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ABSTRACT

Pareto efficiency is a widely used property in solution con-
cepts for cooperative and non–cooperative game–theoretic
settings and, more generally, in multi–objective problems.
However, finding or even approximating (when the objective
functions are not convex) the Pareto curve is hard. Most of
the literature focuses on computing concise representations
to approximate the Pareto curve or on exploiting evolution-
ary approaches to generate approximately Pareto efficient
samples of the curve. In this paper, we show that the Pareto
curve of a bimatrix game can be found exactly in polyno-
mial time and that it is composed of a polynomial number
of pieces. Furthermore, each piece is a quadratic function.
We use this result to provide algorithms for game-theoretic
solution concepts that incorporate Pareto efficiency.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Multi–agent systems

General Terms

Algorithms, Economics

Keywords

Game theory (cooperative and non–cooperative); Pareto cur-
ve; solving games

1. INTRODUCTION
The computational study of strategic interactions is of ex-

traordinary importance in artificial intelligence [16]. Game
theory provides elegant solution concepts for such settings
but they need to be accompanied by algorithms for finding
such solutions in order to operationalize the theory.

Pareto efficiency [16] plays a central role in game settings
with multiple objectives. Each agent is associated with one
(or multiple) objective(s) and Pareto efficiency identifies the
best tradeoffs among the different agents’ objectives. The
Pareto curve is commonly defined as the collection of Pareto
efficient solutions. A number of solution concepts in co-
operative and non–cooperative game theory are based on
Pareto efficiency, prescribing the selection of specific points
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on the Pareto curve. For instance, in cooperative game the-
ory, the utilitarian bargaining solution (UBS) [16] selects
the points on the Pareto curve that maximize social wel-
fare, the Nash bargaining solution (NBS) [13] selects the
points on the Pareto curve that maximize the product of
the agents’ utilities, and the Kalai–Smorodinsky bargaining
solution (KSBS) [11] selects the points on the Pareto curve
that maintain the ratio between the maximum utility achiev-
able by the first agent and the maximum utility achievable
by the second one. In non–cooperative game theory, strong
Nash equilibrium (SNE) strengthens the concept of Nash
equilibrium [16] by requiring that the equilibrium is resilient
to all coalitional deviations. Another way to word strong
Nash equilibrium is that it is a strategy profile that is Pareto
efficient for every coalition (including the grand coalition),
fixing the strategies of the agents outside the coalition.

Finding the Pareto curve is typically hard as is comput-
ing solution concepts that incorporate Pareto efficiency [2,
5, 14]. Most literature focuses on approximating Pareto
curve searching for concise representations [10, 12, 14], on
providing results for specific cases in which objectives are
convex [6], and on developing evolutionary approaches to
generate approximately Pareto efficient samples [3].

In this paper we focus on bimatrix games. While the
problem of verifying whether a solution is Pareto efficient
has been shown to be easy [8], to our knowledge, nothing
has been published about the problem of determining and
characterizing the Pareto curve.

The contributions we provide in this paper are as follows.

● We study the Pareto curve of 2 × 2 bimatrix games,
showing that there are 19 possible different cases and
for each case we provide the related conditions over
the parameters. The Pareto curve is, in general, non–
convex, discontinuous, and piece–wise quadratic with
at most 4 pieces. The curve can be computed in poly-
nomial time.

● We study the Pareto curve of m ×m bimatrix games,
showing that it is composed of a polynomial (in m)
number of pieces and that each piece belongs the Pareto
curve of a 2×2 sub–bimatrix and is thus quadratic. The
curve can be computed in time polynomial in m.

● We show that key solution concepts from cooperative
game theory that incorporate Pareto efficiency in their
definition—UBS, NBS, and KSBS—can be found in
polynomial time in bimatrix games.

● We provide an algorithm to find a strong Nash equi-
librium (SNE) [1] which calls a polynomial number of
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times an NP–complete oracle (thus matching the NP-
completeness of SNE finding [4, 8]). In contrast, prior
algorithms for finding SNE take exponential time even
if P = NP [7, 8].

2. SETTING AND DEFINITIONS
A 2–player normal-form (aka. strategic–form) game is a
tuple (N,A,U) [16] where:

● N = {1,2} is the set of agents (i denotes an agent),

● A = {A1,A2} is the set of agents’ actions and Ai is the
set of agent i’s actions (we denote a generic action by
a, and by mi the number of actions in Ai),

● U = {U1,U2} is the set of agents’ utility matrices where
Ui(a1, a2) is agent i’s utility when agent 1 plays ac-
tion a1 and agent 2 plays a2.

We denote by xi the strategy (vector of probabilities) of
agent i and by xi,a the probability with which agent i plays
action a ∈ Ai. We denote by ∆i the space of strategies over
Ai, i.e., vectors xi where the probabilities sum to 1. We de-
note by x the strategy profile defined as x = (x1,x2). We de-
note by ui(x) = xT

1 Uix2 (where T means transpose) the ex-
pected utility of agent i as the agents’ strategies vary and by
u(x) the 2–dimensional vector defined as u = (u1(x), u2(x)).
We now introduce the concept of Pareto efficiency.

Definition 2.1. A strategy profile x (analogously u(x))
is Pareto efficient if there is no other strategy profile x′ such
that u(x′) ≥ u(x) and ui(x

′) > ui(x) for some i.

Definition 2.2. A strategy profile x (analogously u(x))
is weakly Pareto efficient if there is no other strategy profile
x′ such that u(x′) > u(x).

We can now define the Pareto curve.

Definition 2.3. The Pareto curve is the collection of u(x)
such that x is Pareto efficient.

Definition 2.4. The weak Pareto curve is the collection
of u(x) such that x is weakly Pareto efficient.

Finally, we introduce the notion of Pareto dominance.

Definition 2.5. Strategy profile x (analogously u(x)) is
strongly Pareto dominated by strategy profile x′ (analogously
u(x′)) if u(x′) > u(x).

Definition 2.6. Strategy profile x (analogously u(x)) is
weakly Pareto dominated by strategy profile x′ (analogously
u(x′)) if u(x′) ≥ u(x) and ui(x

′) > ui(x) for some i.

