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ABSTRACT
Replicator dynamics model the interactions and change in
large populations of agents. Standard replicator dynam-
ics, however, only allow single action interactions between
agents. Complex interactions, as modeled by general ex-
tensive games, have received comparatively little attention
in this setting. Recently, replicator dynamics have been
adapted to extensive-form games represented in sequence
form, leading to a large reduction in computational resource
requirements. In this paper, we first show that sequence-
form constraints and realization equivalence to standard repli-
cator dynamics are maintained in general n-player games.
We show that sequence-form replicator dynamics can min-
imize regret, leading to equilibrium convergence guarantees
in two-player zero-sum games. We provide the first em-
pirical evaluation of sequence-form replicator dynamics, ap-
plied to n-player Kuhn poker with two, three, and four play-
ers. Our results show that the average strategies generated
by sequence-form replicator dynamics produce approximate
equilibrium strategies with increasing accuracy over time.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Economics, Theory

Keywords
Replicator dynamics; game theory; extensive-form games;
multiplayer; Nash equilibrium; sequence form

1. INTRODUCTION
Evolutionary game theory [17, 8] has been used to ex-

plain complex interactions in multiagent systems such as
population dynamics [11], animal behavior [18], and multi-
agent learning [25]. The most popular and widely-studied
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population dynamic is the so-called replicator dynamic [24].
Replicator dynamics quantify increases in the proportion of
individuals in a population based on their relative fitness
levels as determined through payoffs of competitive games.
Agents with higher fitness replicate more than agents with
lower fitness and the resulting process leads to an evolution-
ary game that models population change.

Multiagent systems that evolve under replicator dynamics
have desirable properties and connections to classical game
theory. For example, a fixed point of a population under
replicator dynamics corresponds to a Nash equilibrium of
the underlying game and stability of the system can be an-
alyzed using theory of dynamical systems [5, 8]. In addi-
tion, average payoff of a population increases [11], dominated
strategies do not survive [8], and stable equilibrium points
correspond to trembling-hand perfect equilibria [5, 22].

In the classic setup, the underlying stage game is a sym-
metric normal-form game. This limits the interaction among
the agents since payoffs are determined from single decisions
made by each agent. In general, the games played among
agents can be more complex, such as multi-step sequences
of actions as in extensive-form games. When faced with this
added complexity, one option is to convert the extensive-
form game to its equivalent normal-form, but this is only
possible for small games. Another option is to heuristi-
cally abstract the strategy space [20], but abstraction is
lossy and may lead to loss of desired theoretical proper-
ties. Evolutionary dynamics have been extended to multi-
stage models such as extensive games [3] and stochastic
games [4, 9], however the focus has been mainly on subgame-
decomposable formalisms such as perfect-information games
and simultaneous-move games. In the general setting of im-
perfect information games, the extensive-form game may not
necessarily be decomposed into smaller subgames.

Recently, efficient replicator dynamics have been proposed
for the general case of extensive-form games with imperfect
information [6], based on sequence-form representations [13].
In their paper, the authors introduce discrete and continu-
ous time sequence-form replicator dynamics (SFRD) that
can represent general extensive games with much less com-
putational requirements than their normal form.

In this paper, we first show that important properties are
conserved when SFRD are employed in games with more
than two players. We show that SFRD leads to a specific
form of no-regret learning and hence convergence to an equi-
librium can be guaranteed in two-player zero-sum games.
We present the first empirical evaluation of SFRD and, in
particular, the first evidence confirming the convergence of
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SFRD to a Nash equilibrium, both in theory (for two player
zero-sum) and practice (for n players). We also show empir-
ical evidence of average strategies converging to equilibrium
in all cases, despite persistent changes in the approachability
of the strategies modified by the evolutionary dynamics.

2. GAME THEORY BACKGROUND
In this section we define the relevant game-theoretic ter-

minology that forms the basis of our analysis. The notation
used here is based on [19]. For a comprehensive introduction
and survey of the fundamental topics, see [22].

An extensive-form game models sequential decision mak-
ing. There are n decision-making agents called players
i ∈ N = {1, . . . , n}. In turn, players choose actions lead-
ing to sequences called histories h ∈ H. A history z ∈ Z,
where Z ⊆ H, is called a terminal history and represents
a fully-played game from start to finish. At each terminal
history z there is a payoff ui(z) in [0, 1] to each player i.
At each nonterminal history h, there is a single player to
act, P : H\Z → N ∪ {c} where c is a special player called
chance (also sometimes called nature) that plays with a
fixed stochastic strategy; e.g. chance is used to represent dice
rolls and card draws. The game starts in the empty history,
and at each step, given the current history h, P (h) chooses
an action a ∈ A(h) leading to successor history h′ = ha; in
this case we call h a prefix of h′ and denote this relationship
by h < h′. Also, for all h, h′, h′′ ∈ H, if h < h′ and h′ < h′′

then h < h′′. Each set N , H, Z, and A(h) is finite and every
history has finite length.

