An Asynchronous Algorithm to Improve Scheduling
Quality in the Multiagent Simple Temporal Problem

(Extended Abstract)

Vinicius De Antoni
Universidade Federal do Rio Grande do Sul
Porto Alegre, Brasil
vinicius@deantoni.com.br

ABSTRACT

Even though modeling and solving multiagent scheduling
problems seem completely understood and several algorithms
can be found in the literature, one limitation still stands up:
How to find a compatible time slot for an activity shared by
many users without requiring the users themselves to spend
time going through their calendar and choosing time slots
until everybody agrees. This extended abstract introduces
an algorithm called Asynchronous Time Finder (ATF) based
on the Asynchronous Backtracking (ABT) that enables ap-
plications to find compatible times when scheduling shared
activities among several users while requiring minimal user
interaction.

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms

Keywords
Multiagent systems, MaSTP, Scheduling, DCSP

1. INTRODUCTION

Recently, with the advent of intelligent personal assis-
tants capable of managing users’ activities, the attention
dedicated to multiagent scheduling problems and to algo-
rithms for checking their consistency has increased among
researchers of the field and the focus has been in algorithms
for checking the (mutual) consistency of their schedules.

One approach for that is to gather all the agents’ activities
and constraints into a single STP [?] and solve it. Central-
ized approaches like this though, force users to reveal their
full schedule (including information that they would prefer
to keep private). Besides, relying on a central solver leads
to performance issues as the number of agents grows.

In [?], the Multiagent Simple Temporal Problem (MaSTP)
and the distributed algorithm DAP3C for solving its consis-

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright (©) 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1381

Alvaro Moreira
Universidade Federal do Rio Grande do Sul
Porto Alegre, Brasil
afmoreira@inf.ufrgs.br

tency are presented in order to address the issues mentioned
above. The MaSTP can be seem as a collection of local
STPs, one for each agent in a multiagent system, with each
local STP having a set of intra-agent and inter-agent time
constraints for private and shared activities, respectively.

As far as we know one problem still remains: how to deal
with the problem of finding a compatible time for every
agent involved in a shared activity. Hence, the main con-
tribution of this word is a novel algorithm, named Asyn-
chronous Time Finder, (ATF) that finds a compatible time
for a given activity in a distributed fashion.

2. BACKGROUND

The Simple Temporal Problem (STP) was first introduced
in [?], being defined as a set of binary constraints over these
variables. Constraints can be written as z; — z; € [t,t']
meaning that time difference between events z; and z; is
constrained to be no less than ¢ and no more than t'. If the
time point variables x; and z; represent the end and start
event of a given activity, the values t and ¢’ are the minimum
and maximum duration of the activity, respectively.

An STP is consistent if it has at least one solution. An
STP solution is an assignment of specific time values to time
point variables that respects every constraint. In [?] the au-
thors present an algorithm for solving the STP in a central-
ized fashion called AP3C, which is a more efficient version
of the algorithm P3C [?].

The Multiagent Simple Temporal Problem (MaSTP) can
be informally defined as being composed of n local STP
instances, each one assigned to one agent, and a set of con-
straints that allow relationships between local instances.

The MaSTP is also an STP and it could also be solved
by one of the STP algorithms but by doing so, no advan-
tage from the partitioning would be taken. Distributed al-
gorithms such as the DAP3C [?] verify the consistency of
the MaSTP exploring the partitioning improving privacy,
flexibility and performance.

The problem that remains is that whenever an instance is
inconsistent, being a STP or a MaSTP, is up to the user to
make changes to the schedule so it can be consistent again.
The following scenario is adopted to explain the problem:
Jane, Matt and Annie are college classmates sharing several
classes during the week. They need to meet some time in
the next few days to work on a paper they must deliver
by the end of the month. They do not know about each
other’s activities other than the classes they share. Matt is
responsible for finding a time for their meeting.



When using algorithms, like the DAP3C, Matt would
need to try and add the activity several times with different
times until nobody’s agenda is inconsistent, in other words
the agent would have to run the algorithm several times with
different inputs from the user (activities in different times)
until one is consistent. This is impracticable in a multiagent
environment where communication is not cheap and we want
to avoid human interaction where it’s not really needed.