Note that the set of strategy profiles that are not weakly
Pareto dominated constitute the Pareto curve, while the set
of strategy profiles that are not strongly Pareto dominated
constitutes the weak Pareto curve.

3. PARETO CURVE OF 2×2 GAMES
In this section we present results on the Pareto curve for

2×2 games. Results for the weak Pareto curve can be derived
in a similar way. The next section will cover m ×m games.

3.1 Developing analytical tools we will use later
We consider a generic 2 × 2 game

agent 2

a
g
e
n
t

1 a3 a4

a1 A = (A1,A2) B = (B1,B2)
a2 C = (C1, C2) D = (D1,D2)

where Ai,Bi,Ci,Di are payoffs of agent i. For simplicity, we
denote by x the probability with which agent 1 plays a1 and
by y the probability with which agent 2 plays a3. Our aim

is to find a function u2(u1) that describes the Pareto curve.
To obtain that we proceed as follows. From u1 = u1(x, y)
(excluding the case C1 −D1 +K1x = 0, which can be treated
separately), we can express y as a function of x and u1:

y(x, u1) =
u1 −D1 + (D1 −B1)x

C1 −D1 +K1x

where Ki are constants (see below), under the constraints
x, y ∈ [0,1] for each u1 ∈ [umin

1 , umax
1 ] where umin

1 , umax
1 are

umin
1 = min{A1,B1,C1,D1} and umax

1 =max{A1,B1,C1,D1}.
In the general case, these constraints can be written as:

u1 ∈ [umin

1
, u

max

1
] (1)

x ∈ [x(u1), x(u1)] or ∈ [0, x(u1)] ∪ [x(u1), 1] (2)

where x(u1), x(u1) with values from [0,1] are linear func-
tions in u1 whose form depends on the parameters A1, B1,
C1, D1. For instance, in the case C1 − D1 + K1x > 0 for
every x ∈ [0,1], x(u1) and x(u1) are determined to satisfy

0 ≤ u1 −D1 + (D1 −B1)x and 1 ≥ u1−D1+(D1−B1)x

C1−D1+K1x
.

By substituting y = y(x,u1) in u2, we obtain:

u2(x, u1) = D1C2 −C1D2 + (D2 −C2)u1 + (K5 −K4u1)x1 −K3x
2

D1 −C1 −K1x

In order to determine the function u∗2(u1) = u2(x∗(u1), u1)
that describes the Pareto curve of the game, we aim to solve
the optimization problem

x∗(u1) = argmaxx u2(x, u1)
s.t. Constraint (2)

In other words, we remove the dependency of u2(x,u1) on
x by substituting for x the function x∗(u1) that maximizes
u2 for each value of u1 and satisfies Constraint (2). The
function x∗(u1) can be found by studying the function u2:
we derive the derivative of u2 w.r.t. x when u1 is considered
as a parameter and then we study how its sign changes as u1

and as x vary according to Constraint (2). The derivative is

∂u2

∂x
=
K6 +K7 −C1D1K4 −K2u1 + 2(C1 −D1)K2x +K1K2x

2

(D1 −C1 −K1x)2
It equals zero for the following roots:

r1, r2 =
C1 −D1

K1

±

√
K2K3(B1C1 −A1D1 +K1u1)

K1K2

Given a subrange of u1, the maximum of u2 can be for
x∗(u1) = r1 or x∗(u1) = r2 if these roots are real values and
are feasible according to Constraints 2 or it can be for some
extreme value of the intervals prescribed by Constraints 2.
Finally, we substitute x = x∗(u1) obtaining function u∗2(u1)
that describes the Pareto curve of the game. When x∗(u1) =
r1, r2, we have that u∗2(u1) is a quadratic function:

u
∗
2
(u1) = K8 +K9 +K10 −K1K4u1

K2

1

±
2
√
K2K3(B1C1 −A1D1 +K1u1)

K2

1

Instead, when x∗(u1) is equal to some extreme value of the
intervals prescribed by Constraints 2, u∗2(u1) is a linear func-
tion (the calculations are omitted here because they are long
but trivial).

The same procedure adopted above to derive u∗2(u1) can
be used to derive u∗1(u2). The constants Ki are as follows.

K1 = A1 +D1 −B1 −C1

K2 = (A1 −C1)(B2 −D2) − (B1 −D1)(A2 −C2)
K3 = (A1 −B1)(C2 −D2) − (C1 −D1)(A1 −B2)
K4 = A2 +D2 −B2 −C2

K5 =D1A2 −C1B2 +B1C2 − 2D1C2 −A1D2 + 2C1D2

K6 =D1(D1(A1 −C2) +A1(C2 −D2))
K7 = C1(C1(B2 −D2) +B1(D2 −C2))
K8 = −(C1 −D1)(−D1A1 +C1B2) −B2

1
C2 −A

2

1
D2

K9 = B1(D1(A2 +C2) +C1(−2A2 +B2 +C2 − 2D2) +A1(C2 +D2))
K10 = A1(C1(B2 +D2) +D1(A2 − 2(B2 +C2) +D2))
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In order to classify the different forms of the Pareto curve,
the following properties are useful.

Proposition 3.1. The extremes (points in which u1 is
maximum or u2 is maximum) of the Pareto curve correspond
to pure strategy profiles.

The proof is straightforward, the Pareto curve being the
(non–convex) combination of the outcome payoff vectors.

Focusing on A, we have the following result.

Theorem 3.2. As u1 → A+1 (i.e., from the right), if the
Pareto curve contains A and it is continuous from the right
to A, then the Pareto curve is tangent to either segment AB
or segment AC.

Proof. The proof follows from the application of the gen-
eral envelope theorem [17]. In our specific case, that theo-
rem reduces to distinguishing certain cases and applying the
(unconstrained) envelope theorem to u∗1(u2) and u∗2(u1) dis-
regarding the constraints. Specifically, the envelope theorem
states that, given an optimization problem

f
∗(z) =max

w
f(w, z),

where z is a parameter, we have

df
∗(z)
dz

=
∂f(w, z)

∂z

RRRRRRRRRRRw=w∗(z)

where w
∗(z) = argmax

w
f(w, z)

We assume the Pareto curve is continuous in A from the
right. We distinguish three cases. If B1 > A1 and A1 > C1,

then the derivative of the Pareto curve is
du∗

2
(u1)

du1
. If C1 > A1

and A1 > B1, the derivative of the Pareto curve is
du∗

2
(u1)

du1
.