Define I = {Ii | i ∈ N} the set of information partitions.
Ii is a partition over Hi = {h | P (h) = i} where each part
is call an information set. Intuitively, an information set
I ∈ Ii that belongs to player i represents a state of the
game with respect to what player i knows. Each I is a set
of histories that a player cannot tell apart due information
hidden from that player. For all h, h′ ∈ I, A(h) = A(h′) and
P (h) = P (h′); hence, often we use A(I) and P (I).

We also define the choice set of (information set, action)
pairs for one player to be Qi = {(I, a) | I ∈ Ii, a ∈ A(I)} ∪
{q∅}, where q∅ is the empty(root) choice. For a history h ∈
H, define Xi(h) = (I, a), (I ′, a′), · · · to be the sequence of
player i’s (information set, action) pairs (choices) that were
encountered and taken to reach h in the same order as they
are encountered and taken along h. In this paper, every
extensive-form game has perfect recall, which means ∀i ∈
N, ∀I ∈ Ii : h, h′ ∈ I ⇒ Xi(h) = Xi(h

′). Intuitively, this
means that player i does not forget any information that
they discovered during their play up to h. Denote succi(I, a)
the set of successor choices of player i, that is all (I ′, a′) such
that Xi(h

′) = Xi(h), (I ′, a′) where h ∈ I, h′ ∈ I ′.
A behavioral strategy for player i is a function mapping

each information set I ∈ Ii to a probability distribution over
the actions A(I), denoted σi(I). If every distribution in the
range of this mapping assigns all of its weight on a single
action, then the strategy is called pure. A mixed strategy
is a single explicit distribution over pure strategies. Given
a profile σ, we denote the probability of reaching a terminal
history z under σ as πσ(z) =

∏
i∈N πi(z), where each πi(z) is

a product of probabilities of the actions taken by player i in
Xi(z). We use πσi (h, z) and πσ(h, z) to refer to the product
of only those probabilities along the sequence from h to z,
where h < z. Define Σi to be the set of behavioral strategies
for player i. As is convention, σ−i and πσ−i refer to player

i′s opponents’ strategies and products (including chance’s).
An ε-Nash equilibrium, σ, is a set of σi, ∀i ∈ N such that
the benefit to switching to some alternative σ′i,

max
σ′
i∈Σi

{∑
z∈Z

πσ
′
i (z)πσ−i(z)ui(z)

}
− ui(σ) ≤ ε (1)

holds for each player i ∈ N . When ε = 0, the profile is
simply called a Nash equilibrium. In this paper, we assume
payoffs 0 ≤ ui(z) ≤ 1. Payoffs in games outside this range
can be shifted by a constant and then scaled by the pay-
off range without changing the set of strategies that opti-
mize Equation 1. When |N | = 2 and u1(z) + u2(z) = k
for all z ∈ Z, then the game is a two-player k-sum game,
where k is a constant; these games form an important subset
of extensive-form games due to their worst-case guarantees:
different equilibrium strategies result in the same expected
payoff against any arbitrary opponent equilibrium strategy.

2.1 Sequence-Form Replicator Dynamics
The sequence-form was introduced by Koller, Megiddo

and von Stengel as an efficient way to construct linear pro-
grams and complementarity problems for solving extensive-
form games with perfect recall [13]. Rather than using a
game’s equivalent normal-form representation, the sequence-
form imposes constraints compactly by using the game tree’s
structure, resulting in an exponentially smaller optimiza-
tion problem. Define a realization plan, denoted xi, as
a mapping from each q ∈ Qi to a realization weight
xi(q) ∈ [0, 1] under the constraints that each nonterminal
xi(q) =

∑
q′∈succi(q) xi(q

′) and root weight xi(q∅) = 1. Ev-
ery realization plan has an equivalent behavioral strategy
due to perfect recall.

Sequence-form replicator dynamics (SFRD) were recently
introduced by Gatti, Panozzo, and Restelli [6]. Denote the
realization profile x = (x1, . . . ,xn). In the common special
case of two players, each realization plan is represented as a
vector and payoffs for each game outcome as a sparse payoff
matrix Ui, and so the expected utility is simply ui(x1,x2) =
xT1 Uix2. In general, the expected utility to player i is

ui(x) =
∑

q1∈Q1,··· ,qn∈Qn

n∏
k=1

xk(qk)ui(q1, . . . , qn), (2)

where ui(q1, . . . , qn) = 0 if the combined choices are incon-
sistent with each player’s public information or do not lead
to a terminal history, otherwise equals the utility to player
i given these choices multiplied by the probability of chance
realizing the outcomes consistent with these choices.

