
Exploiting Separability in Multiagent Planning with
Continuous-State MDPs

Jilles S. Dibangoyea Christopher Amatob Olivier Buffeta François Charpilleta

a INRIA – Université de Lorraine
Villers-lès-Nancy, France

firstname.lastname@inria.fr

bCSAIL / MIT
Cambridge, MA, USA

camato@csail.mit.edu

ABSTRACT
Recent years have seen significant advances in techniques for op-
timally solving multiagent problems represented as decentralized
partially observable Markov decision processes (Dec-POMDPs). A
new method achieves scalability gains by converting Dec-POMDPs
into continuous state MDPs. This method relies on the assumption
of a centralized planning phase that generates a set of decentralized
policies for the agents to execute. However, scalability remains
limited when the number of agents or problem variables becomes
large. In this paper, we show that, under certain separability condi-
tions of the optimal value function, the scalability of this approach
can increase considerably. This separability is present when there is
locality of interaction, which — as other approaches (such as those
based on the ND-POMDP subclass) have already shown — can
be exploited to improve performance. Unlike most previous meth-
ods, the novel continuous-state MDP algorithm retains optimality
and convergence guarantees. Results show that the extension us-
ing separability can scale to a large number of agents and domain
variables while maintaining optimality.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems

Keywords
Planning under uncertainty, cooperative multiagent systems, decen-
tralized POMDPs, ND-POMDPs

1. INTRODUCTION
There is a growing interest in research for solving multiagent

problems represented as decentralized partially observable Markov
decision processes (Dec-POMDPs) [5]. This formalism subsumes
many multiagent models including multiagent Markov decision pro-
cesses (MMDPs) [7, 18, 30], transition independent decentralized
MDPs [3, 12, 13, 29], networked distributed partially observable
MDPs (ND-POMDPs) [19, 21, 24, 34] and more recently transi-
tion decoupled decentralized MDPs [27, 35]. Unfortunately, the
NEXP-hardness of the Dec-POMDP formalism has restricted its
scalability; yet, many practical applications have a structure that
should allow greater scalability while preserving optimality [14, 1,

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and
Michael Huhns (eds.), Proceedings of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

2, 4, 6, 26]. Algorithms that exploit the domain structure when it is
present are particularly successful. However, even these algorithms
cannot scale to realistic domains since the number of agents, states,
observations and actions will often be quite large.

Separability conditions can occur when optimal value functions
are the sum of linear functions over factors associated with a small
subset of problem variables. These value functions are known as
additive weakly-separable and linear functions (AWSL), a prop-
erty that is present in the optimal value functions of many prac-
tical multi-robot coordination applications [3, 12, 13, 29], broad-
cast channel protocols [5, 33] and target tracking by a team of sen-
sors [19, 21, 24, 34]. The idea of exploiting the additive weak-
separability and linearity in MDP-based models is not new. It can
be traced back to Koller and Parr [18], who explored the use of this
property as an approximation for accelerating dynamic program-
ming in MDPs. Since then, numerous authors have refined the ap-
proach, exploiting value function approximation schemes [7, 16,
17, 22, 28, 15]; locality of interaction, in which agents have limited
interactions with one another [19, 24, 34]; or the value factoriza-
tion used in approximate inference based approaches [21]. In this
paper, we target domains represented as ND-POMDPs [24], which
are a subclass of Dec-POMDPs that exhibit locality of interaction.

A recent method has demonstrated a scalability increase on gen-
eral Dec-POMDPs by recasting them as continuous-state and de-
terministic MDPs [11]. This centralized method is possible by us-
ing the common assumption that planning can be centralized while
preserving decentralized execution. The states of this continuous-
state and deterministic MDP, called occupancy states, are distri-
butions over Dec-POMDP states and agent histories. The associ-
ated feature-based heuristic search value iteration (FB-HSVI) algo-
rithm preserves the ability to converge to an optimal solution and
illustrates significant scalability gains on a number of Dec-POMDP
benchmarks. FB-HSVI’s performance relies on its ability to repre-
sent and compute the value function in a compact form, generaliz-
ing values from a small subset of occupancy states to the entire set.
Unfortunately, for domains with a large number of agents, states,
observations and actions, this is typically not possible even when
structure such as the locality of interaction exists.

This paper combines the benefits of transforming Dec-POMDPs
into continuous-state MDPs and the locality of interaction found in
ND-POMDPs. The primary contribution is a demonstration that,
with the locality of interaction, optimal value functions are AWSL
functions of occupancy states. Even more importantly, we prove
that AWSL functions depend on occupancy states only through
marginal probability distributions over factors. The AWSL prop-
erty permits us to introduce new value function representations that
can accelerate both action selection and information tracking steps
in FB-HSVI, thus enhancing performance by several orders of mag-

1281

nitude while still retaining accuracy and convergence guarantees.
We demonstrate the scalability of the proposed approach on many
ND-POMDP benchmark domains, showing the ability to optimally
solve problems that include up to fifteen agents.

2. BACKGROUND
In this section, we briefly discuss Dec-POMDPs, ND-POMDPs

and the conversion of Dec-POMDPs into continuous-state MDPs.

2.1 Dec-POMDPs and ND-POMDPs
A Dec-POMDP P ≡ (S,A,Z, p, r, η0, T) with N agents is

given by: a finite set of states S; a finite set of joint actions A =
A1 × A2 × . . . × AN ; an action set Ai for agent i; a finite set
Z = Z1×Z2×. . .×ZN of joint observations; an observation setZi
for agent i ; a system dynamics model p = {pa,z : a ∈ A, z ∈ Z};
state-to-state transition matrices pa,z , where pa,z(s, s′) describes
the probability of transiting to state s′, upon receiving joint obser-
vation z and after taking joint action a in state s; a reward model
r = {ra : a ∈ A}, where ra is a reward vector and ra(s) is the
immediate reward to be gained by executing joint action a in state
s; an initial probability distribution η0 over states; and finally, a
planning horizon T .

In this model, each agent receives its own observations, but it
receives neither observations nor actions of the other agents. As a
result, it has to reason about what the other agents observed and
plan to do in order to optimize a joint stream of rewards. This
property is at the core of the high complexity of Dec-POMDPs. As
such, the behavioral strategies of each agent — local policies —
depend only upon local information of that agent. Hence, solving
Dec-POMDPs requires determiningN local policies, which jointly
maximize the total expected stream of rewards starting in η0..

In the following, we write [1 : N] = {1, . . . , N}, and for a given
subset u ⊆ [1 : N] referred to as a factor (or neighborhood), we
denote−u the complement of u. That is−u = [1: N]\u. We also
define |u|, the cardinality of u.

