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ABSTRACT

Existing work in multi-agent collision prediction
and avoidance typically assumes discrete-time tra-
jectories with Gaussian uncertainty or that are
completely deterministic. We propose an approach
that allows detection of collisions even between
continuous, stochastic trajectories with the only
restriction that means and covariances can be
computed. To this end, we employ probabilistic
bounds to derive criterion functions whose nega-
tive sign provably is indicative of probable colli-
sions. For criterion functions that are Lipschitz,
an algorithm is provided to rapidly find nega-
tive values or prove their absence. We propose
an iterative policy-search approach that avoids
prior discretisations and yields collision-free tra-
jectories with adjustably high certainty. We test
our method with both fixed-priority and auction-
based protocols for coordinating the iterative plan-
ning process. Results are provided in collision-
avoidance simulations of feedback controlled plants.

INTRODUCTION

Due to their practical importance, multi-agent collision
avoidance and control have been extensively studied across
different communities including AI, robotics and control.
Considering continuous stochastic trajectories, reflecting each
agent’s uncertainty about its neighbours’ time-indexed lo-
cations in an environment space, we exploit a distribution-
independent bound on collision probabilities to develop a
conservative collision-prediction module. It avoids tempo-
ral discretisation by stating collision-prediction as a one-
dimensional optimization problem. If mean and covariances
are computable Lipschitz functions of time, one can derive
Lipschitz constants that allow us to guarantee collision pre-
diction success with low computational effort. This is often
the case, for instance, when dynamic knowledge of the in-
volved trajectories is available (e.g. maximum velocities or
even the SDEs).
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To avoid collisions detected by the prediction module, we
let an agent re-plan repeatedly until no more collisions oc-
cur with a definable probability. Here, re-planning refers to
modifying a control signal (influencing the expected basin
of attraction and equilibrium point of the agent’s stochas-
tic dynamics) so as to bound the collision probability while
seeking low plan execution cost in expectation. To keep
the exposition concrete, we focus our descriptions on an ex-
ample scenario where the plans correspond to sequences of
setpoints of a feedback controller regulating an agent’s noisy
state trajectory. However, one can apply our method in the
context of more general policy search problems.

In order to ensure collision avoidance yields low social cost
across the entire agent collective, we compare two differ-
ent coordination mechanisms. Firstly, we consider a sim-
ple fixed-priority scheme [10], and secondly, we modify an
auction-based coordination protocol [5] to work in our con-
tinuous setting. In contrast to pre-existing work in auction-
style multi-agent planning (e.g. [5,15]) and multi-agent col-
lision avoidance (e.g. [1,2,14]), we avoid a priori discretiza-
tions of space and time. Instead, we recast the coordination
problem as one of incremental open-loop policy search. That
is, as a succession of continuous optimization or root-finding
problems that can be efficiently and reliably solved by mod-
ern optimisation and root-finding techniques (e.g. [12,21]).

While our current experiments were conducted with lin-
ear stochastic differential equation (SDE) models with state-
independent noise (yielding Gaussian processes), our method
is also applicable to any situation where mean and covari-
ances can be evaluated. This encompasses non-linear, non-
Gaussian cases that may have state-dependent uncertainties
(cf. [11]).

1.1 Related Work

Multi-agent trajectory planning and task allocation meth-
ods have been related to auction mechanisms by identifying
locations in state space with atomic goods to be auctioned in
a sequence of repeated coordination rounds (e.g. [5,15,24]).
Unfortunately, even in finite domains the coordination is
known to be intractable — for instance the sequential allo-
cation problem is known to be NP-hard in the number of
goods and agents [13,20]. Furthermore, collision avoidance
corresponds to non-convex interactions.

This renders the coordination problem inapplicable to stan-
dard optimization techniques that rely on convexity of the
joint state space. In recent years, several works have investi-
gated the use of mixed-integer programming techniques for
single- and multi-agent model-predictive control with col-



lision avoidance both in deterministic and stochastic set-
tings [5,18]. To connect the problem to pre-existing mixed-
integer optimization tools these works had to limit the mod-
els to dynamics governed by linear, time-discrete difference
equations with state-independent state noise. The resulting
plans were finite sequences of control inputs that could be
chosen freely from a convex set. The controls gained from
optimization are open-loop — to obtain closed-loop policies
the optimization problems have to be successively re-solved
on-line in a receding horizon fashion. However, computa-
tional effort may prohibit such an approach in multi-agent
systems with rapidly evolving states.