If B1 > A1 and C1 > A1, the derivative of the Pareto curve

is min {du∗
2
(u1)

du1
,

du∗
1
(u2)

du2
}. The case A1 > B1 and A1 > C1 is

not allowed when the Pareto curve is continuous in A. We
now compute

du∗
2
(u1)

du1
and

du∗
1
(u2)

du2
according to the envelope

theorem. We need to compute

∂u2(x, u1)
∂u1

RRRRRRRRRRRx=x∗(u1)

=
D2 −C2 −K4x

D1 −C1 −K1x

RRRRRRRRRRRx=x∗(u1)

∂u1(y, u2)
∂u2

RRRRRRRRRRRy=y∗(u2)

=
D1 −B1 −K4y

D2 −B2 −K1y

RRRRRRRRRRRy=y∗(u2)

and then to substitute x = 1 and y = 1 since we are studying
the derivative of the Pareto curve in A. We obtain

∂u2(x, u1)
∂u1

RRRRRRRRRRRx=1
=
A2 −B2

A1 −B1

,
∂u1(y, u2)

∂u2

RRRRRRRRRRRy=1
=

A1 −C1

A2 −C2

That completes the proof. ◻
An analogous result holds for u1 → A−1 (i.e., from the

left). Furthermore, we have analogous results for B,C,D: if
an outcome X ∈ {A,B,C,D} is on the Pareto curve and the
Pareto curve is continuous to X (from the right and/or from

the left), then as u1 → X+/− the Pareto curve is tangent to
one of the segments whose extremes are X and an outcome
in which only one agent deviates w.r.t. X. Therefore we
can characterize the derivative of the Pareto curve around
A,B,C,D when these points lie on such curve.

3.2 An example
We now show an example of the method discussed in the

previous section. Consider the following matrices.

U1 = ( 2 2.2
3 4

) U2 = ( 4 2.6
1.3 1

)
Functions u1(x, y) and u2(x, y) are:

u1(x, y) =(4(1 − x) + 2.2x)(1− y) + (3(1 − x) + 2x)y
u2(x, y) =(1.6x + 1)(1 − y) + (1.3(1 − x) + 4x)y

Consider u1 a parameter and derive y as function of (x,u1):

y =
2.1875 − 1.25u1

1.25 − x
+ 2.25

Thus we can derive u2(x,u1) as

u2(x, u1) = u1(1.375x + 0.375) + x(4.075x − 5.825) − 2.75

x − 1.25

under the constraints

u1 ∈ [2, 4]
x ∈ [0, 1]

y(x, u1) ∈ [0, 1] Ð→
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3 −u1 ≤ x ≤ 1 2 ≤ u1 ≤ 2.2

3 −u1 ≤ x ≤ 0.1(20 − 5u1) 2.2 < u1 ≤ 3

0 ≤ x ≤ 0.1(20 − 5u1) 3 < u1 ≤ 4

The derivative of u2(x,u1) w.r.t. x is

∂u2

∂x
=
−2.09375u1 + x(4.075x − 10.1875) + 10.0313

(1.25 − 1.x)2
and its roots are

r1 =1.25 − 0.358401
√

4u1 − 7

r2 =1.25 + 0.358401
√

4u1 − 7

The function x∗(u1) that maximizes u2 given u1 is:

x
∗(u1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3 − u1 2 < u1 ≤ 2.2

1.25 − 0.358401
√
−7 + 4u1 2.2 < u1 ≤ 3

0.1(20 − 5u1) 3 < u1 ≤ 4

Finally, the following function describes the Pareto curve.

u
∗
2
(u1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
9.4 − 2.7u1 2 < u1 ≤ 2.2

4.3625 + 1.375u1 − 2.92096
√
−7 + 4u1 2.2 < u1 ≤ 3

4.55556 − 0.888889u1 3 < u1 ≤ 4

At A+1 the Pareto curve is tangent to AC, while at D−1 the
Pareto curve is tangent to DB.

3.3 Classification
We now characterize all the kinds of Pareto curve that can

occur in 2×2 games. We begin by defining a binary variable
ρ ∶= ((r1 /∈ R) ∧ (r2 /∈ R)) and the quantities r ∶= max{r1, r2}
and r ∶= min{r1, r2}.

We apply an affine transformation to achieve A = (0,1)
and D = (1,0) so we can reduce the number of parameters
in the analysis (recall that Pareto efficiency is invariant to
affine transformations). We define the following conditions:

φ1 ∶= (C2 <
1 −C1

B1

∧
C1 +B1C2 − 1

C1 − 1
≤ B2)∧

(∀u1 ∈ [0, 1] ∶ r ≥ 1 ∨ r ≤
C1 − u1

C1 − 1
∨ ρ)

φ2 ∶= (C2 ≥
1 −C1

B1

∨
C1 +B1C2 − 1

C1 − 1
< B2)∧

(∀u1 ∈ [0, 1] ∶ r ≥ 1 ∨ r ≤
C1 − u1

C1 − 1
∨ ρ)

ψ1 ∶= (C1 ≤ 0)∧
(∀u1 ∈ [0, 1] s.t. 0 < B1 ≤ u1 ∶ r ≤

C1 −u1

C1 − 1
∨ r ≥ 1 ∨ ρ)∧

(∀u1 ∈ [0, 1] s.t. u1 < B1 <
u1 −C1u1

u1 −C1

∶ r ≤
C1 − u1

C1 − 1
∨ r ≥

u1

B1

∨ ρ)∧
(∀u1 ∈ [0, 1] s.t. u1 −C1u1

u1 −C1

< B1 < 1 ∶ r ≤
u1

B1

∨ r ≥
C1 − u1

C1 − 1
∨ ρ)