DEFINITION 1. An ND-POMDP is a Dec-POMDP P that ex-
hibits the following properties:

1. A factored state space S = S0 × S1 × . . .× SN , where S0

denotes local states that agents cannot affect, and Si repre-
sents a local-state set of agent i; We denote su = (s0, si)i∈u,
au = (ai)i∈u, and zu = (zi)i∈u, the state, action and ob-
servation relative to factor u ⊆ [1 : N].

2. A multiplicative weakly-separable dynamics model p, that
is, there exists dynamics models p0, p1, . . . , pN such that:

pau,zuu (su, s
′
u) = p0(s0, s

′
0)
∏
i∈u p

ai,zi
i (si, s0, s

′
i)

for any factor u ⊆ [1 : N] and su = (s0, si)i∈u.
3. An additive weakly-separable reward model r, that is, there

exists reward models ru1 , ru2 , . . . , ruM such that:

r(s, a) =
∑M
k=1 ruk (suk , auk),

where uk ⊆ [1 : N], suk = (s0, si)i∈uk .
4. A multiplicative fully-separable distribution η0, that is, there

exists independent distributions η0
0 , η

0
1 , · · · , η0

N such that:

η0(s) = η0
0(s0)

∏N
i=1 η

0
i (si).

Unlike general Dec-POMDPs, agents in ND-POMDPs interact
only with a small subset of their neighbors, demonstrating locality
of interaction. For a thorough introduction, motivating examples
and a graphical notation of factors, the reader can refer to [24].

2.2 Policies and Value Functions
In this section, we discuss policies in Dec-POMDPs (and ND-

POMDPs) as well as the objective criteria. In the following, we
distinguish between local and joint policies.

A T -step local policy of agent i, denoted πi, is a length-T se-
quence of local decision rules πi = (d0

i , . . . , d
T−1
i). A local de-

cision rule at step t, denoted dti , is a mapping from t-step action and
observation histories of agent i, denoted θti = (a0

i , z
1
i , . . . , a

t−1
i , zti),

to local actions of agent i. In many restricted settings, decision
rules depend only upon state features rather than histories, this
is mainly because agents can directly observe these state features
[12]. In general, however, decision rules depend on action and ob-
servation histories.

A T -step joint policy, denoted π, is an N -tuple of T -step lo-
cal policies (π1, . . . , πN), one for each agent. It is also a length-
T sequence of joint decision rules (d0, . . . , dT−1). A joint deci-
sion rule at step t, denoted dt, is an N -tuple of local decision rules
(dt1, . . . , d

t
N), one for each agent. It is also a mapping from t-step

joint action and observation histories to joint actions. A t-step joint
action and observation history, denoted θt, is an N -tuple of local
action and observation histories (θt1, . . . , θ

t
N), one for each agent.

We consider finite-horizon Dec-POMDPs, where the optimality
criterion is to maximize the expected sum of rewards over finite
steps T . Let π be a joint policy. The value function at step t,
denoted υtπ , maps state and joint history pairs to reals:

υtπ(st, θt) = E[
∑T−1
τ=t r

aτ (sτ) | aτ = dτ (θτ), π],

for any step t state st and joint history θt. An optimal joint pol-
icy π∗, starting at η0, satisfies equation: π∗ ∈ arg maxπ υ

0
π(η0).

Value functions υ0
π∗ , . . . , υ

T−1
π∗ are optimal value functions with

respect to η0. At first glance, these value functions exhibit no
structural restrictions on their shapes. A recent analysis, however,
reveals that they are linear over some high-dimensional space.

2.3 Dec-POMDPs as Continuous-State MDPs
A common assumption in many Dec-POMDPs is that planning

takes place in a centralized (offline) manner even though agents ex-
ecute actions in a decentralized fashion (online). In such a planning
paradigm, a centralized algorithm maintains, at each time step, the
total available information it has about the process to be controlled.
We call the information collected at the end of time step t− 1, the
step t information state.

A step t information state, is a sequence (η0, d0, . . . , dt−1) of
past joint decision rules starting with the initial distribution η0 and
is denoted by ιt. It further satisfies the following recursion: ι0 =
(η0) and ιt+1 = (ιt, dt) for t ∈ [1 : T − 1]. With the step t in-
formation state ιt as a background, a centralized algorithm selects
the step t joint decision rule dt, transititions to the next-step in-
formation state ιt+1 = (ιt, dt), and finally collects the immediate
reward. If we repeat this process over T steps starting with infor-
mation state ι0, it describes a deterministic MDP that represents the
original Dec-POMDP P .

DEFINITION 2. Let P ′ ≡ (I,D, F,R, ι0) be the deterministic
MDP with respect to P where: I = {It : t ∈ [0 : T − 1]} is the
information state set; It defines the step t information state set;
D = {Dt : t ∈ [0 : T − 1]} is the joint decision rule set, where Dt

denotes the step t joint decision rule set; F specifies the next-step
information state ιt+1 after taking joint decision rule dt in infor-
mation state ιt: F (ιt, dt) = (ιt, dt); R specifies the immediate
expected reward to be gained by executing a joint decision rule dt

in information state ιt: R(ιt, dt) =
∑
s,θ P (s, θ|ιt) · rd

t(θ)(s);
and ι0 is the initial information state.

1282

It is worth noting that in constructing P ′, we use the transition,
observation and reward models from P . In particular, we need to
compute the entire multivariate probability distribution P (s, θ|ιt)
over all states and joint histories, in order to estimate the immedi-
ate rewards. This operation is often time-consuming because, in
practice, it involves a large number of variables. As this operation
occurs every time step, it is important to reduce the time required.
To this end, Dibangoye et al. [12, 13, 11] and Oliehoek [25] intro-
duced sufficient statistics with respect to information states. Such
a statistic can retain problem features that are important for cal-
culating rewards. Informally, a sufficient statistic with respect to
information state ι and P ′ is a statistic that summarizes ι and pre-
serves the ability to find an optimal solution of P ′. Given a suffi-
cient statistic with respect to the current information state and the
problem at hand, no additional data about the current information
state would provide any further information about the problem. A
formal definition follows.

THEOREM 1 ([11]). A t-step sufficient statistic with respect
to information state ιt, which we call an occupancy state and de-
note ηt, is a probability distribution over all states and joint histo-
ries, ηt(s, θ) = P (s, θ|ιt), for any state s and joint history θ.

The next-step occupancy state F (ηt, dt) = ηt+1 depends on the
current occupancy state ηt and joint decision rule dt:

ηt+1(s′, (θ, a, z)) = 1{a}(d
t(θ))

∑
s∈S η

t(s, θ) · pa,z(s, s′),

where 1F is the indicator function, and for all states s′ ∈ S, joint
actions a ∈ A, joint observations z ∈ Z, and joint histories θ.

