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ABSTRACT
This paper studies the likelihood of the existence of a pure
Nash equilibrium (PNE) in random payoff graphical games.
Here, players are represented by vertices, they choose a
strategy in finite discrete sets of strategies, and the scope of
a player’s utility function is only local. In this setting, the
probability of existence of a PNE has been deeply studied
for various graphical structures when the number of play-
ers tends to infinity, but only in the two strategies-per-
player case: this paper extends these studies to an arbi-
trary number of strategies-per-player. We prove theoreti-
cally how more strategies-per-player makes the distribution
of the number of equilibria get closer to a Poisson distribu-
tion. We apply these results to various graph structures and
conclude with numerical experiments.
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Keywords
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1. INTRODUCTION
The Internet and networks have given rise to new eco-

nomic contexts where a large number of self interested play-
ers interact (e.g. crowd markets, routing networks): there
are growing interests for modelling and predicting what sit-
uations emerge when numerous rational behaviors interact
[15, 8]. The Nash Equilibrium (NE) is a fundamental stabil-
ity notion: no player has an individual incentive to deviate
from his current randomized strategy, and an NE always
exists. However, it is unclear why a player would adopt a
randomized strategy 1. The Pure Nash Equilibria (PNE)
consider only deterministic strategies, but may exist or not.

1When a player chooses a mixed strategy as a best response,
all strategies chosen with a non-zero probability are already
necessarily a pure strategy best response for this player [16].
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In many cases, the utility functions of players do not de-
pend on all other players, but only on a subset. Graphical
games (GG) provide representations of multiplayer games
involving large populations of players when influences among
them are local [13, 12]. In a GG, each vertex is a player, and
a player’s utility function depends only on the strategies of
his neighbors and his own strategy. The computation of a
PNE in classes of GGs with bounded treewidth has been
deeply studied [9, 2, 5, 18]. It has been proved [11] that a
problem-class of PNE-GG is polynomially tractable iff this
problem-class has a bounded treewidth. Otherwise PNE-
GG is NP-Complete.

The existence of a PNE can be investigated by using prob-
ability measures with random payoffs and for a fixed (or ran-
dom) graph. The distribution of the number of PNE in gen-
eral games with random payoffs has already been studied in
the following settings in n players matrix-games (i.e.: com-
plete support graphs) [7, 17]. For short, in matrix games the
probability of PNE tends to 1− 1/e when the strategy sets
of at least two players tend to infinite sizes. For massive net-
works of players, these studies are more interesting when the
number of players n tends to infinity: The most recent re-
sults about GGs with various graph structures, when n tends
to infinity and 2 strategies-per-player [6, 3, 10] are summa-
rized in the Section 3. Our work extends these asymptotic
studies (when the number of players tends to infinity) to the
σ > 2 strategies-per-player case, with various graphs.

2. PRELIMINARIES
Given a set V , let the power set P(V ) be {W |W ⊆ V },

and let Pk(V ) denote {W |W ⊆ V, k = |W |}. In an unori-
ented graph G = (V,E), the set of vertices is V , the set
of edges is E ⊆ P2(V ), and the cardinality of |V | is de-
noted by n. Let the neighborhood of a vertex v be N (v) =
{w ∈ V |{w, v} ∈ E} and letM(v) denote N (v)∪{v}. More
generally, for all subset of the vertices W ⊆ V , let the neigh-
borhood of W be N (W ) = (∪w∈WN (w))\W , and letM(W )
denoteN (W )∪W . The degree of a subset of vertices W ⊆ V
is δ(W ) = |N (W )|. Given a subset of vertices W ⊆ V , the
subgraph G(W ) is the restriction of G to the vertices W and
the edges contained in W .

Definition 1. A graphical game (GG) is formally defined
by a tuple Γ = (G = (V,E),S = {Sv}v∈V , (uv)v∈V ). In the
graph G = (V,E) (also called support graph), each ver-
tex represents a distinct player. A player v in V chooses a
strategy sv in his finite discrete set of strategies Sv. The
utility function uv of each player, is local. In other words,
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uv :
∏
w∈M(v) Sw → R depends only on the strategies of

the players in the neighborhood of player v, and on his own
strategy.