Furthermore, prior time-discretisation comes with a natu-
ral trade-off. On the one hand, one would desire a high tem-
poral resolution in order to limit the chance of missing a col-
lision predictably occurring between consecutive time steps.
On the other hand, communication restrictions, as well as
poor scalability of mixed-integer programming techniques
in the dimensionality of the input vectors, impose severe re-
strictions on this resolution. To address this trade-off, [9]
proposed to interpolate between the optimized time steps
in order to detect collisions occurring between the discrete
time-steps. Whenever a collision was detected they proposed
to augment the temporal resolution by the time-step of the
detected collision thereby growing the state-vectors incre-
mentally as needed. A detected conflict, at time ¢, is then
resolved by solving a new mixed-integer linear programme
over an augmented state space, now including the state at ¢.
This approach can result in a succession of solution attempts
of optimization problems of increasing complexity, but can
nonetheless prove relatively computationally efficient. Un-
fortunately, their method is limited to linear, deterministic
state-dynamics. Another thread of works relies on dividing
space into polytopes [1,16], while still others [7, 8,14, 19]
adopt a potential field. In not accommodating uncertainty
and stochasticity, these approaches are forced to be overly
conservative in order to prevent collisions in real systems.

In contrast to all these works, we will consider a differ-
ent scenario. We focus on the assumption that each agent
is regulated by influencing its continuous stochastic dynam-
ics. For instance, we might have a given feedback controller
with which one can interact by providing a sequence of set-
points constituting the agent’s plan. While this restricts the
choice of control action, it also simplifies computation as the
feedback law is fixed. The controller can generate a continu-
ous, state-dependent control signal based on a discrete num-
ber of control decisions, embodied by the setpoints. More-
over, it renders our method applicable in settings where
the agents’ plants are controlled by standard off-the-shelf
controllers (such as the omnipresent PID-controllers) rather
than by more sophisticated customized ones. Instead of im-
posing discreteness, we make the often more realistic as-
sumption that agents follow continuous time-state trajec-
tories within a given continuous time interval. Unlike most
work [1,19,23,25] in this field, we allow for stochastic dynam-
ics, where each agent cannot be certain about the location of
its team-members. This is crucial for many real-world multi-
agent systems. The uncertainties are modelled as state-noise
which can reflect physical disturbances or merely model in-
accuracies. While our exposition’s focus is on stochastic
differential equations, our approach is generally applicable
in all contexts where the first two moments of the predicted
trajectories can be evaluated for all time-steps.
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2. PREDICTIVE PROBABILISTIC COLLI-
SION DETECTION WITH CRITERION
FUNCTIONS

Task. Our aim is to design a collision-detection module
that can decide whether a set of (predictive) stochastic tra-
jectories is collision-free (in the sense defined below). The
module we will derive is guaranteed to make this decision
correctly, based on knowledge of the first and second order
moments of the trajectories alone. In particular, no assump-
tions are made about the family of stochastic processes the
trajectories belong to. As the required collision probabilities
will generally have to be expressed as non-analytic integrals,
we will content ourselves with a fast, conservative approach.
That is, we are willing to tolerate a non-zero false-alarm-rate
as long as decisions can be made rapidly and with zero false-
negative rate. Of course, for certain distributions and plant
shapes, one may derive closed-form solutions for the colli-
sion probability that may be less conservative and hence,
lead to faster termination and shorter paths. In such cases,
our derivations can serve as a template for the construction
of criterion functions on the basis of the tighter probabilistic
bounds.

Problem Formalization. Formally, a collision between
two objects (or agents) a,t at time ¢t € I := [to,tf] C R can
be described by the event )

CVr () = {(*(1), 2" ()| 2 (1) — 2" (1), < 252}, Here,
A%, A® denote the objects’ diameters, and =%, z° : ] — R”
are two (possibly uncertain) trajectories in a common, D-
dimensional interaction space.

In a stochastic setting, we desire to bound the collision
probability below a threshold 6 € (0,1) at any given time
in I. We loosely say that the trajectories are collision-free if
Prie®t(t)) < d vVt e 1.