DEFINITION 3. Let P ′′ ≡ (4, D, F,R, η0) be the MDP with
respect to P ′, which we call the occupancy Markov decision pro-
cess: where 4 = {4t : t ∈ [0 : T − 1]} is the set of occupancy
states, 4t is the step t occupancy state set; and D,F,R, η0 are
identical to P ′ or eventually P .

Relative to P ′, the occupancy MDP P ′′ is a deterministic and
continuous-state MDP. An optimal joint policy for P ′′, together
with the correct estimation of the occupancy states, will give rise to
an optimal behavior for P ′ and P [11]. One can solve either P ′ or
P ′′, and nevertheless provide an optimal solution for the original
problem P [26, 11].

2.4 Solving Occupancy MDPs
POMDPs can be cast into continuous-state MDPs with piecewise-

linearity and convexity structure of the optimal value functions [31].
As we discuss next, because the occupancy MDP represents a deter-
ministic and continuous-state MDP with a piecewise-linear convex
value function, POMDP theory and algorithms can be used.

2.4.1 Properties of Optimal Value Functions
In this section, we review the property of the optimal value func-

tions in general Dec-POMDP settings. We start with the necessary
condition for optimality in occupancy MDPs.

LEMMA 1. The optimality equation for any occupancy state ηt

is written as follows: for all t ∈ [0 : T − 1],

υt∗(η
t) = maxdt

(
R(ηt, dt) + υt+1

∗ (F (ηt, dt))
)
.

For t = T , we add a boundary condition υT∗ = 0.

Dibangoye et al. [11] proved that value functions υ0
∗, . . . , υ

T−1
∗ ,

which are solutions of the optimality equations (Lemma 1), are
piecewise-linear and convex functions of the occupancy states. That
is, there exist finite sets of linear functions Λ0, . . . ,ΛT−1 such that:
υt∗(η

t) = maxαt∈Λt〈αt, ηt〉 (where notation 〈·, ·〉 is the inner-
product), for any arbitrary t-step occupancy state ηt.

Algorithm 1: The FB-HSVI Algorithm.

function FB-HSVI()
initialize υt and ῡt for all t ∈ {0, · · · , T − 1}.
while ¬Stop(η0, 0) do Explore(η0, 0) ;

function Explore(ηt, gt)
η̃t ← Compact(ηt).
if ¬Stop(η̃t, gt) then

d∗t ∈ arg maxdt R(η̃t, dt) + ῡt+1(F (η̃t, dt)).
Update ῡt.
Explore(F (η̃t, d

∗
t), R(η̃t, d

∗
t) + gt).

Update υt.
return gt

function Stop(ηt, gt)
if ῡt(ηt) > υt(ηt) then return gt + ῡt(ηt) ≤ υt(η0) ;
return true

2.4.2 The FB-HSVI Algorithm
The heuristic search value iteration (HSVI) algorithm is a lead-

ing POMDP solver which performs well on many POMDP do-
mains, while preserving the ability to eventually find an optimal
solution [32]. By recasting Dec-POMDPs as occupancy MDPs, the
HSVI algorithm (as well as other POMDP algorithms) can be ex-
tended to solve Dec-POMDPs.

Dibangoye et al. [11] introduced feature-based HSVI (FB-HSVI),
which is shown in Algorithm 1, to improve the efficiency of the
HSVI algorithm in occupancy MDPs. It uses a trial-based best-first
search and finds an optimal path from a given initial occupancy
state to one T -step occupancy state. It traverses the search space
by creating trajectories of occupancy states, each of which starts
with the initial occupancy state. For each visited occupancy state,
such trajectories always follow the best joint decision rule (ties are
broken arbitrarily) specified by the upper bounds (ῡt)t∈{0,...,T}.
As the algorithm traverses the search space, it updates the upper
bounds of the occupancy states along the way. Once the trajecto-
ries are finished, it maintains lower bounds (υt)t∈{0,...,T} of vis-
ited occupancy states in reverse order.

The FB-HSVI algorithm provably converges to optimal value
functions with respect to the initial occupancy state. As it seeks
the occupancy states where the upper bound is the largest, and
maintains both upper and lower bounds, it reduces the gap between
bounds over the initial occupancy state at each iteration. Once the
gap is zero, the algorithm has converged. Moreover, the FB-HSVI
algorithm guarantees termination after a finite number of iterations,
although this number is (in the worst case) doubly exponential in
the maximal length of a trajectory.

2.4.3 Key Limitations of FB-HSVI
The FB-HSVI algorithm demonstrated a significant improvement

in performance on many domains, while preserving the ability to
eventually find an optimal solution. Its scalability is nonetheless
limited when the number of agents or problem variables is quite
large. To better understand this, notice that the complexity of the
FB-HSVI algorithm depends essentially on two operations: the de-
cision rule selection; and the information tracking. In either case,
the FB-HSVI algorithm is not geared to exploit the locality of in-
teraction, and thus, it will typically have to consider decision rules
and occupancy states over exponentially many variables, though
multiple variables have little influence on one another.

In order to improve the scalability in the number of agents, there

1283

has been a growing interest in research for solving Dec-POMDPs
that exhibit locality of interaction [19, 21, 34]. This property ap-
pears in many practical applications, including domains represented
as ND-POMDPs [24]. Unfortunately, the expressiveness of this
framework comes with a price, solving finite-horizon ND-POMDPs
optimally is also NEXP-complete [5, 24]. This partially explains
why the only optimal algorithm, namely the global optimal al-
gorithm (GOA) [24], can often solve problems with a couple of
agents, but cannot handle domains with larger number of agents.
The other reason for this poor scaling behavior resides in the ex-
plicit enumeration of exponentially many policies, which though it
ensures optimality, is often unnecessary or redundant.

Recently, approximate algorithms have been used to solve ND-
POMDPs using ideas such as locally optimal heuristic search [23,
24, 34], and constraint-based dynamic programming [20, 21]. To
the best of our knowledge, none of these approaches can provide
tight performance guarantees (error bounds or potential losses),
features that are critical in a large range of real-world applica-
tions related to the military, environment, medical domains or so-
cial services. In the remainder of this paper, we discuss an exten-
sion of FB-HSVI so it can exploit locality of interaction, enhancing
its performance on domains with larger numbers of agents, while
preserving optimality.

3. LEVERAGING SEPARABILITY
In this section, we discuss how locality of interaction through

separability assumptions (Definitions 1) influences the structure of
value functions and occupancy states.

3.1 Separable Value Functions
The primary contribution is a proof that the optimal value func-

tion is the sum of linear functions over factors, a property referred
to as the additive weak separability and linearity. A formal defini-
tion of this property follows.

DEFINITION 4. Value function g is additively weakly separable
and linear, if there exist linear functions gu1 , gu2 , . . . , guM such
that: g(s, θ) =

∑M
k=1 guk (suk , θuk), u1, . . . , uM ⊆ [1 : N].