ψ2 ∶= (C1 > 0)∧
(∀u1 ∈ [0, 1] ∶ r ≤max{0, C1 −u1

C1 −u1

} ∨ r ≥min{1, u1

B1

∨ ρ})
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γ1 ∶= (B1 > 1 ∧ 1 −B1 ≤ C1)∧
(∀u1 ∈ [0, 1] s.t. B1 >

u1 −C1u1

u1 −C1

∶ r ≥
C1 − u1

C1 − 1
∨ r ≤

u1

B1

∨ ρ)
γ2 ∶= (B1 ≤ 1 ∨ 1 −B1 > C1)∧

(∀u1 ∈ [0, 1] s.t. 0 < B1 ≤ u1 ∶ r ≥
C1 − u1

C1 − 1
∨ r ≤ 1 ∨ ρ)∧

(∀u1 ∈ [0, 1] s.t. u1 < B1 <
C1 − u1

C1 − 1
∶ r ≥

C1 − u1

C1 − 1
∨ r ≤

u1

B1

∨ ρ)∧
(∀u1 ∈ [0, 1] s.t. C1 − u1

C1 − 1
< B1 < 1 ∶ r ≥

u1

B1

∨ r ≤
C1 −u1

C1 − 1
∨ ρ)

We now apply a new affine transformation to achieve A =
(0,1) and C = (1,0). We define the following conditions:

β ∶= (∀u1 ∈ [0, 1] s.t. D1 ≤ u1 < 1 ∶ r ≥ 1 − u1 ∨ r ≤ 0 ∨ ρ)∧
(∀u1 ∈ [0, 1] s.t. B1

B1 −D1 + 1
< u1 <D1 ∶ r ≥ 1 − u1 ∨ r ≤

D1 − u1

D1 −B1

∨ ρ)∧
(∀u1 ∈ [0, 1] s.t. B1 < u1 <

B1

B1 −D1 + 1
∶ r ≥

D1 − u1

D1 −B1

∨ r ≤ 1 − u1 ∨ ρ)
ζ ∶= ((D1 < 0) ∧ (1 −B1 < B2 ≤ 1) ∧ (D2 < 1)∧

(∀u1 ∈ [0, 1] s.t. B1 < u1 < 1 ∶ r ≥ 1 −u1 ∨ r ≤ 0 ∨ ρ))∨
((0 <D1) ∧ ((1 −B1 < B2 < 1 −B1 +D1 ∧D2 ≤ B1 +B2 −D1)∨

(1−B1+D1 ≤ B2 ≤ 1))∧(∀u1 ∈ [0, 1] s.t. B1 < u1 < 1 ∶ r ≥ 1−u1∨r ≤ 0∨ρ))
We will now classify the different forms of Pareto curves

in 2× 2 games on the basis of the number of Pareto efficient
outcomes (corresponding to the number Pareto efficient pure
strategy profiles). We report a graphical example of each
possible form in Fig. 1. The classification is general: it is
applicable to any game once affine transformations and/or
transformations that switch agents and/or columns and/or
rows of the bimatrix have been applied. So, for example,
point A does not necessarily represent the top left entry of
the matrix, as shown in the following example of transfor-
mation:

U1 = ( 3 4
2 2.2

) switch
Ð→ U ′

1
= ( 2 2.2

3 4
) affine

Ð→ U ′′
1
= ( 0 0.1

0.5 1
)

U2 = ( 1.3 1
4 2.8

) switch
Ð→ U ′

2
= ( 4 2.8

1.3 1
) affine
Ð→ U ′

2
= ( 1 0.6

0.1 0
)

One Pareto efficient outcome. There is 1 case.
1.1: 1–point Pareto curve. The Pareto curve is composed

of only point A. This happens when A Pareto dominates all
the other outcomes B,C,D (in the figure, B,C,D must be
placed in the gray area): A ≥ B,C,D.

Two Pareto efficient outcomes. There are 8 cases.
2.1: Continuous convex 1–segment Pareto curve. The

Pareto curve is composed of a single segment connecting
points A and B given by any possible randomization over
these two points. This happens when A and B do not
Pareto dominate each other and outcomes C and D are
Pareto dominated by the segment (in the figure, C,D must
be placed in the gray area): B1 ≥ A1 and A2 ≥ B2 and
∃λ1, λ2 ∈ [0,1] ∶ (λ1A+(1−λ1)B ≥ C)∧(λ2A+(1−λ2)B ≥D).

2.2: Continuous non–convex 1–curve Pareto curve. The
Pareto curve is composed of a single non–convex quadratic
curve connecting points A and D generated by a continuous
set of strategies fully randomizing over the four outcomes.
This happens when A and D do not Pareto dominate each
other, B = C, and outcomes B and C are in the triangle
AD(A1,D2) (in the figure, B and C must be in the gray
area): D1 ≥ A1 and A2 ≥ D2 and B = C and B ∈ [A1,D1] ×
[D2,A2] and ∃λ ∈ [0,1] ∶ λA + (1 − λ)D ≥ B.

2.3: Continuous non–convex 1–segment 1–curve Pareto
curve. The Pareto curve is composed of a single continu-
ous piece–wise non–convex curve connecting points A and
D composed of a non–convex quadratic curve starting from
A, given by a continuous set of strategies fully randomizing
over the four outcomes, and of a segment ending in D, given
by a continuous set of strategies randomizing over B and D.
This happens when A and D do not dominate each other, B
is in the triangle AD(A1,D2) and C is after B on the line
starting from A and touching B (in the figure, B must be in
the light gray area while C must be in the light or dark gray
areas) and satisfying condition ¬(ψ1 ∨ ψ2)—this condition
has no easy graphical interpretation: D1 ≥ A1 and A2 ≥ D2

and B ∈ [A1,D1]×[D2,A2] and ∃λ ∈ [0,1] ∶ λA+(1−λ)D ≥ B
and ∃λ ∈ [0,1] ∶ λB + (1 − λ)D ≥ C and ¬(ψ1 ∨ ψ2) and
∃λ > 1 ∶ C = λ(B −A) +A.