Approach. For conservative collision detection between
two agents’ stochastic trajectories x®, z°, we construct a
criterion function v** : I — R (eq. as per Eq. 1 be-
low). A conservative criterion function has the property
F(t) > 0 = Pr[€®*(¢)] < 6°. That is, a collision between
the trajectories with probability above d can be ruled-out if
~®* attains only positive values. This result is the essence of
Thm. 2.3. Being conservative, we assume a collision occurs
unless minger y(¢) > 0,Ve # a. If the trajectories’ means
and covariances are Lipschitz functions of time then one can
show that v** is Lipschitz as well. In such cases negative
values of v*" can be found or ruled out rapidly, as will be
discussed in Sec. 2.1. In situations where a Lipschitz con-
stant is unavailable or hard to determine, we can base our
detection on the output of a global minimization method
such as DIRECT [12].

2.1 Finding negative function values of Lips-
chitz functions
Let a,b € R,a < b,I := [a,b] C R. Assume we are given
a Lipschitz continuous target function f : I — R with Lips-
chitz constant L > 0. That is, VS C I3Ls < LVzx,2’ € S :
lf(z) — f(@")| < Ls |z —2'|. Leta=t1 <tz <..<tn=b
and define Gy = {t1,...,tn} to be the sample grid of size
N > 2 consisting of the inputs at which we choose to evalu-
ate the target f.
Our goal is to prove or disprove the existence of a negative
function value of target f.



2.1.1 An adaptive algorithm

We can define two functions, ceiling u ~ and floor Iy, such
that (i) they bound the target Vt el:InE) < ft) <un(t),
and (ii) the bounds get tighter for denser grids. In par-
ticular, one can show that [y, ux Ngo f uniformly if Gn
converges to a dense subset of [a, b]. It has been shown that

¢ = argmin? ;! minge(s; ;) Iv(T) = min;_ 11M
Wv [n(€") = min; L&+ 0D gt B Y (see [12,

21]). It is trivial to refine this, io take localised Lipschitz
constants into account: &' = min; M — L,
where Lj, is a Lipschitz number valid on interval J; =
(tiytit1).

This suggests the following algorithm: We refine the grid
by including a new sample £I7f(§[) as defined above, un-
til either we find a negative function value of f, or until
[x(€") > 0 (in which case we are guaranteed that no nega-
tive function values can exist).

An example run is depicted in Fig. 1. Note, without our
stopping criteria, our algorithm degenerates to Shubert’s
minimization method [21]. The stopping criteria are im-
portant to save computation, especially in the absence of
negative function values.

2.2 Deriving collision criterion functions

This subsection is dedicated to the derivation of a (Lip-
schitz) criterion function. For ease of notation, we omit
the time index t. For instance, in this subsection, z® now
denotes random variable x®(¢) rather than the stochastic
trajectory.

The next thing we will do is to derive sufficient conditions
for absence of collisions, i.e. for Pr[€®"] < 4.

To this end, we make an intermediate step: For each agent
q € {a,t} we define an open hyper-cuboid HY centred around
mean p? = (z%(t)). As a D-dimensional hyper-cuboid, HY
is completely determined by its centre point u% and its edge
lengths 1], ...,1},. Let O% denote the event that 27 ¢ H and
P := Pr[O%. We derive a simple disjunctive constraint on
the component distances of the means under which we can
guarantee that the collision probability is not greater than
the probability of at least one object being outside its hyper-
cuboid. This is the case if the hypercuboids do not overlap.
That is, their max-norm distance is at leastA ** := %

Theorem 2.1. Let uq denote the jth component of object
q’s mean and rj = ;l;’ Assume, x°%, x° are random variables
with means p® = (x), u" = (z%), respectively. The maz-
norm distance between hypercuboids H*, H® is at least A** >
0 (i.e. the hypercuboids do mot overlap), which is expressed

by the following disjunctive constraint:
3j €{1,..,D} : |puj — pf| > AV + 1] + 75
Then, we have :
Pr[¢™] < P" + P" —

where P = Pr[z% ¢ HY), (q € {a,t}).