Value function g is said to be additively fully separable and linear,
if uk ∩ uk′ = ∅ for all k, k′ ∈ [1 : M].

An optimization problem with an additively fully separable and
linear objective function g can be reduced to M independent op-
timization problems with lower dimensionalities. If g is not fully
separable, we often search the whole N -dimensional space all at
once. However, algorithms that exploit the weak separability when
it is present have been particularly successful, notable examples
include weighted constraint satisfaction algorithms [8, 9, 10]. In
the following, we present the proof that optimal value functions
are AWSL functions of the occupancy states. Before proceeding
any further, we introduce short-hand notation guk|θuk to represent
a function over states suk s.t.: guk|θuk (suk) = guk (suk , θuk).

THEOREM 2. Value functions (υtπ)t∈[1 : T−1], for any joint pol-
icy π, are additively weakly separable and linear functions of oc-
cupancy states. That is, there exist vectors (αtuk|θuk

)θ,k∈[1 : M] s.t.

υtπ(ηt) =
∑
u

∑
su

∑
θu
ηtu|θu(su) · αtuk|θuk (su),

where ηtu|θu(su) =
∑
s−u,θ−u

ηt(s, θ) for any ηt and u ⊆ [1 : N].

PROOF. The statement trivially holds for t = T , as there is no
future rewards. Assume it holds for t ≥ τ , that is, for any arbitrary

τ -step occupancy state ητ , the following holds:

υτπ(ητ) =
∑
u

∑
su

∑
θu
ητu|θu(su) · ατuk|θuk (su).

Let t = τ − 1. We first show that reward vectors in r are additively
weakly separable and linear functions of occupancy states. Indeed,
the following holds: R(ητ−1, dτ−1)

=
∑
θ

∑
s η

τ−1(s, θ)
∑
u r

dτ−1
u (θu)
u (su),

=
∑
u

∑
su

∑
θu

(∑
s−u

∑
θ−u

ητ−1(s, θ)
)
r
dτ−1
u (θu)
u (su),

=
∑
u

∑
su

∑
θu
ητ−1
u|θu(su) · rd

τ−1
u (θu)
u (su).

Next, we exploit the fact that the value function υτπ is an AWSL
function of occupancy states. We have υτπ(F (ητ−1, dτ−1))

=
∑
u

∑
s′u

∑
θu
ατu|θu(s′u) · ητu|θu(s′u),

=
∑
u

∑
su,θu

ητ−1
u|θu(su)

∑
s′u,zu

ατu|θ′u(s′u) · pd
τ−1
u (θu),zu
u (su, s

′
u),

=
∑
u

∑
su

∑
θu
ητ−1
u|θu(su) · ατ−1

u|θu(su),

where ατ−1
u|θu(su) =

∑
s′u,zu

ατu|θ′u(s′u) · pd
τ−1
u (θu),zu
u (su, s

′
u) and

θ′u = (θu, d
τ−1
u (θu), zu). Finally, by combining immediate and

future rewards we obtain: υτ−1
π (ητ−1)

= R(ητ−1, dτ−1) + υτπ(F (ητ−1, dτ−1)),

=
∑
u

∑
su

∑
θu
ητ−1
u|θu(su) ·

(
r
dτ−1
u (θu)
u (su) + ατ−1

u|θu(su)
)
,

which ends the proof.

This theorem demonstrates that value functions can be repre-
sented using a finite set of low-dimensional vectors, one |Su|-length
vector αu|θu for each joint history θu. This result extends a previ-
ous separability property of the value function for ND-POMDPs
[24], which stated that value functions of a specified joint policy
can be decomposed into the sum of value functions over factors.
Relative to the PWLC property of value function solutions of the
optimality equations, the AWSL property provides a significant re-
strictive structure in the shape of value functions. It is nevertheless
unclear how this property can improve efficiency of the FB-HSVI
algorithm. In addition, this theorem yields interesting insights. It is
worth noticing that this result holds even when there exists a unique
factor u = [1: N], that is, in general DecPOMDPs.

COROLLARY 1. Value functions (υtπ)t∈[1 : T−1], for any joint
policy π, are additively weakly separable and linear functions of
occupancy states. That is, there exist vectors (αt|θ)θ,t∈[0 : T−1] such
that υtπ(ηt) =

∑
s

∑
θ η

t
|θ(s) ·αt|θ(s), where ηt|θ(s) = ηt(s, θ) for

any arbitrary occupancy state ηt.

PROOF. The proof holds directly from Theorem 2 with a single
factor u = [1: N].

3.2 Separable Sufficient Statistics
Another important result from Theorem 2 is a proof that value

functions depend on occupancy states only through marginal prob-
ability distributions over factors. This is a significant result as
it allows us to maintain marginal probability distributions inde-
pendently from one another, which saves non-negligible time and
memory, while preserving optimality.

THEOREM 3. For any ND-POMDP with factors u1, . . . , uM ,
marginal occupancy states (ηuk|θuk)uk,θuk collectively constitute
a sufficient statistic of occupancy state η. Marginal occupancy state

1284

ηu|θu can be updated at each step to incorporate the latest action
au and observation zu, where:

ηu|θu,au,zu(s′u) =
∑
su

ηu|θu(su) · pau,zuu (su, s
′
u).

PROOF. A careful look at Theorem 2 reveals that value func-
tions depend on occupancy states only through marginal occupancy
states. In addition, the multiplicative weak separability of dynamics
model p allows us to maintain marginal occupancy states indepen-
dently from one another. Initially, η0

u(su) = η0
0(s0)

∏
i∈u η

0
i (si);

then η = ηu|θu,au,zu satisfies the following recursive formula:
η(s′u) = P (s′u, θu, au, zu|η0

u)

= P ((s′0, s
′
i, θi, ai, zi)i∈u|η0

u),
=

∑
su
P ((zi)i∈u|(s0, si, ai, s

′
0, s
′
i)i∈u) · P ((s0, si, θi)i∈u|η0

u),
=

∑
su
ηu|θu(su) · p0(s0, s

′
0)
∏
i∈u p

ai,zi
i (si, s0, s

′
i),

which ends the proof.

This theorem permits us to circumvent unnecessary or redundant
operations when maintaining the occupancy states. In particular,
we can maintain marginal occupancy states independently from one
another, and reuse pre-computed ones when it is possible. The fol-
lowing describes a novel representation of bounds in the FB-HSVI
algorithm based on the AWSL property. To this end, the marginal
occupancy states (ηuk|θuk)uk,θuk are collectively referred to as a
separable occupancy state.