2.4: Continuous non–convex 2–segment 1–curve Pareto
curve. The Pareto curve is composed of a single continu-
ous piece–wise non–convex curve connecting points A and
D composed of a segment starting from A, given by a con-
tinuous set of strategies randomizing over A and B, a curve,
given by a continuous set of strategies fully randomizing over
the four outcomes, and, finally, of a segment ending in D,
given by a continuous set of strategies randomizing over C
and D. This happens when A and D do not dominate each
other, B is in the triangle AD(A1,D2) and C is placed be-
low the segment connecting A and D (in the figure, B must
be in the dark gray area while C must be in the light gray
area) such that condition ¬(ψ1 ∨ ψ2) is satisfied: D1 ≥ A1

and A2 ≥ D2 and B ∈ [A1,D1] × [D2,A2] and ∃λ ∈ [0,1] ∶
λA + (1 − λ)D ≥ B and ∃λ ∈ [0,1] ∶ λA + (1 − λ)D ≥ C and
¬(ψ1 ∨ψ2).

2.5: Discontinuous 1–segment 1–curve 1–point Pareto cur-
ve. The Pareto curve is discontinuous, being composed of
a single continuous piece–wise non–convex curve (composed
of a segment starting from A and a curve) and one point
D. This happens when A and D do not dominate each
other, B is in the area [A1,D1]× (−∞,D2], C is in the area
(−∞,A1] × (−∞,D2] (in the figure, B must be in the dark
gray area while C must be placed in the light gray area),
and condition ¬(γ1 ∨ γ2) is satisfied: D1 ≥ A1 and A2 ≥D2,
and B ∈ [A1,D1] × (−∞,D2] and C ∈ (−∞,A1] × (−∞,D2]
and ¬(γ1 ∨ γ2).

2.6: Discontinuous 1–segment 1–point Pareto curve. The
Pareto curve is discontinuous, being composed of a single
segment starting from A and one point D. This happens
when A and D do not dominate each other, B is in the area
[A1,D1]×(−∞,D2], C is in the area (−∞,A1]×(−∞,D2] (in
the figure, B must be in the dark gray area while C must be
in the light gray area), and condition (γ1 ∨ γ2) is satisfied:
D1 ≥ A1 and A2 ≥ D2, and B ∈ [A1,D1] × (−∞,D2] and
C ∈ (−∞,A1] × (−∞,D2] and (γ1 ∨ γ2).

2.7: Discontinuous 1–curve 2–point Pareto curve. The
Pareto curve is discontinuous, being composed of a single
curve and two points A and D. This happens when A and
D do not dominate each other, B and C are in the area
(−∞,A1]× (−∞,D2] (in the figure, B and C are in the gray
area) and condition ¬(φ1 ∨ φ2) is satisfied: D1 ≥ A1 and
A2 ≥D2 and B,C ∈ (−∞,A1] × (−∞,D2] and ¬(φ1 ∨ φ2).

2.8: Discontinuous 2–point Pareto curve. The Pareto
curve is discontinuous, being composed of two points A and
D. This happens when A andD do not dominate each other,
B and C are in the area (−∞,A1]× (−∞,D2] (in the figure,
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Figure 1: Classification of Pareto curve of bimatrix 2x2 games on the basis of the number of distinct pure–

strategy Pareto efficient outcomes.

B and C are in the gray area) and condition φ1∨φ2 is satis-
fied: D1 ≥ A1 and A2 ≥D2 and B,C ∈ (−∞,A1] × (−∞,D2]
and φ1 ∨ φ2.

Three Pareto efficient outcomes. There are 7 cases.
3.1: Continuous convex 2–segment Pareto curve. The

Pareto curve is continuous, convex, and piece–wise linear.
It is composed of a segment connecting A and B and a seg-
ment connecting B and D. This happens when A,B,D do
not Pareto dominate each other, B is above the segment
connecting A and D, and outcome C is Pareto dominated
by the segments (in the figure, C must be in the gray area):
D1 ≥ B1 ≥ A1 and A2 ≥ B2 ≥ D2 and ∃λ1, λ2 ∈ [0,1] ∶
(λ1A + (1 − λ1)D ≥ C) ∧ (B ≥ λ2A + (1 − λ2)D).

3.2: Continuous non–convex 2–segment Pareto curve. The
Pareto curve is continuous, non–convex, and piece–wise lin-
ear. It is composed of a segment connecting A and B and a
segment connecting B and D. This happens when A,B,D

do not Pareto dominate each other, B is below the segment
connecting A andD, outcomes C is Pareto dominated by the
segments (in the figure, C must be in the gray area) and con-
dition ψ1 ∨ψ2 are satisfied: D1 ≥ B1 ≥ A1 and A2 ≥ B2 ≥D2

and ∃λ1, λ2 ∈ [0,1] ∶ (λ1A+(1−λ1)D ≥ C)∧(λ2A+(1−λ2)D ≥
B) and ψ1 ∨ψ2.

3.3: Continuous non–convex 2–segment 1–curve Pareto
curve. The Pareto curve is continuous and non–convex piece–
wise, composed of two segments (one connecting A and B
and given by any possible randomization over these two out-
comes, and one starting from B and directed toD given by a

continuous set of strategies randomizing over these two out-
comes) and a non–convex quadratic curve ending in C, given
by a continuous set of strategies randomizing over all the
four outcomes. This happens when A,B,C do not Pareto
dominate each other, D is on the segment connecting A to
C and with D1 = B1: C1 ≥ B1 ≥ A1 and A2 ≥ B2 ≥ C2 and
∃λ ∈ [0,1] ∶D = λA + (1 − λ)C and D1 = B1.

3.4: Continuous non–convex 3–segment Pareto curve. The
Pareto curve is continuous, non–convex, and piece–wise lin-
ear. It is composed of three segments (one connecting A
and B and given by any possible randomization over these
two outcomes, one starting from B and directed to D given
by a continuous set of strategies randomizing over these two
outcomes, and one ending in C given by a continuous set of
strategies randomizing over A and C). This happens when
A,B,C do not Pareto dominate each other, D is below the
segments connecting A to C and A to B and some addi-
tional conditions based on β are satisfied: C1 ≥ B1 ≥ A1 and
A2 ≥ B2 ≥ C2 and β.