For every subset W ⊆ V , let us denote sW the elements of
the cartesian product SW =

∏
w∈W Sw. We will name lo-

cal strategy profiles, the elements sM(v) of SM(v) and global
strategy profiles, the elements sV (or s, for short) of the
cartesian product SV (or S, for short). Given a global strat-
egy profile s ∈ S, we will use the notation sW to denote the
projection of s to SW . We fix 0 ∈ S to be one particular
global strategy profile. Each payoff uv(sM(v)) can be defined
arbitrarily in R, for each player v, and each local strategy
profile sM(v).

Figure 1: The Chicago-Game

Example 1. In the Chicago-Game (Figure 1), each player
is the owner of one block of land, and must choose what to
build among those strategies: a garden, a residential com-
plex, a factory, a school, a museum, or a shopping mall.
The payoff function of a building is local: For instance,
between two factories, one would prefer to build a garden
rather than a residential complex, but between some gar-
dens and a school, one would prefer to build a museum.
Will the owners agree on a building plan?

A player, given his neighbors’ strategies, is considered in-
dividually stable, when his strategy is already maximizing
what he can individually get for himself.

Definition 2. (Best response function, BRF). Player v’s
best response function BRv : SN (v) → Sv associates to each
strategy profile sN (v) the best response strategies:

BRv(sN (v)) = argmaxsv∈Sv{uv(sN (v), sv)}

Definition 3. (Pure Nash equilibrium, PNE). A pure Nash
equilibrium is a global strategy profile s such that all players
are playing a best response:

sv ∈ BRv(sN (v)), for all player v.

In this setting, to study if a pure Nash equilibrium is likely
to exist, we can use a probability measure.

Definition 4. (Random payoff graphical game, RPGG).
We fix a support graph G = (V,E) and a family of discrete
strategy sets S = {Sv}v∈V for the players. Given G and S, a
Random Payoff Graphical Game is a GG in which the payoffs
uv(sM(v)) are drawn uniformly and independently in the
continuum [0, 1], for all v ∈ V and for all sM(v) ∈ SM(v). It
defines a probability measure PG,S over the GGs of support
graph G and strategy sets S = {Sv}v∈V .

Drawing the payoffs uniformly and independently is moti-
vated by the simplicity of this model for payoffs.

Given PG,S , let us now consider for each global strategy
profile s and each player v, a random variable Xs,v ∈ {0, 1}
which value is 1 iff sv ∈ BRv(sN (v)); it indicates whether v
plays a best response in the global strategy profile s. Let us
consider for each s ∈ S, a random variable Ys ∈ {0, 1} which
value is 1 iff the global strategy profile s is a PNE. We have
Ys = minv∈V Xs,v. We will abuse notation Xs,v to denote
the event Xs,v = 1. Similarly, Ys = ∩v∈VXs,v will denote
Ys = 1. The general purpose of this paper is to study the
distribution Z =

∑
s∈S Ys describing the number of PNE

with respect to PG,S , given different graphs G and strategy
sets S = {Sv}v∈V .

Remark 1. The fact that a global strategy profile s is a
PNE, depends only on the BRFs. One must not care about
the precise values of the utilities.

Remark 2. Let us denote σv the finite cardinality num-
ber |Sv|. Given sN (v), since the utilities

{
uv(sN (v), sv)

}
sv∈Sv

are drawn uniformly in a continuum [α, β] (with α < β) and
independently, and since σv is finite, then the best responses
are always singletons2, and we have PG,S(Xs,v) = σ−1

v .

Remark 3. Given a support graph G and strategy sets
S = {Sv}v∈V , considering the measure PG,S , the distribu-
tions of Xs,v, Ys and Z depend only on G and S.

