3}. S-PcWUVS and S-PWUVS are
NP-complete (assuming succinct representation).

Proof. Membership in NP is obvious, and the proof of
NP-hardness will be by a reduction from the NP-complete
problem Integer Knapsack (see, e.g., [17]):

Name: Integer Knapsack
Instance: A finite set of elements U = {u1, . . . , un}, two

mappings s, v : U → Z+, and two positive integers, b
and k.

Question: Is there a mapping c : U → Z+ such that

nX
i=1

c(ui)s(ui) ≤ b and
nX

i=1

c(ui)v(ui) ≥ k ?

We first focus on the co-winner case and then show how to
transfer the proof to the unique-winner case. Let (U, s, v, b, k)
be an instance of Integer Knapsack with U = {u1, . . . un}
and let c : U → Z+ be a mapping. Then it holds that

nP
i=1

c(ui) · s(ui) ≤ b

nP
i=1

c(ui) · v(ui) ≥ k
(2)

⇔
„

s(u1) s(u2) . . . s(un)
−v(u1) −v(u2) . . . −v(un)

«0BBB@
c(u1)
c(u2)

...
c(un)

1CCCA ≤
„

b
−k

«

⇔

0BBBBBBB@

−b′

k′

nb
A (n− 1)b

...
b

1CCCCCCCA

0BBBBB@
c′(u1)
c′(u2)

...
c′(un)

1

1CCCCCA ≤

0BBBBBBB@

0
0
0
0
...
0

1CCCCCCCA
(3)

with A =

0BBBBBBB@

s(u1) s(u2) . . . s(un)
−v(u1) −v(u2) . . . −v(un)
−1 0 . . . 0
0 −1 . . . 0
...
0 . . . 0 −1

1CCCCCCCA
, where

c′(ui) = c(ui) + (n− i + 1)b, 1 ≤ i ≤ n,

b′ = b +
nX

i=1

b · s(ui) · (n− i + 1), and

k′ = k +

nX
i=1

k · v(ui) · (n− i + 1).

The last n rows of the matrix ensure that

c′(ui) ≥ (n− i + 1)b, 1 ≤ i ≤ n,

and so there are no new solutions added for which the values
c(ui) may be negative. Furthermore, since c(ui) ≤ b, it
is now ensured that c′(u1) ≥ c′(u2) ≥ · · · ≥ c(un) ≥ b.
Hence it still holds that c is a solution for the given Integer
Knapsack instance if and only if c′ is a solution for (3).

We will now build an election E = (C, V ) with candidate
set C = {c, d, e, f, g1, . . . , gn}, where c is the distinguished
candidate and d is a dummy candidate who cannot beat c in
the election whatever scoring rule will be used. The list of
votes will be built using Lemma 4.2 according to the matrix
in (3). The n + 2 rows in the matrix correspond to the
candidates e, f , and g1, . . . , gn. Since the matrix has only
n + 1 columns, the positions n + 2 and n + 3 in the votes
will have no effect on the outcome of the election, and thus
the corresponding plus(c,i)(a) values, n + 2 ≤ i ≤ n + 3,
can be set to zero for all candidates a ∈ {e, f, g1, . . . , gn}.
The corresponding values in the scoring vector can be set
to either zero or one, respecting the conditions for a valid
scoring vector. Hence, the votes in V have to fulfill the
following properties:

plus(c,i)(e) =

8><>:
s(ui) for 1 ≤ i ≤ n

−b′ for i = n + 1

0 for n + 2 ≤ i ≤ n + 3,

plus(c,i)(f) =

8><>:
−v(ui) for 1 ≤ i ≤ n

k′ for i = n + 1

0 for n + 2 ≤ i ≤ n = n + 3,
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plus(c,i)(gj) =

8>>><>>>:
−1 for 1 ≤ i ≤ n, i = j

(n− i + 1)b for i = n + 1, 1 ≤ j ≤ n

0 for 1 ≤ i ≤ n + 3,

1 ≤ j ≤ n, i 6= j.

According to Lemma 4.2, these votes can be constructed
in polynomial time such that the dummy candidate d has
no influence on c being a winner of the election, whatever
scoring rule of type α = (α1, . . . , αn, 1, αn+2, αn+3, 0) will
be used.

Since the plus(c,i)(a) values assigned to the candidates
a ∈ C \{c, d} are set according to the matrix in (3), it holds
that c can be a winner in election E = (C, V ) by choosing a
scoring rule of the form α = (α1, . . . , αn, 1, αn+2, αn+3, 0) if
and only if for each a ∈ C \ {c}, we have

nX
i=1

plus(c,i)(a) · c(ui) + plus(c,n+1)(a) ≤ 0.

As described above, the values in the scoring vector for po-
sitions n + 2 and n + 3, have no effect on the outcome of
the election. Hence, by switching rows in the matrix we can
extend the set of possible scoring rules to scoring rules of
the form α = (c(u1), . . . , c(un), x1, x2, x3, 0), with xi = 1 for
at least one i ∈ {1, 2, 3}. Hence, c can be made a winner
of the election E = (C, V ) if and only if there is a solution
to (3). Since we have shown above that there is a solution
to (2) if and only if there is a solution to (3), it holds that
there is a solution c to our Integer Knapsack instance if
and only if there is a scoring rule α, of the form described
above, under which c wins the election E = (C, V ).

To see that this reduction also settles the unique-winner
case, note that (3) is equivalent to the following inequality:0BBBBBBB@

−b′ + 1
k′ + 1
nb + 1

A (n− 1)b + 1
...

b + 1

1CCCCCCCA

0BBBBB@
c′(u1)
c′(u2)

...
c′(un)

1

1CCCCCA ≤

0BBBBBBB@

1
1
1
1
...
1

1CCCCCCCA
. (4)

The election we need to construct has the same candidate
set as above and the voters are constructed according to the
values plus(c,n+1)(a) for a ∈ C \ {c, d} in the matrix of (4).
Thus, c is the unique winner of the modified election if and
only if for each a ∈ C \ {c}, we have

nX
i=1

plus(c,i)(a) · c(ui) + plus(c,n+1)(a) ≤ 1.

By a similar argument as above, there is a scoring rule
of the form α = (α1, . . . , αn, x1, x2, x3, 0) with xi = 1 for
at least one i ∈ {1, 2, 3} in which c wins the election if and
only if there is a solution c for the given Integer Knapsack
instance. ❑

4.2 Copelandα Elections
In Copelandα elections [14], the parameter α is a rational

number from the interval [0, 1] that specifies how ties are
rewarded in the pairwise comparisons between candidates.

Theorem 4.4. C-PcWUVS and C-PWUVS are polyno-
mial-time solvable for the family of Copelandα elections:

C = {Copelandα | α is a rational number in [0, 1]}.

Proof. To decide whether a distinguished candidate c can
be made a winner of the election by choosing the parameter
α after all the votes have been cast, we do the following. In
the co-winner case, for each ci ∈ C \ {c}, compute

f(ci) =

(
win(c)−win(ci)
tie(c)−tie(ci)

if tie(c) 6= tie(ci)

win(c) − win(ci) otherwise.

If f(ci) ≥ 0 for all ci ∈ C, c can be made a winner of
the election by setting α = min

ci∈C
{f(ci), 1}, and otherwise c

cannot be made a winner. So C-PcWUVS is in P.
In the unique-winner case, for c to be the unique winner

winner of the election, it must hold that f(ci) > 0 and α is
set to a value greater than min

ci∈C
{f(ci)} if this value is less

than one, or else to one. Otherwise, c cannot be made the
unique winner of the election. So C-PWUVS is in P. ❑

4.3 Preference-Based Approval Voting
In approval voting the situation is a bit different, since ap-

proval voting is not a class of voting systems, and the voters
usually do not report linear preferences but approval vectors.
Brams and Sanver [7, 8] proposed various voting systems
that combine preference-based voting and approval voting.
Here the voters report a strict preference order, along with
an approval line indicating that the voter approves of all
candidates to the left of this line and disapproves of all can-
didates to the right of this line. They require votes to be
admissible [7], which means that each voter approves of his
or her first ranked candidate and disapproves of his or her
last ranked candidate. If we assume that the approval lines
are not set by the voters (who thus only report their linear
orders) but are set by the voting system itself (after all votes
have been cast), we obtain (for m candidates and n voters)
a class Am,n of (m− 1)n voting systems. For each such sys-
tem, the candidates with the highest number of approvals
win. Note that these voting systems are not very natu-
ral (as they do not let the voters themselves choose their
approval strategies) and do not possess generally desirable
social-choice properties (e.g., the systems in Am,n are not
even anonymous, as changing the order of votes may result
in a different outcome).

In this setting, given an election where voters report their
preference orders, setting the approval lines afterwards cor-
responds to choosing a system from Am,n. It is easy to see
that PcWUVS and PWUVS are polynomial-time solvable
for this class. To make the distinguished candidate c win
the election, choose the system that sets the approval line in
each vote that does not rank c at the last position right be-
hind c, and in the votes that do rank c last right behind the
top candidate. If c is not a winner (unique winner) of this
election, c cannot win (be a unique winner of) the election
whatever system from the class is chosen. Thus, PcWUVS
and PWUVS are polynomial-time solvable for this class of
preference-based approval voting systems.

In contrast to this result, Elkind et al. [12] show NP-
hardness for a related bribery problem, even if the briber
is only allowed to move the approval line.

859



5. CONCLUSIONS AND FUTURE WORK
For the Possible Winner problem, a full dichotomy re-

sult for the class of pure scoring rules is known [6, 5]. In
contrast, the complexity of the related problem PcWNA
has not yet been completely settled and the question raised
by Chevaleyre et al. [9] remains open. Our result stated in
Theorem 3.1 makes a further step towards this goal by show-
ing NP-completeness of PcWNA for a whole class of pure
scoring rules. An interesting task for future work would
be to characterize this problem for all pure scoring rules
in terms of a dichotomy result. Moreover, our initial work
on weighted voters for PcWNA might be extended, and
for both the weighted and the unweighted case the unique-
winner variant PWNA should be further explored (see also [9,
25]). Another problem also stated in [9] concerns the number
of new candidates to be added. Up to now NP-hardness re-
sults for pure scoring rules are known only for the case where
one new candidate is added. What about adding more than
one candidate? Note that the problem becomes easy if an
unbounded number of new candidates is to be added.

For the PcWUVS and PWUVS problems, the next ob-
vious step would be to extend Theorem 4.3 to unrestricted
scoring rules, ideally with the goal of obtaining a complete
dichotomy result. It would also be interesting to study these
problems for other natural classes of voting systems, for ex-
ample, for all voting systems sharing some important social-
choice property (e.g., for all Condorcet systems).
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ABSTRACT
We propose that the trust an agent places in another agent
declaratively captures an architectural connector between
the two agents. We formulate trust as a generic modality
expressing a relationship between a truster and a trustee.
Specifically, trust here is definitionally independent of, al-
beit constrained by, other relevant modalities such as com-
mitments and beliefs. Trust applies to a variety of attributes
of the relationship between truster and trustee. For exam-
ple, an agent may trust someone to possess an important
capability, exercise good judgment, or to intend to help it.
Although such varieties of trust are hugely different, they re-
spect common logical patterns. We present a logic of trust
that expresses such patterns as reasoning postulates con-
cerning the static representation of trust, its dynamics, and
its relationships with teamwork and other agent interactions.
In this manner, the proposed logic illustrates the general
properties of trust that reflect natural intuitions, and can
facilitate the engineering of multiagent systems.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—multiagent systems; D.2.1 [Software Engineer-
ing]: Requirements Specifications—Methodologies

General Terms
Theory

Keywords
Trust, commitments, service-oriented computing

1. INTRODUCTION
We develop a novel approach to trust in multiagent sys-

tems that relates the intuition of trust as reliance with the
notion of an architectural connector [17]. When the com-
ponents of a software architecture are agents (understood
as active, autonomous entities), each connector between any
two agents is naturally understood in terms of the trust they
place in each other. In this manner, we not only relate intu-
itions about two heretofore isolated subfields of multiagent

Cite as: Trust as Dependence: A Logical Approach, Munindar P. Singh,
Proc. of 10th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone
(eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 863-870.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

systems (trust and agent-based software engineering), but
also provide a new basis for formalizing those intuitions to
use as a basis for improved engineering methodologies.

Classically, following Castelfranchi and Falcone [1], one
may understand an agent (the truster) as trusting another
(the trustee) when the truster puts its plans in the hands of
the trusted agent. In general terms, the above is a valuable
intuition that we seek to preserve. However, Castelfranchi
and Falcone take a staunchly cognitive stance wherein a
“plan” is reflected in the intentions and beliefs of the truster
with respect to the trustee.

In contrast, we take the position that the notion of “plan”
in general multiagent settings is often, though not always,
far removed from the cognitive view. Referrals, which are
crucial for inducing trust in social settings, often involve
plans that might be quite tenuous. In other cases, one may
spot a plan only based on strong assumptions about the trus-
ter and trustee, the tasks involved, and the context. There-
fore, we advocate here an architectural intuition where the
parties may not have strongly cognitive plans either.

Trust arises in many settings. For this reason, we develop
a modular, “minimalist” formalization of trust, which cap-
tures the essential properties that any model of trust would
follow. Our approach does not demand agreement on the
additional aspects of trust—such as belief, intentions, plans,
similarity, probability, utility—that specific models might
incorporate and specific applications may demand. Thus
our approach can provide a conceptual basis for organizing
systems without having to delve into the details of trust.

We treat trust as a high-level architectural connector. A
truster’s trust in a trustee expresses the expectations the
truster holds of the trustee. This interpretation of an ar-
chitectural connector as the dependence of a truster on a
trustee generalizes the classical software architecture [15]
idea of one component’s “assumptions” about another. Tra-
ditionally, such assumptions reduce to operational details of
control and data flow, but in agent-oriented software engi-
neering we ought to treat them as interagent dependencies.

Singh and Chopra [19] propose to use commitments as a
basis for multiagent systems architecture. Commitments are
appropriate bases for interaction where a protocol specifies
the commitments involved. However, in flexible, emergent
settings, such specifications might be incomplete or even
nonexistent. That is, the agents should be prepared to inter-
act with others even in the absence of commitments. In such
cases, the basis for their interactions would be the trust that
each agent places in the other. Even when a commitment
exists, the creditor of the commitment would need to trust
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the debtor in order to rationally act on the assumption that
the debtor will discharge the commitment in consideration.

When we apply our trust-based approach on traditional
software components, any modeling of trust would be im-
plicit and hard-coded in the components—reflected only in
the minds of the designers. When we apply our approach on
sophisticated intelligent agents, the modeling of trust would
be more explicit and subject to reasoning by the agents
themselves.

Notice that sometimes architecture is conflated with nota-
tions for expressing it, especially established notations such
as UML. Such notations have no abstractions geared toward
trust and other high-level concepts, so we avoid them here.

Contributions. We present a formal semantics of trust, mo-
tivating several reasoning postulates for trust and relating
those postulates to architectural connectors. Our contribu-
tions bear relevance also to the study of commitments, which
we treat as correlates of trust. Further, the notion of archi-
tecture pursued here, although far removed from traditional
software architecture, is inspired by taking a truly agent-
oriented stance. Not only are agents a natural abstraction
but also the trust between them is core to their interactions.

Organization. The rest of this paper is organized as fol-
lows. Section 2 discusses some intuitions about trust as it
relates to architecture. Section 3 introduces our technical
framework for trust. Section 4 presents a variety of postu-
lates for trust describing potential properties of relevance to
active trust, integrity, structure, meaning, teamwork, and
dynamics. Section 5 presents a case study demonstrating
our approach in relation to both traditional and more re-
cent commitment-based approaches. Section 6 places our
work in the broader setting of architecture and brings out
some directions for future work.

2. INTUITIONS ABOUT TRUST
Trust is central to several disciplines. So it is not surpris-

ing that it has garnered a lot of research attention. Existing
approaches differ a lot on the complexity of the conceptual
model in which they consider trust. The following main lines
of research reflect the intuition of dependence are relevant.

Subjective, which treat trust as a suitably structured set
of beliefs and intentions [1]. Indeed, Demolombe [5]
reduces trust to (graded) beliefs. Liau [12] and Dastani
et al. [4] consider how a truster may absorb information
from a trustee, e.g., by adopting a belief if a trusted
sender says so.

Measured, which treat trust as a numeric weight based on
heuristics [9], subjective probability [11, 23], a utility
[3], or a grade [5]. These are subjective approaches
albeit with representations geared toward numeric or
ordinal values.

Social, which understand trust in terms of social relation-
ships [20]. Falcone and Castelfranchi [7] distinguish
objective and subjective dependence as well as uni-
lateral, reciprocal, and mutual dependence. Our basic
framework accounts for all of these, albeit with specific
postulates describing different situations, e.g., team-
work. Johnson et al. [10] examine teamwork via social
interdependence, which is crucial as a basis for trust.

A commonality of the existing approaches is that they con-
flate aspects of the representation of trust on the one hand
with the complex of features that go into making a judgment
of trustworthiness on the other. The latter involve reason-
ing techniques (often domain-specific and heuristic) for up-
dating the extent of trust placed by a truster in a trustee.
Indeed, there is a common confusion when talking about
trust in that many researchers expect to see the above kinds
of heuristics, and do not appreciate the value of a generic
method, such as ours. As an analogy, one can think of rules
of Bayesian inference or axioms of belief. Such rules and
axioms do not in themselves produce an answer of what an
agent should infer or believe, but constrain the probabilis-
tic or binary truth values an agent may assign to various
propositions. In the same way, our approach describes how
an agent or a designer may reason soundly about trust.

We formalize a general-purpose semantically motivated
representation of trust. Interestingly, this representation
provides a basis for stating a variety of constraints on the
modeling of trust with respect to the integrity and structure
of architectural connectors, and of reasoning about trust.
Although it is not focused on trust measures, it also pro-
vides a basis for such measures.

Conditionality of Trust. We posit that, in general, trust
must be conditional. Each assignment of trust presupposes
some preconditions (which we can capture as antecedents)
and expectations (which we can capture as consequents).
Blind trust is merely a boundary condition. This holds in
normal usage: e.g., a customer may trust a merchant as fol-
lows “if I pay, (I trust) the merchant will deliver the goods,”
expressing the customer’s expectation and presumably link-
ing it to further plans of the customer.

Trust as Dependence, Architecturally. Let us consider
an agent formulating and enacting a plan that relies upon
the contributions of others—in essence, trusting the others
to make their contributions to its plan. More generally, the
interactions of an agent with other agents may be described
at a high level in terms of the trust each of them places upon
the others. We model further aspects of the interactions such
as whether trusted agents are indeed trustworthy based on
how the trust maps to relevant concepts.

Although the antecedent and consequent are generic, nom-
inally, we associate them with the truster and trustee, re-
spectively. When the antecedent becomes true, the con-
nector activates and when the consequent becomes true,
the connector completes. It is helpful to relate the an-
tecedent and consequent of a trust expression to the struc-
ture of the connector it describes. Intuitively, a trust ex-
pression becomes stronger as its antecedent becomes weaker
and its consequent becomes stronger. We can understand
the antecedent becoming weaker with the connector becom-
ing broader because it would activate more easily. Likewise,
we can understand the consequent becoming stronger with
the connector becoming tighter because it would complete
with greater effort on part of the trustee, and thus sustain
enhanced expectations on part of the truster.

This paper develops an organizational approach, espe-
cially from the standpoint of the connectors among autonomous
agents understood conceptually. As explained above, in this
view, a relationship from one agent to another can be under-
stood as the trust the first agent places in the second agent.
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An agent may implement such an interconnection based on
concepts such as beliefs.

3. TECHNICAL FRAMEWORK
Our technical framework is based on modal logic with a

possible worlds semantics. In addition to trust, we capture
commitments as an abstraction because they help us state
various important postulates reflecting dependence.

We include an explicit notion of reality in our model. That
is, we identify a path (corresponding to a particular execu-
tion of the multiagent system) as being the real one. This is
not to suggest that we have found a way to predict the fu-
ture; rather, it is a way to accommodate nondeterminism by
merely claiming (as appropriate) that whatever the real path
might be, it satisfies some property, desirable or otherwise.
For example, we might define trust as being well-placed if
the proposition that is being trusted occurs on the real path.
In this manner, incorporating reality explicitly enables us to
state constraints that we cannot state otherwise.

3.1 Syntax and Formal Model
Putting together the intuitions about architectural con-

nectors and the inherent conditionality of trust, we propose
to formalize trust-as-dependence as a modal operator that
takes two parties and two propositions, as in

Ttruster,trustee(antecedent, consequent)

The first two arguments describe the end points of the given
connector, and the last two its logical structure. In logical
terms, trust bears a syntactic similarity with commitments
but the two are independent concepts. More generally, we
can view trust and commitment as correlates of each other.
Some of the postulates below relate trust and commitments.
L, our formal language, takes a linear-time logic enhanced

with a modality C for commitments [18] with a modality T
for trust. Below, Atom is a set of atomic propositions and
X is a set of agent names. We further define agents that are
composed from other agents; in other words, an agent may
be a simplistic multiagent system. L and X are nonterminals
corresponding to L and X , respectively.

L1. L −→ Trust | Commit | Atom | L ∧ L | ¬L | RL | LUL

L2. Trust −→ TAgent,Agent (L ,L)

L3. Commit −→ CAgent,Agent (L ,L)

L4. Agent −→ X | 〈{Agent}〉
We use the following conventions: x, etc. are agents, ψ, etc.
are atomic propositions, p, q, r, etc. are formulae in L, t,
etc. are moments, and P , etc. are paths. We drop agent
subscripts when they can be understood. A model for L is
a tuple, M = 〈S, <,R, I,T,C〉:
• S is a set of possible moments, each a possible snapshot

(i.e., a state) of the world.

• <⊆ S×S is a discrete linear order on S, which induces
paths at each moment. A path is a contiguous set of
moments beginning at a moment. Two paths are either
disjoint or one is a subset of the other. [P ; t, t′] denotes
a period on path P from t to t′. Formally, [P ; t, t′] is
the intersection of P with the set of moments between
t and t′, both inclusive. P is the set of all periods and
Pt of periods that begin at t (Pt 6= ∅).

• R identifies the real path that initiates from a moment.
A real path must be self-consistent in that if a moment
initiates a real path τ , every subsequent moment that
occurs on path τ initiates a suffix of τ as its real path.

• The interpretation, I, of an atomic proposition is the
set of moments at which it is true. That is, I : Atom 7→
℘(S). We show below, through the definition of mo-
ment-intension (which lifts I to all propositions), that
the denotations of all propositions are sets of moments.

• At each moment, T : S × X × X × ℘(S) 7→ ℘(℘(P))
yields a set of periods for each moment and proposition
for each truster-trustee (ordered) pair of agents.

• At each moment, C : S × X × X × ℘(S) 7→ ℘(℘(P))
yields a set of periods for each moment and proposition
for each debtor-creditor (ordered) pair of agents.

Models for modal logics are commonly based on Kripke
structures, which define a set of possible worlds along with
an accessibility relation that maps each world to a set of
worlds. The semantics of a modal operator tests for inclu-
sion in that set of worlds. The models proposed here are
not Kripke structures and do not involve an accessibility re-
lation. Instead they are based on the Montague (and Scott)
approach [14] to define a “standard” of correctness by map-
ping each world to a set of sets of worlds. The semantics of
a modal operator tests for membership in the set of sets of
worlds. Montague’s approach offers greater flexibility in al-
lowing or denying some inferences that the Kripke approach
requires. In many (though not all) cases, it is straightfor-
ward to map this semantics to a Kripke semantics but we
find the proposed formulation more natural and modular.

T and C capture the standards for trust and commit-
ments, respectively, for each moment and truster-trustee
pair. Given an antecedent proposition, T yields a set, each
of whose members is a set of periods. Each set of periods
is the representation in the model of a consequent propo-
sition, specifically, the proposition whose period-intension
(defined below as the set of periods at whose culmination
it holds) equals that set of periods. The truster trusts the
trustee to bring about any such consequent if the antecedent
holds. Likewise, C yields a set each of whose members is a
set of periods, each culminating in the consequent proposi-
tion that the debtor commits to bringing about. As in many
(arguably most) logics of intention and obligation, we do not
model actions explicitly: T and C are simply understood as
describing the conditions an agent would bring about.

3.2 Semantics
The semantics of L is given relative to a model, a path, and

a moment on the path. M |=P,t p expresses “M satisfies p at
t on path P .” The truth of several constructs is independent
of the path and depends only on the moment. An expression
p is satisfiable (respectively, valid) iff for some (respectively,
all) M , P , and t ∈ P , M |=P,t p. Formally, we have:

M1. M |=P,t ψ iff t ∈ I(ψ), where ψ ∈ Atom

M2. M |=P,t p ∧ q iff M |=P,t p and M |=P,t q

M3. M |=P,t ¬p iff M 6|=P,t p

M4. M |=P,t Rp iff M |=Rt,t p
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M5. M |=P,t pUq iff (∃t′′ ∈ P : t ≤ t′′ and M |=P,t′′ q and
(∀t′ : t ≤ t′ < t′′ ⇒M |=P,t′ p))

Disjunction (∨), implication (→), equivalence (≡), false, and
true are the usual abbreviations. pUq means“p holds until q”:
thus trueUq (abbreviated Fq) means “eventually q.” And, Rp
means that p holds on the real path of the current moment.

We define the moment-intension of formula p as the set
of moments where it is true: [[p]] = {t|M |=P,t p}. We define
period-intension of formula p as the set of periods culminat-
ing in its becoming true: 〈[p]〉 = {[P ; t, t′]|M |=P,t′ p}. In
these periods, p occurs at the last moment but may possibly
occur earlier as well. Thus these are all possible ways in
which p may be brought about. Based on these, we can now
specify the formal semantics of trust and commitments. As
explained in connection with T above, Tx,y(r, u) holds pre-
cisely at points where the period-intension of u belongs to
the standard for trust. (Likewise, for commitments).