3.5: Continuous non–convex 3–segment 1–curve Pareto
curve. The Pareto curve is continuous and non–convex piece–
wise. It is composed of three segments (one connecting A
and B and given by any possible randomization over these
two outcomes, one starting from B and directed to D given
by a continuous set of strategies randomizing over these two
outcomes, and one ending in C given by a continuous set
of strategies randomizing over D and C) and one quadratic
non–convex curve given by a continuous set of strategies
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randomizing over all the four outcomes. This happens when
A,B,C do not Pareto dominate each other, D is below the
segment connecting B to C and some additional conditions
based on β are satisfied: C1 ≥ B1 ≥ A1 and A2 ≥ B2 ≥ C2

and ∃λ ∈ [0,1] ∶ λB + (1 − λ)C ≥D and ¬β.
3.6: Discontinuous 2–segment Pareto curve. The Pareto

curve is discontinuous, non–convex and piece–wise linear. It
is composed of two segments (one connecting A and B and
given by any possible randomization over these two out-
comes, and one ending in C given by a continuous set of
strategies randomizing over A and C). This happens when
A,B,C do not Pareto dominate each other, D is below the
segments connecting A to B and A to C and D is Pareto
dominated by B and some additional conditions based on ζ
are satisfied: C1 ≥ B1 ≥ A1 and A2 ≥ B2 ≥ C2 and B ≥ D
and ∃λ ∈ [0,1] ∶ λA + (1 − λ)C ≥D and ζ.

3.7: Discontinuous 2–segment 1–curve Pareto curve. The
Pareto curve is discontinuous non–convex piece–wise, com-
posed of two segments (one connecting A and B and given
by any possible randomization over these two outcomes, and
one ending in C given by a continuous set of strategies
randomizing over A and C) and one quadratic non–convex
curve given by a continuous set of strategies randomizing
over all the four outcomes. This happens when A,B,C do
not Pareto dominate each other, D is below the segments
connecting A to B and A to C, and D is Pareto dominated
by B, and some additional conditions based on ζ are sat-
isfied: C1 ≥ B1 ≥ A1 and A2 ≥ B2 ≥ C2 and B ≥ D and
∃λ ∈ [0,1] ∶ λA + (1 − λ)C ≥D and ¬ζ.

Four Pareto efficient outcomes. There are 3 cases.
4.1: Continuous convex 3–segment Pareto curve. The

Pareto curve is continuous, convex, and piece–wise linear.
It is composed of three segments (one connecting A and B
and given by any possible randomization over these two out-
comes, one connecting B and D and given by any possible
randomization over these two outcomes, and one connect-
ing D and C and given by any possible randomization over
these two outcomes). This happens when A,B,C,D do not
Pareto dominate each other and they are placed in the or-
der A,B,D,C as u1 increases: C1 ≥ D1 ≥ B1 ≥ A1 and
C2 ≤D2 ≤ B2 ≤ A2.

4.2: Continuous non–convex 4–segment Pareto curve. The
Pareto curve is continuous, non–convex, and piece–wise lin-
ear. It is composed of four segments (one connecting A and
B and given by any possible randomization over these two
outcomes, one starting from B and given by a continuous
set of strategies randomizing over B and D, one ending in
C and given by a continuous set of strategies randomizing
over A and C, and one connecting C and D). This hap-
pens when A,B,C,D do not Pareto dominate each other
and they are placed in the order A,B,C,D as u1 increases:
D1 ≥ C1 ≥ B1 ≥ A1 and D2 ≤ C2 ≤ B2 ≤ A2.

4.3: Discontinuous 3–segment Pareto curve. The Pareto
curve is discontinuous, non–convex, and piece–wise linear.
It is composed of three segments (one starting from A and
given by a continuous set of strategies randomizing over A
and C, one connecting D and C and given by any possible
randomization over these two outcomes, and one ending in B
and given by a continuous set of strategies randomizing over
D and B. This happens when A,B,C,D do not Pareto dom-
inate each other and they are placed in the order A,D,C,B
as u1 increases: B1 ≥ C1 ≥D1 ≥ A1 and B2 ≤ C2 ≤D2 ≤ A2.

Theorem 3.3. The above cases constitute all the possible

cases for the Pareto curve of a 2 × 2 bimatrix game.

The proof is omitted since the calculations are straight-
forward and long. The intuition follows. For each case in
Fig. 1, we applied the tools discussed in Section 3.1 with
symbolic value parameters and we symbolically derived the
above conditions; for each case not reported in Fig. 1, the
approach is the same, but we proved that there is no feasible
assignment to the parameters.

4. PARETO CURVE OF M×M GAMES
We denote by P (U) the points u of the agents’ utilities

space that are Pareto efficient given the bimatrix U . On
the basis of the results discussed in the previous section, in
the case U is a 2x2 bimatrix, P (U) can be represented as a
piece–wise function with at most 4 pieces as follows:

P (U) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f
U
1
(u1) u1 ∈ R

U
1

fU
2
(u1) u1 ∈ R

U
2

fU
3
(u1) u1 ∈ R

U
3

f
U
4
(u1) u1 ∈ R

U
4

where {RU
j }j∈{1,2,3,4} is a set of (potentially open or degener-

ate single–point) intervals partitioning [(u∗2)
−1(umax

2 ), umax
1 ]

where (u∗2)−1 is the inverse function of u∗2 ; f
U
j is a monoton-

ically decreasing quadratic function or a special pair (∅, u2)
denoting that the Pareto curve is not defined over such in-
terval and that the Pareto dominator has value u2 = u2.

Example 4.1. Consider Case 4.2 shown in Fig. 1. The
ranges are RU

1 = [1,2.5], RU
2 = (2.5,2.925], RU

3 = (2.925,3.5],
RU

4 = (3.5,4]; the functions fU
i are linear in u1.

Example 4.2. Consider Case 4.3 shown in Fig. 1. The
ranges are RU

1 = [1,2.5], RU
2 = (2.5,2.925), RU

3 = [2.925,3.5],
RU

4 = (3.5,4]; the functions fU
1 , fU

3 , fU
4 are linear in u1 and

fU
2 = (∅,3.5), the Pareto curve not being defined over RU

2

and the Pareto dominator (i.e., D) has value u2 = 3.5.

Example 4.3. Consider Case 3.5 shown in Fig. 1. The
ranges are RU

1 = [2,2.25], RU
2 = (2.25,3), RU

3 = (3,4), RU
4 =

[4,4]; the function fU
1 is linear, fU

2 is quadratic, fU
3 = (∅,1),

fU
4 = 1.

