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ABSTRACT
This paper considers the matching problem with regional
quotas, in particular, regional minimum quotas. Although
such quotas are relevant in many real-world settings, there
is a lack of strategy-proof mechanisms that consider regional
minimum quotas. We first show that without any restric-
tions on the region structure, finding a feasible matching
that satisfies all quotas is NP-complete. Then, assuming
that regions have a hierarchical structure (in this case, a
tree), and maximum quotas are imposed only on individual
schools, we show that checking the existence of a feasible
matching can be done in a linear time in the number of
regions. Furthermore, we develop strategy-proof matching
mechanisms based on the Deferred Acceptance mechanism
(DA), which we call Multi-Stage DA with Regional mini-
mum Quotas (MSDA-RQ) and Round-robin Selection DA
with Regional minimum Quotas (RSDA-RQ). When mini-
mum quotas are imposed, fairness and nonwastefulness are
incompatible. We prove that RSDA-RQ is fair but waste-
ful, while MSDA-RQ is nonwasteful but not fair. Moreover,
we compare our mechanisms with artificial cap mechanisms
whose individual maximum quotas are adjusted beforehand
so that all regional quotas can be automatically satisfied.
Our simulation reveals that our mechanisms substantially
outperform artificial cap mechanisms in terms of student
welfare. Furthermore, it illustrates the trade-off between
our mechanisms.
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1. INTRODUCTION
The theory of matching has been extensively developed

for markets in which the agents (students/schools, hospi-
tals/residents, workers/firms) have individualmaximum quo-
tas, i.e., the number of students assigned to a school cannot
exceed a certain limit.1 In many real-world markets, how-
ever, minimum quotas may also be relevant. For example,
school districts may need at least a certain number of stu-
dents in each school in order for the school to operate, as in
college admissions in Hungary [2]. In a study on the mar-
ket for Japanese medical residents [9], the Japanese govern-
ment desires more doctors to be assigned to rural hospitals,
and imposing minimum quotas on them is one possible ap-
proach. In the context of schools, minimum quotas may
be important not only in assigning students across schools
but also in assigning students to classes within schools. For
example, in many engineering departments of Japanese uni-
versities, an undergraduate student must be assigned to a
laboratory and complete his/her graduation project. Stu-
dents are able to submit preferences over the labs, but each
lab has certain minimum and maximum quotas that must be
respected. Furthermore, diversity constraints at schools can
also be considered a minimum quota problem, where school
districts impose a minimum quota for each type of student
at each school.

Furthermore, these minimum quotas can be imposed on
a set of schools (region), rather than on individual schools.
One motivating example of this model is a hospital-resident
matching problem. Assume that a policy maker requires
that a certain number of residents must be assigned to hos-
pitals on an isolated island. However, she does not want
to interfere with how these residents are assigned within
the hospitals on the island. Also, when allocating students
to labs, it is common that labs are classified into several
sub-departments (courses). Achieving a good balance of the
total number of allocated students for each course can be im-
portant, while the number of students in each lab can vary
significantly. When a company allocates human resources to
teams, it is natural to assume that the obtained matching
must satisfy feasibility constraints in various levels in the
organization’s hierarchy, e.g., each division, department, or
section has its own minimum quota. Such a feasibility con-
straint can be naturally represented by a regional minimum
quota without restricting the space of feasible matchings.

Table 1 summarizes existing works related to regional
maximum/minimum quotas. We assume that individual

1See [12] for a comprehensive survey of many results in the
literature on this.
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Maximum quotas

Individual
Hierarchical
regions

General
regions

None DA [6] KK [9]

NP-
complete∗

Minimum
quotas

Individual FITUY [5]
openHierarchical

regions
MSDA-RQ∗

RSDA-RQ∗

General
regions

NP-
complete∗

Table 1: DA-based mechanisms with regional quotas
and ∗ indicates our contributions (KK: Kamada and
Kojima, FITUY: Fragiadakis et al.)

maximum quotas are requisite. When considering regional
quotas, we distinguish a special case where the regions have
a hierarchical structure. Without regional quotas, the stan-
dard Deferred Acceptance mechanism (DA) is widely used
because it is strategy-proof, fair, and nonwasteful. Also, re-
gional maximum quotas, in which regions have a hierarchical
structure, are considered in [2, 9]. Individual minimum quo-
tas are considered in [5] and two DA-based strategy-proof
mechanisms are developed. However, as shown in Table 1, a
number of interesting combinations have not been explored
so far. In this paper, we study the combinations with the
boldface types in Table 1.
More specifically, we first analyze the complexity for find-

ing a feasible matching that satisfies all the regional quotas,
when we put no restrictions on regions. We then prove that
this problem is NP-complete. Since checking the existence
of a feasible matching is intractable in general, we are going
to concentrate on a special case as described in Table 1, i.e.,
regions are hierarchical and each (non-singleton) region can
impose a minimum quota only. A hierarchical structure is
ubiquitous in any organization (company, university, or mil-
itary). Also, it is natural to assume that multiple organiza-
tions (e.g., schools, hospitals) are geographically organized
at various levels (e.g., city, county, and state). Thus, we be-
lieve that handling this special case is significant. A similar
hierarchical model is used in [2, 9].
For this case, we develop two mechanisms called Multi-

Stage Deferred Acceptance mechanism with Regional min-
imum Quotas (MSDA-RQ) and Round-robin Selection De-
ferred Acceptance mechanism with Regional minimum Quo-
tas (RSDA-RQ). These mechanisms are strategy-proof. RSDA-
RQ is fair, and MSDA-RQ is nonwasteful.