M6. M |=P,t Tx,y(r, u) iff 〈[u]〉 ∈ Tx,y(t, [[r]])

M7. M |=P,t Cx,y(r, u) iff 〈[u]〉 ∈ Cx,y(t, [[r]])

4. REASONING POSTULATES
Let’s now consider several postulates that reflect common

reasoning patterns that apply uniformly to trust. It is worth
emphasizing that we consider atomic propositions that are
stable, meaning that they include any temporal requirements
within them. Thus a proposition that is true is generally
true forever. For example, let pay mean the agent pays by
noon on May 1. If pay is true at one point on a run, it
is true on all points on the run. Consequently, most of our
postulates do not involve any temporal operators. Trust and
commitments (which can become active and then inactive)
are themselves not stable; thus some postulates that deal
with them involve the until operator. We expand the notion
of agents to treat simplified multiagent systems.

4.1 Postulates for Active Trust
We treat trust in the sense of a living, functioning archi-

tectural connector. That is, we consider the case of active
trust. When a truster places trust in a trustee, the cor-
responding connector is activated. When the trustee has
performed as expected, there is no more for the truster to
expect of the trustee based solely upon the given connector.
In such a case, the connector is no longer active.

Our approach helps distinguish between a connector that
is inactive and one that which has been activated but not
completed. The former is perfect; the latter is worrisome.
As a result, often, we would formulate trust expressions as
including the possibility of success. As a specific example,
an agent x may deal with an agent y because it trusts y
to deliver the goods if it pays. That is, we would have
Tx,y(pay, deliver). But to accommodate the unknown or
early performance of deliver, we might instead formulate the
trust expression as deliver ∨ Tx,y(pay, deliver)

For each postulate below that uses truster x and trustee
y, for brevity, we write T(r, u) instead of Tx,y(r, u).

T1. complete a connector. u→ ¬T(r, u)

When u holds, the trust in u is completed and is, therefore,
no longer active (this treatment is neutral as to whether u is
the provision of information or the performance of a domain
action). Notice that the above yields ¬T(r, true) for any r.

T2. activate a connector. T(r ∧ s, u) ∧ r → T(s, u)

A typical case is when a truster performs part or all of
what it needs to do to activate a connector. For example,
if you push money over a coffee counter you trust that the
barista would push back a cup of coffee for you. If you
trusted the barista to give you a cup of coffee upon your
paying $1, upon handing over $1 you trust the barista to
give you the cup of coffee without further ado.

More generally, a connector may be activated piecemeal.
When “part of” the antecedent of a connector holds, the
connector strengthens to one for the “remainder” of the an-
tecedent and with the original consequent comes into being.
Notice that this postulate means that a connector does not
need to be activated in a single shot: as more and more of
its antecedent becomes true, the connector becomes incre-
mentally closer to being activated. When the connector is
of the form T(true, u), then it is fully activated. For such a
connector, failure by the trustee to complete the connector
is tantamount to a betrayal of trust.

T3. partition a connector. T(r, u ∧ v) ∧ ¬u→ T(r, u)

In general, if you trust a trustee for two propositions, you
trust it for each of the propositions. In other words, you
would expect to be able to partition a connector into its com-
ponents. However, the obvious formulation T(r, u ∧ v) →
T(r, u) is inconsistent with T1, because if u holds, T1 would
eliminate T(r, u). Since T1 is fundamental to capturing an
active connector, we include ¬u on the left-hand side in
T3. Thus a connector partitions into component connec-
tors as long as none of the components have already been
completed. For example, if you trust a merchant to send
both the goods you ordered and a warranty, then you trust
the merchant to send you the goods—unless the goods are
already sent.

4.2 Postulates for Connector Integrity
These postulates describe the integrity of connectors.

T4. avoid conflict. T(r, u)→ ¬T(r,¬u)

A connector cannot both ask for and prevent the same
thing. This postulate is stronger than merely stating that
a connector for a logical impossibility cannot exist, which
would be formalized as ¬T(r, false). However, in the pres-
ence of T8, avoid conflict is the same as ¬T(r, false).

T5. nonvacuity. From r ` u infer ¬T(r, u)

Since r ` u, if r holds so does u. Or, T(r, u) completes
as soon as it is activated, and is thus vacuous. Because
r ` r, we have ¬T(r, r). The intuition is that a nonvacuous
connector must not require an antecedent stronger than its
consequent. The architectural implication of a vacuous con-
nector is that we might as well disconnect the two agents,
because the trustee would deliver no value to the truster.

T6. tighten. From T(r, u), s ` r, s 6` u infer T(s, u)

Any connector that holds for a weaker antecedent also
holds for a stronger antecedent. In other words, we can
always broaden a connector in the logical ways specified.
For example, if you trust your customer will pay you $1 if
you give them a coffee, then you can safely trust they will
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pay you $1 if you give them a coffee and a cookie. Some
useful consequences are T(r ∨ s, u) → T(r, u), T(r, u) →
T(r ∧ s, u), and T(true, u)→ T(r, u).

Note that p ` q means we can prove q from p: this is
stronger than implication p → q, which holds merely if p is
false. Clearly, T(r, u) ∧ ¬s→ T(s, u) is bogus, i.e., we would
not conclude T(s, u) simply because s happens to be false.

4.3 Postulates for Connector Structure
These postulates describe structural properties.

T7. combine antecedents. T(r, u) ∧ T(s, u)→ T(r ∨ s, u)

To the left of the→ are two connectors, together meaning
that the truster expects the trustee to do u if r or if s hold,
which is the connector on the right. Hence, this broadens a
connector, in contrast with T6.

T8. combine consequents. T(r, u) ∧ T(r, v)→ T(r, u ∧ v)

Combine consequents of connectors between the same trus-
ter and trustee with the same antecedent. The truster would
become committed to u and to v if r holds, which is the
meaning of the connector on the right. For example, if you
trust a merchant to give you an item for your payment and
a warranty for the same payment, then you can expect both
the item and the warranty for your payment. This postulate
relies upon the propositions being not temporally indexed,
as Section 4 explains.

T9. inference chain. From T(r, u), u ` s,T(s, v) infer T(r, v)

Assume you trust someone to bring about u if r and to
bring about v if u. Then, you trust them to bring about v
if r. T9 generalizes the above intuition to when u 6= s. Here
we have a situation where the connectors being chained exist
between the same truster and trustee pair. The situation
becomes more interesting with teamwork, as in T17.

4.4 Postulates for Connector Meaning
These postulates pertain to the content of trust, espe-

cially as it relates to commitments [18]. These are impor-
tant because in some respects commitments are the flip side
of trust.

T10. exposure. Cx,y(r, u)→ Ty,x(r, u)

A debtor is exposed when the creditor of the commitment
trusts the debtor for the same content as the given com-
mitment. Now the debtor cannot cancel the commitment
without betraying the trust the creditor placed in it. This
signifies architectural minimality in that a commitment is
being included in a multiagent system only if there is a trust
relationship that relies upon the commitment.

T11. transient alignment. Tx,y(r, u)→ Cy,x(r, u)

A creditor and debtor of a commitment are aligned when
if the creditor trusts the debtor for something, the debtor is
committed to bringing it about. That is, the connector be-
tween the debtor and creditor is covered. This postulate re-
lates to Chopra and Singh’s [2] notion of commitment align-
ment, although their notion considers commitments alone.

T12. well-placed trust. Tx,y(true, u)→ Ru

This says that whenever a truster trusts a trustee, the
consequent comes true on the real path. The success may
be incidental, but the trust is not betrayed.

T13. whole-hearted alignment.

Tx,y(s, v)→ R(s→ (Cy,x(s, v)Uv))

When a truster connects to a trustee, the trustee commits
(as debtor) to the truster for the relevant propositions and
remains committed until success. Thus success is achieved,
but as an outcome of the debtor’s persistent commitment,
not incidentally. Thus, this postulate describes a stronger
connector than does transient alignment.

The formulas below are not suitable to be asserted as con-
straints, but describe important situations. They could be
used for problem diagnosis or in engineering effective sys-
tems.

Unexercised connector. T(r, u) ∧ R¬r. This indicates a
connector that is never activated. For example, you
may trust that your banker will loan you money if
you apply for one, but you may never file the requisite
application.

Misplaced trust. T(r, u) ∧ R¬u A connector may fail be-
cause when it is activated, the trustee fails to deliver
the consequent. Notice that the trustee may never
have committed with respect to this connector: there-
fore, the trustee cannot be faulted for noncompliance.

4.5 Postulates Involving Multiple Agents
These postulates provide a basis for architecting multi-

agent settings such as teams. They can be thought of as
specifying the structures of different types of teams in logi-
cal terms, based on the trust relationships among the mem-
bers. Since, in intuitive terms, trust is an important aspect
of teams, we take this to be a promising theme. Below, 〈x, y〉
represents a simplified team consisting of x and y.

T14. mutual progress.

Tx,y(r, u) ∧ Ty,x(u, r)→ Tx,〈x,y〉(>, r ∧ u)

When two agents trust each other reciprocally, each of
them trusts their team to make progress on both proposi-
tions. This postulate arises commonly in instances of team-
work, including successful business interactions, where each
participant concedes to the other, thereby achieving progress.
We can think of it as a strengthening of reciprocal depen-
dence [7]. Trust in this sense also provides a complementary
aspect to commitments in understanding concession [24].

T15. trustee’s team. Tx,y(r, u)→ Tx,〈y,z〉(r, u)

Participation by the trustee in a team does not alter the
truster’s placement of trust in it. This can be thought of
as describing cooperative teams in which any conflicts are
resolved. For example, if z conflicted with y and prevented
y from being trustworthy for u, then the above postulate
would not hold for the team 〈y, z〉. In other words, the
connector between the truster and trustee applies equally to
the team including the trustee. For example, if you trust
your local postman to deliver your mail, you can trust the
local post office to deliver your mail. This inference applies
when participation in the team does not alter the nature of
the connection. For example, you can trust your friend to
take your side in a dispute, but not against his employer.
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T16. truster’s team. Tx,y(r, u)→ T〈x,z〉,y(r, u)

In contrast with T15, here the connector applies to any
team that the truster may belong to.

T17. parallel teamwork.

Tx,y(r, u) ∧ Tx,z(u, v)→ Tx,〈y,z〉(r, u ∧ v)

When a truster connects to two trustees, the truster con-
nects to their team as a composite trustee. For example,
if you trust one friend to bring you bread and one to bring
you soup, you trust them as a team to bring you bread and
soup. This postulate is an alternative to T9 (inference
chain) and shows how the connectors to two trustees can
be combined.

T18. propagate.

From Tx,y(r, u),Ty,z(s, v), v ` u, r ` s infer Tx,〈y,z〉(r, v)

Here, x trusts y and y trusts z. Because of how the an-
tecedents and consequents mutually relate, x trusts 〈y, z〉.
4.6 Postulates Involving Dynamism

The postulates involving updates are largely heuristic in
nature. The following illustrate three aspects of dynamism:
these deal with persistence when nothing changes; reduction
in trust ratings when trust is betrayed; and enhancement in
ratings when trust is kept. The intuition behind these is
based on the notion of relational or trust capital [7], which
agents can build up through trustworthy behavior and drain
through untrustworthy behavior.

T19. persistence. T(r, u)→ T(r, u)U(u ∨ r)
A truster persists in its connector unless it acquires ev-

idence that the connector has failed or completed. That
is, a connector persists at the same strength as long as the
connector is not activated (until r holds), meaning that the
substantive aspect of the trust has not been exercised, or
the connector has not been completed (until u holds). As-
sume you trust a merchant to deliver if you pay, i.e., as
T(pay, deliver). If you have not paid, then your not receiv-
ing a delivery should not affect your trust in the trustee.

Notice that the above postulate is silent about success or
failure. Below, skepticism and faith identify domain-specific
notions, outside our language, of how a truster respectively
reduces or increases its level of trust in a trustee.

T20. skepticism.

skepticismx,y(s, v)→ (T(r, u) ∧ r ∧ ¬u)→ ¬T(s, v)

A truster lowers its trust in a trustee if the trustee fails
for an activated connector, i.e., one whose antecedent has
been achieved. This can be thought as an agent narrowing
or weakening its connectors with another agent based on the
second agent’s performance.

T21. faith. faithx,y(s, v)→ (T(r, u)Uu)→ T(s, v)

A truster adjusts its trust in a trustee based on whether
the trustee achieves the consequent. This can be thought of
as an agent broadening or strengthening its connectors with
another based on the second agent’s performance.

In addition, we can compare trust ratings as follows.

Compare ratings. The expression Tx,y(r, u)∧Tx,w(r, u∧
v) signifies that x trusts y less than it trusts w. This
reflects some intuitions of Falcone et al.’s [8] contract-
ing approach. The deeper underlying intuition is that
sets of possible paths (being different outcomes) map
naturally to probabilities.

5. APPLYING THE THEORY
Let us consider a cross-organizational scenario of auto in-

surance claims [21], which relates naturally to multiagent
systems. Figure 1 (from [21]) describes the intended op-
erations in this scenario, which deals with auto insurance
claims processing by AGFIL, an insurance company. Inter-
estingly, this figure omits the policy holder whom the sce-
nario serves. A policy holder, John Doe, is in an accident
and files a claim with Europ Assist, who runs AGFIL’s call
center. Europ Assist identifies a mechanic shop (garage) in
consultation with Doe, sends Doe there, and forwards his
claim to AGFIL. AGFIL passes the claim to Lee Consult-
ing Services (Lee CS), which interacts with Doe to complete
the claim, obtains estimates from the mechanic, and decides
whether to honor Doe’s claim. Skipping ahead a few steps,
this episode would normally end with the mechanic repairing
Doe’s car and getting paid by AGFIL.

Figure 1: Insurance scenario modeled operationally

The traditional low-level representation emphasizes the
steps performed by each party and their mutual control flow.
It provides no support for meaning. Desai et al. [6] for-
malized this scenario in terms of commitments, identifying
the contractual business relationships among the parties in-
volved. However, such relationships are founded on a sub-
strate of trust. An additional benefit of modeling trust is
that it focuses on the architecture, which we can use as a
basis (in an engineering methodology) for determining the
necessary contractual relationships.

Let us consider the following examples. First, not only
do Lee CS and AGFIL have commitments toward one an-
other, they must also trust one another to perform accord-
ingly. Second, the importance of trust becomes more im-
portant when we consider architectures that are not highly
regimented. For example, when John Doe talks to Europ
Assist, out of the many mechanics who are preapproved,
Doe would select one of those whom he deemed trustworthy,
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because the existence of commitments does not adequately
characterize the outcomes, although the existence of a com-
mitment by AGFIL to ameliorate a failed interaction with
a preapproved mechanic may be a reason to place greater
trust in the mechanic. Third, when the system in question
is open, i.e., John Doe can have his car seen by any me-
chanic, the importance of trust goes up further.

In each of these cases, the participants would apply some
of the above reasoning postulates. For example, Doe would
activate his dependence on the mechanic by bringing his
car in for repairs (T2); the mechanic would complete the
dependence by repairing the car (T1); the mechanic gives
Doe a loaner car for a week: the loaner is partitioned
from the repair itself via (T3); under T7, Doe can combine
his dependence on the mechanic to trust the mechanic to
repair the car whether Doe brings it in or asks the mechanic
to tow it to his shop. Under persistence (T19), the me-
chanic holds his trust in being paid in a timely fashion by
AGFIL until he submits a bill or gets paid. Doe and the me-
chanic demonstrate whole-hearted alignment (T13) because
the mechanic remains committed to completing the repairs
until he does so. Doe applies parallel teamwork (T17)
to place his trust in the team consisting of AGFIL, Lee CS,
and the mechanic to process his claim.

The foregoing points illustrate the kinds of reasoning in-
volving trust, which can be used as criteria for judging spe-
cialized trust approaches. Existing approaches do not read-
ily apply in the above kinds of settings: they either (1)
make unrealistic assumptions about their models or (2) fail
to support inferencing. In the first category we place ap-
proaches for adopting beliefs from reports [4, 12], which are
simply inapplicable because trust here (and often) is about
actions, not truthfulness; cognitive approaches, which pre-
sume deeper representations of beliefs and plans than may
hold in practice [1, 5]; current heuristic [9] and probabilis-
tic [11, 23] approaches, which do not provide the essential
logical structure for this case (thus making it difficult to use
them architecturally). In the second category, we place the
social approaches to trust [7, 20] and dependence [10] which,
though conceptually suited in principle to architecture, are
mostly informal in their details.

More importantly, we can characterize the trust relation-
ships among the parties with or without any contractual re-
lationships among them. Specifically, in the above setting,
we can define an auto repair ecosystem in which a party’s de-
pendencies can be expressed as trust, and reasoned about to
determine if the ecosystem will prove effective: for example,
if the respective dependencies are supported by capabilities
or commitments of the agent’s involved.

Architecture
More generally, an architecture is described not only by its
components and connectors but also by its constraints and
styles [17]. We propose an approach that enables specifying
architectures for specific multiagent systems:

Components: Application-specific roles, such as mechanic
and call center.

Connectors: The trust relationships between the roles: a
connector better reflects a flow of trust not just a flow
of information, as in traditional approaches. For ex-
ample, the mechanic trusts AGFIL to pay for repairs.

Constraints: The reasoning postulates discussed in the fore-
going. Of these, the integrity and structure constraints
are of broad use; some of the others would apply in spe-
cific settings. For example, if Lee CS arranges to take
care of Doe’s car, the mechanic and Doe may have no
direct connectors to each other.

Styles: The sets of constraints geared toward different ap-
plications. For instance, teamwork is a kind of archi-
tectural style. For example, the mechanic and policy
holder may trust each other reciprocally; or the me-
chanic and policy holder may trust a common party,
such as Lee CS or AGFIL.

One can imagine a design episode based on the above ar-
chitecture. Here the designers would identify the key roles
in their system-to-be, and identify the trust relationships
among the (agents playing these) roles. Such trust rela-
tionships would describe the system in architectural terms.
Upon further refinement, the designers could identify the
commitments among the roles that would help realize the
trust interactions. These could arise partly by (1) engender-
ing trust (John Doe might trust a mechanic to complete a
task after the mechanic commits to doing so) and (2) partly
by yielding trust by fiat (Doe would not trust any arbitrary
mechanic but a commitment from AGFIL or Lee CS to get
Doe’s car repaired would produce trust in an approved me-
chanic or limit Doe’s liability and thus reduce the need for
such trust). Trust as dependence can thus conceptually pre-
cede commitments. In other words, we would first identify
the necessary trust relationships and then induce commit-
ments that would support such trust. Trust is thus com-
plementary to goal-based approaches such as Tropos, which
capture dependencies between goals. Further, it can help
address some of the challenges of high variability that re-
cent work on Tropos has identified [16].

As Singh and Chopra [19] observe, recent agent-oriented
software engineering approaches either follow mentalist mod-
els based on beliefs and intentions (and are thus ill-suited
for multiagent architecture, since they inevitably describe an
agent’s internal state), or adopt low-level ideas from tradi-
tional software engineering (and are thus ill-suited for mul-
tiagent systems). Trust, as we have formalized it here, can
help provide a systematic basis for including the mentalist
concepts by showing how they may relate to the high-level
architecture of a multiagent system.

6. DISCUSSION
The above approach considers trust in propositional terms.

Most practical settings need parameters, which we can ac-
commodate in a fairly straightforward manner. Similarly,
an expansion to graded or measured notions of trust would
be valuable. We can potentially develop such a notion by
adopting some ideas of Demolombe [5]. Indeed, there is a
conceptually straightforward mapping of our models to the
above, which would arise by assigning relative weights to
the sets of runs that our model-theoretic standard of trust
T identifies. When such sets of runs can be assigned likeli-
hoods of occurrence, they can additionally be used as a basis
for a probabilistic definition of trust.

Trust is inherently contextual. As a result, in some uses
the preconditions that apply on a claim of trust may not
be explicit. Such implicit preconditions can be mapped to
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antecedents in an explicit representation. Organizational
context is particularly relevant from our architectural per-
spective: an agent may depend upon another when they are
both part of the same team or organization.

Following a similar distinction for commitments [18], we
can distinguish two main kinds of trust: (1) dialectical, i.e.,
about assertions or arguments relating to reports [4, 12]; or
(2) practical, i.e., about actions, as in the present paper. We
can relate the above dichotomy to trust in an agent viewed
as a service provider and an agent viewed as a referrer. Ex-
amples are“if the interest rate has fallen, (I trust) my banker
to grant my mortgage application (practical) or (I trust) my
banker’s assertion of my new loan payment (dialectical).

Following the spirit of correspondence theory as proposed
by van Benthem [22], the above postulates can be given a
model-theoretic basis wherein for each postulate we state
a corresponding semantic constraint (in essence, a closure
property) on the model. For reasons of space, we defer such
constraints and theorems to a longer version of this paper.

Directions
Some important directions of future work fall out naturally
from the above formal, architectural development of trust.

In conceptual terms, a deeper study of the reasoning pos-
tulates would be beneficial in a wide range of multiagent
applications. In particular, it would be important to deter-
mine additional architectural styles. We considered simplis-
tic multiagent systems above. This is an important start in
formalizing trust, but it would be valuable to expand on this
theme to specify richer systems and postulates about them.
Specifically, above we treated agents as either individuals or
sets of agents. In general, multiagent systems would demon-
strate rich structures and consist of roles that feature in a
variety of operational and institutional relationships with
each other. Such relationships would naturally bear a sig-
nificant impact on trust understood architecturally.

In theoretical terms, a rich formal language for express-
ing constraints and reasoning about them to determine if a
particular architecture style or instance will satisfy desirable
properties such as a guarantee of progress under appropriate
assumptions on the behaviors of the participants. Makinson
and van der Torre [13] introduced the idea of input-output
logics as a general way to treat conditionalization. Our
approach can be thought of as specializing their ideas for
the setting of trust with inferences for completion, commit-
ments, and teamwork that do not arise with conditionals in
general, but are important for an understanding of trust. It
would be interesting to explore what insights we can adopt
from input-output logics.

In practical terms, an important consideration is of a pat-
tern language for expressing architectures. Such a language
could provide a basis for a tool and methodology for spec-
ifying architectures. A greater goal is to develop an exten-
sive approach for service-oriented computing in the broadest
sense of the term that considers not technical (web or grid)
services as emphasized today but service engagements me-
diated by flexible and expressive trust relations.
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ABSTRACT
In the absence of legal enforcement procedures for the par-
ticipants of an open e-marketplace, trust and reputation sys-
tems are central for resisting against threats from malicious
agents. Such systems provide mechanisms for identifying
the participants who disseminate unfair ratings. However,
it is possible that some of the honest participants are also
victimized as a consequence of the poor judgement of these
systems. In this paper, we propose a two-layer filtering algo-
rithm that cognitively elicits the behavioral characteristics
of the participating agents in an e-marketplace. We argue
that the notion of unfairness does not exclusively refer to
deception but can also imply differences in dispositions. The
proposed filtering approach aims to go beyond the inflexi-
ble judgements on the quality of participants and instead
allows the human dispositions that we call optimism, pes-
simism and realism to be incorporated into our trustworthi-
ness evaluations. Our proposed filtering algorithm consists
of two layers. In the first layer, a consumer agent measures
the competency of its neighbors for being a potentially help-
ful adviser. Thus, it automatically disqualifies the deceptive
agents and/or the newcomers that lack the required experi-
ence. Afterwards, the second layer measures the credibility
of the surviving agents of the previous layer on the basis
of their behavioral models. This tangible view of trustwor-
thiness evaluation boosts the confidence of human users in
using a web-based agent-oriented e-commerce application.

Categories and Subject Descriptors
[distributed artificial intelligence]: multi-agent systems

General Terms
Human Factors, Design, Measurement

Keywords
Trust, Reputation, Cognitive filtering, Behavioral modeling

1. INTRODUCTION
The inherent uncertainties in an open e-marketplace in-

hibit participants from reaching a mutual understanding and
confidence about each other’s intentions [3]. This matter af-
fects the formation of agent-based e-commerce applications
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handled by human users since their personal dispositions are
not allowed to be reflected in their decisions or, if so, other
participants are not able to identify them[8]. As such, de-
spite the intrinsic honesty of their recommendations, they
may not be considered trustworthy. This is undoubtedly
justifiable with the existence of malicious participants. In
particular, in order to diminish the risk of being misled by
unfair advisers, a consumer agent restricts itself to seek ad-
vice from the participants with the most similar ratings[5,
14].
In this paper we intend to amend this common view of trust-
worthiness [11, 16] by introducing a new definition for un-
fairness. We discuss that the intuition of unfairness could
be examined across two categories: 1) intentional, a) par-
ticipants consistently act malevolently and b) participants
occasionally engage in deceitful activities. And 2) uninten-
tional, as a result of a) lack of personal experience and b)
various behavioral characteristics resulting in different rat-
ing attitudes.
We propose a two-layered filtering algorithm that combines
cognitive and probabilistic views of trust [3] to mainly tar-
get the intentional group of unfair advisers. We show that
modeling the trustworthiness of advisers based on a strict
judgement of the quality of their recommendations is not
complete unless it is accompanied by the analysis of their
dispositions. Thus, through the comprehension of their rat-
ing attitudes, a consumer agent could take appropriate steps
to evaluate them.
The main contributions of this paper are twofold: First, we
propose competency evaluation methods to detect newcom-
ers with a lack of experience and thereafter disqualify them
from the role of advisers. Second, we introduce a classifi-
cation schema to identify the behavioral characteristics of
participants and design credibility assessment measures for
each of them.
Our experimental results show the utility of our approach
in terms of recognizing dispositions of various participants
and, specifically, how consumers with personalized thought-
frames evaluate the same adviser differently. Our filtering
model can therefore be seen as an effective approach in mod-
eling the reputation of advisers in a multi-agent system.