Discrete-time SFRD starts with an arbitrary strategy xi
and, at each time step t, for all players i ∈ N and all choices
q ∈ Qi, updates the weights using

xi(q, t+ 1) = xi(q, t)
ui(xi→gq )

ui(x)
, (3)

where xi→gq corresponds to the realization profile x ex-
cept player i uses gq(xi) instead of xi. Here, gq(xi) re-
turns a transformed realization plan that is explained be-
low. Continuous-time SFRD is described by the differential
equation for all players i ∈ N and all q ∈ Qi:

ẋi(q, t) = xi(q, t)ui(xi→∆gq ), (4)

where xi→∆gq corresponds to the profile x except player i
uses ∆gq(xi) = gq(xi)− xi in the update equation.
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The function gq(xi) modifies xi in the following way. For
for all choices (I, a) ∈ Xi(q): the action a is always taken
(realization weight set to 1) and actions b ∈ A(I), b 6= a
never taken (realization weight set to 0 and all child weights
of (I, b) also set to 0). Every other q′ ∈ Qi that does not
directly contradict actions taken in Xi(q) (i.e. due to ac-
tions taken by opponents or being a longer path than Xi(q)),
xi(q

′), is renormalized. In essence, gq(xi) is a projection of
xi to its purest form based on q while still retaining the
sequence-form constraints. Let q = (I, a), one can equiva-
lently think of gq(xi) as the realization plan where player
i plays to make choice q (reach I and take action a), and
otherwise plays xi. Specifically, for a given element q′,

gq(xi, q
′) =


1 if q′ ∈ Xi(q),

xi(q
′)

Ancestor(q,q′)
if Xi(q) v Xi(q′),

0 otherwise,

(5)

where Ancestor(q, q′) = xi(q
′′) and q′′ is the last choice in

the overlapping subsequence Xi(q) ∩ Xi(q′). For some ex-
amples of how gq changes xi, see [6].

An important result is that SFRD is realization-equivalent
to the standard replicator dynamics. Therefore, applying
SFRD is identical to applying standard replicator dynam-
ics to the normal-form equivalent game. However, SFRD
requires exponentially less space to represent the game.

2.2 Regret Minimization
Suppose an algorithm A must choose one action among

K possible actions. Associated with each action is a pay-
off, generated from a distribution or by an adversary. The
(possibly randomized) algorithm repeats the process over T
trials and collects payoff utk for choosing action k at time
t. The (expected) regret is difference between the cumula-
tive payoff and the payoff that would have been achieved by
choosing the best single action in hindsight,

RT = E

 max
k∈{1,...,K}

∑
1≤t≤T

utk −
∑

1≤t≤T

utA(t)

 (6)

Define the average regret to be R̄T = RT /T . We call algo-
rithm A a regret minimization algorithm if limT→∞ R̄

T

= 0. Often, the algorithm modifies how it chooses during
the trials based on the collected payoffs, and so these are
also appropriately known as no-regret learning algorithms.

The Polynomial Weights (PW) algorithm [2] is a general-
ization of the Randomized Weighted Majority algorithm [16].
Each action has a weight wk, initially set to 1. PW chooses
action k with a probability pk = wk/

∑K
k′=1 wk′ . After each

trial, the weights are updated using wk ← wk(1 − ηlk)),
where lk is a loss incurred from not choosing k on the last
step and η is a learning rate parameter. Here, lmin is the loss
of the single best action for a given loss sequence, i.e. the
argument optimizing Equation 6. When η ≤ 1

2
, the regret

of PW at time T is bounded by RT ≤ ηQTmin + (lnK)/η,

where QTmin =
∑T
t=1(ltmin)2.

There are important connections between game theory
and regret minimization [1]. One main result is that in
two-player zero-sum games, if after T trials each average
regret R̄Ti ≤ ε, then the average profile σ̄T corresponds to a
2ε-equilibrium.

Counterfactual Regret (CFR) is a notion of regret at the
information set level for extensive-form games [26]. Suppose

player i plays with strategy σi. The counterfactual value
of taking action a ∈ A(I) at information set I is the expected
payoff when I is reached given that player i played to reach
I and the opponents played σ−i,

vi(I, σ, a) =
∑

(h,z)∈ZI

πσ−i(z)π
σI→a
i (h, z)ui(z), (7)

where ZI = {(h, z)|z ∈ Z, h ∈ I, h < z}, and σI→a is iden-
tical to σ except at I action a is taken with probability 1.
The CFR algorithm places a regret minimizer at each I ∈ Ii
which treats vi(I, σ, a) as the payoff for taking action a. The
main result is that the combination of individual regret min-
imizers also minimizes overall average regret, and hence σ̄T

is a 2ε-equilibrium, with ε→ 0 as T →∞.

3. FURTHER DEVELOPMENTS OF SFRD
In this section, we describe new developments and anal-

yses of sequence-form replicator dynamics. First, we show
that the generalization to n > 2 players preserves the the-
oretical properties proved in the original work. Second, we
show that discrete-time SFRD can minimize a form of coun-
terfactual regret leading to equilibrium convergence guaran-
tees in two-player zero-sum games.