2. RELATED WORKS
There are a lot of literature on two-sided matching [12].

In recent years, matching problems with some constraints
have been broadly studied, e.g., [2, 5, 9]. They extend the
standard DA mechanism to their own constraints such as
regional maximum quotas and individual minimum quotas.
However, none of their mechanisms cannot handle the con-
straint of regional minimum quotas we consider.
Monte and Tumennasan [10] consider the problem of as-

signing agents to different projects, where each project needs
more agents than a particular number. They develop a
strategy-proof serial dictatorship mechanism available for
this setting. Although their proposed mechanism is simi-
lar to our serial dictatorship mechanism described in Sec-
tion 5.1, it cannot handle regional minimum quotas.
In the literature of computational science, several gener-

alizations of the standard stable matching have also been
proposed, and the complexity of checking the existence of a
(generalized) stable matching has been discussed [3, 8]. Our
setting is different from these existing works since we handle
regional quotas, and our complexity result is on checking the
existence of a feasible matching.

We develop mechanisms that can directly handle regional
quotas. An alternative approach is to artificially modify in-
dividual quotas so that all regional quotas can be automat-
ically satisfied when individual quotas are satisfied. Then
we can apply any existing mechanisms that can handle only
individual quotas. We call this an artificial cap mechanism.
In Section 6, we show the advantage of our approach over
artificial cap mechanisms.

3. MODEL
A market is a tuple (S,C,R, p, q,≻S ,≻C ,≻ML). S =

{s1, s2, . . . , sn} is a set of students, C = {c1, c2, . . . , cm} is a
set of schools, and R = {r1, r2, . . .} is a set of regions, each
of which is simply set of schools r ∈ 2C \ {∅}. Let us denote
p = (pr)r∈R and q = (qr)r∈R as the regional minimum and
maximum quota vectors where 0 ≤ pr ≤ qr for all r ∈ R.
When r consists of a single school, p{c}/q{c} represent the
minimum/maximum quotas of individual school pc/qc. Each
student s has strict preference relation ≻s over the schools,
while each school c has idiosyncratic strict priority relation
≻c over the students. The vectors of all such relations are
denoted as ≻S= (≻s)s∈S for the students and ≻C= (≻c)c∈C

for the schools. We assume that all schools are acceptable
to all students and vice versa.2

In addition to the idiosyncratic school priorities, some of
our mechanisms assume the existence of a separate master
list (ML). ML defines a strict priority relation over the stu-
dents, ≻ML, which is used as a type of tie-breaker among
them. ML may correspond to GPA or TOEFL scores, which
induce a common ranking across all students. The concept
of a master list is commonly used in matching literature [11].
W.l.o.g., we assume s1 ≻ML s2 ≻ML · · · ≻ML sn.

A matching is mapping µ : S ∪ C → 2S∪C that satisfies
the following conditions:3 (i) µ(s) ∈ C for all s ∈ S, (ii)
µ(c) ⊆ S for all c ∈ C, and (iii) for any s and c, we have
µ(s) = c if and only if s ∈ µ(c). A matching is feasible if
∀r, pr ≤

∑
c∈r |µ(c)| ≤ qr holds.

We introduce several desirable properties of matchings
and mechanisms.

Definition 1. Given matching µ, student s has justifi-
able envy toward s′ who is assigned to c, if (i) c ≻s µ(s) and
(ii) s ≻c s′. We say that matching µ is fair if no student
has justifiable envy.

In other words, student s would rather be matched to school
c than her current match µ(s), and she has higher priority
at c than student s′.

2If students are allowed to report schools as unacceptable, it
would be impossible to guarantee the existence of a feasible
matching that satisfies all regional minimum quotas and that
is individually rational for the students, even if there exist
sufficiently many students.
3To be more precise, µ(s) should be a set that consists of a
single school, rather than the school itself. However, it is a
common practice in matching literature to notate the school
to which s is assigned as µ(s).
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Definition 2. Given matching µ, student s, who is as-
signed to c′, claims an empty seat of c, if the following con-
ditions hold: (i) c ≻s c′, and (ii) matching µ′, which is
obtained from µ by moving s from c′ to c, is feasible. To
be more precise, µ′(s) = c, and for any other student s′,
µ′(s′) = µ(s′) hold. We say that matching µ is nonwasteful
if no student claims an empty seat.

In general, fairness and nonwastefulness cannot coexist
when minimum quotas are imposed [4], i.e., no matching
could be fair and nonwasteful. To guarantee the existence,
we introduce a weaker version of nonwastefulness.

Definition 3. Given matching µ, student s, who is as-
signed to c′, strongly claims an empty seat of c if the follow-
ing conditions hold: (i) c ≻s c′, (ii) matching µ′, which is
obtained from µ by moving s from c′ to c, is feasible, and
(iii) |µ(c′)| − |µ(c)| ≥ 2. We say matching µ is weakly non-
wasteful if no student strongly claims an empty seat.

The intuitive meaning of this definition is as follows. Assume
that a policy maker wants to equalize the number of students
assigned to each school as much as possible. As a result, the
claim of student s to obtain an empty seat is justified if
by admitting it, the unbalance of the matching is strictly
improved. Kamada and Kojima [9] adopt a weaker stability
concept based on a similar intention.
We also introduce a weaker version of fairness.