2. TWO-LAYERED COGNITIVE FILTER-
ING ALGORITHM

To formalize the proposed cognitive filtering algorithm, we
consider the scenario where, in an electronic marketplace,
consumer agents with distinctive behavioral patterns want
to bootstrap relationships with new neighbors. We assume
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that the consumer agents have some record of interactions
with transaction partners, i.e, providers. We also assume
that participating agents are cooperative and willing to com-
municate with each other.
To analyze the neighbors’ trustworthiness, each consumer
agent C needs two types of information. The first type of
information, which helps to build the first layer of our fil-
tering algorithm, is used to identify malicious participants
with a complementary model of deception. It also detects
newly-joined agents with an insufficient number of personal
experiences.
In the second layer of the filtering algorithm, the second type
of information helps C to recognize the behavioral charac-
teristics of the neighbors. As such, it will be able to evalu-
ate their degree of trustworthiness. Note that, in this layer,
C takes an analytical approach in order to detect deceit-
ful participants with volatile dispositions who cheat oppor-
tunistically. By hiding their true intentions, this group of
deceitful participants imposes greater risk and insecurity to
the system compared with those with a frequently deceptive
attitude[1, 6, 7].
The detailed explanation of this multi-dimensional filtering
technique is provided in the following sub-sections.

2.1 First Layer: Evaluating the Competency
Degree of Neighbors

The consumer agent C sends a query to a circle of its
neighbors N = {N1, N2, ..., Ni} requesting numbers of suc-
cessful and unsuccessful outcomes experienced with providers
P = {P1, P2, ..., Pr} ⊆ {P1, P2, ..., Pm}, r ≤ m, occurring
before a certain time T . Such a time threshold diminishes
the risk of changeability in a provider’s behavior. It is also
accompanied by the Quality of Service (QoS) threshold Ω
to imply C’s belief about an acceptable minimum level of
trust. For example, for a consumer with a risk-averse pat-
tern, Ω could be 0.7 whereas for the risk-taking consumer
this amount might be reduced to 0.5.
The neighbor Nk responds by providing a rating vector
R(Nk,Pj) for each provider. It contains a tuple of 〈r, s〉 which
indicates the number of successful (r) and unsuccessful (s)
interaction results with provider Pj respectively. Note that,
in the first layer of the filtering algorithm, neighbors are
asked to provide merely a binary rating (“1” or “0” for ex-
ample), in which “1” means that Pj is reputable and “0”
means not reputable. Thus, considering a consumer’s QoS
threshold, they will send reputation reports as a collection
of positive and negative interaction outcomes.
Once the evidence is received, for each R(Nk,Pj), C calcu-
lates the expected value of the probability of the positive
outcome for a provider Pj [9] as:

E(prr, Pj) =
r + 1

r + s+ 2
(1)

To generally present this formula to include all partici-
pants in an e-marketplace, we update the presentation of
E(prr, Pj) to E(prr, Pj)Par, where Par ∈ {C} ∪N implies
participants of the community. Clearly, 0 < E(prr, Pj)Par ≤
1 and as it approaches 0 or 1, it indicates unanimity in the
body of evidence[4]. That is, particularly large values of s or
r provide better intuition about an overall tendency and ser-
vice quality of providers. In contrast, E(prr, Pj)Par = 0.5
(i.e, r = s) signifies the maximal conflict in gathered evi-
dence, resulting in increasing the uncertainty in determining

the service quality of providers. Based on these intuitions,
we are able to calculate the degree of reliability and certainty
of ratings provided by neighbors.
Let x represent the probability of a successful outcome for
a certain provider. Based on the Definitions(2) and (3) in
[12], the Reliability degree of each R(Nk,Pj) is defined as:

c(r, s) =
1

2

∫ 1

0

| xr(1− x)s∫ 1

0
xr(1− x)s dx

− 1 | dx (2)

Similar to E(prr, Pj)Par, we update the presentation of
c(r, s) to c(r, s)Par.
Theoretical analysis [12] demonstrates that, for a fixed ra-
tio of positive and negative observations, the reliability in-
creases as evidence increases. On the contrary, given a
fixed amount of evidence, as the extent of conflict increases,
the reliability of the provided ratings decreases proportion-
ately. That is, reliability is at its minimum value when
E(prr, Pj)Par = 0.5. As such, the less conflict in their rat-
ings, the more reliable the neighbors would be.
However, in the proposed filtering algorithm, C would not
strictly judge the neighbors with rather low reliability in
theirR(Nk,Pj) as deceptive participants since this factor could
signify both dishonesty of neighbors and the dynamicity and
fraudulent behavior of providers. That is, some malicious
providers may adopt a strategy of providing satisfactory
quality of service in most situations when there is not much
at stake and acting conversely in occasions associated with a
large gain. As such, even though they retain a certain level
of trustworthiness, their associated reliability degree is low.
To address this ambiguity, C computes the E(prr, Pj)C and
c(r, s)C of its personal experiences; R(C,Pj), for a common
set of providers. Through the comparison of neighbors’ met-
rics with its own, it would select those with a similar rating
pattern and a satisfactory level of honesty as its advisers.
To formalize this, it measures an average level of dishonesty
of Nk by differentiating their E(prr, Pj)Par as:

d(Nk) =

∑|P |
j=1 | E(prr, Pj)C − E(prr, Pj)Nk |

|P | (3)

As pointed out, increasing the amount of evidence leads to
an increase in the reliability degree. The problem arises
when malicious neighbors disseminate a large number of spu-
rious ratings so as to promote their reliability. Besides, it
may happen that a truthful neighbor lacks in number of ex-
periences. Thus, despite its inherent honesty, its reliability
degree is low and it is not qualified to play the role of ad-
viser. To clarify these issues, we define an uncertainty func-
tion U (Nk) to capture the intuition of information imbalance
between C and Nk as follows:

U (Nk) =

∑|P |
j=1 | (c(r, s)C − c(r, s)Nk )Pj |

|P | (4)

In light of the uncertainty function, the opinions of de-
ceptive neighbors who attempt to mislead consumer agents
by supplying a large number of ratings are discounted. Simi-
larly, it hinders short-term observations of newly-joined agen-
ts from having influence on a consumer agent’s decision mak-
ing process.
Given the formulae (3) and (4), the competency degree of Nk

is calculated by reducing its honesty based on its certainty
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degree. Thus, it could be determined as:

Comp(Nk) = (1− d(Nk)) ∗ (1− U (Nk)) (5)

By comparing their competency degree with a pre-defined
incompetency tolerance threshold µ, C evaluates the qual-
ification and eligibility of the neighbors to play the role
of adviser. As such, It chooses the neighbors with (1 −
Comp(Nk)) ≤ µ as its potential advisers and filters out the
rest. It is worthwhile to note that, since in this layer we
target the participants with a significant lying pattern, de-
tecting fraudulent agents with oscillating rating attitudes is
left for the next layer.

2.2 Second Layer: Calculating a Credibility
Degree of Advisers

In the first phase of the filtering algorithm, neighbors are
asked to send their subjective opinions of providers. By ag-
gregating their opinions and computing their degree of reli-
ability, a consumer agent has obtained a rough estimation of
the honesty level of neighbors and selects a subset of them
as its advisers. However, this method cannot thoroughly ad-
dress the inherent complications of an open environment. To
explain, the nature of the open marketplace allows various
kinds of participants with distinctive behavioral character-
istics [2] to engage in the system.
Besides, the basis of the employed multi-dimensional rating
system provides tools for a consumer agent to objectively
evaluate the performance of service providers across several
criteria with different degrees of preference. Evidently, the
measured QoS is mainly dependent on how much the cri-
teria with a high preference degree are fulfilled[7]. Owing
to the different purchasing behavior of the agents, it is ex-
pected that preference degrees vary from one participant
to another, resulting in dissimilar assessment of the qual-
ity of the same service. As such, computing the credibility
of advisers regardless of their behavioral characteristics and
rating attitudes, and merely based on their subjective opin-
ions, would not sufficiently ensure high quality judgements
of their trustworthiness.
To tackle these problems, in a second layer of the filtering
algorithm, consumer agent C steps forward and analytically
gives credits to advisers to the extent that their evaluation
of each criterion of a negotiated context is similar to its
own experiences. For this purpose, it asks advisers about
mutually agreed criteria on which they have bargained with
highly-reliable providers1 whose reputation values have been
recently released in the form of binary ratings. They also
are requested to include the most recent interaction time
with such information so as to give a higher weight to more
recent feedback. That is, feedback gradually loses its impor-
tance as time progresses. This improves the correctness and
accuracy in predicting the credibility of advisers through al-
leviating the risk of changeability in a provider’s behavior.
To formulate this, we adopt the concept of forgetting factor
presented in [9, 16]:

z = λTA−TC (6)

We customize it for our model and define a recency factor

1Obviously, a consumer only inquires about the providers
with high reliability and ignores those that are possibly de-
ceptive.

as:

T(C,Ak)Pj
=

1

z
(7)

Here, TA and TC indicate the adviser’s and consumer’s time
windows when they had an experience with a provider Pj .
Also, the λ represents the forgetting parameter and 0 < λ ≤
1. When λ = 1, there is no forgetting and all the ratings are
treated as though they happened in the same time period.
In contrast, λ ≈ 0 specifies that ratings from different time
windows will not be significantly taken into account. Sim-
ilarly to [16], in this filtering algorithm, the recency factor
is characterized with a discrete integer value where 1 is the
most recent time period and 2 is the time period just prior.
Also, it is presumed that the adviser’s ratings are prior to
those a consumer agent supplies so that TA ≥ TC .
Adviser Ak will respond, providing an interaction context
IC(Ak,Pj ,TA) that contains a tuple of weight and value:
{Wi.Vi|i = 1..n} and the latest interaction time TA for each
provider.2

Given Ak’s interaction context, a consumer agent would
estimate the possible interaction outcomes of an adviser
based on its own perspective. That is, C will examine
its IC(C,Pj ,TC), which contains pairs of weight and value:
{Yi.Ri|i = 1..n}. It will then modify the interaction context
of Ak by replacing Ak’s preferences Wi with its own personal
preference degrees Yi. Based on this, the interaction con-
text of Ak is updated to: IC′(Ak,Pj ,TA) = {Yi.Vi|i = 1..n}.
To formalize a similarity of Ak’s rating approach with C,
we compute a ratio of the consumer’s interaction context
IC(C,Pj ,TC) with the updated version of the adviser’s inter-
action context as:

Sim(C,Ak)Pj
=

∑n
i=1 Yi ×Ri∑n
i=1 Yi × Vi

(8)

and then

Diff(C,Ak)Pj
= 1− Sim(C,Ak)Pj

represents the difference of C and Ak in assessing Pj .
Based on Equations (7) and (8), C would calculate the av-
erage differences between the transaction result of Ak and
its own experiences with a same set of providers as:

Diff (C,Ak) =

∑|P |
j=1 | Diff(C,Ak)Pj

| ∗T(C,Ak)Pj

|P | (9)

Existing trust models [5, 9, 11, 14, 16] evaluate the trust-
worthiness of advisers mainly based on their average devia-
tion from a consumer’s opinion and exploit the same cred-
ibility measures for all types of advisers. Moreover, they
define a threshold value3 to separate the honest advisers
from dishonest ones. However, adjusting a threshold to an
efficient value has always been a controversial issue. The
quality of advisers is compromised when a threshold is set
to a high value. In this situation, deceitful participants who
maintain a minimum level of trustworthiness remain unde-
tected and could actively contribute to a consumer’s deci-
sion making process. On the other hand, a lower threshold

2Note that in this model we assume that each provider can
only provide one particular service. Dealing with providers
offering multiple services is left for future work.
3A threshold can be explicitly determined as in [5] and [14]
or implicitly as in[16].
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leads to the contribution of a smaller number of advisers.
Clearly, adjusting a threshold value is a trade-off between
the number of credible advisers and the risk of being misled
by deceptive peers.

Furthermore, in a real-life e-commerce application, the
differences in a consumer’s behavioral patterns lead to di-
vergent evaluations of the credibility degree of advisers[8].
For instance, the opinion of one particular adviser may seem
highly credible for a risk-taking consumer while it is not so
for a risk-averse one. We note that the credibility degree of
advisers not only depends on their evaluator’s dispositions
but it is also related to their own individual behavioral pat-
terns. That is, advisers’ recommendations could be affected
by endogenous factors[3]. As such, it may happen that two
honest advisers with different attitudes have conflicting eval-
uations of the same provider. Characterizing the disposition
of advisers helps a consumer agent to take a proportionate
strategy in assessing their future recommendations. For in-
stance, a risk-averse consumer would underestimate the rat-
ings provided by optimistic advisers whilst overrating those
provided by pessimistic advisers. This mechanism shows
its practicality in a community where credible advisers are
scarce and the majority of participants behave malevolently.
In this state, modeling a behavior of advisers helps a con-
sumer to get the most benefits from their opinions in such
a way that the scarcity of credible advisers would not have
a serious effect on the quality of predictions.
For all these reasons, in this model we take a further step and
embrace the diversity in participants as an influential factor
in our credibility measures. We believe that quantity should
not necessarily be sacrificed for quality or vice versa. In-
stead, by employing a suitable mechanism, consumer agents
are able to have a large number of advisers with high-quality
judgements. As such, C captures the overall tendency of Ak

in evaluating the providers’ QoS as:

Tendency(C,Ak) =

∑|P |
j=1Diff(C,Ak)Pj

|P | (10)

As the name suggests, the consumer agent could exploit a
tendency metric to get an intuition about the general trends
of advisers in rating a common set of providers. That is, a
positive value of Tendency(C,Ak) indicates that an adviser
has the attitude of overrating providers while a negative
value declares that an adviser has a tendency to underrate
providers.
Following that, to identify a behavioral pattern of advis-
ers, we determine a pre-defined boundary β such that if
Ak’s IC′(Ak,Pj ,TA) is compatible with those experienced by

C (Diff (C,Ak) 6 β), they will be counted as credible advis-
ers. However, in this model, C would not thoroughly exclude
the advisers who rate otherwise. Instead, it narrowly ana-
lyzes the Diff (C,Ak) in such a way that if it is marginally
greater than β with a negative Tendency(C,Ak), the corre-
sponding adviser’s attitude is identified as pessimistic.
Similarly, in case their differences marginally exceed β with
a positive Tendency(C,Ak), the respective adviser’s attitude
is recognized as optimistic. We define such a marginal er-
ror ε as a ratio of the credibility threshold β and it is sub-
jectively determined by a consumer agent. Evidently, if
Ak’s IC′(Ak,Pj ,TA) significantly deviates from the consumer

agent’s direct experiences, they will be detected as malicious
advisers with deceitful behavioral models. We believe that

the filtered advisers have a deceitful behavioral pattern; oth-
erwise, they would have been expelled in the first layer.

Note that the thresholds are used to identify different
kinds of unfair participants. These thresholds should be set
with the goals of each particular layer in mind. In the first
layer, the value of µ should be high, to ensure that dishonest
participants are expelled. In the second layer, when analyz-
ing participants’ behavioral characteristics, a low value of β
is desirable. Thus, we can conclude that β ≤ µ.
The classification mechanism of the behavioral pattern of
Ak based on C’s interaction context is formally presented as
follows:

BP(C,Ak) =



Realistic/Credible :

Diff(C,Ak) 6 β

Optimistic :

β < Diff(C,Ak) 6 β + ε & Tendency(C,Ak) > 0

Pessimistic :

β < Diff(C,Ak) 6 β + ε & Tendency(C,Ak) < 0

Deceitful :

Diff(C,Ak) > β + ε

(11)

Given the BP(C,Ak), the credibility measure CR(C,Ak) is for-
mulated as:

CR(C,Ak) =



1−Diff(C,Ak) :

BP(Ak)= Credible

(1−Diff(C,Ak))× e
−θ∗Diff(C,Ak) :

BP(Ak) = Optimistic

(1−Diff(C,Ak))× e
−σ∗Diff(C,Ak) :

BP(Ak) = Pessimistic
0 :

BP(Ak) = Deceitful

(12)

Here, θ and σ represent the optimistic and pessimistic co-
efficients respectively. A consumer agent takes a person-
alized adaptive approach to calculate them. Depending on
its behavioral characteristics, such coefficients are initialized
differently. For instance, recommendations of pessimistic
advisers may seem more credible in the perspective of a
risk-averse consumer and they are considered to be better
peers to cooperate with than optimistic advisers [2]. Hence
the risk-averse consumer promotes the credibility of a pes-
simistic adviser by adjusting the pessimistic coefficient to a
lower value than the optimistic coefficient〈0 ≤ σ < θ〉. On
the contrary, the disposition of a risk-taking buying agent
compels it to consider the reputation information provided
by optimistic advisers as more important. Therefore, it as-
signs a great deal of influence to their ratings by properly
setting up the optimistic coefficient to a lower value than
the pessimistic coefficent 〈0 ≤ θ < σ〉.
As such, the coefficients are adaptively defined for each ad-
viser. For initializing θ, a risk-averse agent considers the
maximum difference of the adviser’s ratings with a con-
sumer’s opinions upon evaluating the same providers. For
a risk-taking agent, this process is reversed. That is, the
optimistic coefficient is defined as the minimum deviation
of the adviser’s recommendations with the consumer’s opin-
ions across a common set of providers. Thus, coefficients θ
and σ are formalized as:

θ =

{
max{| Diff(C,Ak)Pi

| |i = 1...m} Risk-Averse consumer

min{| Diff(C,Ak)Pi
| |i = 1...m} Risk-Taking consumer

(13)
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σ =

{
min{| Diff(C,Ak)Pi

| |i = 1...m} Risk-Averse consumer

max{| Diff(C,Ak)Pi
| |i = 1...m} Risk-Taking consumer

(14)

Through these principles, Ak’s recommendations are dis-
counted such that its influence on C’s prediction depends
on its honesty in each of its interaction contexts. The co-
efficient parameters ensure that the recommendation of ad-
visers with volatile behavior who have a high variability in
their opinions is heavily discounted.

3. EXAMPLES
In an electronic marketplace, a consumer C1 needs to

make a decision on whether to interact with a provider P1.
This depends on how much C1 trusts P1. To model the
trustworthiness of P1, when the consumer does not have an
adequate number of experiences with P1, it ought to seek
advice from its neighbors. However, it first needs to acquire
enough information about their credibility value in order to
assign a proper credibility to their provided ratings.
In the first phase of the filtering algorithm, the risk-averse
C1 asks its surrounding neighbors {N1, N2, .., N6} about the
overall performance of the providers {P1, P2, .., P8} before
time T , given the QoS threshold Ω = 0.7.
Consider the case where the neighbors {N1, .., N5} have rated
only the five providers {P1, P2, P3, P4, P5}. Using Equations
(1) and (2), C1 would calculate the expected value of the
probability of positive ratings along with a degree of relia-
bility of their evidence. Table 1 lists a number of success-
ful/unsuccessful ratings provided by Ni(i ∈ {1, .., 5}) and
C1 for the five providers along with their E(prr, Pj)Ni and
c(r, s)Ni .

Table 1: Ratings provided by the neighbors and C1 along with
their corresponding metrics

Participants Pi 〈r, s〉 E(prr, Pj)Par c(r, s)Par

C1

P1 〈16, 1〉 0.89 0.71
P2 〈7, 4〉 0.61 0.47
P3 〈2, 10〉 0.21 0.57
P4 〈15, 0〉 0.94 0.77
P5 〈2, 4〉 0.37 0.38

N1

P1 〈25, 0〉 0.96 0.84
P2 〈8, 3〉 0.69 0.5
P3 〈2, 5〉 0.33 0.42
P4 〈8, 0〉 0.9 0.67
P5 〈3, 2〉 0.57 0.33

N2

P1 〈8, 5〉 0.6 0.54
P2 〈9, 5〉 0.62 0.51
P3 〈5, 5〉 0.50 0.44
P4 〈11, 6〉 0.63 0.55
P5 〈3, 4〉 0.44 0.38

N3

P1 〈13, 2〉 0.82 0.62
P2 〈2, 6〉 0.3 0.46
P3 〈4, 7〉 0.38 0.47
P4 〈20, 5〉 0.77 0.65
P5 〈1, 11〉 0.15 0.64

N4

P1 〈4, 11〉 0.29 0.55
P2 〈6, 4〉 0.58 0.45
P3 〈13, 5〉 0.7 0.57
P4 〈5, 9〉 0.37 0.51
P5 〈10, 6〉 0.61 0.53

N5

P1 〈2, 0〉 0.75 0.38
P2 〈1, 0〉 0.66 0.25
P3 〈1, 2〉 0.4 0.27
P4 〈1, 0〉 0.66 0.25
P5 〈0, 1〉 0.33 0.25

To calculate the competency degree of neighbors, C1 would
analyze their average dishonesty. Through U (Nk), it also
examines the adequacy of their ratings. Afterwards, us-
ing Equation (5), it is able to calculate their Comp(Nk),
resulting in detection of particular neighbors with consistent
deceptive attitudes and those with few experiences. Here,
a risk-averse C1 selects the neighbors {N1, N2, N3} whose
competency values Comp(Nk) surpass µ = 0.65 and filters
out the rest (Table 2). Next, in the second layer, C1 re-

Table 2: Calculating the competency level of the neighbors

Ni d(Nk) U(Nk) Comp(Nk)

N1 0.1 0.08 0.81
N2 0.19 0.12 0.70
N3 0.19 0.11 0.71
N4 0.38 0.12 0.54
N5 0.13 0.3 0.59

quests detailed descriptions of their negotiated criteria with
the selected set of providers so as to identify the behav-
ioral characteristics of advisers. Table 3 articulates personal
ratings of each participant through the 〈weight, value〉 pair
related to each criterion regarding the selected providers.
As can be perceived, in the first layer, the disposition of
consumers has not been reflected in the evaluation of the
competency degree of the neighbors. To observe the influ-
ence of this factor in the second layer, we introduce a risk-
taking C2 in addition to C1 and examine their approaches
in evaluating the same advisers. Finally, as indicated in Ta-

Table 3: The negotiated criteria of participants with selected
providers

Participants Pi Criteria〈w, v〉 T
Cri1 Cri2 Cri3 Cri4

C1
P1 〈6, 7〉 〈10, 9〉 〈10, 8〉 〈5, 10〉 2
P3 〈10, 4〉 〈7, 2〉 〈5, 5〉 〈10, 3〉 2
P4 〈6, 5〉 〈3, 10〉 〈10, 10〉 〈8, 6〉 1

C2
P1 〈3, 8〉 〈10, 9〉 〈9, 7〉 〈8, 9〉 3
P3 〈9, 3〉 〈8, 4〉 〈10, 5〉 〈7, 4〉 1
P4 〈2, 8〉 〈10, 10〉 〈8, 10〉 〈6, 6〉 1

N1
P1 〈4, 9〉 〈10, 10〉 〈10, 8〉 〈6, 10〉 3
P3 〈10, 5〉 〈6, 2〉 〈4, 6〉 〈10, 5〉 3
P4 〈3, 8〉 〈10, 10〉 〈10, 10〉 〈6, 7〉 7

N2
P1 〈7, 5〉 〈10, 7〉 〈10, 4〉 〈4, 6〉 4
P3 〈10, 6〉 〈5, 6〉 〈2, 7〉 〈10, 6〉 3
P4 〈10, 3〉 〈5, 7〉 〈10, 6〉 〈7, 4〉 2

N3
P1 〈10, 6〉 〈10, 8〉 〈10, 7〉 〈5, 9〉 4
P3 〈10, 3〉 〈7, 2〉 〈5, 4〉 〈10, 2〉 3
P4 〈8, 5〉 〈3, 10〉 〈10, 9〉 〈7, 5〉 1

bles 4 and 5, the behavioral patterns of participants could
serve as determinant factors in evaluating their trustworthi-
ness. We notice that, consumer agents with similar deviation
(Diff (C1,N1) = Diff (C2,N1)) and the same β = 0.15, ε =
0.07 and λ = 0.8 could predict different credibility values for
the same adviser. Note that, in Table 4, we use the notation
Tend(C1,Nk) for Tendency(C1,Nk).

Table 4: Calculating tendency of neighbors and their deviation
degree based on C1 and C2’s experiences

Nk Diff(C1,Nk) Tend(C1,Nk) Diff(C2,Nk) Tend(C2,Nk)

N1 0.18 0.13 0.18 0.14
N2 0.60 -0.22 0.53 -0.22
N3 0.17 -0.14 0.18 -0.16

Table 5: Behavioral pattern and credibility degree of neighbors
determined by C1 and C2

Consumer Nk BP(C,Nk) CR(C,Nk) θ σ

C1
N1 Optimistic 0.79 0.18 N/A
N2 Deceitful 0 N/A N/A
N3 Pessimistic 0.82 N/A 1.08

C2
N1 Optimistic 0.82 0.02 N/A
N2 Deceitful 0 N/A N/A
N3 Pessimistic 0.76 N/A 0.34

4. EXPERIMENTAL RESULTS
Our approach models the trustworthiness of advisers, not

only based on their honesty degree but also by examining
their competency level. That is, an honest adviser but with
insufficient experiences is not qualified to provide advice.
Furthermore, we claim that having a good comprehension
of the adviser’s disposition leads to a more adaptive credi-
bility assessment. For this purpose, we have conducted two
classes of experiments. The first class is designed to indi-
cate the effectiveness of the proposed model in detecting
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malicious neighbors as well as newcomers with insufficient
experiences. In the second class of experiments we put the
second layer to the test and observe how the same advisers
could have different credibility values according to different
consumers. We also estimate the accuracy of our prediction
by comparing it with the actual trustworthiness value of ad-
visers, obtained by averaging over multiple experiences.
The first series of experiments evaluates the competency
level of an intrinsically honest neighbor having different num-
bers of experiences. It involves one consumer C asking a
neighbor Nk about its common experiences with 2 and 50
providers. Nk provides percentages (ranging from 0% to
100%) indicating the level of difference between the number
of experiences for C and the number of its own experiences.
The results indicate that the competency of even an honest
neighbor degrades as its number of experiences decreases
(Figure 1). We also observe that C can effectively evaluate
the competency level of advisers even with a limited set of
providers. Figure 2 illustrates the experiment in which Nk

Figure 1: The competency degradation of Nk having different
percentages of common experiences

provides different percentages (0% to 100%) of unfair rat-
ings. Given similar conditions as in Figure 1, we observe that
as the number of unfair ratings increases, the competency
level of Nk decreases. It also indicates that the competency
level of Nk drops more significantly if it provides unfair rat-
ings (Figure 2) in comparison with the situation where it
has insufficient ratings(Figure 1). Note that, in both exper-
iments, it is noticeable that C can effectively evaluate the
competency level of Nk with a few providers - e.g., 2.