P* P < P 4 P*

Proof. See [6]. O

One way to define a criterion function is as follows:

) = max {Juf -l - AT =8 =T} (1)

For more than two agents, agent a’s overall criterion func-
tion isT" *(¢) := min e (a3 7> (1)-

Thm. 2.1 tells us that the collision probability is bounded
below the desired threshold § if v**(¢) > 0, provided we
chose the radii 7§,75 (j = 1, ..., D) such that P*, P* <

VR

2
Let q € {a,t}. Probability theory provides several distribution-

independent bounds relating the radii of a hypercuboid to
the probability of not falling into it. That is, these are
bounds of the form

P1<B(r],...,r5;©)

where  decreases monotonically with the radii and © repre-
sents additional information. In the case of Chebyshev-type
bounds information about the first two moments are folded

in, i.e. © = (u%, C") where C%(t) € RP*P is the covariance
matrix.
Settmg > B(r{,....,7]; ©), we solve for the largest radii

that fulfil the inequality (we desire to find large radii as
this decreases the criterion function and hence, conserva-
tiveness of our criterion function (see Eq. 1). Due to mono-
tonicity of B these will be the radii r{,...,r}, such that
¢ = B(r],..,r5;0). As the final construction step of the
crlterlon function, we insert these radii into Eq. 1.

Consider the following concrete example. Combining union
bound and the standard (one-dim.) Chebyshev bound yields

q

P9 =Pr[z? ¢ HI] < Z g = B(ri,...,rh; C). Set-
i

ting every radius, except r}, infinitely large values and S8

q q
equal to £ ylelds s = f T ie r]= 205“. Finally, inserting
these radn (forg=na, t) into Eq. 1 yields our first collision
208 2Cy
criterion function: y**(t) := |u; — pi| — AV — = — =i

Of course, this argument can be made for any choice of
dimension i. Hence, a less conservative, yet valid, choice is

a,t e a T a,t 20{11 20;1
7)== maxui — pa| — A 5 5 @

Notice, this function has the desirable property of being
Lipschitz continuous, provided the mean p] : I — R and
variance functions C}' : I — Ry are. In particular, it is easy
to show L(v**) < maxi—1....p L(uf) + L(uf) + 2 (L(CS) +
L(Cj;)) where, as before, L(f) is the best Lipschitz constant
of function f.

For the special case of two dimensions, we can derive a
less conservative alternative criterion function based on a
tighter two-dimensional Chebyshev-type bound [26]:

Theorem 2.2 (Alternative collision criterion function). Let
spatial dimensionality be D = 2. Choosing

chme;mEChme]; - (Cl#)?)
ri(t) = \/ o \/Cq( v @

(q € {a,x},1 € {1,2},5 € {1,2} — {i}) in Eq. 1 yields a
valid distribution-independend criterion function. That is,
~F(t) > 0 = Pr[€®F(t)] < 6°.

Proof. Refer to [6]. O

The proof, as well as a Lipschitz constant (for non-zero
uncertainty), is be provided in the report version of this pa-
per [6]. Note, the Lipschitz constant we have derived therein
becomes infinite in the limit of vanishing variance. In that
case, the presence of negative criterion values can be tested
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Figure 1: Proving the existence of a negative value of function z | sin(z)|cos(z) + 1. Left: Initial condition.
Centre: First refinement. Right: The second refinement has revealed the existence of a negative value.

based on the sign of the minimum of the criterion function.
This can be found employing a global optimiser.

2.2.1 Multi-agent case.

Let a € 2, 2" C 2 such that a ¢ A’ a subset of agents.
We define the event that a collides with at least one of the
agents in 2’ at time ¢ as €** () = {(z°(t),z"(t))|3c €
A |z (@) — 2 (#)]l, < A} = Upeqr €F. By union bound,
Pr(e® ()] < 3, cqn Prl€ (1)),

teA

Theorem 2.3 (Multi-Agent Criterion). Let v*° be valid
criterion functions defined w.r.t. collision bound §%. We

define multi-agent collision criterion functionl’ “’Q‘/(t) =
min.eqr Y (). If e (t) > 0 then the collision probabil-
ity with A is bounded below 5°|'|. That is, Pr[e®™ ()] <
5% A.

Moreover,I’ LR Lipschitz if the constituent functions
~%* are [6].

Our distribution-independent collision criterion functions
have the virtue that they work for all distributions — not
only the omnipresent Gaussian. Unfortunately, distribution-
independence is gained at the price of conservativeness ( ref.
to Fig. 2). In our experiments in Sec. 4, the collision crite-
rion function as per Thm. 2.2 is utilized as an integral com-
ponent of our collision avoidance mechanisms. The results
suggest that the conservativeness of our detection module
does not entail prohibitively high-false-alarm rates for the
distribution-independent approach to be considered imprac-
tical. That said, whenever distributional knowledge can be
converted into a criterion function. One could then use our
derivations as a template to generate refined criterion func-
tions using Eq. 1 with adjusted radii 7;,r;, reflecting the
distribution at hand.