Note that these are two separate, mostly independent,
developments. However, both of the following subsections
provide a basis for the the empirical evaluation in Section 4.

3.1 More Than Two Players
In this subsection, we show that general n-player SFRD

maintains sequence-form constraints and is realization equiv-
alent to n-player normal-form replicator dynamics.

Overall, the analysis here is based on the previous one
in [6] with some adjustments.

Definition 1. A choice q ∈ Qi for player i is reachable
under xi if and only if xi(q) > 0.

We will restrict our analysis to reachable choices of xi.
The behavior for unreachable parts of xi is irrelevant since
the expected payoff of any profile including it is unaffected
over all possible opponent strategies.

Theorem 1. Given a valid realization profile x(t) =
(x1(t), . . . ,xn(t)), a new x(t + 1) produced by Equation 3
satisfies the sequence-form constraints.

Proof. First, observe xi(q
′, t) = 0⇒ xi(q

′, t+ 1) = 0 for
all reachable choices q′ ∈ Qi. Similarly, gq∅(xi, q

′) = xi(q
′)

since q∅ is a subsequence of every choice q ∈ Qi. So the
root weight xi(q∅, t + 1) = xi(q∅, t) = 1. We will prove by
induction that

xi(q, t+ 1) =
∑

q′∈succi(q)

xi(q
′, t+ 1).

We assume that the constraints hold at time t. Applying
Eq. 3 and multiplying each side by ui(x) gives

xi(q, t)ui(xi→gq , t) =
∑

q′∈succi(q)

xi(q
′, t)ui(xi→gq′ , t)

Recalling that the opponent strategies are fixed, we rewrite
the utility ui(xi→gq , t) using Equation 2 as a dot product of
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components belonging to i and to the opponents −i:

ui(xi→gq ) = gq(xi, q
′
i)ui(q

′
1, . . . , q

′
n)

∏
q′
k
,k 6=i

xk(q′k)

+ gq(xi, q
′′
i )ui(q

′′
1 , . . . , q

′′
n)

∏
q′′
k
,k 6=i

xk(q′′k )

· · ·
= gq(xi) · u(x−i),

and substituting from above we have

xi(q, t)(gq(xi)·u(x−i)) =
∑

q′∈succi(q)

xi(q
′, t)(gq′(xi)·u(x−i)),

which, by distributivity and commutativity, rearranges to

u(x−i)·(xi(q, t)(gq(xi)) = u(x−i) ·
∑

q′∈succi(q)

xi(q
′, t)gq′(xi).

The vectors on the left side of the dot products are equal.
Therefore, it suffices to show the vectors on the right side
are also equal, which is similar to the case of two players.
For choices q′′ where Xi(q

′′) is inconsistent with Xi(q), the
parent and child weights are all set to 0, so these elements
are equal by the induction assumption. Similarly, for choices
q′′ where q′′ ∈ Xi(q), gq(xi, q′′) = gq′(xi, q

′′) = 1, and these
elements are also equal by the induction assumption. The
remaining elements are equal by Eq. 5 and [6, Lemma 6].

We now discuss realization equivalence with n players.

Definition 2. Two strategies σi and σ′i are realization

equivalent if ∀h ∈ H, ∀σ−i ∈ Σ−i, π
σ(h) = πσ

′
(h).

In other words, every history is reachable with the same
probability given an arbitrary fixed opponent profile. Due
to perfect recall, every mixed strategy has an equivalent be-
havioral strategy [15]. Similarly, every mixed strategy has
an equivalent realization plan and every realization plan has
an equivalent behavioral strategy [13]. Therefore, the defi-
nition can be used for these other forms by reasoning about
their equivalent behavioral forms.

An important result from [6] is that strategies produced
by SFRD are realization equivalent to the standard normal-
form replicator dynamics. In our n-player analysis, we reuse
a key result ([6, Lemma 9]).

Theorem 2. Given some game Γ with player set N , let
ρ(t) be a mixed strategy profile and ρ(t + 1) be the profile
produced by standard discrete-time replicator dynamics using
Γ’s normal-form representation. Let x(t) be a realization
profile and x(t+1) a realization profile in Γ’s sequence-form
produced by Equation 3. Then for all players i ∈ N , x(t+1)
and ρ(t+ 1) are realization equivalent.