Figure 2: The competency degradation of Nk having different
percentages of unfair ratings

The next class of experiment targets the second layer of
the filtering algorithm. It involves 80 providers, 4 advisers
and 2 consumers. The consumers and the advisers rate 50
randomly selected providers. We assume that the advisers
have passed the first layer and are qualified to play the role
of advisers. We model the credibility ratings the consumers
have of participating advisers and compare them with the
actual credibility value of advisers. More explicitly, we ex-
amine how the consumers C1 and C2 with different disposi-
tions (risk-averse and risk-taking, respectively) evaluate the
set of advisers A1 , A2 , A3 and A4. Note that A1 and A3

have a tendency to overrate the providers while A2 and A4

have a tendency to underrate the providers. These advisers
have different credibility values from 0.0 to 1.0. Also, in or-
der to examine the effect of the recency factor in prediction
of the trust value, we assume that A1 and A2 provide ratings
in the same window with consumers (TA−TC = 0) while the
other advisers provide ratings in different time windows, dif-
fering by at most 3 time intervals (TA − TC ≤ 3). Figures 3
and 4 illustrate the trustworthiness of advisers predicted by
C1 and C2, respectively. Adjusting the threshold values and
the forgetting parameter to β = 0.25, ε = 0.75 and λ = 0.9,
we can observe how C1 and C2 evaluate the credibility of
advisers differently.
As shown in Figure 3, C1 identifies the behavioral model of
advisers and evaluates their credibility adaptively. Results
indicate that C1 assigns higher credibility to the pessimistic
adviser A4 (with TA4 − TC1 = 3) when compared with the
optimistic adviser A1 (with TA1 − TC1 = 0). Similarly, C2

considers the old opinion of the optimistic Adviser A3 more
valuable than a recent opinion of pessimistic adviser A2 (Fig-
ure 4).

Figure 3: The predicted credibility of advisers by C1 in comparison
with their actual credibility

Table 6 measures the deviation (i.e., Mean-Square-Error
and Mean-Absolute Percentage error) between advisers’ ac-
tual and predicted credibility values determined by C1 and
C2 across different values of TA − TC .

To examine how C1 and C2 adaptively calculate the coeffi-
cients θ and σ, Table 7 depicts the values of these coefficients
across various percentages of advisers’ dishonesty. That is,
the advisers provide different percentages (0% to 100%) of
unfair ratings. We observe that consumer agents with dif-
ferent characteristics take different approaches in comput-
ing such coefficients, resulting in different evaluations of the
credibility degrees of the same advisers.

The final experiment examines the effect of the recency
factor T(C,Ak)Pj

in evaluating the credibility of advisers.
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Table 6: Calculating the error parameters for C1 and C2 having various time difference

Agent Adviser’s Pattern Erorr TA − TC = 0 TA − TC = 1 TA − TC = 2 TA − TC = 3 TA − TC = 4 TA − TC = 5

C1 Optimistic Adviser
MSE 0.06 0.068 0.07 0.079 0.086 0.092

MAPE 1.43% 1.56% 1.72% 1.58% 2.00% 2.15%

Pessimistic Adviser
MSE 0.048 0.049 0.052 0.057 0.06 0.068

MAPE 0.58% 0.80% 0.99% 1.22% 1.39% 1.59%

C2 Optimistic Adviser
MSE 0.048 0.049 0.052 0.059 0.061 0.067

MAPE 0.58% 0.8% 0.99% 1.19% 1.39% 1.59%

Pessimistic Adviser
MSE 0.063 0.068 0.073 0.079 0.085 0.092

MAPE 1.42% 1.57% 1.72% 1.86% 1.99% 2.14%

Table 7: The coefficients parameters calculated by consumers C1 and C2

Buyer′sDisposition Coefficient Percentage of Unfair Ratings
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Risk-Averse Consumer C1
θ 0 0.36 0.46 0.56 0.66 0.76 0.86 0.96 1.06 1.16 1.26
σ 0 0.001 0.002 0.04 0.14 0.24 0.34 0.44 0.54 0.64 0.74

Risk-Taking Consumer C2
θ 0 0.001 0.002 0.04 0.14 0.24 0.34 0.44 0.54 0.64 0.74
σ 0 0.36 0.46 0.56 0.66 0.76 0.86 0.96 1.06 1.16 1.26

Figure 4: The predicted credibility of advisers by C2 in comparison
with their actual credibility

That is, we define a consumer C and adviser A regardless of
the behavioral patterns. We also assume that A has success-
fully passed the first layer. Adjusting β = 1 and ε = 0, we
observe that A with CR(A) = 0.95 loses its credibility as the
differences between their time window (TA − TC) increases.
Figure 5 illustrates this by initializing the forgetting factor
λ from 0.0 to 1.0.

Figure 5: Aging the credibility value of A as time passes

5. RELATED WORK
Several reputation systems and mechanisms have been

proposed for modeling the trustworthiness of advisers and
coping with the problem of unfair ratings in multi-agent on-
line environments.

In the beta reputation system (BRS) proposed by Jøsang
and Ismail [9], which is based on a beta distribution, the

agents can only provide binary ratings for each other. He
further extends the proposed BRS to adopt a multinomial
rating model that computes reputation scores by statistically
updating the Dirichlet Probability Density Function (PDF)
[10, 7]. In this context, participating agents are allowed to
rate each other within any level from a set of predefined rat-
ing levels. To handle unfair feedback provided by adviser
agents, Whitby et al.[13] use the endogenous discounting
method to exclude advisers whose probability distributions
of ratings significantly deviate from the overall reputation
scores of the target agent. That is, it dynamically deter-
mines upper and lower bound thresholds in order to adjust
the iterated filtering algorithm’s sensitivity tailored to dif-
ferent environmental circumstances. For instance, if the ma-
jority of participants act deceitfully in the environment, the
lower bound would be set to a higher value so as to increase
the sensitivity of the BRS, which can lead to the exclusion
of more unfair raters.

Teacy et al. [11] proposed TRAVOS, which is a proba-
bilistic trust and reputation system for agent-based virtual
organizations. To derive a measure of trust, this model relies
heavily on its direct experiences and refuses to combine oth-
ers’ opinions unless it is not confident about the adequacy of
its personal experiences. In such conditions, advisers share
the history of their interactions in a tuple that contains the
frequency of successful and unsuccessful interaction results.
To evaluate the credibility of advisers, it uses a beta distribu-
tion and calculates the probability that a particular adviser
provides accurate reports given its past opinions and pro-
portionately adjusts the influence of its current observation
afterwards.

PeerTrust [14] is a coherent dynamic trust model for peer-
to-peer e-commerce communities. To evaluate the quality of
the feedback provider, it proposes a personalized similarity
measures mechanism to compute a feedback similarity rate
between the evaluating peer and advising peer over a com-
mon set of peers with whom they have had previous inter-
actions. Particularly, this model calculates the root-mean-
error or standard deviation of the two feedback vectors to
compute the feedback similarity. Through this principle,
the evaluating peer discounts the future feedback released
by feedback providers.

Yu and Singh[15] have proposed a decentralized reputa-
tion management model to locate the rightful advisers in
multi-agent systems. In fact, one of the major concerns of
this model is detecting malicious agents who deliberately dis-
seminate misinformation through a network. The proposed
model considers three types of deceptions: complementary,
exaggerative positive and exaggerative negative. It defines

877



an exaggeration coefficient to differentiate between exagger-
ative and complementary deceptive agents. This model uses
the same credibility measure to calculate the trustworthi-
ness of different kinds of advisers by considering how much
their ratings deviate from the actual value experienced by
a consumer agent. Note that, in this model, all the advis-
ers have an initial credibility of 1 and as a consumer agent
interacts with more provider agents, its credibility will be
updated.

Zhang and Cohen [16] proposed a personalized approach
for handling unfair ratings in centralized reputation systems.
It provides a public and private reputation approach to eval-
uate the trustworthiness of advisers. In this model, advis-
ers share their subjective opinions over a common set of
providers. To estimate the credibility of advisers, it exploits
a probabilistic approach and calculates the expected value
of advisers’ trustworthiness based on their provided ratings.

Our work differs in a number of ways. Unlike other mod-
els, which mainly evaluate the credibility of advisers based
on the percentage of unfair ratings they provided, this model
takes the steps to aggregate several parameters in deriving
the trustworthiness of advisers. That is, in addition to the
similarity degree of advisers’ opinions, we aggregate their be-
havioral characteristics and evaluate the adequacy of their
reputation information in our credibility measure. In this
model, every consumer with different behavioral characteris-
tics is able to objectively evaluate the similarity degree of ad-
visers through a multi-criterion rating approach. Also, con-
sumer agents could adaptively predict the trustworthiness of
advisers using different credibility measures well-suited for
various kinds of advisers.

6. CONCLUSION AND FUTURE WORK
In this paper, we propose a two-layered filtering algorithm

that cognitively elicits the behavioral characteristics of the
participating agents in an e-marketplace. The principles
of the two-layer filtering algorithm mainly target malicious
agents with complementary rating patterns, agents with in-
sufficient experiences and fraudulent participants who retain
a minimum level of trust to cheat opportunistically.
In the first layer, consumer agents take a probabilistic ap-
proach and narrow a circle of neighbors by expelling those
with significant deceptive patterns, as well as those with an
inadequate number of experiences. The basis of the second
layer provides mechanisms to cognitively derive the actual
intentions of the surviving agents of the previous layer. Here,
consumer agents conduct additional evaluations and objec-
tively estimate the similarity degree of advisers through a
multi-criterion rating model. Thereafter, they classify their
behavioral characteristics based upon their own attitudes.
Our model articulates that consumers could have different
credibility degrees for the same advisers. Also, it enables
consumer agents to include more participants as advisers
through a variety of credibility assessment measures. This
matter is mostly practical in an environment where the ma-
jority of participants are unfair. In order to articulate the
effectiveness of our approach in dealing with a community
where a majority of participants are unfair, in future work,
we will conduct extensive experiments to compare our model
with others in identifying honest participants in such situa-
tions. Another avenue for future work is to propose a mech-
anism to dynamically adjust the presented thresholds of the
layers based on the environmental conditions and the quality

of participants.
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ABSTRACT
In any group of agents, trust plays an important role. The degree to
which agents trust one another will inform what they believe, and,
as a result the reasoning that they perform and the conclusions that
they come to when that involves information from other agents.
In this paper we consider a group of agents with varying degrees
of trust of each other, and examine the combinations of trust with
the argumentation-based reasoning that they can carry out. The
question we seek to answer is "What is the relationship between
the trust one agent has in another and the conclusions that it can
draw using information from that agent?", and show that there are
a range of answers depending upon the way that the agents deal
with trust.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Coherence & co-ordination; languages & structures; multiagent
systems.

General Terms
Language, theory.

Keywords
Argumentation; Logic-based approaches and methods; Trust, reli-
ability and reputation.

1. INTRODUCTION
Trust is an approach for measuring and managing the uncertainty

about autonomous entities and the information they deal with. As a
result trust can play an important role in any decentralized system.
As computer systems have become increasingly distributed, and
control in those systems has become more decentralized, trust has
steadily become more important in computer science [5, 11].

Thus, for example, we see work on trust in peer-to-peer net-
works, including the EigenTrust algorithm [15] — a variant of
PageRank [19] where downloads from a source play the role of
outgoing hyperlinks and which is effective in excluding peers who

Cite as: Argumentation-based reasoning in agents with varying degrees of
trust, S. Parsons, Y. Tang, E. Sklar, P. McBurney and K. Cai, Proc. of 10th
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei,
Taiwan, pp. 879-886.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

want to disrupt the network — and the work in [1] that prevents
peers manipulating their trust values to get preferential downloads.
Zhong et al. [29] are concerned with slightly different issues in mo-
bile ad-hoc networks, looking to prevent nodes from getting others
to transmit their messages while refusing to transmit the messages
of others, thus enforcing trustworthy behavior.

The internet, as the largest distributed system of all, is naturally
a target of much of the research on trust. There have, for example,
been studies on the development of trust in ecommerce [22], on
mechanisms to determine which sources to trust when faced with
multiple conflicting sources [28], and mechanisms for identifying
which individuals to trust based on their past activity [2]. One in-
teresting development is the idea of having individuals indemnify
each other by placing some form of financial guarantee on transac-
tions that others enter into [7, 8].

Trust is an especially important issue from the perspective of au-
tonomous agents and multiagent systems [26]. The premise behind
the multiagent systems field is that of developing software agents
that will work in the interests of their “owners”, carrying out their
owners’ wishes while interacting with other entities. In such inter-
actions, agents will have to reason about the degree to which they
should trust those other entities, whether they are trusting those
entities to carry out some task, or whether they are trusting those
entities to not misuse crucial information. As a result we find much
work on trust in agent-based systems [24].

In such work it is common to assume that agents maintain a
trust network of their acquaintances, which includes ratings of how
much those acquaintances are trusted, and how much those ac-
quaintances trust their acquaintances, and so on. An important line
of inquiry in this context is what inference is reasonable in such
networks, and the propagation of trust and provenance — both the
transitivity of trust relations [23, 27] and more complex relation-
ships like “co-citation” [12] have been studied, and in some cases
empirically validated [12, 16, 28].

In this paper we look at the use of trust in other aspects of the
reasoning that agents carry out. Argumentation [6] is a model of
reasoning that seems well-suited to agent-based systems — it is ro-
bust against inconsistency, handles decision-making under uncer-
tainty, and supports inter-agent communication. [20] suggests that
argumentation is a suitable mechanism for reasoning about trust,
and [18] shows how argumentation can be used to track trust in
acquaintances. Here we investigate the combination of trust mea-
sures on agents and the use of argumentation for reasoning about
belief, combining an existing system for reasoning about trust and
an existing system of argumentation.
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2. FORMAL MODEL
This paper deals with combining two formal models — a model

of trust and a model of argumentation — and we introduce both
here. Though there is no standard for either kind of model, we built
as generic a model of both trust and argumentation as we could,
drawing from well-established models in the literature. As a result
we have a combined model that has a number of features unspeci-
fied — in later sections we will examine various instantiations.

2.1 Trust
We are interested in a finite set of agents Ags and how these

agents trust one another. Following the usual presentation (for ex-
ample [16, 27, 23]), we start with a trust relation:

τ ⊆ Ags×Ags
which identifies which agents trust one another. If τ(Agi, Agj),
where Agi, Agj ∈ Ags, then Agi trusts Agj . This is not a sym-
metric relation, so it is not necessarily the case that τ(Agi, Agj)⇒
τ(Agj , Agi). It is natural to represent this trust relation as a di-
rected graph, and we have:

DEFINITION 1. A trust network is a graph comprising, respec-
tively, a set of nodes and a set of edges:

T = 〈Ags, {τ}〉
where Ags is a set of agents and {τ} is the set of pairwise trust re-
lations over Ags so that if τ(Agi, Agj) is in {τ} then {Agi, Agj}
is a directed arc from Agi to Agj in T .

In this graph, the set of agents is the set of vertices, and the trust re-
lations define the arcs. We are typically interested in minimal trust
networks, which are connected — these thus capture the relation-
ship between a set of agents all of whom, in one way or another
are connected by a “web of trust”. A directed path between agents
in the trust network implies that one agent indirectly trusts another.
For example if:

〈Ag1, Ag2, . . . Agn〉
is a path from agent Ag1 to Agn, then we have:

τ(Ag1, Ag2), τ(Ag2, Ag3), . . . , τ(Agn−1, Agn)

and the path gives us a means to compute the trust that Ag1 has in
Agn. Below we will make use of the function length(·) which re-
turns the number of agents in a path: length(〈Ag1, Ag2, . . . Agn〉)
is n.

The usual assumption in the literature is that we can place some
measure on the trust that one agent has in another, so we have:

tr : Ags×Ags 7→ <
where tr gives a suitable trust value. In this paper, we take this
value to be between 0, indicating no trust, and 1, indicating the
greatest possible degree of trust. We assume that tr and τ are mu-
tually consistent, so that:

tr(Agi, Agj) 6= 0 ⇔ (Agi, Agj) ∈ τ
tr(Agi, Agj) = 0 ⇔ (Agi, Agj) 6∈ τ

Now, this just deals with the direct trust relations encoded in τ . It
is usual in work on trust to consider performing inference about
trust by assuming that trust relations are transitive. This is easily
captured in the notion of a trust network:

DEFINITION 2. If, in the trust network T , Agi is connected to
Agj by a directed path 〈Agi, Agi+1, . . . Agj〉 then Agi trusts Agj

according to T

jane dave

john

mary alice

0.8 0.6

0.7 0.8

0.40.7

0.9

Figure 1: Example trust graph

The notion of trust embodied here is exactly Jøsang’s “indirect
trust” or “derived trust” [14] and the process of inference is what
[12] calls “direct propagation”. If we have a function tr, then we
can compute:

tr(Agi, Agj) = tr(Agi, Agi+1)⊗tr tr(Agi+1, Agi+2)⊗tr

. . .⊗tr tr(Agj−1, Agj) (1)

for some operation ⊗tr . Here we follow [27] in using the symbol
⊗, to stand for this generic operation1. Sometimes it is the case
that there are two or more paths through the trust network between
Agi and Agj indicating that Agi has several opinions about the
trustworthiness of Agj . If these two paths are

〈Agi, Ag
′
i+1, . . . Agj〉 and 〈Agi, Ag

′′
i+1, . . . Agj〉

then the overall degree of trust that Agi has in Agj is:

tr(Agi, Agj) = tr(Agi, Agj)′ ⊕tr tr(Agi, Agj)′′ (2)

Again we use the standard notation ⊕ for a function that combines
trust measures along two paths [27]. Clearly we can extend this to
handle the combination of more than two paths.

Now, given this kind of propagation, we can define an order over
the set of agents based on trust values. Since the trust measure
we are using is relative to one agent, Agi, the order is necessarily
relative that agent also. We have:

DEFINITION 3. For an agentAgi, a trust network T and a trust
measure tr, we can define an order over agents �tr

i such that
Agj �tr

i Agk iff tr(Agi, Agj) ≥ tr(Agi, Agk). If this is the
case, we say thatAgi considersAgj at least as trustworthy asAgk.

We further define =tr
i and �tr

1 in the usual way. Agj =tr
i Agk iff

Agj �tr
i Agk and Agk �tr

i Agj . Agj �tr
i Agk iff Agj �tr

i Agk

and Agk 6�tr
i Agj . In addition we extend all these relations to

operate over a set of agents: Ags �tr
i Ags′ iffAgi considers every

Ag ∈ Ags at least as trustworthy as every Ag′ ∈ Ags′.
As an example of a trust graph, consider Figure 1 (a) which

shows the trust relationship between John, Mary, Alice, Jane and
Dave. This is adapted from the example in [16] normalizing the
values to lie between 0 and 1. The solid lines are direct trust rela-
tionships, the dotted lines are indirect links derived from the direct
links. Thus John trusts Jane and Dave because he trusts Mary and
Mary trusts Jane and Dave. However, John does not, even indi-
rectly, trust Alice.

1[12, 16, 23, 27], among others, provide different possible instantiations of this oper-
ation some of which we investigate below.
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2.2 Argumentation
From the many formal argumentation systems in the literature,

we take as our starting point the system from [21]. An agentAgi ∈
Ags maintains a knowledge base, Σi, containing a possibly incon-
sistent set of formulae of a propositional language L. Agent i also
maintains the set of its past utterances, called the “commitment
store”, CSi. We refer to this as an agent’s “public knowledge”,
since it contains information that is shared with other agents. In
contrast, the contents of Σi are “private” to Agi.

Note that in the description that follows, we assume that ` is the
classical inference relation, that ≡ stands for logical equivalence,
and we use ∆ to denote all the information available to an agent.
Thus in an interaction between two agents Agi and Agj , ∆i =
Σi ∪ CSi ∪ CSj , so the commitment store CSi can be loosely
thought of as a subset of ∆i consisting of the assertions that have
been made public by Agi. In some dialogue games, such as those
in [21] anything in CSi is either in Σi or can be derived from it. In
other dialogue games, such as those in [4], CSi may contain things
that cannot be derived from Σi.

DEFINITION 4. An argument A is a pair (S, p) where p is a
formula of L and S a subset of ∆ such that: (i) S is consistent; (ii)
S ` p; and (iii) S is minimal, so no proper subset of S satisfying
both (i) and (ii) exists.
S is called the support of A, written S = Support(A) and p is

the conclusion of A, written p = Conclusion(A). Thus we talk of p
being supported by the argument (S, p).

In general, since ∆ may be inconsistent, arguments in A(∆), the
set of all arguments which can be made from ∆, may conflict, and
we make this idea precise with the notion of undercutting:

DEFINITION 5. Let A1 and A2 be arguments in A(∆). A1

undercuts A2 iff there is some ¬p ∈ Support(A2) such that p ≡
Conclusion(A1).

In other words, an argument is undercut if and only if there is an-
other argument which has as its conclusion the negation of an ele-
ment of the support for the first argument.

It will be typical for an agentAgi to have different degrees of be-
lief beli(·) for the formulae in ∆i, and in this paper we will assume
that these belief values (like those in the much of the uncertainty
handling literature) are between 0 and 1. Then, if there is some
argument A = (S, p) and A ∈ A(∆i) we can compute the belief
in an argument from the belief in the formulae in the support of the
argument:

beli(A) = beli(s1)⊗bel bel(s2)⊗bel . . .⊗bel bel(sn) (3)

where S = {s1, . . . , sn}. Where we need to establish the belief in
the conclusion p ofA we will set beli(p) to be beli(A). From these
values we can then establish an order over arguments.

DEFINITION 6. For an agent Agi and a set of belief values for
arguments beli(·), we can define an order over arguments �bel

i

such that A1 �bel
i A2 iff beli(A1) ≥ beli(A2). If this is the case,

we say that Agi believes A1 at least as much as A2.

In addition we say that A1 =bel
i A2 iff A1 �bel

i A2 and A2 �bel
i

A1 and A1 �bel
i A2 iff A1 �bel

i A2 and A2 6�bel
i A1. As with

the notion of belief on which they are grounded, we will use these
relations between the conclusions of arguments when they hold for
the arguments themselves.

We can now define the argumentation system we will use:

DEFINITION 7. An argumentation system is a triple:

〈A(∆i),Undercut ,�arg
i 〉

whereA(∆) is as defined as above,�arg
i is a preference order over

arguments, and Undercut is a binary relation collecting all pairs
of arguments A1 and A2 such that A1 undercutsA2.

Note that for now we don’t define exactly where �arg
i comes from

— later we discuss how it can be established from �bel
i . We say

that A1 is stronger than A2 iff A1 �arg
i A2.

The preference order makes it possible to distinguish different
types of relations between arguments:

DEFINITION 8. Let A1, A2 be two arguments of A(∆).

• If A2 undercuts A1 then A1 defends itself against A2 iff
A1 �arg

i A2. Otherwise, A1 does not defend itself.

• A set of arguments A defends A1 iff for every A2 that un-
dercutsA1, whereA1 does not defend itself againstA2, then
there is some A3 ∈ A such that A3 undercuts A2 and A2

does not defend itself against A3.

If A1 is undercut by A2 and either does not defend itself, or is
not defended by another set of arguments, we say that A1 is suc-
cessfully undercut and A2 is a successful undercutter. We write
AUndercut,�arg

i
to denote the set of all arguments that are not suc-

cessfully undercut (which includes those that are not undercut at
all). The set A(∆) of acceptable arguments of the argumentation
system 〈A(∆),Undercut ,�arg

i 〉 is [3] the least fixpoint of a func-
tion F :

A ⊆ A(∆)

F(A) = {(S, p) ∈ A(∆) | (S, p) is defended by A}

DEFINITION 9. The set of acceptable arguments for an argu-
mentation system 〈A(∆),Undercut ,�arg

i 〉 is recursively defined
as:

A(∆) =
⋃
Fi≥0(∅)

= AUndercut,�arg
i
∪
[⋃
Fi≥1(AUndercut,�arg

i
)
]

An argument is acceptable if it is a member of the acceptable set,
and a formula is acceptable if it is the conclusion of an acceptable
argument.

An acceptable argument is one which is, in some sense, proven
since all the arguments which might undermine it are themselves
undermined. If there is an acceptable argument for a formula p,
then the status of p is accepted, while if there is not an acceptable
argument for p, the status of p is not accepted.

3. ARGUMENTATION AND TRUST
In this paper we are concerned with the following question. If an

agent makes use of information that it gets from an acquaintance,
how should the degree of trust the agent has in its acquaintance in-
form the way it uses the information? In particular, if an agent con-
structs arguments using this information, what, in general terms,
is it reasonable for the agent to conclude? For example, we might
want to specify that if an agent is given information that it doesn’t
trust very highly, then it should not allow conclusions derived from
this information to over-rule conclusions derived from information
provided by more trustworthy sources. However it is not immedi-
ately clear how to capture principles like this in formal models we
introduced above.
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3.1 Combining trust and argumentation
To use our models of trust and argumentation to analyze this

question, we first need to consider how to combine them. We opt
for a very simple approach, adding a trust network to our existing
definition of an argumentation system, so that a trust argumentation
system is:

〈Ags,A(∆i),Undercut ,�arg
i , T 〉

A trust argumentation system, then is specific to a given agent, Agi

in the system above, and explicitly includes a set of agents Ags
that corresponds to the trust network T , and which are the agents
whose commitment stores are combined with Σi to make up ∆i.