4. AWSL BOUND REPRESENTATIONS
To address the key limitations in the FB-HSVI algorithm (see

Section 2.4.3), we exploit the AWSL property. In particular, we
introduce representations that can significantly reduce the memory
required to maintain lower and upper bounds. We further show that
these novel representations permit the FB-HSVI algorithm to scale
up to ND-POMDPs of unprecedented size; enhancing the gener-
alization of the bounds over unvisited regions of the search space;
and speeding up the convergence to an optimal solution.

4.1 Lower-Bound Value Functions
The standard lower-bound representation uses sets (Λt)t∈[0 : T−1]

of linear functions, where each linear function αt ∈ Λt maps
from state and joint history pairs to reals [11]. In this form, lower
bounds are updated as follows. Each trajectory of the FB-HSVI
algorithm generates a joint policy π, which in turn produces linear
functions (υtπ)t∈[0 : T−1]. When a trajectory is finished, the algo-
rithm adds linear functions (υtπ)t∈[0 : T−1] into the current repre-
sentation. This update rule ensures a monotonic improvement of
lower-bounds at the initial occupancy state over trials. It is never-
theless time and memory demanding to compute and maintain the
standard representation.

To reduce the overwhelming time and memory requirements of
the standard representation, we exploit the AWSL property. In par-
ticular, our lower-bound representation uses a finite set of length-
|Su| vectors Λ = {αu|θu : ∀u, θu} associated with a single joint
policy π, such that, for t-step occupancy state η, we obtain υt(η) =
υtπ(η) =

∑
u

∑
θu
〈αu|θu , ηu|θu〉. The update rule we use to main-

tain our lower-bound representation follows.
For any joint policy π, we compute vectors αu|θu using back-

ward induction: for any state su,

αu|θu(su) = r
du(θu)
u (su) +

∑
zu
p
du(θu),zu
u (su, s

′
u)αu|θ′u(s′u)

where θ′u = (θu, du(θu), zu). We set αu|θ′u = αu|t for t-step
histories θ′u that are unreachable when following π. Vector αu|t

maps from states su to any trivial lower-bound, e.g., αu|t(su) =
minau(T − t)rauu (su). If the value at the initial occupancy state
υ0
π(η0) is greater than the current lower-bound υ0(η0), then we

replace (υt)t∈[0 : T−1] by (υtπ)t∈[0 : T−1].
Like the standard representation, set Λ can accurately represent

value functions of any optimal joint policy π. Our representation
is nevertheless more compact. Where the standard representation
keeps track of value functions associated with many different joint
policies, our representation maintains only the value function of the
current best joint policy. In addition, the associated update rule is
more efficient, since it involves only states and histories in a single
factor. It is worth noting that this representation comes with one
drawback: it often yields lower-bound values that are weaker than
those from the standard representation. This looseness may slow
down the rate of convergence.

4.2 Upper-Bound Value Functions
The standard upper-bound representation is a mapping from vis-

ited occupancy states to upper-bounds. It distinguishes between
corner and non-corner occupancy states. A corner occupancy state
is a degenerate distribution, that is, the probability mass is localized
at a single state and joint history pair, and zero otherwise. An occu-
pancy state that is not a corner occupancy state, is a non-corner oc-
cupancy state. We use point set {(η` 7→ β`) : ` ∈ [1 : L]} to denote
mapping from non-corner occupancy state to upper-bounds; and β0

to represent the mapping from corner occupancy states to upper-
bounds. Every time FB-HSVI encounters an occupancy state, it
uses the point-set representation to estimate the upper-bound of the
current occupancy state. Given t-step occupancy state η, the saw-
tooth interpolation [11, 32] yields an upper-bound value at η:

ῡt(η) = min`
(
β0(η) + δ(η, η`) · (β` − β0(η`))

)
,

where δ(η, η`) = min{η(s, θ)/η`(s, θ) : η`(s, θ) > 0} is referred
to as the interpolation coefficient. Notice that lower interpolation
coefficients lead to weaker bounds. The update rule consists of
adding a new point in the point set, using the greedy joint deci-
sion rule selection and the sawtooth interpolation. In this paper,
we demonstrate that by using the AWSL property together with the
sawtooth interpolation, one can produce tighter upper-bound val-
ues.

4.2.1 The Novel Representation
In this section, we extend the standard representation to exploit

the AWSL property. In particular, we use separable occupancy
states η` ≡ (η`u|θu)u,θu instead of full occupancy states; and re-
place upper bounds by point sets β` ≡ {(η`u|θu 7→ β`u|θu) : ∀u, θu}.
Like the standard representation, we distinguish between corner
and non-corner separable occupancy states. A corner separable oc-
cupancy state corresponds to a corner occupancy state. We call
any separable occupancy state that is not a corner separable oc-
cupancy state a non-corner separable occupancy state. Hence, we
use β0 to represent a mapping from corner separable occupancy
states to upper bounds; unlike the standard representation, we use
point set Γ = {(η` 7→ β`) : ` ∈ [1 : L]} to represent a map-
ping from separable occupancy states to point sets. These point
sets β` ≡ {(η`u|θu 7→ β`u|θu) : ∀u, θu} represent mappings from
marginal occupancy states to upper bounds, one point set for each
separable occupancy state η`.

Initially, the point set Γ contains only corner points, that is, map-
pings from corner separable occupancy states to upper-bounds. To
construct the initial point set, a general rule of thumb is to use
the optimal value functions of a relaxation of the problem at hand.
Here, we use the optimal value functions (υtMDP)t∈[0 : T−1] of the

1285

underlying MDP. Thus, the initial upper-bound values are given by:
β0(s, θ) = υtMDP(s), for any state s and joint history θ. Notice that
mapping β0 =

∑
u

∑
θu
β0
u|θu , that is, β0 is AWSL. Next, we

extend the sawtooth interpolation to exploit the AWSL property.

4.2.2 Enhancing Evaluations
This section extends the sawtooth interpolation using our upper-

bound representation. In particular, we explore applying the saw-
tooth interpolation to marginal occupancy states instead of full oc-
cupancy states. That is, we demonstrate how to compute an upper-
bound of a marginal occupancy state based on another one. To this
end, we introduce the concept of policy equivalence. Two histories
θu and θ̄u that are different, can nonetheless have the same future
optimal policy. In this case, we say that θu and θ̄u are policy equiv-
alent. For a thorough discussion on policy equivalence relations,
the reader can refer to [11, 26]. Policy-equivalent histories can
extrapolate their upper-bound values from one another [11]. Our
extension of the sawtooth interpolation follows.

LEMMA 2. Let αu|θu be the optimal linear function relative
to factor u and history θu, (η`u|θu , β

`
u|θu) be a non-corner point,

and ηu|θ̄u be a marginal occupancy state. For each marginal oc-
cupancy state ηu|θ̄u , the following holds: υπ∗u(ηu|θ̄u) ≤ βu|θ̄u ,
where for all factor u and history θ̄u that is policy equivalent to θu,

βu|θ̄u = β0
u|θu(ηu|θ̄u) + δ(ηu|θ̄u , η

`
u|θu)(β`u|θu − β

0
u|θu(η`u|θu)),

and δ(ηu|θ̄u , η
`
u|θu) = minsu{

ηu|θ̄u (su)

η`
u|θu

(su)
: η`u|θu(su) > 0}.