3. COLLISION AVOIDANCE

In this section we outline the core ideas of our proposed
approach to multi-agent collision avoidance. After specify-
ing the agent’s dynamics and formalizing the notion of a
single-agent plan, we define the multi-agent planning task.
Then we describe how conflicts, picked-up by our collision
prediction method, can be resolved. In Sec. 3.1 we de-
scribe the two coordination approaches we consider utilizing
to generate conflict-free plans.

I) Model (example). We assume the system contains
a set 2 of agents indexed by a € {1,...,|2 |}. Each agent
a’s associated plant has a probabilistic state trajectory fol-
lowing stochastic controlled D-dimensional state dynamics
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(we consider the case D = 2) in the continuous interval of
(future) time I = (to,ts]. We desire to ask agents to adjust
their policies to avoid collisions. Each policy gives rise to a
stochastic belief over the trajectory resulting from executing
the policy. For our method to work, all we require is that
the trajectory’s mean function m : I — RP and covariance
matrix function ¥: I — RPXP are evaluable for all times
tel.

A prominent class for which closed-form moments can
be easily derived are linear stochastic differential equations
(SDESs). For instance, we consider the SDE

dz®(t) = K (£°(t) — 2°(t))dt + BdW (3)

where K, B € RP*P are matrices z° : I — RP is the
state trajectory and W is a vector-valued Wiener process.
Here, u(z®;&%) := K(§" — x%) could be interpreted as the
control policy of a linear feedback-controller parametrised
by £°. It regulates the state to track a desired trajectory
£2(t) = Cixgoy (1) + 210 Cxms (1) where xr, : R — {01}
denotes the indicator function of the half-open interval 7}
(t9_1,t%] € [0,7°] and each (¢ € R is a setpoint. If K is
positive definite the agent’s state trajectory is determined by
setpoint sequence p® = (tf,({‘)?:% (aside from the random
disturbances) which we will refer to as the agent’s plan. For
example, plan p® := ((to, x), (ty, x;)) could be used to reg-
ulate agent a’s start state zj to a given goal state x% between
times to and ty. For simplicity, we assume the agents are al-
ways initialized with plans of this form before coordination
commences.

One may interpret a setpoint as some way to alter the
stochastic trajectory. Below, we will determine setpoints
that modify a stochastic trajectory to reduce collision prob-
ability while maintaining low expected cost. From the van-
tage point of policy search, £° is agent a’s policy parameter
that has to be adjusted to avoid collisions.

IT) Task. Each agent a desires to find a sequence of
setpoints (p®) such that (i) it moves from its start state z{
to its goal state x$ along a low-cost trajectory and (ii) such
that along the trajectory its plant (with diameter A) does
not collide with any other agents’ plant in state space with
at least a given probability 1 — ¢ € (0,1).

IIT) Collision resolution. An agent seeks to avoid col-
lisions by adding new setpoints to its plan until the colli-
sion probability of the resulting state trajectory drops be-
low threshold §. For choosing these new setpoints we con-
sider two methods WAIT and FREE. In the first method
the agents insert a time-setpoint pair (¢,z3) into the pre-
vious plan p®. Since this aims to cause the agent to wait
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Figure 2: Criterion function values (as per Eq. 2) as a function of ||(z")
Centre: =
criterion function (as per Thm. 2.2).

Left: variances C® = C* = diag(.00001,.00001).
C® = C* = diag(.1,.1) and with improved

at its start location x§ we will call the method WAIT. It
is possible that multiple such insertions are necessary until
collisions are avoided. Of course, if a higher-priority agent
decides to traverse through z§, this method is too rigid to
resolve a conflict. In the second method the agent opti-
mizes for the time and location of the new setpoint. Let
p%t’s) be the plan updated by insertion of time-setpoint

pair (¢,5) € I x RP. We propose to choose the candidate
setpoint (t,s) that minimizes a function being a weighted
sum of the expected cost entailed by executing updated
plan pf; ) and a hinge-loss collision penalty cgoy (P s)) =
A max{0, — min, I'*(¢)}. Here,I' ® is computed based on the
assumption we were to execute pf 5 and A >> 0 deter-
mines the extent to which collisions are penalized. Since the
new setpoint can be chosen freely in time and state-space
we refer to the method as FREE.