The argumentation system from the previous section allows Agi

to construct arguments from:

∆i = Σi ∪ {
⋃

j=1...n

CSj}

and now, thanks to the trust network, Agi can assign a trust value
to each of the other agents2 and hence to their commitment store.
In addition, the argumentation model assumes that every formulae
in ∆i can be assigned a belief value, and that there is a preference
order �arg

i over arguments that identifies the relative strength of
arguments.

This model, as introduced, is deliberately vague about a number
of issues, allowing us to define a whole family of trust argumen-
tation systems, each of which includes a particular instantiation of
the elements we have not specified. First, we need to know what
functions to use for ⊗trand ⊕trin order to propagate trust values
through the trust network in (1) and (2). Second we need to know
how to use the trust value tr(Agi, Agj) that Agi puts on Agj to
determine the belief that i places in information from CSj . We can
express that as a function ttb(·) such that for some p ∈ CSj

beli(p) = ttb(tr(Agi, Agj)) (4)

Third, we need to specify how the belief values beli(·) are com-
bined using (3) to establish the belief in an argument from the belief
in individual formulae and hence the order �bel

i . Fourth, we need
to know how the preference order�arg

i , which is used to determine
acceptability, is established from �bel

i .
The main aim of this paper is to explore some of these instan-

tiations — different instantiations will give us different behaviors,
and we will use the behaviors to evaluate the instantiations. Before
we select instantiations we identify a number of desiderata which
we want the instantiated trust argumentation system to adhere to.

3.2 Desirable properties
The properties we use are extracted from the literature, and our

aim is to identify which make sense when used in combination with
argumentation. Golbeck et al. [10] suggests that trust should follow
the standard rules on network capacity, so that along any given path
the maximum amount of trust between a source and a sink will be
no larger than the smallest capacity along the path. In terms of
propagating trust through a trust graph, this can be interpreted as
saying that the trust that some agent Agi has in Agj is no greater
than the minimum trust value along the path between them:

PROPERTY 1. If Agi is connected to Agi+n by a directed path
〈Agi, Agi+1, . . . , Agi+n〉 in a trust network where arcs are la-
belled with values tr(·), then:

tr(Agi, Agi+n) ≤ minj=0,...n−1tr(Agi+j , Agi+j+1)

2If there is no directed path between the two agents, then the value is 0.

[10] also suggest that the length of the path between two agents is
relevant in assessing the trust between the agents, and [13] suggests
that “the weakening of trust through long transitive paths should re-
sult in a reduced confidence level”. We will consider two different
ways to interpret this. One says that a longer path will never lead
to a stronger trust relation than a shorter path:

PROPERTY 2. If Agi is connected to Agj and Agk by two di-
rected paths in a trust network, then tr(Agi, Agj) ≤ tr(Agi, Agk)
iff length(Agi, Agj) ≥ length(Agi, Agk).

The other interpretation says that trust values are monotonically
non-increasing over paths:

PROPERTY 3. Given the directed path 〈Agi, . . . Agj , . . . Agk〉
then tr(Agi, Agk) ≤ (Agi, Agj)

The above properties relate to ⊗tr . There are also properties relat-
ing to ⊕tr . The first comes from [13] which suggests that “com-
bination of parallel trust paths should result in an increased confi-
dence level”. In other words:

PROPERTY 4. If Agi and Agj are linked by two paths in the
trust network T , and the trust computed along these paths are
tr(Agi, Agj)′ and tr(Agi, Agj)′′, then the overall trust of Agi in
Agj ,

tr(Agi, Agj) ≥ max (tr(Agi, Agj)′, tr(Agi, Agj)′′
)

The authors like to think of this as encoding the idea that having two
letters of recommendation for a potential PhD student that say the
student is excellent is no worse than having one. However, there
is another desideratum that we might enforce here. If we have a
potential PhD student with a multitude of recommendation letters
that suggest they are a mediocre student, does this make them more
highly recommended than a student with just a couple of letters
suggesting that they are very good? The authors feel not, and so we
also consider the property that combining two parallel trust paths
does not cause the overall trust value to exceed the value defined
by either path (which is one way to stop the many poor recommen-
dations outweighing a few good ones for a different student).

PROPERTY 5. If Agi and Agj are linked by two paths in the
trust network T , and the trust computed along these paths are
tr(Agi, Agj)′ and tr(Agi, Agj)′′, then the overall trust of Agi in
Agj ,

tr(Agi, Agj) ≤ max (tr(Agi, Agj)′, tr(Agi, Agj)′′
)

In different situations, either of these properties may be appropri-
ate.

We can extend several of these ideas to deal with beliefs and
their role in argumentation, in essence placing constraints on the the
operation ⊗bel. Thinking of an argument as a chain of inferences
that make use of formulae from ∆i then an extension of Property 1
is that the conclusion of an argument should be believed no more
than the minimum of the degrees of belief of all of the steps in the
argument. This gives us:

PROPERTY 6. If Agi has an argument (S, p), and the support
S = {si, . . . , sm}, then:

beli(p) ≤ minj=1,...mbeli(sj)

We can also extend Properties 2 and 3 to argumentation. This ex-
tension suggests that an argument that requires a larger support (and
so in some sense is “longer”) than another is less believable, and
there are two obvious ways that we might capture this:
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PROPERTY 7. If Agi has two arguments (S, p) and (S′, p′),
then beli(p) ≤ beli(p′) iff |S| ≥ |S′|.
which is analogous to P2 in saying that larger support never means
a greater degree of belief, and:

PROPERTY 8. If Agi has two arguments (S, p) and (S′, p′),
then beli(p) ≤ beli(p′) if S ⊇ S′.
which is analogous to P3 in saying that adding additional formulae
to a support cannot increase belief and is essentially Loui’s [17]
“directness” defeater.

The final property that we will consider here deals with the be-
havior of the combined trust and argumentation system, capturing
one reading of the principle we outlined at the start of this section
— the strength of an agent’s arguments should reflect the trustwor-
thiness of the agents from whom the support of those arguments
was obtained. To capture this idea we need first to define:

DEFINITION 10. Given a set of agents Ags = {Ag1, . . . Agn}
where each Agj has a commitment store CSj , then a set of formu-
lae S corresponds to the set of agents Ags′ iff

Ags′ = {Agj |s ∈ S and s ∈ CSj}
so that a set of formulae corresponds to the set of agents from
whose commitment stores the formulae are drawn. Then we have:

PROPERTY 9. If Agi has two arguments (S, p) and (S′, p′),
where the supports have corresponding sets of agents Ag and Ag′

then (S, p) is stronger than (S′, p′) only if Agi considers Ag to be
more trustworthy than Ag′.

If this property is obeyed, then arguments grounded in information
from less trustworthy sources will not be able to defeat arguments
whose grounds are drawn from more trustworthy sources. In turn
this means that:

PROPOSITION 1. In a trust argumentation system:

〈Ags,A(∆i), Undercut,�arg
i , T 〉

If an argument (S, p), with corresponding set of agents Ag, is ac-
ceptable, then, given Property 9, a new argument (S′, p′) with cor-
responding set of agentsAg′ ifAgi cannot make (S, p) not accept-
able if Agi considers Ag′ to be less trustworthy than Ag.

PROOF. If (S, p) is acceptable, then it is not successfully un-
dercut, and so either (i) it is stronger than all its attackers, or (ii)
it is defended by arguments that are stronger than those attackers
that are stronger than it. Now consider that Agi learns enough in-
formation to create (S′, p′) which undercuts (S, p). To make (S, p)
not acceptable (S′, p′) either has to successfully undercut (S, p) or
one of (S, p)’s defenders. However, by Property 9, since (S′, p′)’s
corresponding set of agents is less trustworthy than those of (S, p)
it is not stronger than (S, p) and so cannot successfully undercut
it. Furthermore, since the defenders in (ii) are also stronger than
(S, p), (S′, p′) cannot undercut them either, and so it will fail to
make (S, p) not acceptable.

This result shows the importance of Property 9 — when it holds,
it prevents arguments based on less trustworthy agents from mak-
ing otherwise acceptable arguments unacceptable, and thus altering
what Agi takes as being proven.

Note that the desiderata are not independent:

PROPOSITION 2. Property 2 implies Property 3 and Property 7
implies Property 8.

PROOF. P2 requires that given paths fromAgi toAgj andAgk,
then tr(Agi, Agj) ≤ tr(Agi, Agk) if and only if length(Agi, Agj)
is greater than or equal to length(Agi, Agk). If this is the case,
then given a path 〈Agi, . . . Agj , . . . Agk〉 it is clear that the path
fromAgi toAgk is longer than the path toAgj and so tr(Agi, Agk)
will be less than or equal to tr(Agi, Agj), fulfilling P3.

Similarly, P7 requires that if Agi has two arguments (S, p) and
(S′, p′), then beli(p) ≤ beli(p′) iff |S| ≥ |S′|. If S ⊇ S′ then this
will imply that |S| ≥ |S′| and hence beli(p) ≤ beli(p

′), fulfilling
P8.

However these pairs of properties are distinct:

PROPOSITION 3. Property 3 does not imply Property 2 and
Property 8 does not imply Property 7.

PROOF. To prove that the first of each of these properties does
not imply the second, it suffices to show a single instance where it is
not the case. For P3 and P2 we do this by choosing a specific oper-
ator for ⊗tr . If we use min, then P3 will hold for any assignment
of trust values along the path 〈Agi, . . . Agj , . . . Agk〉, for example
one with minimum value 0.5. However, with the same operator, we
can construct a much longer path where the minimum trust value
is 0.8, violating Property 2.

The counter-example for the second pair of properties is analo-
gous — combining beliefs with min means a small set of support
can easily have a smaller belief value than a large set.

4. TRUST ARGUMENTATION
Having identified a system of trust argumentation and some desider-

ata for it, in this section we explore its properties.

4.1 Properties of the system
We start by identifying which possible instantiations of the com-

bined trust and argumentation model will satisfy the desiderata in
the sense of guaranteeing that the properties will always hold. We
begin with Properties 1–3 which depend upon the choice of ⊗tr .
Two such choices, suggested by Richardson et al.[23] are minimum
and multiplication. We have:

PROPOSITION 4. Combining trust values along a path in a trust
network according to (1) with minimum or multiplication will sat-
isfy Properties 1 and 3 but not Property 2.

PROOF. With associative operations like minimum and multi-
plication, combining trust values along a path in a trust network
is exactly the same as combining a set of trust values. If we com-
bine a set of trust values with minimum, then clearly the resulting
value will be exactly the minimum of the values and satisfy Prop-
erty 1. If we combine two sets of values S1 and S2 using minimum,
and S1 ⊆ S2, then the minimum of S1 will be no smaller than the
minimum of S2, and Property 3 holds. It is equally easy to prove
Property 2 does not always hold. If we have two sets S1 and S2

and S1 ∩ S2 = ∅, then even if S2 is much larger than S1, its min-
imum value can be larger than than that of S1 — all the values in
S2 could be 0.8 and all those in S1 could be 0.3.

Combining a set of values that are no larger than 1 with multipli-
cation will give a value that no larger than any of them, satisfying
Property 1. Similarly, if we take the result of multiplying the values
in S1 and then multiply by the values in S2 − S1 for S1 ⊆ S2, the
value we have won’t increase, satisfying Property 3. However, with
two unconnected sets S1 and S2 there is no necessary relationship
between the product of the values in the sets and so Property 2 will
not always hold.
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The issue with satisfying Property 2 is that both minimum and mul-
tiplication are applied link by link so there is no way to they can
meet a criterion that applies to the whole path. If we stretch the def-
inition of computing trust values along a path to allow trust values
to be combined by functions that take the whole path as arguments,
then we can easily show that:

PROPOSITION 5. Combining trust values along a path in a trust
network in such a way that the trust value is inversely proportional
to the length of the path will satisfy Properties 2 and 3 but not
Property 1:

PROOF. Property 2 requires tr(Agi, Agj) ≤ tr(Agi, Agk) iff
length(Agi, Agj) ≥ length(Agi, Agk) which is obviously true
for this combination. By Proposition 2, Property 2 implies Prop-
erty 3, so Property 3 holds as well. The last part of the result is
just as easy to show — since the combination depends only on the
length of the path, not on the trust values labelling the arcs, there
is no reason why the trust along a path should have any particular
relationship with those values.

The problem with this approach to propagation, and the problem
with Property 2, is that it ignores the values of the individual links.
As a result it is easy to construct examples which conflict with in-
tuition — a path with very high valued links creates less trust than
a marginally shorter path with very low valued links, and any at-
tempt to bring in the values of the links creates situations in which
Property 2 can easily be violated.

Now we consider options for⊕tr . Richardson et al. [23] suggest
maximum and Golbeck et al.[10] suggest average3, while addition
seems a suitable dual operation to consider for the options we con-
sidered for ⊗tr— addition is the dual operation to multiplication
for probability theory, and some variants of possibility theory use
it as a dual for minimum [9]. Considering all three of these opera-
tions, we have:

PROPOSITION 6. Combining trust values over multiple paths
in a trust network according to (2) with maximum satisfies Prop-
erties 4 and 5, combining using addition satisfies Property 4 but
does not satisfy Property 5, and combining using average satisfies
Property 5 but does not satisfy Property 4.

PROOF. Since Property 4 specifies that the combination must be
greater than or equal to the maximum of the values and Property 5
specifies that it must be less than or equal to the maximum, maxi-
mum satisfies both (and will be the only operation to). Adding the
two values will clearly give something no smaller than the larger,
satisfying Property 4 but won’t in general satisfy Property 5 (it will
only satisfy it when one value is 0). Average will give something
no larger than the larger value, satisfying Property 5, but will only
satisfy Property 4 when the values are the same.

So addition meets our formulation of Jøsang’s property, average
obeys the property that we introduced, and maximum meets both.

The third set of properties are those for combining beliefs with
⊗bel. In our combined trust and argumentation system, we are
assuming that the belief values of propositions in ∆i are affected
by trust values (and we discuss some ways in which this could be
achieved below) but to consider the properties, all we assume for
now is that there is some distribution of values:

mi : ∆i 7→ [0, 1]

3Average is not usually considered as a binary operation, but it can be expressed in
such a form, see, for example [25].

from which we can establish a belief value beli(·), between 1 and
0, for any formula in ∆i

4. These values are then combined to es-
tablish beliefs in the conclusions of arguments. Here we consider
multiplication and minimum as possible operations for this combi-
nation, following the conjunction operations in probability theory
and possibility theory respectively [9]. Given Proposition 4 and the
origin of Property 1 it is no surprise to find that:

PROPOSITION 7. Combining belief values according to (3) with
minimum or multiplication will satisfy Properties 6 and 8 but not
Property 7.

PROOF. The proof is the same as for Proposition 4.

In order to satisfy Property 7 we need to combine beliefs in a way
that depends on the size of the set of support, for example:

PROPOSITION 8. Consider an argumentA = (S, p) where S =
{s1, . . . , sn). Setting bel(p) = 1

|S| will satisfy Properties 7 and 8
but not Property 6.

PROOF. The proof is close to that for Proposition 5. The defini-
tion of the belief computation means it clearly satisfies Property 7
and by Proposition 2, Property 8 holds as well. The last part of
the result is just as easy to show — since the belief in an argument
depends only on the size of the support, not on the belief values
of formulae in the support, there is no reason why the overall be-
lief should have any particular relationship with the beliefs of the
formulae.

Thus we have ways of handling trust and belief which will satisfy
the various properties we identified, but we have no set of opera-
tions that will simultaneously satisfy all the properties.

The final desiderata that we laid down is Property 9, which re-
lates trust values to the conclusions of arguments. To reason about
the conditions under which this will hold, we first need to decide
how to convert the trust that an agent Agi has in agent Agj into
the belief that Agi has in formulae from CSj . In order to obtain
priorities over an agent’s knowledge — which is the role played by
beliefs in our argumentation — [16] simply imports trust values as
the priorities, and here we propose the same method, defining the
function ttb from (4) as:

ttb(tr(Agi, Agj)) = tr(Agi, Agj) · bel_limiti
where bel_limiti is a scaling factor that, given belief and trust val-
ues are between 0 and 1 limits the maximum belief that a trust value
can map to. There are two obvious ways to set this:

L1 bel_limiti = 1

L2 bel_limiti = minj{beli(sj)|sj ∈ Σi}
so that we either scale the trust values compared to the maximum
possible value for beliefs, so that information with a trust value of
1 is considered as believable as anything, or we scale beliefs so that
everything in Σi is at least as believable as anything Agi is told by
another agent.

We also need to determine how�arg
i depends on�bel

i , and there
are two obvious ways to do this:

O1 (S, p) �arg
i (S′, p′) iff (S, p) �bel

i (S′, p′)

O2 (S, p) �arg
i (S′, p′) iff (S, p) �bel

i (S′, p′) and Ag �tr
i Ag′

for all Ag corresponding to S and Ag′ corresponding to S′.
4The reason for describing the allocation of belief values in this indirect way is that it
is required by some approaches to handling uncertainty, including possibility theeory
[9] which we will make use of below.
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With these aspects of the model instantiated, we can consider which
combinations of the various features of the model satisfy Prop-
erty 9. We have:

PROPOSITION 9. A trust argumentation system that uses mini-
mum for ⊗tr , maximum for ⊕tr , minimum for ⊗beland adopts L2
and O1 satisfies Property 9.

PROOF. Property 9 requires the strength of an argument to be
determined by the trustAgi has in the corresponding agents so that
arguments with less trustworthy corresponding agents are weaker.
L2 means that no formulae from any CSj can be believed more
than one from Σi, and using minimum to combine belief values
means that the strength of any argument will be determined by
the trustworthiness of the corresponding agents (a low belief from
Σi cannot hide an argument’s dependency on an untrustworthy
agent).

Examining the proof, it is clear why we need to have bel_limiti
in the model — without it, there is nothing to stop a highly trusted
source supplying information that ends up supporting a weak argu-
ment by virtue of another piece of the support which comes from
Agi itself having a low degree of belief. This, in turn might lead
to an argument supported by information from a less trusted source
being stronger than an argument based on information from a more
trusted source. Exactly this line of reasoning leads us to:

PROPOSITION 10. A trust argumentation system that that uses
minimum for⊗tr , maximum for⊕tr , minimum for⊗beland adopts
L1 and O1 does not satisfy Property 9 unless bel(s) = 1 for every
s ∈ Σi.

PROOF. Immediate from the proof of Proposition 9.

so not adopting L25 doesn’t prevent a trust argumentation system
meeting our benchmark of performance, Property 9, but means it
can only do so under rather restricted circumstances.

Proposition 9 and Proposition 1 tell us that using possibility-style
maximum and minimum operations for trust and argumentation —
an instantiation of our trust-argumentation system that we will call
TA1 — can guarantee what we have argued is desirable behav-
ior. What about using multiplication, which as we have remarked
above, fits more naturally with a probabilistic interpretation of be-
lief? It turns out that:

PROPOSITION 11. A trust argumentation system that uses min-
imum for⊗tr , maximum for⊕tr , multiplication for⊗beland adopts
L2 and O1 does not satisfy Property 9

PROOF. Since the result is only that the system does not satisfy
the property, a counter example will suffice. Consider all proposi-
tions in Σi have belief 1. (S, p) includes just one formula that isn’t
from Σi, it comes from CSj , and tr(Agi, Agj) = 0.7. beli(S, p)
is thus 0.7. (S′, p′) includes just two formulae that aren’t from Σi.
These formulae come from CSk and CSl, and tr(Agi, Agk) =
tr(Agi, Agl) = 0.8. Thus beli(p′) = 0.64 and the argument is
not as strong as the argument which depends on information from
a less-trusted source.

As the proof shows, the reason that this second trust argumenta-
tion system fails to satisfy Property 9 is because multiplying belief
values will generate arguments with low beliefs and with O1 deter-
mining the order over arguments, this means weak arguments can
be generated using information from highly trusted agents. One
way to prevent this is to use O2 to determine the order over argu-
ments. We have:
5Or, of course, some other mechanism for preventing the kind of interaction between
belief and trust sketched in the proof of Proposition 9.

PROPOSITION 12. A trust argumentation system that uses min-
imum for⊗tr , maximum for⊕tr , multiplication for⊗beland adopts
L2 and O2 satisfies Property 9.

PROOF. Immediate from the definition of 02.

The disadvantage of adopting O2 is that it will only produce a par-
tial order for �arg

i , and given the role �arg
i plays in defining the

acceptability, this will affect the reasoning the agents can carry out.

4.2 Trust thresholds
Let’s look at one way we can use TA1. Consider that Agi has a

trust threshold of α, a trust value for agents below which it wishes
not to use information from them. If we give arguments whose
status is unaffected by information from agents whose trust value
is below the threshold α the name α-safe then:

PROPOSITION 13. If Agi has a TA1 argumentation system:

〈Ags,A(∆i), Undercut,�arg
i , T 〉

where all formulae in Σi have belief value 1, and Agi has a trust
threshold α, then all arguments with a level of belief above α are
α-safe.

PROOF. Setting the belief of all formulae in Σi to 1 ensures that
the belief values of arguments directly reflect their trust values mak-
ing the belief value equal to the threshold easy to establish6. If an
argument A is acceptable, and has a belief value above α, then —
as we recall from the proof of Proposition 1 — any undercutters
that aren’t weaker than A (and so may be below the trust threshold
but not affecting the status of A) must, since A is acceptable, be
successfully undercut by stronger arguments. Because of the way
that trust is converted into belief and belief values are combined
with minimum, none of these arguments can be based on informa-
tion that comes from an agent trusted less than α. So not only A,
but all of the arguments that determine its status, must be α-safe.

If an argument A′ is not acceptable and it is above the trust
threshold, but was successfully defeated, then that defeat must have
been by an argument that is above the trust threshold which (since
that defeater is successful) means that in the same way as A, this
defeater is α-safe, and hence so is A′.

This result is helpful because it shows us that for TA1 informa-
tion from agents below the trust threshold has limited impact — it
won’t change the acceptability or otherwise of arguments above the
threshold.

5. CONCLUSION
In this paper we presented a formal model that provides a sim-

ple combination of argumentation and trust. We examined some of
the properties of different instantiations of the model, and showed
that the system we called TA1 has the ability to ensure that argu-
ments grounded in information from untrustworthy agents cannot
overrule arguments grounded by more trustworthy agents and un-
der certain conditions can deal with trust thresholds.

This work is distinct from, and complementary to, other existing
work on trust and argumentation. The work of Matt et al. [18] for
example looks at constructing arguments for trusting other agents
— it is a way to compute the tr values that we assume. In contrast,
here we are concerned with computing arguments with trust. Simi-
lar remarks hold for [20] which looks to construct arguments about
the trust that one agent has in another.
6The proof can be altered to deal with formulae in Σi having smaller belief values, it
would mean replacing the trust threshold in the proof with α.minj{beli(sj)|sj ∈
Σi}
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Though the system we define is simple, there is more to say about
it. Our future work will address aspects of the system that we have
not had space to discuss here. We are working on a more exten-
sive analysis of operators for the trust argumentation systems, as
well as expanding the notion of trust threshold to what we call the
trust budget — if an agent is prepared to tolerate a certain overall
amount of distrust in all the information it uses in all of its argu-
ments, how does this affect what it finds acceptable? Other topics
of interest are combining what we have here with the use of argu-
mentation to establish trust values, and the use of more complex
methods of representing trust than the simple numerical approach
we adopt here.

Acknowledgement
Research was sponsored by the Army Research Laboratory and was
accomplished under Cooperative Agreement Number W911NF-09-
2-0053. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Army Re-
search Laboratory or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

We thank the reviewers for their helpful comments.

6. REFERENCES
[1] Z. Abrams, R. McGrew, and S. Plotkin. Keeping peers

honest in eigentrust. In Proceedings of the 2nd Workshop on
the Economics of Peer-to-Peer Systems, 2004.

[2] B. T. Adler and L. de Alfaro. A content-driven reputation
system for the Wikipedia. In Proceedings of the 16th
International World Wide Web Conference, pages 261–270,
Banff, Alberta, May 2007.

[3] L. Amgoud and C. Cayrol. On the acceptability of arguments
in preference-based argumentation framework. In
Proceedings of the 14th Conference on Uncertainty in
Artificial Intelligence, 1998.

[4] L. Amgoud, S. Parsons, and N. Maudet. Arguments,
dialogue, and negotiation. In Proceedings of the Fourteenth
European Conference on Artificial Intelligence, 2000.

[5] D. Artz and Y. Gil. A survey of trust in computer science and
the semantic web. Journal of Web Semantics, 5(2):58–71,
June 2007.

[6] P. Besnard and A. Hunter. A logic-based theory of deductive
arguments. Artificial Intelligence, 128:203–235, 2001.

[7] P. Dandekar, A. Goel, R. Govindan, and I. Post. Liquidity in
credit networks: A little trust goes a long way. Technical
report, Department of Management Science and
Engineering, Stanford University, 2010.

[8] D. B. DeFigueiredo and E. T. Barr. TrustDavis: A
non-explotable online reputation system. In Proceedings of
the 7th IEEE International Conference on E-Commerce
Technology, 2005.

[9] D. Dubois and H. Prade. Possibility Theory: An Approach to
Computerized Processing of Uncertainty. Plenum Press,
New York, NY, 1988.