Definition 4. Given matching µ, student s has strongly
justifiable envy toward s′ if µ(s′) ≻s µ(s), s ≻µ(s′) s′, and
s ≻ML s′. We say matching µ is ML-fair if no student has
strongly justifiable envy.

We say a mechanism is (weakly) nonwasteful if it produces
a (weakly) nonwasteful matching for every possible profile
of the preferences and priorities. Similarly, a mechanism is
fair if it produces a fair matching for every possible profile
of the preferences and priorities.
Moreover, we define Pareto efficiency and strategy-proofness.

For simplicity, we define c ⪰s c′ as c ≻s c′ or c = c′ for any
s ∈ S and any c, c′ ∈ C. We say that matching µ is Pareto
efficient if no feasible matching µ′ satisfies µ′(s) ≻s µ(s) for
some s ∈ S and µ′(s′) ⪰s′ µ(s

′) for all s′ ∈ S.
If student s claims an empty seat under matching µ, then

s becomes better off under µ′ and µ′(s′) = µ(s′) for any
student s′. Thus, µ cannot be Pareto efficient. In short,
Pareto efficiency implies nonwastefulness.
We say a mechanism is strategy-proof if no student ever

has any incentive to misreport her preference, no matter
what the other students report.

4. COMPLEXITY FOR FINDING A FEASI-
BLE MATCHING

4.1 General case
Given an instance of a market, the first question we need

to answer is whether a feasible matching exists or not. In the
standard model with individual maximum quotas only, this
question is easy, i.e., it suffices to check whether n is smaller
than or equal to the sum of the maximum quotas. How-
ever, by introducing regional maximum/minimum quotas,
this question becomes hard, i.e., it becomes NP-complete.

Theorem 1. Given S, C, R, p, and q, checking whether
a feasible matching exists or not is NP-complete. This holds
even for the case where ∀r ∈ R, |r| ≤ 3.

Proof. Clearly, checking whether µ satisfies all quotas
can be done in O(|R| · |C|). Thus, this problem is in NP.

To show that this problem is NP-hard, we reduce an arbi-
trary 3-SAT problem instance to a matching problem with
regional maximum/minimum quotas. 3-SAT consists of a set
of boolean variablesX and a set of clauses L. Each clause l is
a disjunction of three literals, each of which is either boolean
variable x ∈ X or its negation ¬x, e.g., x1 ∨ ¬x2 ∨ x3.

Now, for a given 3-SAT problem instance, we create an
equivalent matching problem instance as follows. For each
literal (i.e., x or ¬x), we create a school. A pair of x and
¬x forms a region, whose minimum/maximum quotas are 1.
Also, for each l ∈ L, the schools in l form a region, whose
minimum quota is 1. There are n students, where n = |X|.
Hence, by assuming that if a student is assigned to a school,
the literal is TRUE, otherwise, it is FALSE, there exists a
one-to-one mapping between a feasible allocation and the
instantiation of variables that satisfies all clauses.

Note that a regional maximum quota can be represented
as a regional minimum quota and vice versa. For example,
assume that there exists region r, whose minimum quota
is pr. Then, we can replace it with complementary region
r̄ = C \r, whose maximum quota qr̄ = n−pr. This modified
problem is equivalent to the original problem. Thus, the
following theorem holds.

Theorem 2. Given S, C, R, p, and q, checking whether
a feasible matching exists or not is NP-complete. This holds
even for the case where (i) there exist only maximum quotas,
or (ii) there exist only minimum quotas.

From Theorem 2, it is clear that obtaining any reason-
able strategyproof mechanism is hopeless since we need to
repeatedly check whether a complete feasible matching can
be obtained from a given partial (i.e., not all students are
matched to schools) matching.

4.2 Hierarchical case
Since checking the existence of a feasible matching is in-

tractable in general, we concentrate on a special case where
regions are hierarchical. Furthermore, we assume that each
(non-singleton) region can impose a minimum quota only.

Definition 5 (Hierarchical region). Set of regions
R is hierarchical if ∀r, r′ ∈ R where r ̸= r′, one of the
following holds: (i) r ∩ r′ = ∅, (ii) r ⊂ r′, or (iii) r′ ⊂ r.

As noted at the end of the previous subsection, we can re-
place all minimum quotas by maximum ones. Since handling
minimum quotas is considered difficult, we might imagine
transforming all minimum quotas to maximum ones would
be a good idea (so that we can use existing mechanisms such
as [2, 9]). However, if we transform all individual minimum
quotas to maximum ones, these quotas cannot be hierar-
chical. Thus, we cannot apply existing mechanisms to this
transformed problem.

For each c ∈ C, {c} ∈ R, and pc and qc are provided, i.e.,
school c can impose its minimum/maximum quotas. For
each r ∈ R, if |r| > 1, we assume that pr is provided, but not
qr, i.e., each (non-singleton) region can impose a minimum
quota only.
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If set of regions R is hierarchical, we can construct a tree
that represents R. We assume that C, which is the region
that contains all schools, is included in R, which has non-
binding minimum quota pC = n, where n is the number of
students.

Definition 6 (Tree). Tree TR for set of regions R is
defined as follows: (i) root node C is the region that contains
all schools, (ii) leaf node {c} is a region that contains only
one individual school c ∈ C, and (iii) for each node r ∈ R,
where r ̸= C, its parent node r′ ∈ R is a region that is the
proper inclusion-minimal superset of r.

