
Distributing Coalition Value Calculations to Self-Interested
Agents

(Extended Abstract)
Luke Riley

Dept. of Computer Science
University of Liverpool, UK

L.J.Riley@Liverpool.ac.uk

Terry R. Payne
Dept. of Computer Science
University of Liverpool, UK
T.R.Payne@Liverpool.ac.uk

Trevor Bench-Capon
Dept. of Computer Science
University of Liverpool, UK

tbc@csc.liv.ac.uk

Katie Atkinson
Dept. of Computer Science
University of Liverpool, UK

K.M.Atkinson@Liverpool.ac.uk

ABSTRACT
In characteristic function games, an agent can potentially join many
different coalitions, and so must choose which coalition to join.
To compare each potential coalition, the agents need to calculate a
value for each coalition. As the number of coalitions grows expo-
nentially with the number of agents, the burden of requiring every
agent to compute all of the values is high. This can be reduced by
sharing the computational load, with each agent calculating only
a subset of coalition values. Previous state-of-the-art methods as-
sume that agents are cooperative. This paper outlines an algorithm
that distributes value calculations to self-interested agents.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General

Keywords
Coalition Formation; Distributed Algorithm Design

1. INTRODUCTION
As the set of possible coalitions is exponential on the number

of agents, it is advantageous from a computational cost viewpoint
to distribute the coalition value calculations in an approximately
equal, non-overlapping manner by coordinating the agents without
using any communication [1]. This is the approach of the current
state-of-the-art method of [1], which presents the distributed coali-
tion value calculation algorithm (DCVC). However that work as-
sumes a cooperative agent domain (where agents may not act in
their own best interest) and thus DCVC cannot in its current form
be applied to the self-interested agent domain (where agents seek
to maximise their own utility).

Our contribution is to address this issue by outlining an alterna-
tive method to order and distribute the potential coalitions, giving a
distributed coalition value calculation algorithm for self-interested

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and
Michael Huhns (eds.), Proceedings of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

agents to use. This algorithm is referred to as SICVC (i.e the Self-
Interested Coalition Value Calculation Algorithm). The SICVC al-
gorithm: requires no communication between the agents; divides
the coalition value calculations in a full and approximately equal
manner; divides equally the computational burden of computing
which coalition values to calculate; motivates each self-interested
agent to compute all of its share; and prevents deceit from occurring
later in the coalition formation process by introducing a minimal
overlap of coalition value calculations between the agents.

2. THE PROPOSED SOLUTION
To motivate the agents to calculate their coalition values, all the

coalitions in the share assigned to agent i by SICVC, denoted CVi,
will include agent i. Agent i is motivated to calculate each C ∈
CVi because if i was to report vr(C) < vt(C), where vr(C) is the
reported value and vt(C) is the truthful value, then i would not be
guaranteed to maximise its utility when completing the coalition
formation process using the reported values.

To make sure the agents report vr(C) = vt(C) and not vr(C) >
vt(C), each agent j is assigned an additional minimal share of coali-
tion value calculations to verify, denoted DV j, where the coalitions
of DV j do not include j. Each agent j is motivated to stop a de-
ceitful coalition value being reported for any D ∈ DV j, as j would
not be guaranteed to maximise its utility without verifying every
D ∈ DV j that is reported in the coalition formation process.

The SICVC algorithm makes sure each coalition only occurs in
one CVx and one DVy by: firstly, like [1], dividing the coalitions
into lists Ls where s is the coalition’s size (s ∈ {1, ...,n}); and sec-
ondly, unlike [1], dividing each list Ls into 2-dimensional lists Ls,t
where t is based on the patterns of the integer IDs used to represent
the agents of each coalition. Like [1], all agents are given a min-
imum of b |Ls|

n c coalitions to calculate from each list Ls. For lists
that do not divide equally by n, then each agent should maintain an
α pointer indicating the agent who should calculate the next addi-
tional coalition above n×b |Ls|

n c, where α is incremented for each
further additional coalition (if α goes above n, it will be reset to 1).
The same α is used for all lists from size 1 to n so that the maxi-
mum difference between the number of coalitions computed by the
agents will never be more than one.

1431

The 2-Dimensional Ordering
In every coalition there exists integer increment values that sep-

arate each agent ID of the coalition from the other agent IDs of
the coalition. For example, the integer increment value separating
agents 2 and 6 is 4, as the agent ID 2 needs to be incremented by 4
to be equal to agent ID 6. There are many different possible integer
increment values when comparing every agent ID of a coalition to
each other. Yet if the agents of the coalition are arranged into some
fixed array order (i.e. not in the standard set notation of a coalition)
named the coalition array, then the integer increment values can
also be given a fixed order, named the additional increment array
(AIA). The AIA notes the integers needed to be added to each agent
ID of position i of the coalition array, to find the agent ID of posi-
tion i+1 of the coalition array. Analysis of these AIAs has shown
that many coalition arrays share the same AIAs. The AIAs, denoted
t, are the key to the 2-dimensional representation of each list Ls,t .

The AIAs make use of integer partitions of y, denoted I (y).
Integer partitions are the sets of positive integers that add up to
exactly y, e.g. the integer partitions of 3 are: {3}, {2,1}, {1,1,1}.
The integer partitions of I ∈ I (n− s) where |I| ≤ s, are the main
component used to generate each t to split each Ls into 2-D lists
Ls,t . The equation (n− s) is used because this gives the number of
agents missing from each coalition array. Each I that solves |I| ≤ s
describes the different ways the missing agent’s IDs can be spaced
out in the coalitions, meaning each I will be used in at least one t.