[10] J. Golbeck, B. Parsia, and J. Hendler. Trust networks on the
semantic web. In Proceedings of the 7th International
Workshop on Cooperative Information Agents, Helsinki,
August 2003.

[11] T. Grandison and M. Sloman. A survey of trust in internet
applications. IEEE Communications Surveys and Tutorials,
4(4):2–16, 2000.

[12] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins.
Propagation of trust and distrust. In Proceedings of the 13th
International Conference on the World Wide Web, 2004.

[13] A. Jøsang, E. Gray, and M. Kinateder. Simplification and
analysis of transitive trust networks. Web Intelligence and
Agent Systems, 4(2):139–161, 2006.

[14] A. Jøsang, C. Keser, and T. Dimitrakos. Can we manage
trust? In Proceedings of the 3rd International Conference on
Trust Management, Paris, May 2005.

[15] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The
Eigentrust algorithm for reputation management in P2P
networks. In Proceedings of the 12th World Wide Web
Conference, May 2004.

[16] Y. Katz and J. Golbeck. Social network-based trust in
prioritzed default logic. In Proceedings of the 21st National
Conference on Artificial Intelligence, 2006.

[17] R. P. Loui. Defeat among arguments: a system of defeasible
inference. Computational Intelligence, 3(3):100–106, 1987.

[18] P.-A. Matt, M. Morge, and F. Toni. Combining statistics and
arguments to compute trust. In Proceedings of the 9th
International Conference on Autonomous Agents and
Multiagents Systems, 2010.

[19] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank citation ranking: Bringing order to the Web.
Technical Report 1999-66, Stanford InfoLab, 1999.

[20] S. Parsons, P. McBurney, and E. Sklar. Reasoning about trust
using argumentation: A position paper. In Proceedings of the
Workshop on Argumentation in Multiagent Systems, Toronto,
Canada, May 2010.

[21] S. Parsons, M. Wooldridge, and L. Amgoud. On the
outcomes of formal inter-agent dialogues. In Proceedings of
the 2nd International Conference on Autonomous Agents and
Multi-Agent Systems, 2003.

[22] P. Resnick and R. Zeckhauser. Trust among strangers in
internet transactions: Empirical analysis of eBay’s reputation
system. In M. R. Baye, editor, The Economics of the Internet
and E-Commerce, pages 127–157. Elsevier Science,
Amsterdam, 2002.

[23] M. Richardson, R. Agrawal, and P. Domingos. Trust
management for the semantic web. In Proceedings of the 2nd
International Semantic Web Conference, 2003.

[24] J. Sabater and C. Sierra. Review on computational trustand
reputation models. AI Review, 23(1):33–60, September 2005.

[25] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

[26] W. T. L. Teacy, G. Chalkiadakis, A. Rogers, and N. R.
Jennings. Sequential decision making with untrustworthy
service providers. In Proceedings of the 7th International
Conference on Autonomous Agents and Multiagent Systems,
2008.

[27] Y. Wang and M. P. Singh. Trust representation and
aggregation in a distributed agent system. In Proceedings of
the 21st National Conference on Artificial Intelligence, 2006.

[28] X. Yin, J. Han, and P. S. Yu. Truth discovery with multiple
conflicting information providers on the web. In Proceedings
of the Conference on Knowledge and Data Discovery, 2007.

[29] S. Zhong, J. Chen, and Y. R. Yang. Sprite: A simple
cheat-proof, credit-based system for mobile ad-hoc networks.
In Proceedings of the 22nd Annual Joint Conference of the
IEEE Computer and Communications Societies, 2003.

886



A Particle Filter for Bid Estimation in Ad Auctions with
Periodic Ranking Observations

David Pardoe and Peter Stone
Department of Computer Science
The University of Texas at Austin

{dpardoe, pstone}@cs.utexas.edu

ABSTRACT

Keyword auctions are becoming increasingly important in
today’s electronic marketplaces. One of their most challeng-
ing aspects is the limited amount of information revealed
about other advertisers. In this paper, we present a particle
filter that can be used to estimate the bids of other advertis-
ers given a periodic ranking of their bids. This particle filter
makes use of models of the bidding behavior of other adver-
tisers, and so we also show how such models can be learned
from past bidding data. In experiments in the Ad Auction
scenario of the Trading Agent Competition, the combina-
tion of this particle filter and bidder modeling outperforms
all other bid estimation methods tested.

Categories and Subject Descriptors

I.2 [Computing Methods]: Artificial Intelligence

General Terms

Algorithms, Experimentation, Economics

Keywords

agent modeling, learning, particle filters, trading agents, spon-

sored search, ad auctions

1. INTRODUCTION
Sponsored search [5] is one of the most important forms of

Internet advertising available to businesses today. In spon-
sored search, an advertiser pays to have its advertisement
displayed alongside search engine results whenever a user
searches for a specific keyword or set of keywords. An ad-
vertiser can thereby target only those users who might be
interested in the advertiser’s products. Each of the major
search engines (Google, Yahoo, and Microsoft) implements
sponsored search in a slightly different way, but the overall
idea is the same. For each keyword, a keyword auction [6] is
run in which advertisers bid an amount that they are willing
to pay each time their ad is clicked, and the order in which
the ads are displayed is determined by the ranking of the
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bids (and possibly other factors). Having an ad in a higher
position is generally considered to be more desirable.

Running a successful keyword advertising campaign can
be difficult. An advertiser must choose the keywords of in-
terest and its bids for each one based on an understanding
of customer behavior, competitors’ bidding patterns, and
its own advertising constraints and needs, all of which can
change over time. Complicating matters is the fact that ad-
vertisers receive very limited information about the actions
taken by other advertisers. In particular, advertisers do not
see the bids of other advertisers. Knowing the bids of other
advertisers for a specific keyword would allow an advertiser
to predict the ad position and cost per click for any amount
it bid and use this information to choose the bid it expected
to maximize profit. Search engines typically release some in-
formation concerning the position that an advertiser could
expect for certain bids, but this information is generally in-
complete and out of date. Alternately, an advertiser could
experiment with different bids and observe the resulting po-
sitions, but such experimentation would be time consuming
and costly.

In this paper, we present a particle filtering approach to
estimating the bids of other advertisers in a single keyword
auction. This particle filter relies on periodic observations of
the rankings of all advertisers. In addition, it requires mod-
els of the bidding behavior of other advertisers, and we show
how such models can be learned. We implement and test our
particle filter in the context of the Ad Auction scenario of
the Trading Agent Competition (TAC/AA) [3], a competi-
tion developed in 2009 to encourage research into keyword
auction bidding within a carefully designed simulated envi-
ronment. Nevertheless, the basic approach to particle fil-
tering described here should generalize to any standard ad
auction setting.

The remainder of this paper is organized as follows. After
formally specifying the auction setting we consider in Sec-
tion 2, we present the design of the particle filter in Section 3.
Section 4 describes our experimental domain, TAC/AA, and
explains how our particle filter can be applied in this do-
main. Our particle filter requires bid transition models for
all other advertisers, and in Section 5, we present a ma-
chine learning approach to building these models. Finally,
Section 6 contains experimental results comparing the accu-
racy of our particle filter to other bid estimation methods in
three different TAC/AA settings.

2. AUCTION SETTING
We begin by formally specifying our auction setting, which
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has been chosen to be as general as possible while still cap-
turing the basic elements of a keyword auction. We are
interested in estimating the bids of N other advertisers for
a single keyword for which we are advertising. Each adver-
tiser has a standing bid indicating the amount it is willing
to pay each time its ad is clicked, and this bid may occa-
sionally be revised. This bid must be above a known reserve
price reserve. When a user searches for the keyword, the
advertisers’ bids are ranked in descending order, and their
ads are shown in this order. If more than M bids are above
the reserve, then only the top M ads are shown. When a
user clicks on our ad, our cost per click (cpc) is the mini-
mum amount we could have bid and still had our ad shown
in its current position. In other words, our cpc is equal to
the amount of the bid ranked below ours, or to reserve.
At some regular interval, we receive a report containing the
following information: i) the bid ranking at time t (for ad-
vertisers whose ads are being shown, i.e., at most the top
M), and ii) our own cpc at time t. Our goal is to estimate
the bids of the other advertisers at time t. Depending on the
nature of the auction, advertisers may be able to revise their
bids more frequently than this reporting interval; however,
we will only attempt to estimate bids at this interval, and
our models of advertiser behavior will only model changes
in bids at this interval (e.g., from time t− 1 to time t).

As this model is an abstraction of the keyword auctions
used in the real world, there are a number of complicating
factors it does not include, but we believe it to be a useful
model for study. One issue faced in real keyword auctions
is that ad positions are often not determined by bid rank
alone, but by a combination of bid rank and other factors
such as clickthrough rate. This is not a problem, however, as
in this case we could simply attempt to estimate the amount
we would need to bid to achieve a higher position than each
other advertiser, instead of the true bid of each advertiser,
and use the same particle filtering approach.

A larger concern is that search engines do not actually pro-
vide advertisers with periodic reports of the bid rankings of
other advertisers. Of course, it is possible to simply repeat-
edly search for the keyword and observe the order of the ads
displayed, but for a large advertising campaign this process
would need to be automated (using a “screen scraper”), and
search engines generally take measures to prevent this type
of activity. Nevertheless, a number of services offer to collect
this type of information for subscribers, so the assumption
of these periodic reports is not necessarily unrealistic.

Finally, we note that this auction setting is in fact an in-
stance of a repeated generalized second price auction, and
that our particle filter could be applied to any such auc-
tion given periodic ranking observations. Generalized sec-
ond price auctions are most commonly used in keyword auc-
tions, but they have been considered in other areas such as
electricity auctions [10].

3. PARTICLE FILTER
We now describe our particle filter for estimating the bids

of other advertisers given periodic reports. For now, we as-
sume that we have a model of each advertiser that gives us a
probability distribution over their next bid given a history of
their estimated bids and rankings. Developing these mod-
els will be the subject of Section 5. Again, we emphasize
that we only concern ourselves with the bids at the report-
ing interval — by “next bid” we mean the bid at the time

of the next report, and likewise our history only reflects the
auction state at the times of past reports.

Given these advertiser models and reports, we estimate
the joint distribution over the bids of all other advertisers
using a particle filter. A particle filter is a sequential Monte
Carlo method that tracks the changing state of a system
by using a set of weighted samples (called particles) to es-
timate a posterior density function over the possible states.
The weight of each particle represents its relative probabil-
ity, and particles and weights are revised each time an ob-
servation (conditioned on the current state) is received. In
this case, the reports represent our observations, and each
particle represents an estimate of the bids of all advertisers
at the time of the last report. Additionally, each particle
stores all of its past bid estimates, so each particle can be
seen as a full bidding history of all advertisers. Particle
filters are a fitting solution to this problem because they
require no assumptions about the types of distributions in-
volved (unlike Kalman filters), they can be used efficiently
in high-dimensional spaces (unlike grid-based methods that
discretize the state space), and particles are a convenient
data structure for storing bidding histories. We estimate
the joint distribution over bids instead of estimating each
advertiser’s bid independently due to the fact that our esti-
mate for each advertiser is completely dependent on our es-
timate for all other advertisers. (In Section 6.2 we describe
a method of estimating bids independently, but this method
relies on several unrealistic simplifying assumptions.)

For the experiments of this paper, the implementation of
our particle filter makes use of a discretized set of bids b1

... bB , and so we describe our particle filter in terms of
discrete probability distributions over these bids; however,
continuous probability distributions could also be used in
our particle filter if they can be dealt with analytically.

3.1 SIS Particle Filter
The simplest particle filter, and the one from which more

complicated variations are derived, is the Sequential Impor-
tance Sampling (SIS) filter [1]. A SIS filter can be imple-
mented for our bid estimation problem as follows. Each
particle p contains a current estimate for the bids of all N
advertisers, as well as bid estimates for each past time step.
An initial set of particles P is chosen to reflect a possible
distribution over bids when no reports have yet been re-
ceived — essentially our prior. The number of particles |P |
should be chosen to give an acceptable tradeoff between ac-
curacy and speed. Each particle p receives initial weight
wp = 1/|P |. Each time we receive a report, we update P
by generating and weighting a new set of particles. For each
existing particle p, we sample a new particle p′ (i.e., we copy
the bidding history contained in p and then sample a new
set of current bids). Finally, we reweight the particles.

The sampling and weighting procedures depend on our
choice of proposal distribution from which we sample new
particles: π(p′|p, report). π may be any distribution we
choose. The weighting procedure then follows from the choice
of π such that the set of weighted particles approximate the
true posterior distribution. If particle p had weight wp, then
particle p′ receives weight

wp′ = wp
Pr(report|p′)Pr(p′|p)

π(p′|p, report)
(1)

Finally, the weights of all new particles are normalized so
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that they sum to one.

3.2 Choice of Proposal Distribution
The choice of proposal distribution can significantly af-

fect the performance of the particle filter. The distribution
π(p′|p, report) = Pr(p′|p, report) is what is known as the
optimal proposal distribution and results in a weighting of
wp′ = wpPr(report|p). This proposal distribution is called
optimal because it results in the least variance between par-
ticle weights — wp′ is independent of p′, and so it will be
the same regardless of which p′ is sampled. However, the
optimal proposal distribution is often not used in practice
because it can be difficult to sample from this distribution
and perform weight calculations. Instead, the proposal dis-
tribution that would typically be used is π(p′|p, report) =
Pr(p′|p). The resulting weighting is wp′ = wpPr(report|p′).

The typical proposal distribution is indeed much easier to
work with in our bid estimation problem, but is has a seri-
ous flaw: Pr(report|p′) may frequently be zero. If too few
particles receive any weight, then the filter may eventually
become degenerate, with mostly identical particles. To see
why Pr(report|p′) might be zero, recall that the report con-
tains a ranking and our cpc. If the current bids represented
by p′ are inconsistent with this ranking, then the likelihood
of p′ will be zero. The fraction of inconsistent particles will
depend on advertiser behavior; in the worst case of random
bids, only 1/N ! of the particles would be expected to be
consistent with the ranking, as any of the N ! possible rank-
ings would be equally likely. Even in less extreme cases, we
would still expect there to be occasional improbable rank-
ings. Furthermore, even if p′ is consistent with the rankings,
it will likely not be consistent with our observed cpc.

We therefore use the optimal proposal distribution in our
particle filter. Particles drawn from this distribution are
guaranteed to be consistent with the report. Thus, we need
methods of sampling from Pr(p′|p, report) and computing
Pr(report|p). These methods are described in the following
two subsections.

3.3 Computing Pr(report | p)
For n ∈ 1...N , let an be the advertiser ranked nth, exclud-

ing ourselves (i.e., lower ranked advertisers have their rank
increased by one). Unranked advertisers may be assigned to
the remaining a values (those representing the lowest ranks)
arbitrarily. For a given set of current bid estimates, let cn in-
dicate that an’s bid is consistent with (i.e., not higher than)
the bids of advertisers a1 ... an−1 and with our own bid and
cpc. Then Pr(report|p) = Pr(c1 ∩ c2 ∩ ... ∩ cN |p). That
is, the probability of particle p from the previous time step
leading to a new particle consistent with report is equal to
the probability that for each other advertisers, that adver-
tiser’s new bid estimate does not exceed the bid estimate of
a higher ranked advertiser or conflict with bid or cpc. Fur-
thermore, Pr(c1 ∩ c2 ∩ ... ∩ cN |p) = Pr(cN |p, c1... ∩ cN−1) ·
... · Pr(c2|p, c1)Pr(c1|p). Below, we show how each of these
N probabilities can be computed.

For each n ∈ 1 ... N , we would like to compute Pr(cn|p, c1

... cn−1), that is, the probability that particle p leads to a
new bid for advertiser an that is consistent with our bid and
cpc and the new bids of advertisers a1 ... an−1, given that
these bids are already known to be consistent. This proba-
bility is computed differently for each of five different cases.
Let fn be the probability mass function for an’s next bid

given the information in p, as determined by our advertiser
model for an. In each case, we will determine f ′n, the prob-
ability mass function for an’s next bid given p and c1 ...
cn−1, as well as the corresponding cumulative distribution
function F ′

n giving the probability that the new bid is less
than (but not equal to, as is usual in a CDF) a given value.
We begin by setting F ′

0 to be 0 everywhere.

• Case 1: an has a higher rank than us. Because the
advertiser is ranked, its bid will be consistent with the
bids of a1 ... an−1 so long as its bid is no greater
than the bid of an−1. Because the advertiser is ranked
above us, its bid must be no less than bid. Therefore,

Pr(cn|p, c1...cn−1) =

bBX
x=bid

fn(x)[1− F ′
n−1(x)] (2)

Similarly, we can define

f ′n(x) = fn(x)[1− F ′
n−1(x)]Z (3)

where f ′n has support between bid and bB and Z is a
normalizing constant.

• Case 2: an is ranked one below us. Our cpc is deter-
mined by the advertiser ranked below us, so we know
the bid of an.

Pr(cn|p, c1...cn−1) = fn(cpc) (4)

and we define F ′
n to be 0 at or below cpc and 1 else-

where.

• Case 3: an is ranked at least two below us. As in Case
1, we need the bid of an to be no greater than the bid
of an−1. Because the advertiser is ranked below us, its
bid must be between reserve and cpc. Therefore,

Pr(cn|p, c1...cn−1) =

cpcX
x=reserve

fn(x)[1−F ′
n−1(x)] (5)

and

f ′n(x) = fn(x)[1− F ′
n−1(x)]Z (6)

where f ′n has support between reserve and cpc.

• Case 4: an is unranked and there are M ranked adver-
tisers. Because the maximum of M advertisers were
ranked, we do not know if an placed a bid or not. We
only know that an’s bid is no greater than the bid of
ak, where ak is the advertiser ranked M .

Pr(cn|p, c1...cn−1) =

cpcX
x=0

fn(x)[1− F ′
k(x)] (7)

and

f ′n(x) = fn(x)[1− F ′
k(x)]Z (8)

where f ′n has support between 0 and cpc .

• Case 5: an is unranked and there are fewer than M
ranked advertisers. an did not bid or else it would have
been ranked. We treat any non-bid (or bid below the
reserve) as a bid of 0, so

Pr(cn|p, c1...cn−1) = Fn(0) (9)

and f ′n(0) = 1.
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By proceeding through the advertisers in order, we can de-
termine Pr(cn|p, c1 ... cn−1) for each n ∈ 1 ... N and take
the product to get Pr(report|p). We repeat this process for
each p ∈ P and normalize the results to obtain the distribu-
tion from which we sample when generating new particles.

3.4 Sampling from Pr(p′ | p, report)
Now given a particle p and the report, we would like to

sample a new particle p′. This involves choosing a new
bid bn for each advertiser an, and so Pr(p′|p, report) =
Pr(b1 ∩ b2∩ ... bN |p, report) = Pr(b1|p, report, b2 ... bN)· ...
·Pr(bN |p, report).

Observe that for advertiser aN , the function f ′N generated
above is in fact the same as Pr(bN |p, report) because it rep-
resented the distribution over bN given that the bids of all
other advertisers were consistent with report. For any other
advertiser an, if bids bn+1...bN are known, then we can com-
pute Pr(bn|p, report, bn+1...bN ) by taking the highest bid
of any lower ranked advertiser (if any) and normalizing the
portion of f ′n above that bid. Thus, by starting with bN and
working backwards, we can sample all bids in such a way
that the bids are consistent with report and the probability
of the resulting particle p′ is Pr(p′|p, report).

3.5 Example
We now use an example to illustrate particle filters using

both the typical and optimal proposal distributions. Sup-
pose that there are two advertisers x and y in addition to
ourselves, and that according to our advertiser models, at
each time step each either increases or decrease its bid by
1, with probability 0.5 in each case. We receive a report for
time t + 1 indicating that y had the highest bid, x had the
second bid, and we had the lowest bid of 0.25. Now consider
a particle p that has the following bid estimates for time t:
bx = 2 and by = 1.5.

For the typical proposal distribution, to sample a new
particle p′ reflecting time t + 1 we would sample new bids
for each bidder according to our advertiser models. However,
of the four possible outcomes, only one, bx = 1 and by = 2.5,
is consistent with the bid ranking. If we sampled a different
set of bids for p′, then the weight of p′ would be set to zero.

For the optimal proposal distribution, we let a1 = y and
a2 = x and follow the procedure described above. First, we
determine Pr(report|p). We have f1(0.5) = f1(2.5) = 0.5
and f2(1) = f2(3) = 0.5, with both functions zero elsewhere.
For a1, we follow Case 1. Pr(c1|p) = 1 and f ′1 = f1 because
F ′

0 is zero and either possible bid is above our bid of 0.25.
For a2, we follow Case 1 again. Pr(c2|p, c1) = 0.25 and
f ′2(1) = 1, because 1−F ′

1(3) = 0, 1−F ′
1(1) = 0.5, and either

possible bid is above our bid of 0.25. Thus Pr(report|p) =
Pr(c2|p, c1)Pr(c1|p) = 0.25, which we know is correct.

To sample a new particle p′, we first sample b2 from f ′2
and get 1, the only possibility. Then we sample b1 from the
portion of f ′1 that is above 1, and we get 2.5, again the only
possibility. So we are guaranteed to sample b1 = 2.5 and
b2 = 1, the only possibility for p′ given report.

3.6 Resampling
This section has described an implementation of an SIS

particle filter using the optimal proposal distribution. A
commonly used extension of an SIS filter is the Sampling
Importance Resampling (SIR) filter, which occasionally re-
samples the set of particles to prevent the weights of some

particles from approaching zero. Our implemented particle
filter is an SIR filter, and we resample the particles in P
after each update by replacing P with |P | particles sampled
(with replacement) according to the weights, then setting all
weights to 1/|P |.

4. TAC/AA
We now briefly describe the experimental domain in which

we test our particle filter, TAC/AA [3]. For full details, see
the game specification [2]. In each TAC/AA game, eight
agents compete as advertisers to see who can make the most
profit from selling a limited range of home entertainment
products over 60 simulated game days, each lasting 10 sec-
onds. Products are classified by manufacturer (3) and by
component (3) for a total of nine products. Search engine
users, the potential customers, submit queries consisting of
a manufacturer and a component, although either or both
may be missing. There are thus 16 total query types. Each
day, for each of the 16 query types, a keyword auction is
run. For each auction, an advertiser submits i) a (real, non-
negative) bid indicating the amount it is willing to pay per
click, and ii) a daily spending limit (optional). The top five
bidders have their ads shown in order, but if an advertiser
hits its spending limit (as a result of having its ad clicked
enough times), its ad is not shown for the rest of the day,
and all advertisers with lower bids have their ads move up
one position. Bids must exceed a small reserve price. For
each query type, advertisers receive a daily report providing
limited information about the results of their actions and
the actions of other advertisers. Reports include the adver-
tiser’s average cpc and the average position of each other
advertiser. Note that these positions, and thus an adver-
tiser’s cpc, can change throughout the day due to spending
limits.

TAC/AA differs from the auction model described in Sec-
tion 2 in a number of ways. First, the daily reports provide
the average positions of other advertisers instead of a rank-
ing of their bids. Fortunately, it is possible to transform
average positions into bid rankings with fairly high accu-
racy as described in [8]. Second, in TAC/AA the reserve
price is unknown, but we can obtain a reasonably accurate
estimate and use this in our particle filter. Third, we are
only given an average cpc. If the agent ranked one spot
below us hits its spending limit before we do, the average
cpc will not equal the bid of that agent, as was assumed
in Case 2 above. Once again, we can use the reported av-
erage positions to determine if this was the case, and if so
we can apply Case 3 instead for that advertiser. Finally, as
mentioned in Section 2, in TAC/AA ad positions are deter-
mined by a combination of bid rankings and clickthrough
rates. In our experiments, we address this issue by adjust-
ing each bid of each other advertiser to be the amount we
would have needed to bid to achieve a higher position than
that advertiser.

The use of spending limits in general represents another
significant difference. We avoid dealing with spending lim-
its by using our particle filter to estimate each advertiser’s
bid at the start of the day, before spending limits cause any
advertiser to drop out of the bidding. Estimating the spend-
ing limits of other advertisers can be treated as a separate
problem, as in [7].

The application of our particle filter to a single query type
in a TAC/AA game can therefore be summarized as follows.
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On each day d, we receive a report that includes our average
cpc and the average position of all advertisers on day d− 1.
We transform the average positions into the bid rankings,
and we determine whether our average cpc does in fact equal
the bid of the advertiser ranked below us. Then, using this
information, we update our particle filter, and the result is
an estimated distribution over the bids of all advertisers at
the start of day d− 1.

In our experiments, without loss of generality we consider
only the nine query types in which both a manufacturer and
component are specified. In any one game, a number of ran-
dom factors affect the value of advertising for any particular
query type, and thus the bidding behavior of the agents.
The distributions from which these factors are drawn are
the same for all nine query types, however, and so this bid-
ding behavior is the same in expectation for any query type
in any game. As our particle filter is designed for a single
keyword auction, in our experiments we treat each game as
if it provides us with nine independent and identically dis-
tributed episodes, each representing a 60-day bidding history
for a single keyword.

5. ADVERTISER MODELS
In Section 3, we assumed that we had a bidding model

for each advertiser so that we could determine the distri-
bution over the advertiser’s next bid given its bid history.
We now describe a method of generating such a model using
machine learning. While the details of this section are spe-
cific to TAC/AA, the general approach could be used in any
situation in which sufficient bidding data is available for use
in learning. Note that precise knowledge of bids, as is avail-
able here, is not necessary to be able to build and make use
of bidder models. Estimates based on information released
by search engines could be used, and it might be possible to
bootstrap by alternating model building and particle filter-
ing stages to obtain increasingly accurate estimates.