Let us denote children(r) as a set of child nodes of r. For
a leaf node, i.e., r = {c}, children(r) is ∅. It is clear that
r =

∪
r′∈children(r) r

′ holds for |r| > 1. We will often use the
terms “node” and “region” interchangeably.
For each r ∈ R, where r is not a leaf node, i.e., |r| > 1, we

define its maximum quota qr as
∑

c∈r qc. Note that qr is not
a parameter specified by the model. It is calculated from qc.
From this definition, it is clear that qr =

∑
r′∈children(r) qr′

holds for |r| > 1. We assume that n ≤ qC holds, i.e., schools
have enough capacity to accept all the students.
We introduce a crucial concept called a reserved seat ticket,

which serves as the basis for checking the feasibility and
building our mechanisms in the hierarchical model.

Definition 7 (reserved seat ticket). We assume that
each region r ∈ R has ar reserved seat tickets for the mini-
mum quotas. ar is recursively defined as follows: if |r| = 1,
ar = pr, otherwise, ar = max(0, pr −

∑
r′⊂r,r′ ̸=r ar′). Also,

Ar denotes the sum of the reserved seat tickets within region
r, i.e., Ar =

∑
r′⊆r ar′ .

The reserved seat tickets for region r represent its share
of the total minimum quotas allocated specifically to r. By
definition, ar = max(0, pr−

∑
r′∈children(r) Ar′) holds. Also,

if AC does not exceed n, n = pC =
∑

r∈R ar = AC holds.
We extensively utilize reserved seat tickets to obtain a

feasible matching. In our mechanisms, when each student
is assigned to a school, she needs to consume exactly one
reserved seat ticket at some region that contains the school.
Conversely, no student is allowed to be assigned without get-
ting a reserved seat ticket (even though the individual quota
is not violated). Therefore, for region r, if all reserved seat
tickets are consumed at any region r′ ⊆ r, then the num-
ber of matches in r satisfies all minimum quotas within r.
Subsequently, given a matching µ, if all reserved seat tickets
are consumed at every region, it means that µ satisfies all
regional minimum quotas.
In contrast to the general case, checking the existence of

a feasible matching can be done in linear time by utilizing
reserved seat tickets, i.e., the following theorem holds.

Theorem 3. Given S, C, R, p, q, and TR, checking
whether a feasible matching exists or not is solved in linear
time in the number of nodes in TR.

Proof. A procedure to solve this problem can be de-
scribed as follows. (i) For each region r, calculate ar and
Ar in the depth-first order. (ii) If there exists r ∈ R such
that Ar > qr or AC > n holds at root node C, then there
exists no feasible matching. (iii) Otherwise, there exists a
feasible matching. It is clear that if there exists r ∈ R such
that Ar > qr holds, there exists no feasible matching. This

is because Ar represents the minimum number of students
to fill all minimum quotas within r. Also, if AC > n, clearly,
the number of students is not sufficient to satisfy all mini-
mum quotas. Furthermore, if Ar ≤ qr holds for each r ∈ R,
and AC = n holds at root node C (since pC = n, AC cannot
be strictly less than n), starting from the root node, we can
divide n students into several groups and pass one group
to one child, so that each regional quota is satisfied. By
recursively doing this, we can decide the assignments of all
individual schools. It is obvious that this procedure finishes
in linear time in the number of nodes in TR.

5. MECHANISMS FOR HIERARCHICAL RE-
GIONAL QUOTAS

Fragiadakis et al. [5] develop two group strategy-proof
mechanisms called Multi-Stage DA (MSDA) and Extended-
Seat DA (ESDA) that satisfy weaker stability requirements.

MSDA repeats multiple stages. In each stage, it assigns a
subset of students using the standard DA (while the rest of
students are reserved). The number of students assigned in
each stage is chosen so that all unfilled individual minimum
quotas can be filled by the reserved students, regardless of
the outcome of the current stage. When the total number of
unfilled individual minimum quotas is equal to the number
of remaining students, then the standard DA only with in-
dividual maximum quotas is applied, in which the quota of
each school c is defined as the number of students needed to
meet c’s minimum quota, e.g., if c’s minimum quota is ten,
and seven students have been assigned to c so far, we set c’s
maximum quota to three.

Basically, we can adopt a similar idea to MSDA for our
setting. However, we need to solve the following two issues:
(i) to find an appropriate number of students to be assigned
in each stage, and (ii) to develop a mechanism that can
be applied in the final stage, i.e., in the final stage, there
still exists hierarchical regional minimum quotas as well as
individual minimum quotas. We need a mechanism that can
handle them.

Our new mechanism, Multi-Stage Deferred Acceptance
mechanism with Regional minimum Quotas (MSDA-RQ),
is an extension of MSDA, in which these two issues are ad-
dressed as follows. For (i), we develop a simple method that
uses the number of reserved seat tickets at the root node as
well as a more elaborate method described in Section 5.2.
For (ii), we develop a mechanism called Serial Dictatorship
mechanism with Regional minimum Quotas (SD-RQ), which
can handle hierarchical regional minimum quotas.

In ESDA, a school is divided into two virtual schools, i.e.,
a standard school and an extended school. The maximum
quota of a standard school is equal to the minimum quota of
the original school. All extended schools create a single re-
gion. On this region, a regional maximum quota is imposed
so that each standard school can be full, i.e., the original
minimum quota can be satisfied. Then ESDA applies the
flexible DA [9], which can handle regional maximum quotas.
In our setting, however, we need to handle hierarchical re-
gional minimum quotas as well. They cannot be converted
to hierarchical regional maximum quotas. Thus, we need a
mechanism that can handle hierarchical regional minimum
quotas directly.