We now introduce two filtering functions. The first one,
subtractstrong(P (U),{P (U1), . . . , P (Uk)}), returns the points
of curve P (U) that are not strongly Pareto dominated by
any point of any Pareto curve of the collection {P (U1), . . . ,
P (Uk)}. The second one, subtractweak(P (U),{P (U1), . . . ,
P (Uk)}), returns the points of P (U) that are not weakly
Pareto dominated by any point of any Pareto curve of the
collection {P (U1), . . . , P (Uk)}. Formally:

Definition 4.4. Given bimatrix U and a set of bimatri-
ces {U1, . . . ,Uk}, subtractstrong(P (U),{P (U1), . . . , P (Uk)})
∶= {u ∈ P (U) ∶ ∀j, /∃ u′ ∈ P (Uj),u′ > u}.

Definition 4.5. Given bimatrix U and a set of bimatri-
ces {U1, . . . ,Uk}, subtractweak(P (U),{P (U1), . . . , P (Uk)})
∶= {u ∈ P (U) ∶ ∀j, /∃ u

′ ∈ P (Uj),u′ ≥ u}.

We study the number of pieces returned by subtractstrong

as k and the size of the bimatrix vary. (The same results
can be obtained for subtractweak.)

Lemma 4.6. When k = 1 and U and U1 are 2×2 bimatri-
ces, the number of pieces in subtractstrong(P (U),{P (U1)})
is no greater than 24.
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Proof. The intervals {RU
j } are in general different from the

intervals {RU1

j }. However, by the intersection of these inter-

vals, we can generate at most 8 intervals, say {RU,U1

h
}, par-

titioning the compact set [(u∗2)−1(umax
2 ), umax

1 ] over which
P (U) is defined and such that at each interval we have a dif-

ferent pair (fU
j , f

U1

j′
). Given that fU

j and fU1

j′
are quadratic

monotonically decreasing functions, there can be at most
2 intersections (computable exactly) between fU

j and f
U1

j′

over each interval RU,U1

h
—excluding the degenerate case in

which the number of intersections is infinite, fU
j = fU1

j′
over

the range RU,U1

h
. In the case the Pareto curve of U (or U1) is

not defined over the interval, the value u2 of fU
j (or fU1

j ) is
used to determine the intersections. We use the intersections
between fU

j and f
U1

j′
to divide each interval RU,U1

h
into at

most 3 subintervals. This way, in each subinterval there is no
intersection between the two functions. An obvious upper
bound on the number of subintervals per interval RU,U1

h
over

which fU
j > fU1

j is 3. Thus, subtractstrong(P (U),{P (U1)})
is composed of at most 3 subintervals per interval RU,U1

h
and

therefore an upper bound over the total number of pieces is
3 × 8 = 24. Let use remark that RU,U1

h
can be degenerate

single–point intervals. ◻

Lemma 4.7. When U and Uj for every j are 2×2 bimatri-
ces, the number of pieces in subtractstrong(P (U),{P (U1), . . . ,
P (Uk)}) is at most 24k.

Proof. For each pair (U,Uj) we apply the same proce-
dure adopted in the proof of Lemma 4.6, obtaining 8 inter-

vals R
U,Uj

h
and then dividing each of these intervals into

3 subintervals by the intersections of fU
h and f

Uj

hj
. The

total number of subintervals per (U,Uj) is 24. Now, dif-
ferent pairs (U,Uj) have in general different subintervals,
but, by the intersection of these intervals, we can obtain
at most 24k different subintervals partitioning the compact
set [(u∗2)−1(umax

2 ), umax
1 ] over which P (U) is defined and

such that there is no intersection between fU
h and any f

Uj

hj
.

subtractstrong(P (U),{P (U1), . . . , P (Uk)}) is composed of a
subset of these subintervals and therefore the number of
pieces of subtractstrong(P (U),{P (U1), . . . , P (Uk)}) cannot
be greater than 24k. ◻

Now we use the above lemma to prove that the Pareto
curve of a 2–agent game is composed of a number of pieces
that is polynomial in the size of the game. Given U , we
denote by Ua1,a′

1
,a2,a′

2
the 2 × 2 sub–bimatrix of U in which

agent 1 plays actions a1 and a′1 and agent 2 plays actions a2

and a′2.

Theorem 4.8. The Pareto curve of a 2–agent game with
bimatrix U of size m×m is composed of at most 24m8 pieces,
and each piece can be described by a quadratic function.

Proof. In [8] the authors show that, for anym×m bimatrix
game U , given u, if there exists u′ that Pareto dominates
u, then u′ ∈ P (Ua1,a′

1
,a2,a′

2
) for some a1, a

′
1, a2, a

′
2. In other

words, if u ∈ U , where U is an l × l sub–bimatrix of U with
l ≥ 3, and u ∈ P (U), then there exists some a1, a

′
1, a2, a

′
2

such that u ∈ P (Ua1,a′
1
,a2,a′

2
). Therefore, in order to charac-

terize the Pareto curve of a bimatrix game U , we can safely
study only the Pareto curves of the 2 × 2 sub–bimatrices
of U . Consider a 2 × 2 sub–bimatrix U = Ua1,a′

1
,a2,a′

2
of

U . All the pieces in subtractstrong(P (U),{P (Ua1 ,a′
1
,a2,a′

2
) ∶

(a1 ≠ a1) ∨ (a′1 ≠ a′1) ∨ (a2 ≠ a2) ∨ (a2 ≠ a
′
2)}) belong to the

Pareto curve P (U) of the game given that their points are
not Pareto dominated by the Pareto curve of any other 2×2
sub–bimatrix of U . The number of Ua1,a′

1
,a2,a′

2
such that

(a1 ≠ a1)∨ (a′1 ≠ a
′
1)∨ (a2 ≠ a2)∨ (a2 ≠ a

′
2) is at most 24m4.