The problem we are trying to solve is a conditional den-
sity estimation problem. While a number of parametric ap-
proaches to solving these problems exist, we choose to use a
nonparametric approach. The bidding behavior of advertis-
ers can be quite complex, and we would prefer to make as
few assumptions about this behavior as possible. Methods
of nonparametric conditional density estimation have been
used in previous TAC domains to solve problems such as
predicting future hotel prices [9] and predicting the proba-
bility of an offer to a customer resulting in an order [4]. The
approach we take is to learn a model that takes as input both
a bid amount b and a set of features representing the cur-
rent state, and outputs the probability that the advertiser’s
next bid is less than or equal to b. Thus by evaluating this
model for different values of b, we can build the cumulative
distribution function for the advertiser’s next bid for any
given state. This approach is similar to the one used in [9]
except that rather than including a price as an input to the
model, there the space of prices is discretized and the model
outputs a separate probability prediction for each price.

For a given advertiser, we assume that we have access to
the logs from a number of TAC/AA games in which both
that advertiser and our own agent participated. From these
logs, we can determine the actual bids of the advertiser as
well as the reports that would have been available to our
own agent at any point in time. For each day d > 0 and
any given bid b (for which we wish to make a prediction) we

generate a feature vector containing the following:

• b,

• d,

• the last five bids: bd−1 ... bd−5,

• five bid differences: b− bd−1 ... b− bd−5,

• the last average position: apd−1,

• five average position differences: apd−1 − apd−2 ...
apd−1 − apd−6,

• the maximum and minimum bids so far: max and min,

• the differences b−max and b−min,

• the maximum and minimum bids over the last ten
days: max10 and min10, and

• the differences b−max10 and b−min10

Any reference to a day before the first day is replaced with
the corresponding reference to the first day. Finally, each
vector is labeled with a 1 or 0 to indicate whether the ad-
vertiser’s bid on day d was less than or equal to b. We note
that a five-day history is used because five-day cycles can be
observed in the bid series of some advertisers (for reasons
specific to the TAC/AA rules). In real auctions, a 24-hour
or 7-day cycle might be more likely to occur, and an appro-
priate bid history could be used.

Observe that any choice of b results in a unique feature
vector. To generate a set of training data from game logs,
we need to choose one or more values of b to use for each
bid observed. If on day d the advertiser’s bid was bd, we
generate 14 training instances by using 14 different values
of b. The first two values are bd and bd + 0.01. The next
two values are 0 and b̂, where b̂ is 1.1 times the highest bid
ever observed for the advertiser. Next, we divide the inter-
val [0, bd] in fifths and choose one bid uniformly randomly
from each fifth. Finally, we do the same with the interval
[bd + 0.01, b̂]. These choices give good coverage of the range
of possible bids. The number 14 was chosen to give a rea-
sonable tradeoff between model accuracy and keeping the
size of the training set manageable.

Now that we have a training set, we need to choose a
learning algorithm to build our model. We experimented
with the learning algorithms available in the WEKA ma-
chine learning toolkit [11] and found that M5P model trees
gave the best performance both in terms of probability pre-
diction accuracy on the data set and bid estimation accuracy
of the complete particle filter. Note that our learning prob-
lem can be treated as either a regression problem (treating
the probability as a number to predict) or a binary classi-
fication problem (predicting the probability of belonging to
the class ‘1’), and so both types of algorithms were tested.

One final issue that must be dealt with is the fact that we
wish to use our model to produce a cumulative distribution
function, but the output of our model may not in fact satisfy
the requirements. For a given state, as the bid b increases
from 0 to b̂, the output of our model should monotonically
increase and reach a maximum of 1, but this will sometimes
not be the case. We address this problem as follows. Let
the function g(b) represent the output of our model for bid
b in the current state. In our particle filter, we work with
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Figure 1: Daily bids of two advertisers

a discretized set of bids b1 ... bB . We define a probability
mass function f over this set of bids:

f(bi) = max(g(
bi + bi+1

2
)− g(

bi + bi−1

2
), ǫ)Z (10)

for a normalizing constant Z and some small ǫ > 0. The
corresponding cumulative distribution function F is now
strictly increasing, and F (bB) = 1.

Each time the particle filter needs to draw a new particle
p′ based on an existing particle p, we generate f and F
for each advertiser and then follow the procedure described
in Section 3.1. Note that in this case, the advertiser’s bid
history used to generate the feature vector that is input to
the model is based on the bid history stored in the particle
p, and not on the (unknown) true bid history.

6. EXPERIMENTS
We now report on experiments that demonstrate the ef-

fectiveness of our particle filter for bid estimation. We begin
by presenting the experimental setup and describing alter-
nate bid estimation methods against which we compare our
particle filter.

6.1 Setup
We evaluate our particle filter in three different settings.

For each setting, we use our agent TacTex [7], a top-performing
agent from the 2009 TAC/AA competition, as the advertiser
we participate as (i.e., the agent whose observations we see
and on whose behalf we are estimating bids). The other
seven advertiser agents are chosen from the TAC Agent
Repository1, a collection of agent binaries. Different sets
of agents are used for each of the three settings. For each
setting, we run 50 games. 40 games are used to generate
training data, and the remaining 10 are used for testing. For
each advertiser, we train a model as described in Section 5.

For testing, we run our particle filter independently for
each of the 90 60-day bidding episodes (nine independent
episodes per game, as described in Section 4) contained in
the test games. In each episode, we initialize each particle

1http://www.sics.se/tac/showagents.php
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by drawing a bid for each advertiser from a histogram of
that advertiser’s initial bids. Then each day, we update our
bid estimates by giving the particle filter the bid rankings,
average positions, and TacTex’s bid and cpc for that day and
performing the update procedure described in Section 3.1.

In our particle filter implementation, we use 2000 particles
and did not observe an increase in accuracy from increasing
this number. We discretize the bid space into intervals of
0.01, with a maximum bid of 1.1 times the highest bid ob-
served from any advertiser, and we set ǫ = 0.0001.

Our goal in estimating bids is not to track the behavior
of a specific advertiser but to get an idea of how much we
would need to bid to reach a certain position. We therefore
evaluate the performance of our particle filter by comparing
our estimate of the nth ranked bid (based on the weighted
mean of the particles) with the actual bid for each relevant
value of n.

The first setting we consider involves a set of seven dif-
ferent advertiser agents: AstonTAC, QuakTAC, epflagent,
MetroClick, Merlion, and two different versions of Schle-
mazl. Bidding strategies differ considerably between agents.
For example, Figure 1 shows the bids of AstonTAC and
QuakTAC for one particular episode. Here AstonTAC’s bids
tend to drift only slightly from day to day, while QuakTAC’s
bids take larger jumps but show a clear cyclical pattern.
Figure 2 shows how the top five bids change each day, il-
lustrating the difficulty of the bid estimation problem. For
our second setting we run TacTex against seven copies of
QuakTAC, and for our third setting we run TacTex against
seven copies of AstonTAC.

6.2 Alternate Bid Estimation Methods
To evaluate the effectiveness of our particle filter, we need

to compare its accuracy to other bid estimation methods.
The first method we consider is a simple baseline of always
estimating the nth ranked bid to be the average nth bid over
the training set.

The second method was used in TacTex, so we will call
it the TT estimator. Like the particle filter described in
this paper, this method is also a form of sequential Bayesian
filtering, but there are several important differences. First,
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instead of using a set of particles to represent a distribution
over bids, the TT estimator is a grid-based method, meaning
that it explicitly computes a probability mass function over
a set of discrete bids. Second, the TT estimator maintains
this function independently for each advertiser, instead of
estimating a joint distribution over all bids, which requires
a number of simplifying assumptions. Third, the TT esti-
mator makes use of a much simpler bidding model than the
models learned in Section 5.

The simple bidding model assumes that bids change in one
of three ways. First, with probability 0.1, the bid jumps to a
random bid. This case covers sudden jumps that are difficult
to model. Next, with probability 0.5, the bid changes only
slightly from the previous bid. This case reflects the behav-
ior of AstonTAC in Figure 1. The change in bids is modeled
under the assumption that the difference in logarithms of
successive bids is distributed normally with zero mean. Fi-
nally, with probability 0.4, the bid changes according to a
similar distribution, but the change is with respect to the
bid 5 days ago. This case reflects the behavior of QuakTAC
in Figure 1. This model is used for all advertisers.

The TT estimator performs a two step update each day.
First, it updates the distribution over each advertiser’s bid
using the simple bidding model. Second, it multiplies the
probability of each bid by the probability that the other
advertisers’ bids would be consistent with the observed bid
ranking given that bid (assuming that the estimated dis-
tributions over their bids are correct) and then normalizes.
Full details are available in [7].

The third alternate estimator we test is to use our particle
filter with the simple bidding model from the TT estimator.
We also considered the opposite combination — using the
bidding models described in Section 5 with the TT estima-
tor. However, because the TT estimator maintains only bid
distributions, and not particles representing bid histories, we
do not have the information required to use these bidding
models. We tried using the mean of each advertiser’s bid on
each previous day as the bid history, but results were poor.

6.3 Estimation Results
Table 1 shows the results for all three settings for all bid

estimators. For each of the 90 episodes from the 10 test
games, we found the root mean squared error of the esti-
mates, and the average RMS error is displayed. We ignored
the first five game days in computing these errors so that
the errors would not be skewed by start-game effects. (The
method of simply using the average bid was especially inac-
curate during this period.) In settings 1 and 2, we show the
errors of the estimates for the top five bids, since there were
nearly always at least five ranked bidders in these settings.
In setting 3, however, there were often only three ranked
bidders, and so we show three errors.

For all bid estimators, errors were highest on the top
ranked bid and generally decreased as the rank increased.
This result is expected since the top bid is essentially un-
bounded above and can fluctuate significantly (as in Fig-
ure 2), while lower bids tend to be grouped more tightly.
Errors on settings 2 and 3 were much lower than on setting 1.
Both QuakTAC and AstonTAC have somewhat predictable
bidding patterns and avoid particularly high bids.

Our particle filter with the learned bidder models consis-
tently gave the lowest error of any estimator. In all but one
case (setting 3 rank 3) the difference between this error and

all other errors was statistically significant (p < 0.05) ac-
cording to a Wilcoxon matched-pairs signed-ranks test. Not
surprisingly, using the average bid was worst overall. The
performance of the particle filter using the simple bidder
model and the TT estimator (which uses the same model)
was mixed, with neither clearly outperforming the other.
This result is somewhat surprising, since the particle filter
is in theory a more principled approach. It may be the case
that the deficiencies of the simple bidder model affect each
approach differently and that in some cases the TT estima-
tor is more robust.

6.4 Application to Bidding
Finally, while the focus of this paper has been on esti-

mating bids accurately, the goal of this estimation is ulti-
mately to allow an advertiser to set its own bids effectively.
We now briefly explore the usefulness of our particle filter
when utilized by a full bidding agent. For each setting, we
ran 50 games using the original TacTex (which uses the TT
estimator to estimate other advertiser’s bids and then opti-
mizes with respect to these estimates), then repeated these
games using the particle filter with the learned bidder mod-
els. Surprisingly, TacTex’s score did not improve in setting
1, apparently due to issues with the estimation of other ad-
vertisers’ spending limits that are beyond the scope of this
paper. Fortunately, QuakTAC and AstonTAC do not make
significant use of spending limits, so this problem does not
impact settings 2 and 3. In setting 2, using the particle fil-
ter improved TacTex’s score by 452 (from 78,177), and in
setting 3, the score improved by 926 (from 82,424). In both
cases, the increase was statistically significant (p < 0.05) ac-
cording to a Wilcoxon matched-pairs signed-ranks test. For
reference, we ran each set of games again and fed TacTex the
true bids of the other advertisers, and the scores in settings
2 and 3 increased by 847 and 1582, respectively, compared
to the scores when the TT estimator was used. Thus, the
use of our particle filter appears to provide us with a large
portion of the gain to be had from improving bid estimation
accuracy.

7. CONCLUSION
In this paper we have introduced a particle filter that can

be used to estimate the bids of other advertisers in keyword
auctions given a periodic ranking of their bids. The key
to this particle filter is a method of sampling new particles
(representing an updated set of bids) in such a way that the
samples are consistent with the observed bid ranking. Addi-
tionally, we have described a learning approach to modeling
the bidding behavior of other advertisers. In experiments in
the TAC/AA domain, the combination of this particle filter
and bidder modeling outperforms all other bid estimation
methods tested, including the method that was used in the
2009 TAC/AA champion.

There are several areas in which future work is possible.
The results show the importance of using accurate bidder
models, and there are a number of additional conditional
density estimation approaches we could try. Also, we cur-
rently only consider the problem of estimating past bids.
The next step is to predict future bids, perhaps by using the
bidder models to propagate the estimates forward. Testing
our bid estimation approach with real world data is another
necessary step. Finally, bid estimation is only one of many
subproblems faced in designing a successful bidding agent,
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Bid Estimator Average RMS error per bid estimate for each bid rank
Setting 1 Setting 2 Setting 3

1 2 3 4 5 1 2 3 4 5 1 2 3

average bid 0.678 0.302 0.228 0.176 0.155 0.191 0.135 0.106 0.086 0.079 0.234 0.127 0.178
TT estimator 0.685 0.289 0.190 0.119 0.110 0.203 0.110 0.096 0.085 0.095 0.185 0.198 0.185
PF simple model 0.603 0.304 0.187 0.115 0.089 0.163 0.089 0.080 0.098 0.118 0.206 0.127 0.095
PF learned models 0.459 0.255 0.135 0.082 0.066 0.112 0.060 0.055 0.049 0.052 0.135 0.102 0.092

Table 1: Bid estimate errors for all estimators and settings. Significantly lowest errors in bold.

and fully integrating the methods presented here with other
agent components (such as estimating clickthrough rates) re-
mains an important challenge, as does scaling up to handle
many simultaneous auctions.
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ABSTRACT
Conviviality has been introduced as a social science con-
cept for multiagent systems to highlight soft qualitative re-
quirements like user friendliness of systems. In this pa-
per we introduce formal conviviality measures for depen-
dence networks using a coalitional game theoretic frame-
work, which we contrast with more traditional efficiency and
stability measures. Roughly, more opportunities to work
with other people increases the conviviality, whereas larger
coalitions may decrease the efficiency or stability of these
involved coalitions. We first introduce assumptions and re-
quirements, then we introduce a classification, and finally
we introduce the conviviality measures. We use a running
example from robotics to illustrate the measures.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence —Multiagent Systems

General Terms
Theory, Measurement, Human Factors

Keywords
Agent Societies and Societal Issues, Artificial Social Sys-
tems, Dependence Networks

1. INTRODUCTION
Computer systems have to be user friendly and convivial,

a concept from the social sciences defined by Illich as “in-
dividual freedom realized in personal interdependence” [10].
Multiagent systems technology can be used to realize tools
for conviviality when we interpret “freedom” as choice [5].
For example, if there is only one supply store in your build-
ing, then you depend on it for your supplies, but if there are
several stores, then you do not depend on a single store. We
say that there is more choice, and thus it is more convivial.
The challenge of measuring conviviality breaks down into
the following research questions:

1. How to define conviviality measures?

Cite as: Conviviality Measures, P. Caire, B. Alcalde, L. van der Torre, C.
Sombattheera, Proc. of 10th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2011), Yolum, Tumer, Stone
and Sonenberg (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 895-902.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

2. How to classify conviviality?

3. What are the assumptions and requirements?

4. Why do we need a new measure?

5. How to use the measures in multiagent systems?

We measure conviviality by counting the possible ways to
cooperate, indicating degree of choice or freedom to engage
in coalitions. Our coalitional theory is based on dependence
networks [6, 19], labeled directed graphs where the nodes
are agents, and each labeled edge represents that the former
agent depends on the latter one to achieve some goal.

To explain the need for the conviviality measures, we show
the difference with stability and efficiency measures. Tools
for conviviality are concerned in particular with dynamic as-
pects of conviviality, such as the emergence of conviviality
from the sharing of properties or behaviors whereby each
member’s perception is that their personal needs are taken
care of [10]. In such dynamic circumstances, the stability
of the coalitions is an important criterion. Moreover, tradi-
tional coalition formation and game theoretic methods have
been focused on the efficiency of coalitions.

The focus on dependence networks and more specifically
on their cycles, is a reasonable way of formalizing convivi-
ality as something related to the freedom of choice of in-
dividuals plus the subsidiary relations –interdependence for
task achievement– among fellow members of a social sys-
tem. However, this freedom of choice view is not the only
view of conviviality, not even the most pertinent one. For
example, in earlier work we define conviviality masks based
on Taylor’s idea that conviviality “masks the power rela-
tionships and social structures that govern societies.” [20] A
conviviality mask is a transformation of social dependencies
by hiding power relations and social structures to facilitate
social interactions, and conviviality mask measures can be
defined to measure these transformations.

In this paper we do not consider Polanyi’s notion of em-
pathy, which needs trust, shared commitments and mutual
efforts to build up and maintain conviviality, or the many
definitions and relations with other social concepts discussed
in the conviviality literature, referring to qualities such as
trust, privacy and community identity.

The layout of this paper is as follows. In Section 2 we
introduce a running example from coalition formation in
robotics, in Section 3 we discuss stability and efficiency mea-
sures for dependence networks, in Section 4 we discuss the
assumptions and requirements of conviviality measures, in
Section 5 we introduce a conviviality classification, and in
Section 6 we introduce the conviviality measures.
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2. RUNNING EXAMPLE: NAO ROBOTS
We shall now give a scenario where we can discuss how

our system works. In an office building, there are assistant
robots to human being workers. The workers need office
materials, which are scare and are to be shared, in order to
accomplish their jobs. A worker may need materials which
are not currently available at their desks, e.g., someone else
in the building is using it. It is considered waste of time and
unproductive for a worker to ring everyone else to find out
where the needed materials are and leave his desk to collect
those materials himself. Instead, the worker can submit a
request to the robots to get and/or deliver the needed ma-
terials for him while he can continue with other works at his
desk. We shall refer to a request submitted to the robots as
a main task, which can be split into a number of tasks.

The communication between the workers and the robots
can be done via a simple web-based application, which will
transmit the request of the worker to the robots as well
as keeping track of their status. However, the robots have
limited computational resources. They only keep track of
what they have done recently. They rely on each other to
provide information about finding the location of a material.
Basically, the last robot which dealt with it will know. We
assume the existence of such an application as well as the
communication network is stable and reliable. In general,
the robots then travel from place to place during the working
hours. A depiction of this scenario is presented in Figure 1.

Figure 1: A depicted scenario of robots in office building.

In our example here, we assume that there is a set of 4
Nao robots, N = {n1, n2, n3, n4} and there are two main
tasks: TA = {t1, t2} and TB = {t3, t4}, where t1 is to deliver
a pen to desk A, t2 is to deliver a piece of paper to desk A,
t3 is to deliver a tube of glue to desk B, and t4 is to deliver
a cutter to desk B. Note that executing a task involves de-
tailed actions, such as grabbing and dropping the pen, which
are beyond the scope of this paper. These tasks are given
to robots, which need to complete them in minimal use of
power. Therefore, they need to minimize their travel time.
A robot has incentives to perform as many tasks as possible
as well as to save its battery life. 1.

Upon receiving the tasks, robots need to form coalitions
to finish them. Due to limited resources in the robots, not
all of the robots know about the tasks. There are mul-

1This is common for goal-oriented agents. However, the
model can also be applicable to other types of agents.

tiple steps to carry out all the tasks from start to finish.
First, the information known by each robot is who has the
information about the sources and the destinations of the
resources needed to accomplish the tasks. The actual coor-
dinates, involving the present location of each material and
the respective desk, are revealed only after an agreement on
a coalition among the robots has been made. This involves
interdependency among robots. Second, robots need to de-
cide how they form coalitions, i.e., which ones will join to
carry out each main task. Third, for each possible coalition,
each robot needs to plan for their optimal route to carry out
the assigned task.

At the start, robots get the information concerning the
material locations and the distances between the materials
and destinations. For example, robot n1, regarding task t1,
knows i) nothing about the source of the pen, i.e., where it
currently is, and ii) the destination of the pen, i.e., where
it must be delivered. Regarding task t2, robot n1 knows
where the paper is but knows nothing about its destination.
Table 1 presents the knowledge of the robots about the tasks
and the current distances among the robots, the materials
and the destinations.

Table 1: Robots’ knowledge (top); Distances (bottom).

Robot n1 n2

Task t1 t2 t3 t4 t1 t2 t3 t4
Source X X

Destination X X X
Robot n3 n4

Task t1 t2 t3 t4 t1 t2 t3 t4
Source X X

Destination X
Distances among locations

Robot Pen Paper Glue Cutter
n1 10 15 9 12
n2 14 8 11 13
n3 12 14 10 7
n4 9 12 15 11

Destination Pen Paper Glue Cutter
Desk A 11 16 9 8
Desk B 14 7 12 9

Upon receiving information about the tasks, robots form
coalitions to execute them. We refer to a coalition as a
group of robots executing a main task, i.e., either TA or TB .
Robots joining the coalition are to execute the task, e.g.,
deliver the pen to desk A. For example to accomplish all the
tasks t1, t2, t3, t4, the following coalitions may be formed:
C0 : {(n1, t3), (n2, t2), (n3, t4), (n4, t1)}, C1 : {(n1, t1),
(n2, t2), (n3, t3), (n4, t4)} and C2 : {(n1, t3), (n2, t4), (n3, t2)
(n4, t1)}. For agents to execute their tasks, they need to
know an optimal plan such that they can minimize their
costs for executing the task. Given the knowledge, they
are capable of computing for an optimal route for getting
the assigned materials and for delivering it2. Therefore, the
robots can generate plans for themselves after they have
been given tasks. However, discussing the details about gen-
erating plans for the robots is out of the scope of this paper.

2Planning for an optimal route is a typical shortest path
finding algorithm, whose implementations are available and
can be deployed on the robots.
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3. EFFICIENCY AND STABILITY

3.1 Definitions
There are many ways to define efficiency. Generally speak-

ing, efficiency in a coalition is a relation between what agents
can achieve as part of the organization compared to what
they can do alone or in different coalitions. In this section
and to give an illustration on our example, we recall two
definitions of efficiency: the cost efficiency (Def. 3.1), and
the economic efficiency (Def. 3.2).

Definition 3.1 (Cost Efficiency). Let N = {n1, . . .
, nj} be the set of agents, T the set of tasks (or goals), and
C ⊆ N a coalition. Let Cost : 2N → R be the function that
associates to a coalition the cost of achieving all tasks of T .
Then, C is cost efficient iff ∀ ni ∈ C, (Cost(ni)− Cost(C)) >
0.

Definition 3.2 (Economic Efficiency). A coalition
is economically efficient iff i) no one can be made better
off without making someone else worse off, ii) no additional
output can be obtained without increasing the amount of in-
puts, iii) production proceeds at the lowest possible per-unit
cost [14].

Stability of coalitions is related to the potential gain in
staying in the coalition or quitting the coalition for more
profit (i.e., free riding). Hence, several elements come to
play for the evaluation of a coalition’s stability.

First, the coalition outcome should be greater than the
individual ones cumulated. This is usually computed via a
characteristic function such as proposed by [13]. Therefore,
a necessary condition to stability is that the characteristic
function is positive, i.e., acting as a group is overall more
beneficial than acting individually.

Second, the distribution of benefits should be fair. Sev-
eral functions, named sharing rules where proposed such as
Shapley value [16], nucleolus [15], and Satisfactory Nucleolus
[12]. The leading idea is to take the individual contribution
and the free rider’s value into account when sharing the ben-
efits.

For the purpose of illustration, we introduce the concept
of core to check the stability of a coalition. Indeed, it is
relatively (computably) simple to check if a coalition is in the
core. Informally, a coalition is in the core iff no sub-coalition
is more profitable. Formally, the core follows Def. 3.3.

Definition 3.3 (Core). Let x ∈ RN be a pay-off al-
location vector, ν : 2N → R be the characteristic function
(pay-off function), and C ⊆ N a coalition. Then, x is in the

core iff
∑
i∈N

xi = ν(N) and
∑
i∈C

xi ≥ ν(C).

3.2 Efficiency computation
Let us apply the above definitions to our example. From

Table 1 of Sect. 2 we can compute the distance for each
robot to do each task, as displayed on Table 2:

Using this table we can compute the cost of executing
tasks in a given coalition by adding up the costs of each robot
to the assigned task. For instance, the cost of C1 : {(n1, t1),
(n2, t2), (n3, t3), (n4, t4)} is Cost(C1) = 87, whereas the cost
of C2 : {(n1, t3), (n2, t4), (n3, t2) (n4, t1)} is Cost(C2) = 93,
and the cost of C3 : {(n1, t1), (n1, t3), (n2, t2), (n4, t4)} is
Cost(C3) = 86.

Table 2: Distances between robots and their tasks.

t1 t2 t3 t4
n1 10+11=21 15+16=31 9+12=21 12+9=21
n2 14+11=25 8+16=24 11+12=23 13+9=22
n3 12+11=23 14+16=30 10+12=22 7+9=16
n4 9+11=20 12+16=28 15+12=27 11+9=20

These costs have to be compared to the costs of each robot
doing all tasks on their own, which are respectively 94 for
n1 and n2, 91 for n3, and 95 for n4. As a conclusion, we can
say that C1 and C3 seem efficient for all robots, whereas C2

is a bad option with respect to efficiency for n3 only.
We can see that C3 is more cost efficient than C1. How-

ever, we should note that C1 is not economically efficient.
Indeed, there is a coalition C0 : {(n1, t3), (n2, t2), (n3, t4),
(n4, t1)} where at least one agent is better off without mak-
ing anyone worse off (actually, this applies for all of them),
all the rest been equal. If we compare Cost(C0) = 81 to
Cost(C3) = 86, we conclude that C0 is economically effi-
cient and more cost efficient than C3.