3. ASYNCHRONOUS TIME FINDER

Our problem can be easily seen as DCSP, where the peo-
ple involved in a shared activity (agents) have to reach an
agreement (respect constraints) regarding the time of the
activity (variables). Besides that, our problem come with
two special requirements: we need a reliable way to deter-
mine when the algorithm is finished and we need to support
the sets of available times from which the values are taken.

Our algorithm ATF is based on the Asynchronous Back-
tracking (ABT) [?], a well known algorithm for solving the
DCSP, with the addition of functions to support extra re-
quirements of our problem in particular.

The ATF algorithm is organized in three phases: during
the activity creation phase, the owner agent sends a create
message to every invitee with the activity identifier and its
duration, and also a set containing all possible start times.
Upon receiving the create message the invitee agent calcu-
lates the intersection of its available times and the set of
possible times for the activity.

The time negotiation phase is fundamentally treated by
the procedures of the ABT algorithm and it is led by the
exchange of 0k? and mogood messages between the invitees
and the owner until everybody agrees with a time or someone
gives up due to no being able to find a compatible time.

The activity termination phase consists of determining
whether or not the negotiation was successful and informing
all the invitees of the outcome. The owner agent sends a
snapshot? message to all the other agents and waits for ev-
eryone to respond. Upon receiving a snapshot? message the
invitee replies with its current value in a snapshot! message.

When the owner receives back a snapshot! it stores the
agent identification paired with its current value in snap-
shotview. If everyone responds with the same value the
owner then sends a ok! message to confirm the activity. If
there is someone with a different value, the owner waits for
a random period of time and re-sends the snapshot? mes-
sages. A maximum number of attempts can be set to avoid
infinite waiting.

3.1 Evaluation and Results

In order to evaluate the computation effort and network
usage of the ATF we use the random problem generator de-
scribed in [?] to generate MaSTP instances. The instances
are separated in seven different configurations each having
2,4, 8, 16, 32, 64 and 128 agents. Each agent in each given
configuration has from 10 to 20 private activities with du-
ration varying from 1 to 4 hours separated from each other
by 0 to 4 hours.

Our experiments consist in randomly selecting an agent as
the owner of 10 new shared activities involving every agent
and sending them the invitations. The experiment finishes
when every agent has agreed to every activity start time and
duration.

The Table 1 shows how many messages on average (2nd

1382

NO. OF AGENTS | AVG. NO. OF MESSAGES
2 55

4 163

8 378

16 757

32 1605

64 3286

128 6579

Table 1: Average no. of msgs. per configuration.
2 6000 T N
24,000 |- i
2 2,000 - .
= (= i \ \ —

2816 32 64 128
AGENTS

Figure 1: No. of messages grows linearly.

column) were exchanged between the agents (1st column) in
order to reach an agreement for the 10 shared activities.

It is important to note that the complexity of the number
of messages is O(n), where n is the number of agents. In
other words, the number of messages exchanged grows lin-
early as the number of agents increase (in Fig. 1). This is
due to the fact that the agents involved in a shared activity
exchange messages only with the owner of the activity and
not with every other agent.

4. CONCLUSIONS

The purpose of ATF is to aid the management of shared
activities within the MaSTP. The number of messages it
generates in order to negotiate activities’ time slots grows
linearly with the number of agents, making it scalable and
cost efficient. The main contribution of ATF is a reliable
way to schedule shared activities with less user interaction.

5. REFERENCES

[1] J. C. Boerkoel and E. H. Durfee. A comparison of
algorithms for solving the multiagent simple temporal
problem. In Proc. of the 20th International Conference
on Automated Planning and Scheduling, pages 26-33,
Toronto, Canada, 2010.

R. Dechter, I. Meiri, and J. Pearl. Temporal constraint
networks. Artificial Intelligence Magazine, 49(1-3), May
1991.

L. Hunsberger. Algorithms for a temporal decoupling
problem in multi-agent planning. In Proc. of the

18th National Conference on Artificial Intelligence,
pages 468-475, Sydney, Australia, 2002.

L. R. Planken, M. M. de Weerdt, and R. van der Krogt.
P3c: A new algorithm for the simple temporal problem.
In Proc. of the 18th International Conference on
Automated Planning and Scheduling, pages 256-263,
Sydney, Australia, 2008.

M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara.
The distributed constraint satisfaction problem:
Formalization and algorithms. IFEE Transactions on
Knowledge and Data Engineering, 10(5):673-685, 1998.

2]

5]