PROOF. We first note that marginal occupancy state ηu|θ̄u can
be written as a linear combination between two |Su|-dimensional
and positive vectors y and η`u|θu , and some positive number δ.
That is, ηu|θ̄u = y + δ · η`u|θu . We further note that inequali-
ties αu|θu(η`u|θu) ≤ β`u|θu and αu|θu(y) ≤ β0

u|θu(y) hold. By
linearity of αu|θu , we know the following holds:

αu|θu(ηu|θ̄u) ≤ β0
u|θu(y) + δ · β`u|θu .

If we replace y by (ηu|θ̄u − δ · ηu|θu), and rearrange terms:

αu|θu(ηu|θ̄u) ≤ β0
u|θu(ηu|θ̄u − δ · η

`
u|θu) + δ · β`u|θu ,

≤ β0
u|θu(ηu|θ̄u) + δ(β`u|θu − β

0
u|θu(η`u|θu)).

To get the best upper-bound value, we wish to find the maximum
value of δ, that is consistent with our assumptions. In particular,
we need find δ consistent with: y(su) ≥ 0 and η`u|θu(su) ≥ 0, for
any state su. Since y(su) = ηu|θ̄u(su)− δ · η`u|θu(su), we obtain

expression: δ = minsu{
ηu|θ̄u (su)

η`
u|θu

(su)
: η`u|θu(su) > 0}.

This lemma presents a formula that assigns an upper bound to
any specified marginal occupancy state. However, to preserve the-
oretical guarantees, it is crucial to perform the assignments of up-
per bounds to marginal occupancy states all at once. This is mainly
because marginal occupancy states in separable occupancy states
have values that depend on one another. The assignment rule for
separable occupancy state η ≡ (ηu|θ̄u)u,θ̄u given point set Λ =

{(η` 7→ β`) : ` ∈ [1 : L]} follows:

(βu|θ̄u)u,θ̄u = arg min
(β`
u|θ̄u

)u,θ̄u
: `∈[1 : L]

∑
u

∑
θ̄u
β`u|θ̄u ,

where β`u|θ̄u denotes the upper-bound value of ηu|θ̄u extrapolated
based on point (η` 7→ β`). Thus, the upper-bound value at t-step

separable occupancy state η is given by: ῡt(η) =
∑
u,θ̄u

βu|θ̄u .
Notice that our upper bound is tighter or equal to that of the stan-
dard representation, as δ(η, η`) = minu δ(ηu|θ̄u , η

`
u|θu).

4.2.3 Constraint-Based Decision Rule Selections
In this section, we extend the greedy joint decision rule selection

to exploit our upper-bound representation. Similar to the standard
FB-HSVI algorithm, we formulate and solve a weighted constraint
satisfaction problem (WCSP).

A WCSP refers to a tuple (V,X, C) where: V = {V1, . . . , VM}
is the set of M domains; X = {X1, . . . ,XM} is the set of M
variables, taking values from their domains. C is the set of re-
ward functions used to declare preferences among possible solu-
tions. Each reward function c ∈ C is defined over a subset of
variables, var(c) ⊆ X, called the scope. The objective func-
tion f is defined as the sum of all reward functions in C, that
is, f(X) =

∑
c∈C c(Xvar(c)). When variables are correctly as-

signed, finite rewards are received that express their degree of pref-
erence (higher value equates to higher preference) and when vari-
ables are not correctly assigned a reward−∞ is received. The goal
of this problem is to find a mapping from variables to values, which
maximizes the objective function.

As we demonstrate later, to select the greedy joint decision rule,
we consider L different WCSPs, each of which relies on a sin-
gle non-corner point (η` 7→ β`) from our point-set representation
Γ = {(η` 7→ β`) : ` ∈ [1 : L]}. Each WCSP returns a joint de-
cision rule, but the greedy decision rule is the one with the highest
objective value (ties are broken arbitrarily). A formal definition of
the WCSP relative to non-corner point (η` 7→ β`) follows.

DEFINITION 5. Let (η` 7→ β`) be a non-corner point and η
be a separable occupancy state. The `-th WCSP (X, V, C`) in-
volves: V = {Vu|θ̄u : u, θ̄u} consists of sets Vu|θ̄u of mappings
from histories to actions (θ̄u 7→ au); X = {Xu|θ̄u : u, θ̄u} is the
set of variables Xu|θ̄u , taking values from their domains Vu|θ̄u ;
C` = {nogood, c`u|θ̄u : u, θ̄u} is a set of reward functions, for any
arbitrary mapping (θ̄u 7→ au), we have:

c`u|θ̄u(θ̄u 7→ au) = rauu (ηu|θ̄u) +
∑
zu
β`u|θ̄u,au,zu ;

The objective function f ` is defined as the sum of all reward func-
tions in C`, that is, f `(X) =

∑
u

∑
θ̄u
c`u|θ̄u(Xu|θ̄u).

The following theorem states that the greedy decision rule corre-
sponds to the solution of one of these WCSPs.

THEOREM 4. A greedy joint decision rule for separable occu-
pancy state η ≡ (ηu|θ̄u)u,θ̄u , is the solution with the maximum
rewards among the solutions of WCSPs (X, V, C`)`∈[1 : L].

PROOF. We start with the standard joint decision rule selection
for a specified occupancy state ηt:

dt∗ = arg maxdt R(ηt, dt) + ῡt+1(F (ηt, dt)).

Next, we exploit the additive weak separability and linearity of the
value functions. Using this property, we know that dt∗ is given by

arg maxdt min`
∑
u,θ̄u

r
dtu(θ̄u)
u (ηtu|θ̄u) +

∑
zu
β`u|θ̄u,dtu(θ̄u),zu

,

where β`u|θ̄u,dtu(θ̄u),zu
corresponds to the upper-bound value of marginal

occupancy state ηtu|θ̄u,dtu(θ̄u),zu
extrapolated based on the `-th non-

corner point (η` 7→ β`) in Γ. By Definition 5, we have that

dt∗ = arg maxdt min`
∑
u

∑
θ̄u
c`u|θ̄u(θ̄u 7→ dtu(θ̄u)),

= max` arg maxdtf
`(dt), s.t. f `(dt) ≤ f l(dt), ∀l ∈ [1 : L]\{`}

1286

Which ends the proof.

