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ABSTRACT
This article presents an overview of Ipseity, an open-source
platform developed in C++ with the Qt framework. The
current version of the platform includes a set of plugins im-
plementing single-agent and multi-agent environments, hard-
coded controllers based on Artificial Intelligence (AI) tech-
niques, classical Reinforcement Learning (RL) techniques
like Q-Learning, Sarsa, Epsilon-Greedy combined with some
linear function approximators, as well as a Machine Learn-
ing (ML) technique for Apprenticeship Learning (AL). Its
architecture allows users to execute standard AI approaches
as well as model-based, model-free, offline, online, standard
and approximated RL algorithms. Ipseity is targeted at a
broad range of users interested in AI in general, including
industrial practitioners, as well as ML researchers, students
and teachers. It is regularly used as a course support in
Artificial Intelligence and it has been used successfully to
manage power flows in simulated microgrids using multi-
agent reinforcement learning.
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1. INTRODUCTION
Solving sequential decision problems involves writing codes,

conducting experiments, and comparing results obtained from
alternative approaches. Whereas solving Supervised Learn-
ing problems can be facilitated by using software tools like
WEKA, there are currently no fully-featured experimental
platforms dedicated to the study of AI algorithms for solv-
ing sequential decision problems. Designing and developping
such a platform implies taking into account a wide range
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of environments, agent architectures, decision-taking algo-
rithms and performance measures. For example, defining a
multi-agent environment requires answering many questions
about the structure of the state, action and time spaces,
about the deterministism or stochasticity of the state transi-
tion function, whether decision-taking processes are static or
dynamic, whether there will be independent learner agents,
cooperative agents or competitive agents, etc. Likewise,
defining the architecture of agents inhabiting a MAS, elabo-
rating decision-taking algorithms and devising performance
measures for evaluating the quality of the agents’ decisions
bring many software design issues.

To our knowledge, Ipseity is currently the only multi-
agent platform that allow users interested in solving sequen-
tial decision problems to easily study the influence of some
design parameters on the performance obtained by dedi-
cated AI algorithms using accepted benchmarks. Indeed,
RL-Glue, CLSquare, PIQLE, RL Toolbox, JRLF, LibPGRL
only support single-agent RL techniques. The MATLAB
MDP toolbox by Chadès and the MARL Toolbox by Buso-
niu supports multi-agent RL under Matlab, but they are
not as easily extensible as Ipseity, that enjoys the concepts
of encapsulation, inheritance and polymorphism of object-
oriented programming. An overview about the key concepts,
the main functionalities and the properties of this platform
is presented thereafter.

2. OVERVIEW
Ipseity is an open-source platform especially dedicated to

facilitating the implementation and the experimental valida-
tion of different kinds of behaviors for cooperative or com-
petitive agents. These agents can evolve within a dynamic
or static Multi-Agent System. The state space, the action
space and the time space of the environment may be either
discrete or continuous.

2.1 Kernel Concepts
In Ipseity, a set of agents interact within a given environ-

ment. A set of agent groups, called taxons in Ipseity, can
be defined. Agents grouped together into the same taxon
may behave similarly, because they share the same class of
decision making mechanism. The actions of an agent are
performed after deliberation of its cognitive system. A cog-
nitive system implements the decision process that allows
an agent to maps actions from perceptions and it must be
plugged to a taxon. This means that all the agents asso-
ciated to the same taxon use the same decision process. A
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Figure 1: Some screenshots of Ipseity

cognitive system embeds a set of AI algorithms that might be
executed alternatively, concurrently or sequentially at will.
The current version of Ipseity provides only the alternative
execution of algorithms, but the action returned by the exe-
cuted algorithm may be used to revise the future decisions of
the idle algorithms. For example, the user can interact with
the system by using its keyboard to indicate the good actions
the agent has to perform in some situations. These expert
actions may be used by a ML algorithm during the simu-
lation involving the user or afterward. This functionality is
particularly useful in Apprenticeship Learning. The instants
at which the environment updates and at which the agents
perceive and act can be defined within a system scheduling.
For studying the quality of the decisions taken individually
or collectively by the agents under some initial conditions,
the user can define a benchmark. A benchmark consists of
a parameter setting and a set of scenarios. The parameters
of the environment or those of the tested decision-taking al-
gorithms can be automatically set from predefined values
specified in the parameter setting. A scenario specifies the
initial environmental condition of the MAS. The order and
the numbers of episodes of the predefined scenarios may be
changed by the user himself or an agent. Statistics about
the performance of the executed algorithms and about the
agents’ interactions are generated within a workspace repos-
itory during the simulation of a benchmark. All these con-
cepts have been defined within classes in Ipseity.

2.2 Platform Functionalities
The current version of Ipseity allows the user to load a

predefined environment, to create and destroy workspaces,
to load predefined scenarios, to plug and unplug cognitive
systems to taxons, to set the parameters of a predefined
system scheduling, of the loaded environment and of the
loaded cognitive systems, to load a predefined scenario su-
pervisor, to select the scenarios involved in the simulation,
to start/pause/stop the simulation, to modify the simula-
tion speed and to select the statistics that are generated
during the simulation. The predefined single-agent environ-
ments are Acrobot, Cartpole, DoubleIntegrator, Inverted-
Pendulum, MountainCar, RasendeRoboter, Rubik’s Cube.
The multi-agent environments are SmartGrid [2] and a grid-
world video-game named Delirium2.

2.3 Properties
Ipseity satisfies many of the requirements proposed by

Kovacs et al. [1] about the design of software for RL. In
particular, Ipseity uses kernel concepts and components
(i.e. data representations and algorithms) that are as flex-
ible as possible. Indeed agent perceptions and actions are

represented by 64-bit float vectors, allowing agents to be im-
merged in discrete or continuous environments. Ipseity is
broadly extensible as it is based on object-oriented program-
ming and it uses DLL as plugins to implement environments,
cognitive systems, system schedulings and scenario supervi-
sors. These plugins can be easily integrated in other sys-
tems and applications. For example, Ipseity can be used
to learn the behaviors of some agents. Once the learning
phase is finished, agents can perceive information from a re-
mote environment and act according to the learnt behavior.
Such integration has been realized between Ipseity and a
Java-based microgrid simulator [2]. Ipseity can easily be
extended by specialized plugins for the target application
area. Customized extensions include new environments, al-
gorithms that take part in the decision processes of some
cognitive systems or rendering modules for some predefined
environments. Ipseity supports the user in keeping track
of all the data generated during simulations, such as the
performed actions of agents and statistics about the perfor-
mance results of the AI algorithms that are empirically stud-
ied. Ipseity provides a user-friendly interface (see Fig.1)
with informative icons and widgets for setting up all the
parameters involved in the simulation of a MAS, including
those of the environments, of the system scheduling and of
the cognitive systems.

3. CONCLUSION
An overview of Ipseity has been presented in this ar-

ticle, with a focus on the Reinforcement Learning based
functionalities. Ipseity is highly modular and broadly ex-
tensible. It can be freely downloaded from http://www.

ipseity-project.com under a GNU GPLv3 open-source li-
cence. A demonstration of the platform is available on http:

//www.ipseity-project.com/demo/ipseity.avi. Latest de-
velopments in the platform cover an approach (Reward-regu-
larized Classification for AL) dedicated to Apprenticeship
Learning. RCAL will be presented at AAMAS 2014. Forth-
coming functionalities include new multi-agent environments,
new state-of-the-art RL algorithms and a Web front-end for
facilitating the collaboration among the community.
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