3.1 Coordination

We will now consider how to integrate our collision detec-
tion and avoidance methods into a coordination framework
that determines who needs to avoid whom and at what stage
of the coordination process. Such decisions are known to sig-
nificantly impact the social cost (i.e. the sum of all agents’
individual costs) of the agent collective.

Fixed-priorities (FP). As a baseline method for coordi-
nation we consider a basic fixed-priority method (e.g. [3,10]).
Here, each agent has a unique ranking (or priority) accord-
ing to its index a (i.e. agent 1 has highest priority, agent ||
lowest). When all higher-ranking agents are done planning,
agent a is informed of their planned trajectories which it has
to avoid with a probability greater than 1 — §. This can be
done by repeatedly invoking for collision detection and res-
olution methods described above until no further collision
with higher-ranking agents are found.

Lazy Auction Protocol (AUC). While the FP method
is simple and fast the rigidity of the fixed ranking can lead
to sub-optimal social cost and coordination success. Fur-
thermore, its sequential nature does not take advantage of
possible parallelization a distributed method could. To al-
leviate this we propose to revert the ranking flexibly on a
case-by-case basis. In particular, the agents are allowed to
compete for the right to gain passage (e.g. across a region
where a collision was detected) by submitting bids in the
course of an auction. The structure of the approach is out-
lined in Alg. 1.

Assume an agent a detects a collision at a particular time
step teon and invites the set of agents C* = {t|y"" (tcon) < 0}
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20 0 5

— (2|, and with § = 0.05, A" = 1.
C" = diag(.1,.1). Right: variances

variances C*

input : Agents a € 2, cost functions ¢, dynamics, initial start
and goal states, initial plans p', ...,p'm‘ .
output: collision-free plans p!, ..., p/¥!
repeat
for a € A do
[ flag @, C%, tcon] < CollDetect *(a,A — {a})
if flag® = 1 then
winner <— Auction(C® U {a}, tcon)
foreach v € (C* U {a}) — {winner} do
Pt Avoid®((C* U{a}) — {r}, tcon)
Broadcast® (p*)
end
end
end
until Va € 2 : flag® = 0;
Algorithm 1: Lazy auction coordination method (AUC)
(written in a sequentialized form). Collisions are resolved
by choosing new setpoints to enforce collision avoidance. C*:
set of agents detected to be in conflict with agent a. flag”:
collision detection flag (=0, iff no collision detected). tcon:
earliest time where a collision was detected. Avoid: colli-
sion resolution method updating the plan by a single new
setpoint according to WAIT or FREE.

to join an auction to decide who needs to avoid whom. The
auction determines a winner who is not required to alter his
plan. The losing agents need to insert a new setpoint into
their respective plans designed to avoid all other agents in
C® while keeping the plan cost function low. The idea is to
design the auction rules as a heuristic method to minimize
the social cost of the ensuing solution. To this end, we de-
fine the bids such that their magnitude is proportional to a
heuristic magnitude of the expected regret for losing and not
gaining passage. That is agent a submits a bid b® = [* — 5°.
Magnitude [* is defined as a’s anticipated cost cpiu, (PF(4,5))
for the event that the agent will not secure “the right of pas-
sage” and has to create a new setpoint (¢,s) (according to
(III)) tailored to avoid all other agents engaged in the cur-
rent auction. On the other hand, s* := cp;,,, (p") is the cost
of the unchanged plan p®. If there is a tie among multiple
agents the agent with the lowest index among the highest
bidders wins.

Acknowledging that 5“”"””+Zu¢wmnw
social cost (based on current beliefs of trajectories) after the
auction, we see that the winner determination rule greed-
ily attempts to minimize social cost: bW > b* & Ve :

s + Zu;ﬁt * 2 s 4 Za;&winner .

[* is an estimated



simulated trajectories

simulated trajectories simulated trajectories

Figure 3: EXP1l. Draws from uncoordinated agents’ plans (left), after coordination and collision resolution
with methods FP-WAIT (centre) and AUC-WAIT (right).