Proof. Let si ∈ Si be a pure strategy for player i, and
Si(q) = {si | si ∈ Si, q is reached and taken in si}. For q′ ∈
succi(q), xi(q

′, t) =
∑
si∈Si(q′)

ρ(si, t). We need to show
that this is also true at time t+ 1. By applying Equation 3
and standard replicator dynamics, this becomes

xi(q
′, t)

ui(xi→gq′ )

u(x)
=

∑
si∈Si(q′)

(
ρ(si, t)

ui(ρi→si)

u(ρ)

)
We know that u(x) = u(ρ) by the statement of the theorem,
so we can remove these denominators. Then, similarly to

above the utilities can be decomposed into a dot product of
vectors and re-arranged, leading to

u(x−i) · (xi(q′, t)(gq′(xi)) = u(ρ−i) ·
∑

si∈Si(q′)

σ(si, t)ρi→si .

The vectors on left are realization equivalent by the state-
ment of the theorem. So, this is only true if the vectors on
the right are realization equivalent. The right-side vectors
are realization equivalent by [6, Lemma 9] since there is no
dependence on the opponents nor number of players.

Theorem 3. Given a valid realization profile x(t) =
(x1(t), . . . ,xn(t)), a new x(t + ∆t) produced by Equation 4
satisfies the sequence-form constraints.

Theorem 4. Given some game G with player set N , let
ρ(t) be a mixed strategy profile and ρ(t + ∆t) be the profile
produced by standard continuous-time replicator dynamics
using G’s normal-form representation. Let x(t) be a re-
alization profile and x(t + ∆t) a realization profile in G’s
sequence-form produced by Equation 4. Then for all players
i ∈ N , x(t+ ∆t) and ρ(t+ ∆t) are realization equivalent.

The proofs of Theorems 3 and 4 are identical to the proofs
for the discrete case except gq(xi) is replaced by ∆gq(xi).

3.2 Link to CFR Minimization
In this section, we show that discrete-time SFRD (equa-

tion 3) corresponds to a form of counterfactual regret min-
imization. As a result, under mild conditions the aver-
age strategies (x̄) converge to an equilibrium in two-player
zero-sum games, as CFR minimization does by producing
ε-equilibria with decreasing upper bounds on ε as the num-
ber of iterations increase. Similar to [12], we relate Poly-
nomial Weights (PW) and replicator dynamics; however,
unlike [12] we show that SFRD corresponds to regret min-
imization rather than analyzing the evolutionary dynamics
of PW. In our case, SFRD corresponds to counterfactual
regret minimization where PW replaces regret matching as
the underlying no-regret learner at each information set.

To do this, we assign at every I ∈ Ii its own individual
no-regret learner, denoted PW(I). Denote wI,a(t) as the
weight of PW(I) at I for action a ∈ A(I). The initial weights
wI,a(1) = 1 for all (I, a) ∈ Qi. This leads to a fully-mixed
behavioral strategy where at each I, player i chooses an
action a ∈ A(I) uniformly at random. Let q = (I, a), we
construct a loss for PW(I) with the following form,

lI,a =
maxa′∈A(I) ui(xi→g(I,a′))− ui(xi→gq )

∆−i(I)
, where (8)

∆−i(I) = maxa′,a′′∈A(I)(ui(xi→g(I,a′)) − ui(xi→g(I,a′′))) is

the counterfactual payoff range of I. It is easy to see that
lI,a ∈ [0, 1]: in the numerator and denominator, the payoffs
for all the terms such that (h, z) 6∈ ZI cancel out, leaving
the payoffs when reaching I. The denominator is the largest
value that the numerator can equal.

Lemma 1. When using discrete-time SFRD, the update
for q = (I, a) from Equation 3 corresponds to an equivalent
update of PW(I) with the loss lI,a as defined in Equation 8.
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Proof. From Equation 3, let wi(t) = xi(q, t), we have

wi(t+ 1) = wi(t)ui(xi→gq )/ui(x)

⇒ wi(t+ 1) = wi(t)ui(xi→gq )

⇒ wi(t+ 1) = wi(t)( max
a′∈A(I)

ui(xi→g(I,a′))−∆−i(I)lI,a)

⇒ wi(t+ 1) = wi(t)(1−
∆−i(I)

maxa′∈A(I) ui(xi→g(I,a′))
lI,a).

The second and fourth lines follow because scaling by a con-
stant at I does not affect the distribution at I due to nor-
malization. The third line substitutes ui(xi→gq ) from Eq. 8.
Here, η = ∆−i(I)/(maxa′∈A(I) ui(xi→g(I,a′))) is the learn-

ing rate of PW(I), and 0 ≤ η ≤ 1 since ∆−i(I) is a pay-
off range, subtracts the minimum value at I, and because
maxa′∈A(I) ui(xi→g(I,a′)) includes terms for (h, z) 6∈ ZI .

We now show that these individual losses are, in fact,
forms of counterfactual regrets. First, we relate gq(xi) to
counterfactual values.

Lemma 2. Given a realization profile xi for player i ∈ N
and an equivalent behavioral strategy σi, let q = (I, a), using
vi(I, σ, a) as defined in Eq. 7 and for any σ−i ∈ Σ−i,

max
a′∈A(I)

ui(xi→g(I,a′) )−ui(xi→gq ) = max
a′∈A(I)

vi(I, σ, a
′)−vi(I, σ, a).