5. EXPERIMENTS
We compare our extension of FB-HSVI for ND-POMDPs with

the standard FB-HSVI algorithm [11], a state-of-the-art exact al-
gorithm for solving general Dec-POMDPs. We call our exten-
sion, the separable feature-based heuristic search value iteration
(SFB-HSVI) algorithm. We could not compare to the global op-
timal algorithm (GOA), as it quickly runs out of memory even for
the smallest benchmarks. We nonetheless compare with the state-
of-the-art approximate algorithms for solving ND-POMDPs, in-
cluding constraint based dynamic programming (CBDP) [19], and
FANS [23]. CBDP constructs joint policies based on a small selec-
tion of distributions over states. We set the number of distributions
to 5 as advised in Kumar and Zilberstein [19]. FANS relies on var-
ious heuristics to build approximate joint policies. For each bench-
mark, we consider only the heuristic with the best performance.

T Algorithms
CBDP FANS FB-HSVI

EV CPU EV CPU EV CPU (ext.) CPU (std.)
5-P domain — |S| = 12; N = 5, |Zi| = 2, and 2 ≤ |Ai| ≤ 3

3 198.1 2 198.1 20 332.0 2.03 3.77
4 253.7 3 253.9 70 471.2 3.65 10.4
5 302.0 4 355.1 80 605.0 9.36 32.3
6 339.5 5 376.3 90 735.8 35.4 125
7 410.5 6 410.5 100 869.2 231.4

10 558.6 9 569.4 400
7-H domain — |S| = 12; N = 7, |Zi| = 2, and 2 ≤ |Ai| ≤ 3

3 255.5 2 175.8 0.5 418.0 1.5 1.7
4 331.0 4 184.8 1.0 581.8 2.3 5.7
5 404.6 6 274.7 700 765.8 4.7 18.3
6 462.7 7 327.8 800 940.4 12.0 50.4
7 507.5 8 376.8 900 1082.8 40.4 162.6
8 561.4 9 1206.6 261

10 658.1 10
11-helix domain — |S| = 49; N = 11, |Zi| = 2, and 2 ≤ |Ai| ≤ 4

3 328.8 20 255.0 135 554.4 3.1
4 - - 777.2 6.4
5 - - 1057.6 21.7
6 - - 1347.7 140.7
7 - -

10 - -
15-3D domain — |S| = 60; N = 15, |Zi| = 2, and 2 ≤ |Ai| ≤ 4

3 529.0 50 514.2 3000 814.0 4.6
4 616.9 60 1167.0 7.9
5 831.5 70 1587.1 22.4
6 996.2 80 2008.0 78.3
7 1124.7 90 2353.9 272.7

10 1493.6 110
15-Mod domain — |S| = 16; N = 15, |Zi| = 2, and 2 ≤ |Ai| ≤ 4

3 515.9 60 367.6 200 814.0 2.0
4 - - 1142.5 3.5
5 - - 1553.2 8.6
6 - - 1971.2 26.6
7 - - 2336.5 103.8

EV = υ0
π(η

0) CPU (sec.) ‘ ’ = time (1000s) expired ‘-’ = no results available

Table 1: Performance of FB-HSVI (extended and standard ver-
sions), CBDP, and FANS. Blank spaces represent over the time
or memory limits.

The experiments of FB-HSVI and SFB-HSVI were run on a Mac
with a 2.2GHz Intel Core i7 CPU, 1GB of RAM available, and a
time limit of one thousand seconds. We solved the WCSPs using
toulbar2 [8]. The other experiments were conducted on a machine
with 2.4GHz Intel dual core CPU and 1GB of RAM available. The
main purpose of these experiments was to show the scalability of

SFB-HSVI with respect to the number of agents. To do so, we
conducted the experiments on the largest ND-POMDP benchmarks
based on the sensor network domain [24, 23, 19], which range from
five to fifteen agents. For a thorough discussion on the network sen-
sor domain, the reader can refer to [24]. The other purpose of these
experiments was to highlight the necessity of exact solvers in con-
trast to approximate methods. On each benchmark, we report value
υ0
π(η0) relative to the best joint policy π each algorithm found. We

also report running time in seconds for different planning horizons.
Results can be seen in Table 1. In all tested benchmarks, as de-

picted in column CPU (ext.), the SFB-HSVI algorithm can find an
optimal joint policy for short planning horizons. In particular, it can
optimally solve the largest benchmark (15-Mod) at planning hori-
zon T = 7 in about one hundred seconds. The results show that the
standard FB-HSVI algorithm can also find an optimal joint policy
but only for medium-sized benchmarks. For instance, in 5-P and
7-H, both standard and extended FB-HSVI algorithms can find an
optimal joint policy for T ≤ 6. But SFB-HSVI is about three times
faster than the standard FB-HSVI algorithm. Since the time re-
quired to compute an optimal joint policy increases with increasing
planning horizons, the standard FB-HSVI algorithm always runs
out of time before our extension, as illustrated in benchmark 5-P
at T = 6, and benchmark 7-H at T = 7. In larger benchmarks
11-helix, 15-3D, and 15-Mod, which involve a dozen of agents,
the standard FB-HSVI algorithm quickly runs out of memory, as it
cannot exploit the locality of interaction.

We further compare SFB-HSVI with approximate ND-POMDP
solvers CBDP and FANS. Experiments demonstrate that, although
approximate methods can scale up with respect to planning hori-
zon, they often produce poor solution quality. To illustrate this,
consider benchmark 7-H at T = 7: CBDP takes 8 seconds and re-
turns a joint policy with a return of 507.5; and FANS takes about
900 seconds and returns a joint policy with a return of 376.8; but,
SFB-HSVI takes about 40 seconds to find an optimal joint policy
with return 1082.6. Our extension provides solution quality three
times higher than that of FANS, and two times higher than that of
CBDP. It is worth noting that CBDP can improve solution qual-
ity by increasing the number of state distributions considered, but
it cannot provide any guarantees since these distributions are not
sufficient for optimal planning in ND-POMDPs.

To summarize, our experiments illustrate the scalability of SFB-
HSVI with respect to the number of agents. Our algorithm opti-
mally solves all ND-POMDP benchmarks with up to fifteen agents.
These results also highlight the necessity of the exact algorithms,
especially in critical domains where theoretical guarantees (error-
bounds or potential losses) are required.

6. CONCLUSION
This paper has demonstrated that under a locality of interaction

assumption, a property that is exploited in models such as ND-
POMDPs, the optimal value functions are additively weakly sep-
arable and linear functions. This special structure can be utilized in
the context of a recent method for transforming Dec-POMDPs into
continuous-state MDPs, which has shown significant scalability
gains over previous Dec-POMDP methods. This problem structure
allows us to introduce a novel representation of lower and upper
bounds of the optimal value functions. This representation has two
properties: first, it preserves convergence to an optimal solution;
but even more importantly, it significantly reduces the memory re-
quirement of standard representations, thereby increasing scalabil-
ity. With this representation as background, we extended the state-
of-the-art algorithm for solving Dec-POMDPs as continuous-state
MDPs to optimally solve ND-POMDPs. The resulting algorithm is

1287

the first exact algorithm for ND-POMDPs that can solve problems
with up to fifteen agents. In the future, we plan to explore applying
the additive weak separability and linearity property to general fac-
tored Dec-POMDPs. Furthermore, the scalability with respect to
the number of agents of our algorithm is encouraging, and we will
pursue additional improvements to also scale up with respect to the
planning horizon.