Experiment 1 Experiment 2
Recorded quantity NONE AUC-WAIT FP-WAIT NONE AUC-FREE FP-FREE
est. Pr{collision] [%] 78 0 0 51 0 0
averaged path length away from goal 13.15 13.57 12.57 14.94 16.22 18.13
averaged sqr. dist. of final state to goal 0.05 0.04 25.8 0.05 0.05 0.05
no. of resolution rounds 0 6 3 0 4 4

Table 1: Quantities estimated based on 100 draws from SDEs simulating executions of the different plans
in EXP1 and EXP2. Notice, our collision avoidance methods succeed in preventing collisions. In EXP1 the
FP-WAIT method failed to reach its first goal in time which is reflected in the sqr. distance to goal measure.
Note the discrepancies in avg. path length are relatively low due to convexity effects and the contribution of
state noise to the path lengths.

simulated trajectories simulated trajectories simulated trajectories

time

dim. 1

Figure 4: EXP2. Draws from uncoordinated agents’ plans (left), after coordination and collision resolution
with methods FP-FREE (centre) and AUC-FREE (right).

4. SIMULATIONS EXP1. Collision resolution was done with the WAIT

As a first test, we simulated three simple multi-agent sce- ?Il?t'h(’d to update plans. Draws.from.the. SDEs with the
narios, EXP1, EXP2 and EXP3. Each agent’s dynamics initial plans of the agepts are.deplc.ted in Fig. 3 (left). The
were an instantiation of an SDE of the form of Eq. 3. We curves represent 20 nowsy trajectories of agents 1. (re.d) and
set § to achieve collision avoidance with certainty greater 2 (blue). E?Ch curve 1s a dra'w fron} the StOChaStlfl differen-
than 95%. Collision prediction was based on the improved tial dynamics obtained by simulating the execution of the
criterion function as per Thm. 2.2. During collision res- given initial plan. The trajectories were simulated with the
olution with the FREE method each agent a assessed a Euler-Maruyama method for a time interval of I = [0s, 2s].
candidate plan p® according to cost function ¢2,,(p") = The spread of the families of curves is due to the random

. H )
W1 g (DY) + W2 ies (D7) + wa oy (p°). Here ¢fq; is a disturbances each agent’s controller had to compensate for

heuristic to penalize expected control energy or path length; during runtime.

in the second summand, ¢2,,,,(p") = Hw“(tf) _ x;HQ penal- Agent 1 desireil t_o control the state frgm start state xj =
izes expected deviation from the goal state; the third term (5,10) to gogl zy = (5,5). Agent 2 desired ;0 move from
ctou(p) penalizes collisions (cf. III ). The weights are design start state zg = (5,0) via intermediate goal z3, = (5,7) (at
parameters which we set to w; = 10, we = 10® and ws = 10, 1s) to final goal state x?Q = (0,7). While the agents meet
emphasizing avoidance of mission failure and collisions. their goals under the initial plans, their execution would im-

Note, if our method was to be deployed in a receding hori- ply a high probability of colliding around state (5,6) (cf.
zon fashion, the parameters could also be adapted online, for Fig. 3 (left), Tab. 1). Coordination with fixed priorities
instance, using standard learning techniques (e.g. [17,22] ). (1 (red) > 2 (blue)) yields conflict-free plans (Fig. 3 (cen-
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simulated trajectories

dim. 1

simulated trajectories

Figure 5: Ex. of EXP3 with 5 agents. Draws from uncoordinated agents’ plans (left), after coordination and
collision resolution with methods AUC-FREE (right).
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% of draws
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W ~ ~ ~after coord.
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)
Time

Figure 6: Left, Centre: Recorded results for EXP3 with 1 to 6 agents. Note, all collisions were successfully
avoided. Right: EXP1. Criterion functions for collision detection of agent 2 before and after coordination.
The graphs report the presence/absence of a collision as indicated by their sign.

tre)). However, agent 2 is forced to wait too long at its start
location to be able to reach intermediate waypoint x?l in
time and therefore, decides to move directly to its second
goal. This could spawn high social cost due to missing one
of the designated goals (Tab. 1 ). By contrast, the auction
method is flexible enough to reverse the ranking at the de-
tected collision point causing agent 1 to wait instead of 2
(Fig. 3 (right)). Thereby, agent 2 is able to reach both of
its goal states in time. This success is reflected by low social
cost (see Tab. 1).