Proof. First, since q = (I, a) and both a, a′ ∈ A(I),
observe that the realization weights for profiles xi→g(I,a′)
and xi→gq are identical for all q′ ∈ Qi leading to histories
outside ZI . Therefore, the left side can be rewritten as

max
a′∈A(I)

∑
(ha′,z)∈ZI

πσi (h)πσi (ha, z)πσ−i(z)ui(z)

−
∑

(h,z)∈ZI

πσi (h)πσi (ha, z)πσ−i(z)ui(z)

= max
a′∈A(I)

∑
(ha′,z)∈ZI

πσi (ha, z)πσ−i(z)ui(z)

−
∑

(h,z)∈ZI

πσi (ha, z)πσ−i(z)ui(z)

= max
a′∈A(I)

vi(I, σ, a
′)− vi(I, σ, a).

The second line follows from the fact that πσi (h) = 1 when
i uses gq(xi) for h ∈ I, and distributions σ(I ′) for I ′ that
come after I are unchanged by Eq. 5. The last line follows
from the definition of counterfactual value in Eq. 7.

Define the average immediate counterfactual regret
for player i at time T and information set I as in [26]:

R̄Ti,imm(I) =
1

T
max
a∈A(I)

(
T∑
t=1

vi(I, σ
t, a)− vi(I, σt)

)
, (9)

where σt is the profile used by both players at time t, and
vi(I, σ

t) =
∑
a∈A(I) σ

t(I, a)vi(I, σ
t, a) is the counterfactual

value for playing σ(I) at I.
As in the original work, we show that the combination of

PW(I) learners over all I minimizes overall regret.

Lemma 3. Let RTi be overall regret for player i, and R̄Ti =
RT /T , and (x)+ = max(0, x). The overall regret of discrete-
time SFRD for player i is bounded by:

R̄Ti ≤
∆i

T

∑
I∈Ii

(
max
a∈A(I)

T∑
t=1

(ltI,σ − ltI,a)

)+

,

where ∆i ≤ maxz,z′∈Z(ui(z) − ui(z′)) is the payoff range,
and ltI,σ =

∑
a∈A(I) σ(I, a)ltI,a.

Proof. For I ∈ Ii, vi(I, σ, a)− vi(I, σ)

= ( max
a′∈A(I)

v(I, σ, a′)−∆−i(I)lI,a)

−
∑

a′′∈A(I)

σ(I, a′′)

(
max
a′∈A(I)

vi(I, σ, a
′)−∆−i(I)lI,a′′

)
= −∆−i(I)lI,a +

∑
a′′∈A(I)

σi(I, a
′′)∆−i(I)lI,a′′

= ∆−i(I)(lI,σ − lI,a).

The first line follows from Eq 8, Lemma 2, and the defini-
tion of vi(I, σ) from above. The second line follows since∑
a′′∈A(I) σi(I, a

′′) = 1. Substituting into Eq. 9 leads to

R̄Ti,imm(I) =
1

T
max
a∈A(I)

(
T∑
t=1

∆t
−i(I)(ltI,σ − ltI,a)

)
. (10)

Since ltI,σ, ltI,a are bounded and due to perfect recall, the rest
follows the proof of [26, Theorem 3], except with utilities
replaced by bounded losses.

There is one more small step before we present our main
theorem. The standard Polynomial Weights algorithm uses
a fixed learning rate η, whereas in SFRD the parameters of
PW(I) may be different each iteration.

Lemma 4. Suppose a modified PW algorithm, PW’, is
used such with update rule w(t+1) = w(t)(1−ηtlt), and ηt ≤
1
2

for all 1 ≤ t ≤ T . Then there exists some η∗ ≤ 1
2

such that

regret of PW’ at time T satisfies RT ≤ η∗QTmin + lnK/η∗.

Proof. Following the reasoning in [1, Theorem 4.6], the

total weight WT+1 = K
∏T
t=1(1 − ηtF t), where F t is the

algorithm’s loss at time t. For 0 ≤ ηt ≤ 1
2
, there exists a

fixed η∗ ∈ [0, 1
2
] s.t.

∏T
t=1(1 − ηtF t) =

∏T
t=1(1 − η∗F t), so

then WT+1 = K
∏T
t=1(1−η∗F t) and the rest of the original

PW bound analysis can be applied using the fixed η∗.

We now present out main result.

Theorem 5. For player i ∈ N , if ∀I ∈ Ii, 1 ≤ t ≤ T ,

ηI =
∆t
−i(I)

maxa′∈A(I) ui(xi→g(I,a′)(t))
≤ 1

2
,

then overall regret of discrete-time SFRD is bounded by:

R̄Ti ≤
∆i|Ii|
η∗T

(
ln |Ai|+ (η∗)2Qmin

)
,

where Qmin = maxI∈Ii Q
T
I,min, |Ai| = maxI∈Ii |A(I)|, and

η∗ = argmaxηI :I∈Ii Q
T
I,min.