Each t of a list Ls,t is therefore an array of length s that includes
an integer partition of I ∈I (n− s) (if |I| ≤ s). If the integer parti-
tion I < s then additional zeros are used to fill up the empty spaces
of t. Where the zeros are placed in the array depends on the length
of the integer partition used and the previous AIAs generated.

Each t is based on how much additional increment is needed
from the current agent ID (maintained using the value denoted ω) to
find the next agent ID of the coalition over the minimum increment
of δ = 1, since we assume that agent IDs are unique. Therefore,
for an agent i to generate a coalition C assigned to itself using an
additional increment array, denoted t, the coalition will initially
include i (thus ω← i) to motivate i to compute the coalition’s value,
then the second agent ID j will equal ω + t0 + δ (then ω is set to:
ω ← j), the third agent ID k will equal ω + t1 + δ (with ω set to:
ω ← k) and so on, until the coalition’s size limit has been reached.
Note that if the generated agent ID j ever becomes greater than n,
then j will be corrected by the following equation: j← j−n.

For example, for a four agent coalition (s= 4) in a six agent game
(n = 6) then an AIA that could be generated is t = [2,0,0,0]. The
AIA [2,0,0,0] is possible as {2} is a possible integer partition of
I (6−4) that satisfies |{2}| ≤ 4, and so the integer in {2} is placed
in the AIA. As |{2}| 6= 4, additional zeros are needed to fill up the
AIA to make the AIA the required size s. If agent 1 was to use t
to find a coalition array, agent 1 would generate C1 = [1,4,5,6],
agent 2 would generate C2 = [2,5,6,1], agent 3 would generate
C3 = [3,6,1,2], etc.

The idea is that as each agent starts generating the coalition at a
different position (which they do, as all the agents start with them-
selves as the first member), then if all the agents follow the same
AIA pattern, the coalitions generated will not overlap as long as the
AIAs are only used ≤ n times. The AIA is used n times if there is
no repeating subsection of t. The AIA is used < n times if there is a
repeating subsection of t. In the next section we discuss the number
of times to use t in this case (albeit briefly due to space).

L3
L3,[3,0,0] L3,[2,1,0] L3,[2,0,1] L3,[1,1,1]

CV

CV1 1,5,6 1,4,6 1,4,5
CV2 2,6,1 2,5,1 2,5,6
CV3 3,1,2 3,6,2 3,6,1
CV4 4,2,3 4,1,3 4,1,2 4,6,2
CV5 5,3,4 5,2,4 5,2,3 5,1,3
CV6 6,4,5 6,3,5 6,3,4

Table 1: Displays the CV assignments for all 3 agent coalitions
in a 6 agent coalition-game, with α initially set to 4.

SICVC Example
SICVC works by distributing coalitions of each size s to the

agents to calculate or verify. The following SICVC example is vi-
sualised in Table 1 for the CV partitions. If an agent i is assigned
C ∈ CVi, then i is assigned D ∈ DVi where D = N\C. To generate
3 agent coalitions in CV for a 6 agent coalition-game where α = 4
initially, the integer partitions of I (6− 3) will be used. The first
integer partition generated will be I1 = {3}, I1 will be placed in
an additional increment array (AIA) t1 and the excess space will
be filled with zeros, like so: t1 = [3,0,0]. As there are no repeating
subsections of t1, each agent will know it should use t1 to gener-
ate a coalition in its share. For instance, agent 1 uses t1 to generate
{1,5,6}, agent 2 generates {2,6,1}, etc. Once an agent has fin-
ished using I1 to generate its coalition, the next integer partition
will be generated (because |I1| == 1), which will be I2 = {2,1}.
Then I2 will be placed in an AIA t2 and the excess space will be
filled with zeros, i.e: t2 = [2,1,0]. Again, as there are no repeating
subsections of t2, each agent will use t2 to generate a coalition in
its share. For instance, agent 1 uses t2 to generate {1,4,6}, agent
2 generates {2,5,1}, etc. Now as |I2| > 1, then all possible non-
repeating permutations of t2

1 , ..., t
2
s−1 need to be used where the first

and last number of the new t are not equal. In this case, there is only
one other possible non-repeating permutation, that results in the ar-
ray: t3 = [2,0,1]. Again, no repeating patterns are found in t3 so
all agents use t3 to generate coalitions: agent 1 generates {1,4,5},
agent 2 generates {2,5,6}, etc.

No more permutations of t3
1 , ..., t

3
s−1 can be developed that have

not occurred in a previous AIA. Therefore the last integer partition
I3 = {1,1,1} is generated which converts directly into t4 = [1,1,1].
As t4 has a repeating subsection (t4

0 is repeated in all the following
positions), then the agents need to work out how many coalition
values need to be calculated from t4 and who needs to use t4. They
do this by finding the value denoted λ . For instance, agent 1 finds
that the repeating subsection of t4 has length 1. The coalition agent
1 generates is {1,3,5} and so after sorting the coalition into lexico-
graphical order λ becomes: λ = 5−3 = 2. As agent 1 is not one of
the next λ agents of the α pointer (initially set α = 4), then agent
1 does not have to calculate the coalition’s value. Agent 4 on the
other hand, uses t4 to generate the coalition {4,6,2} and finds λ

to be: λ = 6− 4 = 2. As agent 4 is the next agent to calculate an
excess coalition value according to the α pointer, agent 4 should
calculate the value of the coalition {4,6,2}. Finally, as all possible
permutations of t4

1 , ..., t
4
s−1 find AIAs that have already been used

and there are no more unique integer partitions of I (6− 3) left
(where |I| ≤ 3), then SICVC terminates.

3. REFERENCES
[1] T. Rahwan and N. R. Jennings. An algorithm for distributing

coalition value calculations among cooperating agents.
Artificial Intelligence, pages 535–567, 2007.

1432