EXP2. The setup was analogous to EXP1 but with three
agents and different start and goal states as depicted in
Fig. 4. Furthermore, collisions were avoided with the FREE
method with 10 random initializations of the local optimizer.
Coordination of plans with fixed priorities (1 (red) > 2 (blue)
> 3 (green) ) caused 2 to avoid agent 1 by moving to the
left. Consequently, 3 now had to temporarily leave its start
and goal state to get out of the way (see Fig. 4 (centre) ).
With two agents moving to avoid collisions social cost was
relatively high (see Tab. 1). During coordination with the
auction-based method agent 2 first chose to avoid agent 1
(as in the FP method). However, losing the auction to agent
3 at a later stage of coordination, agent 2 decided to finally
circumvent 1 by arcing to the right instead of to the left.
This allowed 3 to stay in place (see Tab. 1).

EXP3. Next, we conducted a sequence of experiments
for varying numbers of agents ranging from || =1,..,7. In
each experiment all agents’ start locations were placed on
a circle. Their respective goals were placed on the opposite
ends of the circle. The eigenvalues of the feedback gain
matrices of each agent were drawn at random from a uniform
distribution on the range [2,7]. An example situation for an
experiment with 5 agents is depicted in Fig. 5. Collision
avoidance was achieved.
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Note, that despite this setting being close to worst case
(i.e. almost all agents try to traverse a common, narrow
corridor) the coordination overhead is moderate (see Fig. 6,
centre). Also, all collisions were successfully avoided (see
Fig. 6, left).

CONCLUSIONS

This work considered multi-agent planning under stochas-
tic uncertainty and non-convex chance-constraints for colli-
sion avoidance. In contrast to pre-existing work, we did
not need to rely on prior space or time-discretisation. This
was achieved by deriving criterion functions with the prop-
erty that the collision probability is guaranteed to be be-
low a freely definable threshold § € (0,1) if the criterion
function attains no negative values. Thereby, stochastic col-
lision detection is reduced to deciding whether such nega-
tive values exist. For Lipschitz criterion functions, we pro-
vided an algorithm for making this decision rapidly. We de-
scribed a general procedure for deriving criterion functions
and presented two such functions based on Chebyshev-type
bounds. The advantage of using Chebyshev inequalities is
their independence of the underlying distribution. There-
fore, our approach is applicable to any stochastic state noise
model for which the first two moments can be computed
at arbitrary time steps. In particular, this would apply
to models with state-dependent uncertainty and non-convex
chance constraints which, to the best to our knowledge, have
not been successfully approached in the multi-agent con-
trol literature. Nonetheless, future work could build on our
results and derive less conservative criterion functions by
using more problem-specific probabilistic inequalities. For
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instance, in simple cases such as additive Gaussian noise,
tighter bounds can be given [4] and used in Eq. 1.

To enforce collision avoidance, our method modified the
agent’s plans until no collisions could be detected. To co-
ordinate the detection and avoidance efforts of the agents,
we employed an auction-based as well as a fixed-priority
method.

Our experiments are a first indication that our approach
can succeed in finding collision-free plans with high-certainty
with the number of required coordination rounds scaling
mildly in the number of agents. While in its present form,
the coordination mechanism does not come with a termi-
nation guarantee, in none of our simulations have we en-
countered an infinite loop. For graph routing, [5] provides
a termination guarantee of the lazy auction approach under
mild assumptions. Current work considers if their analy-
sis can be extended to our continuous setting. Moreover,
if required, our approach can be combined with a simple
stopping criterion that terminates the coordination attempt
when a computational budget is expended or an infinite loop
is detected.

The computation time within each coordination round de-
pends heavily on the time required for finding a new set-
point and for collision detection. This involves minimizing
(t,8) = Cpian (Pis,sy) and cgoy, respectively. The worst-case
complexity depends on the choice of cost functions, their
domains and the chosen optimizer. Fortunately, we can
draw on a plethora of highly advanced global optimisation
methods (eg [12,21]) guaranteeing rapid optimization suc-
cess. In terms of execution time, we can expect considerable
alleviations from implementation in a compiled language.
Furthermore, the collision detection and avoidance methods
are based on global optimization and thus, would be highly
amenable to parallel processing — this could especially ben-
efit the auction approach.

While our exposition was focussed on the task of defining
setpoints of feedback-controlled agents, the developed meth-
ods can be readily applied to other policy search settings,
where the first two moments of the probabilistic beliefs over
the trajectories (that would result from applying the found
policies) can be computed.
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