We develop a new mechanism called Round-robin Selec-
tion Deferred Acceptance mechanism with Regional min-
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imum Quotas (RSDA-RQ), which generalizes the idea of
ESDA as follows. In RSDA-RQ, school c is not divided.
To be accepted into it, a student needs to obtain a reserved
seat ticket provided either from individual school c or re-
gion r that includes c. If there exist only individual schools
and one region that contains all individual schools (i.e., the
same setting as [5]), obtaining a ticket from an individual
school corresponds to being assigned to a standard school,
and obtaining a ticket from the region corresponds to being
assigned to an extended school. By this idea of reserved seat
tickets, we can handle not only individual minimum quotas,
but also hierarchical regional minimum quotas.

5.1 Serial dictatorship mechanism with regional
minimum quotas

We first introduce SD-RQ, which we intend to use as a
component of MSDA-RQ. The mechanism repeats the stages
from 1 to n. In the k-th stage, student sk, who is ranked
k-th in ML, is selected. sk is assigned to her most preferable
school c that has not reached its individual maximum quota
qc, as well as there exists at least one region r ∋ c, where a
reserved seat ticket remains. sk consumes one reserved seat
ticket of r. If multiple r’s exist, choose the closest one to
leaf node {c}.
Let d be the depth of a given tree. SD-RQ runs in O(n ·

m · d), since each student needs O(d) steps to check the
constraints for at most m schools.
The following theorem holds.

Theorem 4. SD-RQ is strategy-proof, ML-fair, and al-
ways produces a feasible and Pareto efficient matching.

Proof. It is clear that SD-RQ is ML-fair. It always pro-
duces a feasible matching, since at each stage, the number
of remaining reserved seat tickets is equal to the number of
remaining students. As a result, there exists at least one
school where sk can be assigned, and the obtained matching
satisfies all minimum/maximum quotas. Also, since SD-RQ
is one instance of serial dictatorship mechanisms, in which
each student sequentially acts as a dictator and chooses her
most favorite outcomes, it is automatically strategy-proof
and Pareto efficient [1].

5.2 Multi-stage deferred acceptance mechanism
with regional minimum quotas

MSDA-RQ is an extension of MSDA [5]. At stage 1 of
MSDA-RQ, we select group of students S̄1 and run stan-
dard DA on it, while remaining students S1 = S0 \ S̄1 are
reserved (where S0 = S). Let us define e1 = |S̄1| = aC ,
i.e., the number of reserved seat tickets at root node C (we
discuss an alternative method to determine ek later in this
section). Also, S̄1 is chosen as {s1, s2, . . . , se1}, i.e., a set of
e1 students who ranked at the top of ML, second, and so on.
After running DA on the students in S̄1, we let the current
matching µ1 be final and obtain new individual quotas, i.e.,
qkc = qk−1

c − |µk(c)|, where qkc is the individual maximum
quota of c at stage k and q0c = qc. Also, reserved seat tick-
ets are consumed according to µk in an order closer to the
leaf node. Then we repeat the process analogously for the
subsequent stages.
To be more precise, MSDA-RQ starts by setting S0 = S

and q1c = qc for all c ∈ C, and repeats the following stages.

Stage k ≥ 1

1. Set S̄k to the set of ek students in Sk−1 with highest
priorities according to ≻ML, where ek is the number
of remaining reserved seat tickets at the root node.

(a) If ek > 0 then run the standard DA on the stu-
dents in S̄k (note that only maximum quotas are
considered in the standard DA, i.e., all minimum
quotas are ignored).

(b) If ek = 0 and Sk−1 ̸= ∅ (thus Sk = Sk−1 ̸= ∅),
then run SD-RQ for the students in Sk. Termi-
nate the mechanism.

(c) If ek = 0 and Sk−1 = ∅, then terminate the mech-
anism.

2. Obtain partial matching µk from step 1.

3. Apply µk and obtain new individual quotas qk+1
c and

the number of remaining reserved seat tickets.

The last stage is typically case (b) in step 1. Another possi-
bility is case (c) in step 1, i.e., in stage k− 1, the number of
reserved seats at the root node is equal to the number of re-
maining students. This fact means that all minimum quotas
(except C) are already satisfied. In this case, all students
are allocated by the standard DA at stage k − 1.

MSDA-RQ runs in O(n ·m · d), since the number of offers
is n ·m in the worst case, each of which requires O(d) steps
to check the constraints.

Example 1. There are 8 students, S = {s1, . . . , s8}, and
4 schools, C = {c1, c2, c3, c4}. Set of regions R is given as
{{c1, c2, c3, c4}, {c1, c2}, {c3, c4}, {c1}, {c2}, {c3}, {c4}}. For
each school c, minimum quota pc is 1. The maximum quota
for c1, i.e., qc1 , is 1, and for each school except c1, its maxi-
mum quota is 4. For the other regions, the minimum quotas
are p{c1,c2} = 2 and p{c3,c4} = 4. Notice that the mini-
mum quota for root region p{c1,c2,c3,c4} is set to 8. Thus, by
Definition 7, each of regions {c1}, . . . , {c4} has one reserved
seat ticket, region {c1, c2} has no reserved seat ticket, region
{c3, c4} has two reserved seat tickets, and root node C has
two reserved seat tickets.

The preferences and priorities are defined as follows:
≻s1 ,≻s2 ,≻s3 ,≻s4 : c1 c2 c3 c4,
≻s5 ,≻s6 ,≻s7 ,≻s8 : c2 c1 c4 c3.