7. ACKNOWLEDGEMENTS
We thank Akshat Kumar for providing his software. Research

supported in part by AFOSR MURI project #FA9550-09-1-0538.

8. REFERENCES
[1] C. Amato, J. S. Dibangoye, and S. Zilberstein. Incremental

policy generation for finite-horizon DEC-POMDPs. In
ICAPS, 2009.

[2] R. Aras and A. Dutech. An investigation into mathematical
programming for finite horizon decentralized POMDPs.
JAIR, 37:329–396, 2010.

[3] R. Becker, S. Zilberstein, V. R. Lesser, and C. V. Goldman.
Solving transition independent decentralized Markov
decision processes. JAIR, 22:423–455, 2004.

[4] D. S. Bernstein, C. Amato, E. A. Hansen, and S. Zilberstein.
Policy iteration for decentralized control of Markov decision
processes. JAIR, 34:89–132, 2009.

[5] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein.
The complexity of decentralized control of Markov decision
processes. Math. Oper. Res., 27(4), 2002.

[6] A. Boularias and B. Chaib-draa. Exact dynamic
programming for decentralized POMDPs with lossless
policy compression. In ICAPS, pages 20–27, 2008.

[7] C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic
dynamic programming with factored representations. Artif.
Intell., 121(1-2):49–107, 2000.

[8] S. de Givry, F. Heras, M. Zytnicki, and J. Larrosa. Existential
arc consistency: Getting closer to full arc consistency in
weighted CSPs. In IJCAI, pages 84–89, 2005.

[9] R. Dechter. Bucket elimination: a unifying framework for
processing hard and soft constraints. Constraints,
2(1):51–55, 1997.

[10] R. Dechter. Bucket elimination: A unifying framework for
reasoning. Artif. Intell., 113(1-2):41–85, 1999.

[11] J. S. Dibangoye, C. Amato, O. Buffet, and F. Charpillet.
Optimally solving Dec-POMDPs as continuous-state MDPs.
In IJCAI, 2013.

[12] J. S. Dibangoye, C. Amato, and A. Doniec. Scaling up
decentralized MDPs through heuristic search. In UAI, pages
217–226, 2012.

[13] J. S. Dibangoye, C. Amato, A. Doniec, and F. Charpillet.
Producing efficient error-bounded solutions for transition
independent decentralized MDPs. In AAMAS, 2013.

[14] J. S. Dibangoye, A.-I. Mouaddib, and B. Chaib-draa.
Point-based incremental pruning heuristic for solving
finite-horizon DEC-POMDPs. In AAMAS (1), pages
569–576, 2009.

[15] J. S. Dibangoye, G. Shani, B. Chaib-Draa, and A.-I.
Mouaddib. Topological order planner for POMDPs. In
IJCAI, pages 1684–1689, 2009.

[16] C. Guestrin, D. Koller, and R. Parr. Multiagent planning with
factored MDPs. In NIPS, pages 1523–1530, 2001.

[17] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman.
Efficient solution algorithms for factored MDPs. J. Artif.
Intell. Res. (JAIR), 19:399–468, 2003.

[18] D. Koller and R. Parr. Computing factored value functions
for policies in structured MDPs. In IJCAI, pages 1332–1339,
1999.

[19] A. Kumar and S. Zilberstein. Constraint-based dynamic
programming for decentralized POMDPs with structured
interactions. In AAMAS, pages 561–568, 2009.

[20] A. Kumar and S. Zilberstein. Point-based backup for
decentralized POMDPs: complexity and new algorithms. In
AAMAS, pages 1315–1322, 2010.

[21] A. Kumar, S. Zilberstein, and M. Toussaint. Scalable
multiagent planning using probabilistic inference. In IJCAI,
pages 2140–2146, 2011.

[22] B. Kveton, M. Hauskrecht, and C. Guestrin. Solving factored
MDPs with hybrid state and action variables. J. Artif. Intell.
Res. (JAIR), 27:153–201, 2006.

[23] J. Marecki, T. Gupta, P. Varakantham, M. Tambe, and
M. Yokoo. Not all agents are equal: scaling up distributed
POMDPs for agent networks. In AAMAS (1), pages 485–492,
2008.

[24] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo.
Networked distributed POMDPs: A synthesis of distributed
constraint optimization and POMDPs. In AAAI, pages
133–139, 2005.

[25] F. A. Oliehoek. Sufficient plan-time statistics for
decentralized POMDPs. In IJCAI, 2013.

[26] F. A. Oliehoek, M. T. J. Spaan, C. Amato, and S. Whiteson.
Incremental clustering and expansion for faster optimal
planning in Dec-POMDPs. JAIR, 46:449–509, 2013.

[27] F. A. Oliehoek, S. J. Witwicki, and L. P. Kaelbling.
Influence-based abstraction for multiagent systems. In AAAI,
2012.

[28] R. Patrascu, P. Poupart, D. Schuurmans, C. Boutilier, and
C. Guestrin. Greedy linear value-approximation for factored
Markov decision processes. In AAAI/IAAI, pages 285–291,
2002.

[29] M. Petrik and S. Zilberstein. A bilinear programming
approach for multiagent planning. JAIR, 35:235–274, 2009.

[30] M. L. Puterman. Markov Decision Processes, Discrete
Stochastic Dynamic Programming. Wiley-Interscience,
Hoboken, New Jersey, 1994.

[31] R. D. Smallwood and E. J. Sondik. The optimal control of
partially observable Markov decision processes over a finite
horizon. Operations Research, 21(5):1071–1088, 1973.

[32] T. Smith and R. Simmons. Heuristic search value iteration
for POMDPs. In Proc. of UAI, pages 520–527, 2004.

[33] D. Szer, F. Charpillet, and S. Zilberstein. MAA*: A heuristic
search algorithm for solving decentralized POMDPs. In UAI,
pages 568–576, 2005.

[34] P. Varakantham, J. Marecki, M. Tambe, and M. Yokoo.
Letting loose a SPIDER on a network of POMDPs:
Generating quality guaranteed policies. In AAMAS, 2007.

[35] S. J. Witwicki and E. H. Durfee. Influence-based policy
abstraction for weakly-coupled Dec-POMDPs. In ICAPS,
pages 185–192, 2010.

1288