Proof. Recall the general regret bound of PW from Sec-
tion 2.2. By Lemma 4, each individual PW(I) is bounded
by RTi,imm(I) ≤ η∗IQ

T
I,min + ln |A(I)|/η∗I . Then, applying

the bound to Equation 10, by Lemma 3 the overall bound
is obtained by summing over all the information sets.

The condition on the parameter ηI of Theorem 5 is satis-
fied for a large class of games and strategies. The numerator
is a sum over a subtree. The denominator includes a sum
over histories outside ZI , therefore η will be very small in
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most cases. Even if the opponent concentrates all the weight
to get to I, the sum includes terminal histories for which
chance chose outcomes that do not lead to I.

The condition is not satisfied when there is a large gap be-
tween mina′∈A(I) ui(xi→g(I,a′)) and maxa′∈A(I) ui(xi→g(I,a′)).

This can happen, for example, in a perfect information game
when the opponent, −i, concentrates their entire weight to
reach a decision point I ∈ Ii where there is one action that
leads to a certain loss for i and another to certain win for i.

4. EXPERIMENTS
In this section, we provide the first empirical evaluation

of sequence-form replicator dynamics.
In our experiments, we use two separate metrics to eval-

uate the practical behavior of sequence-form replicator dy-
namics. The first is the observed rate of convergence to ε-
Nash equilibrium. This is done by computing the smallest ε
satisfying Equation 1. To compute ε for some profile σ in an
n-player game, we first compute the expected values ui(σ)
to each player. Then, for each player i we compute a best
response to σ−i, σ

∗
i ∈ BR(σ−i), and εi = ui(σ

∗
i , σ−i)−ui(σ).

Then, ε = maxi∈N εi. The second metric is how well the re-
sulting strategy σ performs against a fixed baseline player.
Our baseline player chooses an action a ∈ A(I) uniformly at
random, i.e. with probability 1/|A(I)|. Specifically, denote
bi as the baseline for player i, b = (b1, b2, . . . , bn), and ui(b)
as the expected value to player i if all players play the base-
line strategies. The overall performance of some profile σ, is
a measure of how much the players prefer to use their σi to
play against the baseline opponents than bi:

Performance(σ) =
∑
i∈N

(ui(σi, b−i)− ui(b)) . (11)

Under both evaluation metrics, we analyze the evolution
of the current strategy profile at time t, x(t), as well as the
average strategy profile up to time t, x̄(t) = 1

t

∑t
j=1 x(j).

When minimizing regret in two-player zero-sum games, the
strategy that converges to an equilibrium is x̄(t). Despite
this, and unlike when n = 2, in multiplayer (n > 2) setting
there is preliminary evidence that suggests using the cur-
rent strategies works better, in practice, when minimizing
standard counterfactual regret [7].

We focus on discrete-time replicator dynamics in a gener-
alization of the well-studied game Kuhn poker.

4.1 Generalized Multiplayer Kuhn Poker
Kuhn poker is a simplified poker game originally proposed

by Harold W. Kuhn [14]. Kuhn poker has been analyzed
analytically by Kuhn and used as a testbed in studies in
algorithms and multiagent systems [10, 21, 23].

Generalized n-player Kuhn poker, KP(n) consists of a
deck with n + 1 cards {1, 2, · · · , n, n + 1}. Every player
starts with 2 chips. At the start of the game, each player
antes one of their chips placing it into a central pot of p = n
chips. Then, chance deals one card to each player. The
game starts with Player 1 and proceeds sequentially to the
next player that is not eliminated. A player may bet (if
they have a chip) or pass. To bet, a player puts the chip
into the pot: p← p+ 1. A player can fold by passing when
n < p < 2r where r is the number of remaining players,
i.e. players that have not been eliminated. If a player folds,
they are eliminated and receive a payoff of −1 for the chip
lost. The game proceeds until either (i) all but one player
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Figure 1: Top: convergence rate and overall perfor-
mance of average strategy in KP(2). Bottom: overall
performance of the current strategy. In both cases,
the vertical axis represents utility.

has folded, or (ii) p = r and everyone has passed or all the
remaining players have run out of chips. In the former case,
the remaining player wins the pot. In the latter case, the
remaining player with the highest-valued card wins the pot.
In all cases, a player’s payoff is the number of chips they end
up with minus their 2 starting chips.

The form of every equilibrium strategy for Kuhn’s original
game, KP(2) was derived analytically and used in a number
of studies, e.g. [10]. The expected value to the first player
in equilibrium is −1/18. In KP(3), an ε-equilibrium with
ε = 0.0044563 was found after 108 iterations of standard
CFR minimization [21]. Recently, a family of parameterized
equilibrium profiles was analytically derived for KP(3) [23].
We are unaware of any work studying KP(n) for n > 3.