≻c1 ,≻c2 : s8 s7 s6 s5 s4 s3 s2 s1,
≻c3 ,≻c4 : s1 s2 s3 s4 s5 s6 s7 s8,

≻ML: s1 s2 s3 s4 s5 s6 s7 s8.

In stage 1 of MSDA-RQ, since the root node has two re-
served seat tickets, i.e., e1 = 2, we temporarily remove set
of students S1 = {s3, s4, s5, s6, s7, s8} according to ML. We
then run the standard DA with no minimum quotas on stu-
dents s1, s2. At the end of this stage, the following matches
are determined: s1 to c2, and s2 to c1, respectively.

In stage 2, there are six students remaining, and e2 = 2.
Thus, we temporarily remove set of students S2 = {s5, s6, s7, s8}.
We run DA with no minimum quotas on students s3, s4.
Then, s3, s4 are assigned to school c2.

In stage 3, there are four students remaining, and e3 = 0.
Then we run SD-RQ on the remaining students. Since re-
served seat tickets are only available at schools within {c3, c4},
the remaining students can only apply to a school within
{c3, c4}. At the end, the obtained matching becomes:

c1 : s2
c2 : s1 s3 s4

c3 : s8
c4 : s5 s6 s7.
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Theorem 5. MSDA-RQ is strategy-proof, ML-fair, and
always produces a feasible and nonwasteful matching.

Proof. Strategy-proofness and ML-fairness follow because
the standard DA and SD-RQ are strategy-proof and ML-fair,
the assignment is determined within each stage, and, with
the preferences of the other students fixed, no student s can
affect the stage on which she participates. Nonwastefulness
holds because the only time student s would be unable to
get into a school with empty seats is the last stage of the
mechanism where SD-RQ is applied. In this case, she is
forced to go to school c, where there exists r ∋ c that will
be filled exactly to its minimum quota pr. Thus, s cannot
be feasibly moved.
Let us show that MSDA-RQ always produces a feasible

matching. Since we set ek to the number of the remaining
reserved seat tickets at the root node, regardless of µk, each
agent can obtain a reserved seat ticket, either from C or
r ⊂ C. As long as case (a) in step 1 is applied, for each
student s, there exists at least one school where s can be
assigned since qC ≥ n. Once case (c) in step 1 is applied,
the number of remaining reserved seat tickets in total is
equal to the number of remaining students. Thus, for each
student s, there exists at least one school where s can be
assigned. Thus, MSDA-RQ always returns a matching so
that all students can be assigned to a school. Clearly, the
matching satisfies all minimum/maximum quotas.

So far, we define ek as the number of remaining reserved
seat tickets at the root node. Actually, this is too con-
servative; we can assign more students at each stage. An
alternative way to calculate ek is as follows. For each re-
gion r, let us define ekr recursively as follows: ekr := ak

r +
minr′∈children(r) e

k
r′ , where ak

r is the number of remaining

reserved seat tickets at region r. Then ek is given as ekC .
Due to space limitations, we omit the proof but we can still
guarantee that MSDA-RQ always produces a feasible match-
ing by this modification. In Section 6, we use this modified
version of MSDA-RQ for evaluation.

5.3 Round-robin selection deferred acceptance
mechanism with regional minimum quo-
tas

RSDA-RQ repeats the following stages. Each stage is very
similar to a stage of the standard DA, but schools (deferred)
accept a student one by one based on a predefined round-
robin ordering within C. W.l.o.g., we assume that the or-
dering is c1, c2, . . ., cm, c1, c2, . . ..

Stage k ≥ 1

1. If all students are deferred-accepted, then make the
current deferred accepted pairs a final matching and
terminate the mechanism. Otherwise, initialize the re-
served seat tickets and the current deferred accepted
pairs, and let each student s apply to her most prefer-
able school c from which she has not been rejected yet.

2. If all students are deferred-accepted or rejected, return
to 1. Otherwise, choose next school c according to the
round-robin ordering.

3. Choose student s, who is applying to c and not deferred-
accepted or rejected yet, and has the highest priority
according to ≻c. If there exists no such student, return
to 2.

4. If the number of students deferred-accepted by c is
less than qc and ∃r ∋ c, where a reserved seat ticket is
available, then c deferred-accepts s and one reserved
seat ticket is consumed (if there exist multiple regions
where reserved seat tickets are available, we choose the
region that is closest to the leaf node), and return to
2. Otherwise, reject all students who are applying to
c and not deferred-accepted yet, and return to 2.

Similarly to MSDA-RQ, RSDA-RQ runs in O(n ·m · d).

Example 2. Consider the same instance of Example 1.
In stage 1 of RSDA-RQ, each student applies to her most
preferable school, i.e., s1, s2, s3, and s4 apply to c1, and
s5, s6, s7, and s8 apply to c2. Then, according to the round-
robin ordering, c1 is chosen and c1 deferred-accepts s4, who
has the highest priority according to ≻c1 . Next, c2 is cho-
sen and c2 deferred-accepts s8, according to ≻c2 . No student
applies to c3 or c4. Then, c1 is chosen, again but its max-
imum quota has already been reached. Thus, s1, s2, and s3
are rejected. The remaining students can only apply to c2.
c2 deferred-accepts s7 and s6. Then, no reserved seat ticket
is available for {c1, c2}. Thus, s5 is rejected from c2.