For each U , there are at most 24m4 pieces. Therefore, the
total number of pieces for all the possible U—that are at
most 24m4—is at most 24m8 by arguments similar to those
used in the proof of Lemma 4.7. In addition, each piece of
the Pareto curve of an m×m bimatrix game U is quadratic
since it is a piece of a 2 × 2 sub–bimatrix of U . ◻

Since the computation of each subinterval in the proofs
of Theorem 4.8 can be done in polynomial time in the size
of the game (we only need to determine the intersection of
different known intervals and solve closed–form quadratic
equations), we have the following.

Corollary 4.9. The Pareto curve of a 2–agent game
can be found in polynomial time.

5. ALGORITHMS FOR SOLUTION CON-

CEPTS BASED ON PARETO CURVE
We now leverage the ability to compute the Pareto curve

to design algorithms for game-theoretic solution concepts
that are based on Pareto efficiency.

Theorem 5.1. The utilitarian bargaining solution (UBS)
[16] of an m ×m bimatrix game can be found in polynomial
time.

Proof. From Theorem 4.8 and Corollary 4.9, we can derive in
polynomial time in m a number of pieces, polynomial in m,
constituting the Pareto curve. To compute the UBS, for each
piece, we need to compute the value of u1 that maximizes
u1 + u

∗
2(u1) under the constraint u1 ∈ [(u∗2)

−1(umax
2 ), umax

1 ].
This is maximization of a quadratic single–variable function,
and can be solved in closed form in constant time. Once we
have found the maximum for each piece, we need to find
the maximum among all of them. So, the UBS is found in
O(m8) time. ◻

Theorem 5.2. The Nash bargaining solution (NBS) [13]
of an m×m bimatrix game can be found in polynomial time.

Proof. To compute the NBS, for each piece, we need to
compute the value of u1 that maximizes u1 ⋅ u

∗
2(u1) under

the constraint u1 ∈ [(u∗2)−1(umax
2 ), umax

1 ]. This is maximiza-
tion of a cubic single–variable function that can be solved in
closed form in constant time. Once we have found the max-
imum for each piece, we need to find the maximum among
all of them. So, the NBS is found in O(m8) time. ◻

Theorem 5.3. The Kalai–Smorodinsky bargaining solu-
tion (KSBS) [11] of an m ×m bimatrix game can be found
in polynomial time (if one exists).

Proof. To find a KSBS, for each piece, we need to find the

value of u1 such that u1

u∗
2
(u1)

=
umax

1

umax

2

under the constraint

u1 ∈ [(u∗2)−1(umax
2 ), umax

1 ]. To do this, we need to solve the

equation u1 = u
∗
2(u1)

umax

1

umax

2

that is a quadratic equation in u1,

and therefore can be solved in closed form in constant time.
Hence the KSBS (if one exists) is found in time O(m8). ◻

Theorem 5.4. Consider the following algorithm:

1. Enumerate all pure–strategy profiles, and for each of
them verify whether it is a strong Nash equilibrium
(SNE) [1]. (A polynomial–time verification routine has
recently been introduced [8].)
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2. Enumerate all the pieces of the Pareto curve that are
linear (including the degenerate single–point piece), and
check each of them to see whether there exists a Nash
equilibrium on the curve (by using MIP Nash [15] with
an additional constraint αu1 + u2 + q = 0 where α and
q are the parameters of the linear curve).

On bimatrix games, this algorithm finds an SNE whenever
an SNE exists, and reports that one does not exist otherwise.

Proof. The first phase of the algorithm finds all pure–strategy
SNEs, if any. The second phase finds a mixed–strategy SNE,
if one exists via the following reasoning. A Nash equilibrium
is an SNE if and only if it is on the Pareto curve and it
was proven in [9] that, for every mixed–strategy SNEs, the
payoffs associated with the outcomes played with strictly
positive probability are on a line. Thus, the Pareto curve
in a neighborhood of mixed–strategy SNEs is linear except
when the piece degenerates into a single point. Since the
algorithm enumerates all these pieces, if there is an SNE,
then the algorithm finds it. (We recall that MIP Nash [15]
finds an NE on the Pareto curve segment if one exists.) ◻

Regarding the complexity of the above algorithm, one can
verify whether a strategy profile is an SNE in polynomial
time [8]. Therefore the first phase of the algorithm has
polynomial complexity, because the number of pure strat-
egy profiles is polynomial in the size of the game (for any
constant number of agents). However, in the second phase,
the complexity of deciding whether there exists a Nash equi-
librium in a subspace of the utility space is NP–complete
(the reduction is the same used in [4]). By Corollary 4.9,
the algorithm calls this NP–complete oracle a polynomial
number of times. Therefore the algorithm can efficiently
find an SNE if there is an efficient oracle for NP–complete
problems. Recall that the complexity of deciding whether
an SNE exists is NP–complete [4, 8], so there cannot exist a
polynomial–time algorithm for finding SNE unless P = NP .
Our algorithm is such an algorithm if P = NP . In contrast,
prior algorithms for finding SNE take exponential time even
if P = NP. In [9] all the O(4m) support profiles are scanned,
and in [8] an NP–hard oracle is called potentially exponen-
tially many times.

6. CONCLUSIONS AND FUTURE WORK
Pareto efficiency is a widely used property in solution

concepts for cooperative and non–cooperative game theory
problems. However, finding and even approximating the
Pareto curve is hard. The literature has focused on com-
puting concise representations that approximate the Pareto
curve or on exploiting evolutionary approaches to generate
approximately Pareto efficient samples of the curve. In this
paper, we showed that the Pareto curve of a bimatrix game
can be found exactly in polynomial time. We classified all
possible forms of the Pareto curve of 2 × 2 bimatrix games.
We then showed how the Pareto curve of a m ×m bimatrix
game can be derived. It is composed of a polynomial number
of pieces and each piece is a quadratic function. We provided
a polynomial–time algorithm for computing it. Finally, we
leveraged these results to provide algorithms for computing
solutions to games according to solution concepts that use
Pareto efficiency in their definition.

In future research we plan to investigate whether the prob-
lem stays easy with more than two agents and in polyma-
trix games that exhibit similar properties to bimatrix games.

One could also study whether tighter bounds on the num-
ber of pieces of the Pareto curve for bimatrix games than
those we provided in this paper can be proven, and to ex-
perimentally see the forms of the Pareto curves that occur
in practice in various kinds of generated game instances.
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