In our implementation, a shifted payoff function u′i(z) =
ui(z) + 3 is used to ensure that all the utilities are positive
and that Equation 3 is well-defined. However, in our results
we present utilities as described by the original game.

4.2 Two-Player Experiments
We first analyze the behavior of SFRD in two-player Kuhn

poker. In two-player zero-sum games, a common way to
compute distance to an equilibrium is to use exploitability.
Since u2(σ) = −u1(σ), the gap in Equation 1 is replaced
by maxσ′

1∈Σ1
u1(σ′1, σ2) + maxσ′

2∈Σ2
u2(σ1, σ

′
2). Therefore,
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in the case of two players, the graphs show exploitability.
The convergence rate and overall performance of the aver-

age and current strategy profiles are shown in Figure 1. The
exploitability quickly drops to low values within the first
few hundred iterations. The values for t = (100, 200, 300)
are (0.916, 0.171, 0.096) to less than 0.001, with u1(x̄(t)) ≈
−0.548, u2(x̄(t)) ≈ 0.558 at t = 100000. The average perfor-
mance slowly but steadily rises from −0.25 initially to 0.109
at t = 100000. The performance of the current strategy is
much noisier, suggesting that players are switching signifi-
cantly between alternatives, but slowly seems to concentrate
to a neighborhood around 0.1 as well.

4.3 Multiplayer Experiments
In this section, we present experiments for KP(3) and

KP(4). Results are shown in Figure 2.
In KP(3), we notice again that x̄(t) reaches low values of

ε relatively quickly, within a few thousand iterations, reach-
ing ε ≈ 0.00169 at t = 100000. Interestingly, the current
strategy profiles do not seem to reduce ε smoothly as the
average strategy does. This could be because the evolution
has not found any attracting stable fixed points or that the
strategies are “orbiting” around a fixed point, possibly the
one being approached by x̄(t). We investigated further by
comparing the strategies to the known equilibrium set de-
scribed in [23]. Specifically, we computed a Euclidean dis-
tance between the particular probabilities σ(I, a) necessary
for all players to minimize their worst-case payoff, for points
t = 101, 102, 103, 104, 99980, 99990, 105. These distances for
the average profile are (1.288, 0.642, 0.189, 0.026, < 0.003,
< 0.003, < 0.003) and for the current profile are (1.152,
0.364, 0.312, 0.0002, < 10−5, < 10−5, < 10−5). Each player’s
current strategy could be switching toward different approx-
imate equilibrium strategies which when combined lead to
worst-case penalties, while staying close to the important
values that characterize the equilibrium. In contrast, the
average strategies seem to focus on reducing ε.

From the performance graphs, we see that early on the
performance spikes and and then slowly decreases. This
could be due the players cooperating to increase the score
against the early strategies close to the baseline, which slowly
decreases as each player learns to counter the opponents,
eventually stabilizing around 0.615. The current strategy
performance graph is noisy as in KP(2), and the perfor-
mance of the average strategy seems to be higher at first
(t ≤ 30000).

In KP(4), again the average profile seems to be reducing
ε smoothly and getting closer to a Nash equilibrium over
time, reaching ε ≈ 0.0093 at t = 10000. Like in KP(3), the
ε convergence of the current strategies x(t) is erratic. In
KP(4), the performance of the current strategy seems to be
less than the average strategy x̄(t), which is consistent with
the KP(3) results.

In all cases, the average strategy profile x̄ appears to be
converging to equilibrium with ε decreasing as the number
of iterations increase. Since the dynamics are realization-
equivalent to standard replicator dynamics, dominated strate-
gies will not survive in the current strategies and will slowly
be played less and less in the average strategies as well.1 In
all cases, both current and average strategy profiles perform

1SFRD may also filter out strictly dominated actions in
the limit as T → ∞ (as standard CFR minimization does,
see [7]), but this remains an open research question.

better than the baseline, but the average strategies some-
times perform better and fluctuate less over time.

5. CONCLUSION AND FUTURE WORK
In this paper, we further develop sequence-form replica-

tor dynamics. First, we have shown that SFRD do not vio-
late sequence-form constraints and that SFRD updates are
realization-equivalent to standard replicator dynamics for
n > 2 players. Second, SFRD can minimize regret, leading
to convergence guarantees in two-player zero-sum games.
Finally, we have provided the first empirical evaluation of
SFRD, showing convergence of average strategies to ε-Nash
equilibria in Kuhn poker with two, three, and four players.

In future work, we aim to apply SFRD to larger, more
complex games and further characterize the stability of the
resulting strategies. In addition, we hope to provide condi-
tions that lead to producing equilibrium refinements, such
as sequential or trembling-hand perfect equilibria.
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