In stage 2, the rejected students in stage 1 apply to their
second preferable schools (the accepted students apply to the
same school as in stage 1). Thus, s4 and s5 apply to c1,
and s1, s2, s3, s6, s7, and s8 apply to c2. Then, according
to the round-robin ordering, c1 is chosen and c1 deferred-
accepts s5, who has the highest priority according to ≻c1 .
Next, according to the round-robin ordering, c2 is chosen and
deferred-accepts s8, who has the highest priority according to
≻c2 . No student applies to c3 or c4. Then, c1 is chosen again
but its maximum quota has already been reached. Thus, s4
is rejected. The remaining students can only apply to c2. c2
deferred-accepts s7 and s6. Then, no reserved seat ticket is
available for {c1, c2}. Thus, s1, s2, and s3 are rejected from
c2.

In stage 3, the rejected students in stage 2 apply to their
next preferable schools. Thus, s1, s2, and s3 apply to c3 and
s4 applies to c2. Then, c1 deferred-accepts s5, c2 deferred-
accepts s8, c3 deferred-accepts s1, c2 deferred-accepts s7, c3
deferred-accepts s2, c2 deferred-accepts s6, and c3 deferred-
accepts s3. Then, c2 is chosen. However, no reserved seat
ticket is available for regions that include c2. Thus, s4 is
rejected.

In stage 4, s4 applies to c3 but is rejected since no reserved
seat ticket is available for regions that include c4.

In stage 5, s4 applies to c4. Then all students have been
deferred-accepted and the mechanism terminates. At the
end, the obtained matching becomes:

c1 : s5
c2 : s6 s7 s8

c3 : s1 s2 s3
c4 : s4.

The following theorems hold.

Theorem 6. RSDA-RQ always produces a feasible match-
ing.

Proof. If all students are matched, all minimum and
maximum quotas have been satisfied. Now, let us assume
that student s cannot be matched to any school, while she
has applied to all schools. We can prove that the number
of consumed reserved seat tickets of each region r at each
stage is non-decreasing, i.e., if r consumes t tickets at stage
k, it consumes at least t tickets at stage k + 1. On the
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other hand, the number of students assigned to individual
school c can decrease. However, this happens only when no
reserved seat ticket is available for any region r ∋ c. If s
was rejected by school c, either c was full or no reserved seat
ticket was available for any region r ∋ c. Thus, when s has
been rejected by all schools, no region has any remaining
reserved seat tickets. This is because for each region r, at
least one of the following cases holds: (i) there exists school
c ∈ r, where s was rejected because no reserved seat ticket
was available, (ii) there exists school c ∈ r, where c was full
when s applied to c, but the number of students assigned to
c has decreased, or (iii) each school c ∈ r was full when s ap-
plied to c, and it remains full. It is clear that for each case,
no reserved seat ticket is available for r. This contradicts
that n =

∑
r∈R ar.

Theorem 7. RSDA-RQ is strategy-proof and fair.

Proof. Due to space limitations, we only show a proof
sketch. We utilize a matching-with-contract model presented
in [7]. This is a very general and abstract model that can
handle various generalized many-to-one matching problems
including labor-market models and ascending package auc-
tions. We re-define RSDA-RQ in this model and show that
the mechanism is equivalent to the generalized Gale-Shapley
mechanism (the generalized GS).
In this model, a student and a school are matched by a

contract. Hence, a (many-to-one) matching between stu-
dents and schools is identified as a subset of contracts where
each student s can have at most one related contract while
each school c can have at most qc related contracts. Basi-
cally, this model cannot handle regional or individual min-
imum quotas. However, by modifying it in the following
way, we can apply it in our setting. First, we suppose that
set of all schools C is the only agent on the opposite side
of the students. Next, we suppose “agent” C has a partic-
ular preference over the sets of contracts, where C respects
the original priorities of each school and strongly dislikes
any violation of the quotas. In this way, we can incorpo-
rate minimum quotas into C’s preference. Then we define
a choice function of C according to this preference, which
provides the most preferable subset of a given set of con-
tracts. We show that, under the choice function of C (as
well as the choice function of each student), the general-
ized GS is equivalent to RSDA-RQ. Also, we show that the
choice function of the contracts satisfies two properties, i.e.,
the substitutes condition and the law of aggregate demand,
which are sufficient to guarantee that the generalized GS is
strategy-proof. Also, the re-defined RSDA-RQ is guaranteed
to produce a stable matching in this model, which we call
Hatfield-Milgrom (HM) stable. The fact that RSDA-RQ is
fair is immediate from the HM-stability, i.e., if student s has
a justifiable envy, s and C form a blocking pair. Thus, such
a student does not exist.

For incompatibility, RSDA-RQ is wasteful since it is fair.
However, we can say it is weakly nonwasteful.

Theorem 8. RSDA-RQ is weakly nonwasteful.

Proof. The fact that RSDA-RQ is weakly nonwasteful
is also immediate from the HM-stability, i.e., if student s
strongly claims an empty seat, s and C form a blocking
pair. Thus, such a student does not exist.
A more intuitive explanation is as follows. Assume that

s, who is assigned to c′, strongly claims an empty seat of

school c. Then, if s has declared c as her most preferred
school, then s must have been accepted to c, assuming that
µ′ is feasible, which is a matching obtained by moving s
from c′ to c. This contradicts the fact that RSDA-RQ is
strategy-proof.

