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ABSTRACT

Threat intervention with limited security resources is a chal-
lenging problem. An optimal strategy is to effectively pre-
dict attackers’ targets (or goals) based on current avail-
able information, and use such predictions to disrupt their
planned attacks. In this paper, we propose a game-theoretic
framework to address this challenge which encompasses the
following three elements. First, we design a method to ana-
lyze an attacker’s types in order to determine the most plau-
sible type of an attacker. Second, we propose an approach to
predict possible targets of an attack and the course of actions
that the attackers may take even when the attackers’ type-
s are ambiguous. Third, a game-theoretic based strategy
is developed to determine the best intervention approaches
taken by defenders (security resources).
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1. INTRODUCTION

Predicting attackers’ intentions and allocating security re-
sources are two research problems that are seldom addressed
together in intelligence surveillance. In this paper, based on
the Dempster-Shafer theory of evidence (D-S theory) [5] and
the DS/AHP method [1], we first analyze information, using
the multi-criteria event modeling framework [4], to deter-
mine the most plausible attacker type. Second, we propose
a principle of acceptable costs of minimaz regret to predict
the most plausible strategy that each type of attacker may
adopt, using a game matrix constructed from ambiguous
information that is available. Following this, a method to
allow a defender to select an optimal strategy is develope-
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d that will minimize the defender’s maximum regret at an
acceptable cost.

Our contributions are as follows: (i) a method to ana-
lyze the type of attacker with ambiguous information; (ii)
a principle of acceptable costs of minimax regret to predict
an attacker’s target/goal based on information gathered and
reasoned upon by an intelligent surveillance system; and (iii)
a method to determine a defender’s optimal strategy based
on the principle of acceptable costs of minimax regret.

2. ANALYZING ATTACKER TYPES

In order to find out the optimal threat intervention strat-
egy, first we should determine the most plausible attacker
type based on the information obtained by the multi-criteria
event modeling framework [4] with a mass value m§, crite-
rion’s weight w. and a utility function U° for each criterion.
Since the problem of analyzing an attacker’s type can be
considered as an ambiguous Multi-Criteria Decision Making
problem as illustrated by Figure 1!, we deploy the extended
DS/AHP method to determine an attacker’s type with the
following steps.
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Figure 1: A hierarchical structure illustrating rela-
tionship between criteria and attacker’s types
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Step 1: Determine types in frame ©, select criteria w.r.t
the observed events, and construct the preference matriz with
m$, US and weight.

Step 2: Determine the mass function my; ¢ about an at-
tacker’s type for each state of each criterion as follow:
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where s; is one of d focal elements of a criterion’s state
that has the preference value a;, w is that criterion’s weight.

Step 3: Obtain the mass functions set {mc.(x)} about
an attacker’s types for each criterion by Eq.(1). And then
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where m. is a mass function over frame ., m,: , is a mass
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c(V)myi ¢(z). (1)

cr

me,t(x)=

functions over © about an attacker’s types for the states Ué
of the criterion ¢, u(v;) is the utility value for the state vg,
and V is any subset of ..

3. THREAT INTERVENTION GAME

Since Different types of attackers might have differen-
t preferences over the choices of their next move, we can
construct a game-theoretic model for the ambiguous threat
intervention problem. Moreover, since such a game model
is different from the static Bayesian game, or the Stackel-
berg’s game, in which players’ types are determined by a
probability distribution, while in our problem, due to am-
biguous information, players’ types are determined by the
mass function. We propose a new solution concept for the
threat intervention game.

First, we will predict attacker’s strategies by the principle
of acceptable costs of minimaz regret, which suggests that
the decision maker will consider not only the maximin re-
gret but also the minimum utility he can obtain in decision
making. Formally, we have:

DEFINITION 1. Let So = {s3,...,s5'} be a set of an at-
tacker’s mized strategies, o2t € [0,1] be the threshold of ac-
ceptable costs that an attacker of type t can bear and a; € A;
s the pure strategy of a defender. Then the optimal strategy
for attacker type t, denoted as s5, (s5, € S2), is given by:

3, r=argmin{7(s3) | Tp)=max{max uz.¢@n, s)—uz.t @n, s}, (2)
where

w

min uz ¢(as, s5) > max minug ¢(ar, 512“) — 02,tSa,t, (3)

as 312“ ar

Sa,t = max min ug ¢ (ar, s5) — minmin ug ¢(a.w, sb). (4)
312“ ar sl2 a

In the above definition, the higher o is, the higher po-
tential loss for the minimum utility a type of attacker can
accept. Moreover, ¢, + means the maximum costs that a type
t attacker might pay in a threat intervention game. Thus,
02,:Sq,t means the highest costs that a type t attacker is will-
ing to pay given his type. Finally, in real-world applications,
o2, for each type of attacker can be obtained by historical
data and the judgement of criminology expects.

After that, the security team’s optimal strategy for threat
intervention can be obtained as follow:

DEFINITION 2. Let S1 = {s1,...,57} be a set of defend-
er’s mized strategies, © be the set of types of an attacker,
o1 € [0,1] be the threshold of acceptable costs that a defend-
er can bear, EUI(s1) = [E(s1), E(s1)] be an expected utility
interval [6], (s1) be the normalized nonspecificity degree [3],
and b, € A3, C Az be a pure strategy for which the opti-
mal mized strategy s3; assigns a positive probability. Then
a defender’s optimal strategy, denoted as si, is given by:

sy =arg min{7(s) | ?(Si):mQXS(S{)—E(Si)L
JF1

(5)
(6)

where
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Actually, Eq. (5) means that given the expected utility
intervals of all defender’s strategies, he will elicit the maxi-
mum regret of a given mixed strategy by a (counterfactual)
comparison between the lower expected utility of a reality
choice, and the maximum upper expected utility of a fore-
gone rejected alternative that might have been. And be-
cause only one pure strategy of an attacker’s optimal mixed
strategy will actually be taken, Eqs. (6) and (7) mean a
defender will consider the potential reduction of maximum
minimum utility given such a pure strategy of an attacker.
Hence, £(s?) is an ambiguity aversion upper expected utility
for a defender. From Eq. (8), nonspecificity degree §(s))
actually works as a discount factor: the higher the degree,
the more the upper utility of a choice is discounted. In fact,
Eq. (8) is based on the consideration of ambiguity aversion
that describes an attitude of preference for known risks over
unknown risks, when the decision maker faces an ambiguous
decision problem [2].

In fact, by Definition 2, a security manager can tune the
value of o1 to reflect different (real-time) situations at d-
ifferent security area. Thus, our method is more flexible
in balancing returns and risks, where returns is interpreted
as the expected payoff of successfully preventing an attack,
while risks mean the possibility of unaffordable losses and
the severity of loss that are caused by the failure of inter-
vention.

4. CONCLUSION

This paper addresses the threat detection and intervention
problem in intelligence surveillance. First, we introduced
an attacker’s type analysis method according to informa-
tion obtained by a surveillance system. Then, we developed
a game-theoretic model for the ambiguous threat interven-
tion problem and proposed a principle of acceptable costs of
minimax regret to predict the strategy of an attacker and
accordingly determine the optimal strategy for a defender.
Based on our method, we can address both the problem of
predicting attackers’ intentions and the problem of allocat-
ing security resources in intelligence surveillance.
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