3.3 Stability computation
As explained earlier, we will check the stability of the

coalitions according to the core definition (Def. 3.3).
We can see that C1 is not in the core, hence not stable,

because there exist at least a sub-coalition which is more
profitable, e.g., C3. Indeed, in the context of C1 the robot n1

can threaten n3 to do the task t3 for the same outcome but
less cost. The two other robots agree since their respective
pay-off is unchanged. The coalition C2 is also not in the
core, since n2 can be threatened by all agents and n3 can be
threatened by n2 and n4.

In contrast, C3 and C0 are in the core. In fact, in C3,
even if n4 has a lower cost than n1 for the task t1, neither
n2 nor n4 can handle the task t3 without decreasing their
global pay-off, i.e., they are satisfied with this coalition.

The coalition C0 is stable, according to the core defini-
tion, and it also involves all the robots, whereas C3 leaves
one robot idle (n3) and gives additional work to another one
(n1). As a preliminary conclusion, for efficiency and stabil-
ity, as well as for the sake of balancing the workload (which
was also an objective of the main goal achievement), the
coalition C0 seems to be the best.

3.4 Need for other coalition measures
Efficiency and stability metrics are commonly used to

evaluate coalitions. The former giving an assurance on the
economical gain reached by being in the coalition, the later
giving a certainty that the coalition is viable on the long
term. Therefore, the positive evaluation of a coalition against
these two metrics is often considered to be a prerequisite for
the coalition formation.

However, depending on the application domain, other func-
tional and non-functional requirements, e.g., security, user-
friendliness or conviviality, may play an important role in
the choice of a coalition. Requirements may be considered
in a trade-off at the same level as efficiency and stability,
or as a further filtering criterion, to select among otherwise
efficient and stable coalitions. This highlights the need for
further metrics, such as the proposed conviviality metrics.
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4. ASSUMPTIONS AND REQUIREMENTS
According to [3], conviviality may be measured by the

number of reciprocity based coalitions that can be formed.
Some coalitions, however, provide more opportunities for
their participants to cooperate with each other than others,
being thereby more convivial. To represent the interdepen-
dencies among agents in the coalitions, we use dependence
networks. First, we present definition 4.1 [3], illustrated with
our running example. Then, we review our assumptions and
requirements for the conviviality measures we define.

Recalling Section 2, two steps are needed to achieve each
task. To each step, we associate a goal for a robot to reach.
For example, to perform task t1, deliver pen to desk A,
robots must have the goals g1S , get the pen from its source,
and g1D deliver it to its destination. Abstracting from tasks
and plans we define a dependence network as in 4.1 [3]:

Definition 4.1 (Dependence networks). A depen-
dence network is a tuple 〈A,G, dep,≥〉 where: A is a set
of agents, G is a set of goals, dep : A × A → 2G is a
function that relates with each pair of agents, the sets of
goals on which the first agent depends on the second, and
≥: A → 2G × 2G is for each agent a total pre-order on sets
of goals occurring in his dependencies: G1 >(a) G2.

In our example Section 3, robots form the coalitions C0, C1

and C2. Let DN0, DN1 and DN2, visualized in Figure 2
(a), (b) and (c), be three dependence networks respectively
corresponding to these coalitions, where:
Nao robots N = {n1, n2, n3, n4},
Goals G = {g1S , g1D, g2S , g2D, g3S , g3D, g4S , g4D},
where dependencies are built from Table 1 and preferences
are the following:

• for DN0: dep(n1, n4) = {g3S}, dep(n2, n1) = {g2S},
dep(n2, n3) = {g2D}, dep(n3, n2) = {g4D},
dep(n4, n1) = {g1D}, dep(n4, n2) = {g1S};
Robot n4 prefers to deliver pen to desk A than to get
it : {g1D} >(n2) {g1S};
• for DN1: dep(n1, n2) = {g1S}, dep(n2, n1) = {g2S},
dep(n2, n3) = {g2D}, dep(n3, n4) = {g3S},
dep(n3, n1) = {g3D}, dep(n4, n3) = {g4S},
dep(n4, n2) = {g4D};
Robot n4 prefers to get cutter than deliver it to desk
B: {g4S} >(n2) {g4D}, and n3 prefers to get glue than
deliver it to desk B: {g3S} >(n1) {g3D};

• for DN2: dep(n2, n3) = {g4S}, dep(n1, n4) = {g3S},
dep(n3, n1) = {g2S}, dep(n4, n1) = {g1D},
dep(n4, n2) = {g3S};
Robot n3 prefers to deliver pen to desk A than get
glue: {g1D} >(n2) {g3S}.

4.1 Assumptions
In this work, the cycles identified in a dependence net-

work are considered as coalitions. These coalitions are used
to evaluate conviviality in the network. Cycles denote the
smallest graph topology expressing interdependence, i.e, con-
viviality, and are considered as atomic relations conveying
interdependence. When referring to cycles, we are implicitly
signifying simple cycles (as defined in [7]), also discarding
self-loops. Moreover, when referring to conviviality, we al-
ways refer to potential interaction not actual interaction.

In our second assumption, we consider the conviviality of a
dependence network to be evaluated in a bounded domain,
i.e., over a [min;max] interval. This allows to read the
values obtained by any evaluation method.

4.2 Requirements
The first requirement for our conviviality measures con-

cerns the size of coalitions. This requirement is captured
by the statement that larger coalitions are more convivial
than smaller ones. We express this requirement through the
following two cases. First case, a dependence network DNi

with a coalition of size n is better for conviviality than a
DNj with coalition of size m = (n−α), where m < n. For
example, consider a coalition for peace in the world. The
more countries participate, the better it is. Second case, a
dependence network DNi with a coalition of size n is bet-
ter for conviviality than a dependence network DNj with
two coalitions, one of size k and the other of size l, such as
that k+ l ≤ n, all else being equal. This is motivated by the
fact that having one large coalition eliminates the risk of be-
ing exposed to potential competition from other coalitions,
which may be looking for the same resources.

Our second requirement concerns the number of coali-
tions. It is captured by the statement that the more coali-
tions in the dependence network, the higher the conviviality
measure (all else being equal). This requirement is moti-
vated by the fact that a large number of coalitions indicates
more interactions among agents, which is positive in term
of conviviality according to our definition based on interde-
pendence.

Figure 2: Dependence networks DN0, DN1 and DN2.
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5. CONVIVIALITY CLASSIFICATION
Based on the requirements outlined in Section 4, we now

propose a conviviality classification that allows an intuitive
grasp of conviviality measures through a ranking of the de-
pendence networks. First, we introduce the five definitions
of conviviality classes, from the absolute best to the absolute
worst convivial networks.

5.1 Definitions

Definition 5.1 (P). A dependence network DN is P
convivial (most convivial), iff all agents in DN belong to all
cycles, i.e., ∀ai ∈ A and ∀ck ∈ C, ai is s.t. ai ∈ ck, where
C = {c1, . . . , cl} is the set of all cycles.

Definition 5.2 (APe). A dependence network DN is
APe convivial, iff all agents in DN belong to at least one
cycle, i.e., ∀ai ∈ A,∃ck /∈ C, s.t. ai ∈ ck, where C =
{c1, . . . , cl} is the set of all cycles.

Definition 5.3 (N). A dependence network DN is N
convivial, iff there exists at least one cycle in DN , and there
is at least one agent not in a cycle, i.e., ∃a, b ∈ A s.t. a, b ∈
ck, where ck /∈ C, and ∃d ∈ A s.t. d /∈ ci, ∀ci ∈ C, where
C = {c1, . . . , cl} is the set of all cycles.

Definition 5.4 (AWe). A dependence network DN is
AWe convivial, iff there is no cycle in DN , i.e., C = {∅},
and s.t. ∃dep(a, b) = {gi}, where a, b ∈ A and gi ∈ G.

Definition 5.5 (W). A dependence network DN is W
convivial (worst convivial), iff there is no dependency be-
tween the agents in DN , i.e., @dep(a, b) = {gi}, where a, b ∈
A and gi ∈ G.

Figure 3, illustrates the different types of dependence net-
works that correspond to each conviviality class. The arrow
on the top of the figure depicts the direction of increasing
conviviality. The scale goes from the worst case (no convivi-
ality) to the best case (maximal conviviality).

5.2 Examples
Consider the three dependence networks DN0, DN1, and

DN2 respectively corresponding to the robots coalitions C0,
C1, and C2 illustrated Figure 2. All robots belong to at
least one cycle. Hence, from Definition 5.2, C0, C1, and C2

belong to the APe conviviality class. They are said to be
Almost Perfectly convivial. All robots are engaged in recip-
rocal dependence relations: each one gives to the coalition
and receives from it. All robots are pursuing goals and co-
operate with at least one other robot to achieve their tasks.

With a different initial knowledge, the potential coalitions
formed may belong to other conviviality classes. For in-
stance, if in the initial knowledge table, the destination of
task t2 is known by n4 instead of n3, then coalition C01 is
represented by the dependence network DN01 depicted on
Figure 4. We note that n3 depends on another robot (n2),
but that this dependency is not reciprocated, leaving n3 out
of any coalition. Hence, n3 being isolated, the corresponding
coalition belongs to the N conviviality class.

n1 n2

n3n4

g3S

g2S

g2D

g4Dg1D

g1S

Figure 4: Conviviality class N .

Consider now that in C1, each robot knows the informa-
tion, i.e., source and destination, about one task only, and
is assigned the task it knows about. Then, not a single
robot depends on another, since each robot knows exactly
what to do on its own. There is no cooperation among the
robots, each is isolated. The corresponding network consists
of four nodes and no dependencies. Therefore, this coalition
belongs to the W conviviality class. Similarly, if all robots
know all the information about all tasks, then any task as-
signment results in a coalition corresponding to a network
of conviviality class W , as all robots may perform any task
by themselves without having to cooperate with any other
robots to obtain the information concerning the source and
destination of the office supplies they have to move.

5.3 Preliminary distinctions among measures
Returning to the efficiency and stability measures pre-

sented in Section 3, we can already see a major distinction
between conviviality and the two former metrics. Indeed, in
order to evaluate conviviality, we need to perform an anal-
ysis of the dependencies between the agents, i.e., we must
consider the topological aspects of the task (or goal) de-
pendencies in the graph. This is not the case in efficiency
and stability metrics, which only compare coalitions to sub-
coalitions or individuals in terms of global pay-off. There-
fore, we cannot rely on similar functions to evaluate con-
viviality. Finally, conviviality is orthogonal to efficiency and
stability, and trade-off situations are to be expected.

a b

cd

W

a b

cd

AWe

a b

cd

N

a b

cd

APe

a b

c d

P

CONVIVIALITY

Figure 3: Conviviality classes.
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6. CONVIVIALITY MEASURES
We now propose two indices based on graph properties

and built on three measures; the number of: agents in the
network, agents that belong to at least one cycle, and cycles.

We define the in-the-loop index ρDNi as the ratio of the
number of agents in cycles in relation to the total number of
agents in the network. For example, computing the in-the-
loop index for coalitions C0 and C01, respectively represented
by DN0 depicted Figure 3a and DN01 depicted Figure 4
yields: ρDN0 = 1 and ρDN0 = 0.75. Although useful this
metric and its inverse (β = 1−ρ) do not allow to differentiate
between the number of coalitions present in the network,
e.g., we obtain the same value for the networks depicted
Figure 3a, 3b and 3c: ρDN0 = ρDN1 = ρDN2 = 1.

We therefore set a second index, the connectivity index
δDNi , defined as the average length of cycles in the network,
and reflecting when coalitions are larger, i.e. more convivial.
Computing the connectivity index for coalitions C0, C01, C1

and C2 we obtain: δDN0 = 1.333 and δDN01 = 1, δDN1 = 1
and δDN2 = 2. Clearly, this result satisfies the requirement
of Section 4 that the larger the cycle, the more convivial the
network, all else being equal, however, it fails to distinguish
between DN01 and DN1 even though DN1 contains more
cycles. Moreover, intuitively, and per our classification Sec-
tion 5, DN01 containing one isolated node is less convivial
than DN1, in which each node belongs to at least one cycle.

Combining the two indices, as well as defining other mea-
sures based on global graph properties, does not seem to
create more accurate measures, i.e., satisfying our require-
ments, hence highlighting the need to capture the network
topologies more precisely.

Therefore, we propose a conviviality measure constructed
on our assumption Section 4 that conviviality measures are
based on the coalitions the agents form with each other.
As at least two agents are needed to form a coalition, the
measure is based on pairs of agents. More specifically, what
is measured is the number of coalitions to which any two
given agents in the dependence network belong, the evalua-
tion being performed over the whole network. Furthermore,
to allow comparisons between dependence networks of var-
ious sizes and to increase its usefulness, the measure must
be defined over a bounded space, such as [0; 1].

6.1 Bounding evaluations
Our first step is to define a function that evaluates convivi-

ality over one pair of agents – denoting a partial measure of
conviviality. Let coalDNi(a, b) ∈ N, be the number of cy-
cles that contain both a and b in a dependence network
DNi, where a, b ∈ A and a 6= b. Then, based on coal(a, b),
we construct a bounded conviviality measure. We start by
determining the maximum number of cycles that contain
any two agents. We note that the number of cycles con-
taining two agents, coal(a, b), can neither be more than the
maximum number of cycles possible containing two (given)
agents nor less than no cycle at all. Let Θ be the maximum
number of cycles between two agents, we write:

0 ≤ coal(a, b) ≤ Θ (1)

In order to determine the maximum number of cycles, let
us first assume that the set of goals is reduced to only one
goal, i.e., |G| = 1, and the DN is a clique on all goals. We
note that the maximal number of cycles is the summation of
the maximal number of cycles for each cycle length. We call

L the cycle length. In addition, as stated in Section 4, we
do not consider self-loops in the evaluation. So, the smallest
cycle to consider is L = 2, and that can happen iff the set
of agents A has a cardinality greater than or equal to 2, i.e.,
|A| ≥ 2. Trivially, when |G| = 1 there can be at most 1
cycle between two agents such that L = 2.

To have a cycle of length L = 3, we must have at least 3
agents in the DN, i.e., |A| = 3. We can already generalize,
saying that the maximal cycle length L in a DN with |A|
number of agents is L = |A|.

Furthermore, given two agents a, b ∈ A, a 6= b, a cycle of
length L = 3 is found if there is a agent c ∈ A, c 6= a, c 6= b
such that there is an edge from a (resp. b) to c and an
edge from c to b (resp. a). The maximum number of cycle
of length L = 3 is then obtained by choosing one agent c
among the agents which are neither a nor b, without repeti-
tion and with order. Since there are |A|−2 such c agents, the
maximal number of cycle of length L = 3 can be expressed
by the permutation P (|A|− 2, 1), where P (n, k) is the usual
permutation defined in combinatorics by: P (n, k) = n!

(n−k)!
,

where n is the number of elements available for selection and
k is the number of elements to be selected (0 ≤ k ≤ n)

For length L ≥ 3, applying a similar reasoning, we obtain
the maximal number of cycles of length L by choosing L−2
agents among |A| − 2, without repetition and with order,
hence given by the expression P (|A| − 2, L− 2).

Finally, as noted above, the maximum number of cycles
is the summation of the maximal number of cycles for each
cycle length. Hence for |G| = 1, the maximum number of
cycles, Θ|G|=1, is:

Θ|G|=1 =

L=|A|∑
L=2

P (|A| − 2, L− 2) (2)

Now, for |G| ≥ 1, we can choose for each edge one goal
among |G|. Since the number of edges for a cycle is de-
fined by its length L, we have a maximum of |G|L cycles of
length L. Therefore, the maximum number of cycles, Θ, is
expressed as follows:

Θ =

L=|A|∑
L=2

P (|A| − 2, L− 2)× |G|L (3)

6.2 Combining conviviality measures
In Equation 2 we obtain bounds for a pairwise evaluation.

We now need to sum up all these pairwise evaluations. Let∑
coal(a, b) be this summation. As there are |A|(|A| − 1)

pairs of agents to consider in the whole network:

0 ≤
∑

coal(a, b) ≤ |A|(|A| − 1)×Θ (4)

If we want to bound our conviviality measure conv over [0;1],
i.e., 0 ≤ conv ≤ 1, then we get the following Equation 5:

0 ≤
∑
coal(a, b)

A(A− 1)×Θ
≤ 1 (5)

We can now write Equation 6 to express the pairwise con-
viviality measure of a dependence network DN :

conv(DN) =

∑
coal(a, b)

Ω
(6)

where we write Ω = A(A−1)×Θ for the sake of readability,
for the remainder of the paper.
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6.3 Conviviality computation
In Table 3, we present the conviviality evaluation for each

dependence network, illustrated in Figure 2. As expected,
the value for the maximum number of cycles is a large num-
ber, Ω = A(A− 1)×Θ = 111360. The evaluations are per-
formed using the pairwise measure defined in Equation 6.
The results return conv(DN1) = 0.000143 > conv(DN2) =
0.000125 > conv(DN0) = 0.0000897, indicating that DN1 is
the most convivial network, followed by DN2 and that DN0

is the least convivial.
We observe that conv(DN1) > conv(DN0), coincides with

our intuition as clearly, DN1 contains more cycles thanDN0.
This result satisfies our requirements Section 4 namely, that
the more coalitions in the dependence network, the higher
the conviviality measure (all else being equal). DN1 is more
convivial than DN0 as more cooperation may occur among
the robots in coalition C1. Similarly, the computation re-
turns conv(DN1) > conv(DN2) as DN1 contains more cy-
cles than DN2. The result conv(DN2) > conv(DN0) reflects
the fact that DN2 contains a cycle larger than the largest cy-
cle in DN0. In this grand coalition (n1, g3D, n4, g1S , n2,g4S ,
n3, g2S , n1), all four robots may cooperate. As per our re-
quirements Section 4, such a coalition is more convivial as
the potential conflicts that may arise among several smaller
coalitions is reduced.

Computing conv(DN01) returns, as expected, the smaller
value ( 8

Ω
= 0.0000718) highlighting the lesser conviviality of

coalition DN01.
In our running example, we measured conviviality by count-

ing the possible ways for robots to cooperate, indicating the
degree of choice or freedom to engage in coalitions. Indeed,
the conviviality measures allow to compare the coalitions
and select the most appropriate one(s) for the multiagent
system. If a high level of cooperation is needed in the system,
then coalitions involving the highest number of agents and
cycles will be preferred. Of course, trade-offs must be made
among the system requirements, including user-friendliness
and conviviality as well as efficiency and stability. How-
ever, the conviviality measures allow to provide an indicator
for the level of cooperation among the agents and their de-
gree of choice to engage in coalitions. More opportunities
to work together with other agents increases the convivial-
ity. As stated by Bradshaw et al. [11], the success of future
human-agent teams relies in such sophisticated interdepen-
dence among human-agent team members.

Table 3: Measures based on dependencies.

Fig. Pairs in 1 cycle Pairs in 2 cycles
Conviviality(
=

Σcoal(a,b)
Ω

)
DN0

(n1, n2), (n2, n1),
(n2, n3), (n2, n4),
(n3, n2), (n4, n2)

(n1, n4), (n4, n1)
6×1+2×2

Ω
= 10

Ω

DN1
(n1, n3), (n2, n4),
(n3, n1), (n4, n2)

(n1, n2), (n2, n1),
(n2, n3), (n3, n2),
(n3, n4), (n4, n3)

4×1+6×2
Ω

= 16
Ω

DN2

(n1, n2), (n1, n3),
(n2, n1), (n2, n3),
(n2, n4), (n3, n1),
(n3, n2), (n3, n4),
(n4, n2), (n4, n3)

(n1, n4), (n4, n1)
10×1+2×2

Ω
= 14

Ω

7. RELATED RESEARCH
This paper builds on our previous work, Caire et al. [5] in

which, conviviality has been proposed as a social concept to
develop multi-agent systems. Indeed, the intuitions behind
the term conviviality are significant for social IT-enabled
systems, and has been very little studied so far. However,
conviviality is likely to become a core design feature for such
systems in the future.

In “Conviviality Measure for Early Requirement Phase”
[4], Caire and Van Der Torre introduce three conviviality
models using dependence networks. First, temporal depen-
dence networks model the evolution of dependence networks
and conviviality over time. Second, epistemic dependence
networks combine the viewpoints of stakeholders, and third
normative dependence networks model the transformation
of social dependencies by hiding power relations and social
structures to facilitate social interactions. The authors show
how to use these visual languages in design. The descrip-
tion level of the paper is methodologies and languages, and
conviviality measures were not defined.

The approach we use in this paper brings novelty by op-
erationalizing an elusive intuition and proposing a way to
measure one type of conviviality. Furthermore, we provide
an original approach to measuring one aspect of robustness
of coalitions of agents. We present two kinds of measures: a
conviviality classification that captures a hierarchical struc-
ture of the dependence networks, and a pairwise measure,
based on the interdependencies among robots, that provide
a total order on conviviality dependence networks.

This work builds on the notion of social dependence in-
troduced by Castelfranchi along with concepts like groups
and collectives [6]. Castelfranchi brings such concepts from
social theory to agent theory to enrich agent theory and
develop experimental, conceptual and theoretical new in-
struments for social sciences . The present work takes as a
starting point an abstract notion of dependence graphs ini-
tially elaborated by Conte and Sichman [19]. The notions of
dependence graphs and dependence networks were further
developed by the authors [19], and with a more abstract
representation similar to ours, in Boella et al. [1] and Caire
et al. [5].

Dependence based coalition formation is analyzed by Sich-
man [18], while other approaches are developed in [17, 8, 2].

The clustering coefficient provides global and local mea-
sures in social networks to indicate respectively the overall
clustering of the network and the embeddedness of single
nodes. Although an interesting measure, the clustering co-
efficient was not used in our paper as it does not include the
notion of cycle fundamental to our conviviality model. The
literature concerning efficiency and stability in coalition is
vast and referred to in Section 3. Particularly relevant to
conviviality are the works related to the fairness of sharing
the benefits of coalitions as in [14, 16, 15, 12].

Similarly to Grossi and Turrini [9], our approach brings to-
gether coalitional theory and dependence theory in the study
of social cooperation within multiagent systems. However,
our approach differs as it does not hinge on agreements.

Finally, works emphasizing agents’ interdependence as a
critical feature of multiagent systems, particularly for the
design of systems involving joint interaction among human-
agent systems such as in Johnson and Bradshaw et al. “coac-
tive” design [11].
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8. SUMMARY
Conviviality has been introduced as a social science con-

cept for multiagent systems to highlight soft qualitative re-
quirements like user friendliness of systems. In this paper we
introduce formal conviviality measures for dependence net-
works using a coalitional game theoretic framework, which
we contrast with more traditional efficiency and stability
measures. Roughly, more opportunities to work with other
people increases the conviviality.

We classify conviviality by five degrees of conviviality,
from most convivial or fully connected to least convivial
or unconnected. The assumptions of our conviviality mea-
sures are a bounded domain given by a [min; max] inter-
val, and coalitions are represented by simple cycles. The
requirements of our conviviality measures are that larger
coalitions are more convivial than smaller ones, that coali-
tions based on mutual dependence are more convivial than
coalitions based on reciprocal dependence, and that more
possible coalitions indicate a higher conviviality, all else be-
ing equal. We need a new measure, since more traditional
measures like efficiency or stability measures are different.
More opportunities to work with other people increases the
conviviality, whereas larger coalitions may decrease the effi-
ciency or stability of these involved coalitions. Conviviality
measures may be seen as a particular kind of robustness
measures, since more convivial systems have more opportu-
nities for agents to choose their partners, and therefore are
also more robust when partnerships break up. However, in
contrast to robustness measures, conviviality measures do
not say anything about the stability of the coalitions. Note
that intuitively, these measures may be related, for exam-
ple that more stable coalitions may be more convivial, but
in this paper we have disentangled these measures as much
as possible. We illustrate how to use the conviviality mea-
sures in multiagent systems by discussing an example from
robotics.

In further research we contemplate the need to come up
with different notions of conviviality when one wants to say
that a ”goal-directed” system is convivial (e.g., a G2C por-
tal) as opposed to when one claims that an ”open interaction
platform” is convivial (e.g., Facebook or LinkedIn). While in
the first case there is an owner of the system (the city gov-
ernment or the tax authority) that imposes a certain way
of doing things in order to reach some goals that may be
convivial or dictatorial, in the second place one may think
of functionalities that make the platform prone to a con-
viviality that is closer to the intuitions operationalized in
this paper (e.g. artifacts that facilitate bringing friends into
the platform and doing interesting things with them thanks
to the platform). We will also look into the ”conviviality
as mask” intuition where conviviality appears to be more
a matter of etiquette and discretion, than a matter of task
interdependence. We expect that the proposed measures do
not apply in a straightforward way, but that new measures
will be needed to capture further views of conviviality.
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Böhm, Klemens, 241, 795
Bachrach, Yoram, 1179, 1197
Bagnell, J. Andrew, 207
Bagot, Jonathan, 1319
Baier, Jorge A., 1267
Balbiani, Philippe, 1207
Baldoni, Matteo, 467
Balke, Tina, 1109
Baltes, Jacky, 1319
Baroglio, Cristina, 467
Barrett, Samuel, 567
Bartos, Karel, 1123
Basilico, Nicola, 99, 1317
Baumeister, Dorothea, 853
Bee, Nikolaus, 1093
Beetz, Michael, 107
Bentahar, Jamal, 483
Bentor, Yinon, 769
Bibu, Gideon D., 1339
Billhardt, Holger, 1243
Black, Elizabeth, 905
Bloembergen, Daan, 1105, 1311
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Garćıa-Fornes, Ana, 929, 1189, 1221
Garrido, Antonio, 1305
Gatti, Nicola, 199, 981, 1125, 1317
Gelain, Mirco, 1209
Genovese, Valerio, 1203
Gerding, Enrico H., 811
Geva, Moti, 431
Gimeno, Juan A., 1305
Gini, Maria, 1255
Giret, Adriana, 1305
Glinton, Robin, 677
Gmytrasiewicz, Piotr, 1285
Godo, Llúıs, 971
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