6. EVALUATION
This section evaluates our newly developed mechanisms.

We consider a market with n = 512 students and m = 64
schools. The individual maximum quota for each school
is qc = 40. Thus, for most of the cases, the individual
maximum quota will not be a binding constraint. The hi-
erarchical structure of the regions is represented as a bi-
nary tree with m nodes.4 Also, the individual minimum
quota for each school is pc = 0. Then, regional minimum
quotas are determined so that each region except C has
(roughly) the same number of reserved seat tickets. The
sum of the reserved seat tickets for all regions except C,
i.e.,

∑
r∈R\{C} ar, varies from 64 to 448. The increase in∑

r∈R\{C} ar implies that the constraint of the regional min-
imum quotas becomes more severe.

We generate student preferences as follows. We draw one
common vector uc of the cardinal utilities from set [0, 1]m

uniformly at random. We then randomly draw private vec-
tor us of the cardinal utilities from the same set, again uni-
formly at random. Then, we construct cardinal utilities over
all m schools for student s as αuc + (1 − α)us, for some
α ∈ [0, 1]. We then convert these cardinal utilities into an
ordinal preference relation for each student. The higher the
value of α is, the more correlated the student preferences
are. In this experiment, we set α to 0.6.5 School priorities
≻c are drawn uniformly at random, and ML is w.l.o.g. set
to s1 ≻ML · · · ≻ML sn. We create 100 problem instances
for each parameter setting.

We compare our mechanisms to artificial cap mechanisms,
i.e., AC-DA and AC-ESDA. In AC-DA, we equally set the
maximum quota of each school to 8 and apply the standard
DA. In AC-ESDA, we set the minimum quota of each school
to the average of total reserved seat tickets for all regions
except C, i.e.,

∑
r∈R\C ar/m, and apply ESDA [5], which

can handle individual minimum quotas.6 Thus, AC-DA and
AC-ESDA produce feasible matchings satisfying all regional
minimum quotas, but those are less flexible compared to our
mechanisms.

Figure 1 shows the number of students with traditional
justifiable envy. The x-axis denotes the number of the re-
served seat tickets for all regions except C (

∑
r∈R\C ar), and

the y-axis denotes the average ratio of students with envy.
Since RSDA-RQ, AC-ESDA, and AC-DA are fair, no stu-
dent has justifiable envy. MSDA-RQ performs better than
SD-RQ regardless of the number of the reserved seat tick-
ets. We can see that students are more likely to have envy
as the number increases, i.e., the constraint of the minimum
quotas becomes more severe.

Then, Figure 2 shows the ratio of students who claim
empty seats (Def. 2). Since MSDA-RQ and SD-RQ are non-

4We investigate several tree structures, e.g., one with small
depth or some large regions containing many schools and
confirmed that the qualitative tendency is very similar.
5Changing the value of α, we can obtain the similar results.
6We can create another artificial cap mechanism based on
MSDA, but this mechanism is neither fair nor nonwasteful.
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Figure 1: Ratio of students with
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Figure 3: CDFs of student welfare

wasteful, no student claims an empty seat. In this figure, the
x-axis is the same as Figure 1, and the y-axis shows the ratio
of students who claim empty seats. The result reveals that
AC-DA is quite wasteful; almost all students claim empty
seats. RSDA-RQ is slightly better than AC-DA. Although
the difference between AC-ESDA and AC-DA seems small,
as described below, this small difference matters in terms of
the welfare of students.
Figure 3 illustrates the student welfare by plotting the cu-

mulative distribution functions (CDFs) of the average num-
ber of students matched with their kth or higher ranked
school under each mechanism. Thus, if the CDF of one
mechanism first-order stochastically dominates another, then
a strong argument can be made for the use of the stochasti-
cally dominant mechanism. MSDA-RQ and SD-RQ are clear
winners. For example, nearly 70% of students are assigned
to their first or second choice. RSDA-RQ is worse than
MSDA-RQ and SD-RQ, but much better than AC-ESDA
and AC-DA. The decrease of welfare seems to be the price
to achieve fairness. Setting artificial caps significantly lowers
the welfare of students, since we lose too much flexibility.
The experimental results clearly show that there is a trade-

off between MSDA-RQ and RSDA-RQ, as mentioned in the
previous section. If we consider fairness among students es-
sential, we should use RSDA-RQ; if our primary concern is
their welfare, we should use MSDA-RQ.
Comparing MSDA-RQ and SD-RQ, these mechanisms are

equally good in terms of the welfare of students. How-
ever, SD-RQ completely ignores the priorities of the schools,
which causes a high ratio of students with envy. Our experi-
ments suggest that MSDA-RQ is the better choice if we care
about the fairness of mechanisms to a certain extent.

7. CONCLUSIONS
This paper analyzed the complexity of finding a feasi-

ble matching for a given matching problem with regional
quotas. We showed that, when we put no restrictions on
the structure of regions, checking the existence of a feasi-
ble matching that satisfies all quotas is NP-complete. Then,
assuming that regions have a hierarchical structure, we de-
veloped strategy-proof matching mechanisms for handling
regional minimum quotas called RSDA-RQ and MSDA-RQ.
We proved that RSDA-RQ is fair but wasteful, while MSDA-
RQ is nonwasteful but not fair. We then confirmed the
advantages of these mechanisms compared to artificial cap
mechanisms via simulations.
In the future, we would like to design a mechanism for

a situation where both regional minimum and maximum
quotas constrain a feasible matching, i.e., the cells marked

“open” in Table 1. Also, we would like to examine more
theoretical properties of MSDA-RQ and RSDA-RQ. For ex-
ample, we would like to show that each mechanism produces
a student optimal matching within a set of matchings that
satisfies a weaker stability condition.
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