Remark 4. The semantics of the strategies in the finite
strategy sets do not matter. Let us assume that all players
have the same number σ ≥ 2 of strategies. The distribution
of the random variables Xs,v, Ys and Z with respect to PG,S
are the same as distributions with respect to a probability
measure denoted by PG,σ.

This paper studies the probability of existence of a PNE
PG,σ(Z > 0), given support graphs G and numbers σ of
strategies-per-player. Massively multiplayer games have mo-
tivated deep researches towards asymptotic studies over the
number of players. In graph sequences (Gn)n∈N where the
graphs have a particular structure (e.g. paths, trees, grids,
.., random) and n = |V | denotes the number of players, it
has been shown how the structure of the graph influences
the limit of PGn,2(Z > 0) as n tends to infinity [6, 3]. The
next section summarizes those results. Recent experimental
evidences indicate that the number of strategies-per-player
σ can strongly impact the convergence of PGn,σ(Z > 0) as n
tends to infinity [10]. We will give theoretical explanations
for the impact of the number of strategies-per-player.

3. PREVIOUS RESULTS
We summarize here the most important results of the lit-

erature [6, 3] concerning the probability of existence of a
PNE in random payoff graphical games. While Theorem 1
gives a condition that makes PNE unlikely as n→ +∞, The-
orem 2 gives a condition which makes the number of PNE
get close to a Poisson(1) distribution, implying PGn,2(Z >
0)→ 1− 1/e as n→ +∞.

2Given a countable set of random variables {Ui}i∈N drawn
uniformly and independently in a continuum [α, β] (with
α < β), the probability that at least two different variables
Ui and Uj are equal, equals 0.
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3.1 Players with 2 strategies:
a condition for PNE impossibility

The following theorem is based on small witnesses of equi-
librium impossibility: if two interracting players can never
agree, then there is no chance to have a PNE. A number m
of such two-players games makes the bound in Theorem 1.

Definition 5. (d-Bounded Edge.) In a graph G = (V,E),
a d-Bounded Edge is an edge e = {a, b} such that both a
and b have degrees bounded by d.

Theorem 1. [3, 4] (Likelihood of impossibility witnesses.)
Let G be a support graph with at least m d-bounded edges
without any common vertices. We have:

PG,2(Z > 0) ≤

(
1−

(
1

4

)2d
)m

≤ exp
(
−m (1/4)2d

)
In consequence, in numerous structures of support graphs
holding a number m = Ω(n) of d-bounded edges (for in-
stance: paths, rings, bounded degree trees, ...), with 2 strategies-
per-player, the probability of having a PNE tends to 0, as
the number of players increases (which seems close from em-
pirical evidence [6, 10]). The present writing of Theorem
1 is different from the original one [3] because we discov-
ered a small flaw in the proof of the original theorem, and
Daskalakis et al. answered by a more carefull analysis [4]
and this new version of Theorem 1. Following this, a nat-
ural way to approach our problem would be to generalize
Theorem 1 to the σ ≥ 2 strategies-per-player case. How-
ever, we will take a different direction, due to the fact that
in our context (σ > 2), the convergence rate to 0 of such a
bound is so slow that it has almost no consequence on Z.

3.2 The influence of the number of strategies
Some experimental evidences indicate that the number of

strategies-per-player σ strongly impacts the convergence of
PGn,σ(Z > 0) [10] (see Figure 2). It has been observed
that in square-grids, the probability PGn,2(Z > 0) (e.g.
σ = 2 strategies-per-player, which would fulfill the assump-
tions of Theorem 1) decreases as the number of players n
grows, whereas PGn,4(Z > 0) (e.g. σ = 4 strategies-per-
player) seems to behave more like a Poisson(1) distribution
3. Therefore, it is not satisfying to study only the case where
the number of strategies-per-player is σ = 2. We reproduced
the experiments, with 5000 random payoff graphical games
for each n and each σ, and obtained the Figure 2. We the-
oretically explain the influence of the number of strategies-
per-player in the next sections.

3.3 Players with 2 strategies:
number of PNE and Poisson

The following Theorem 2 gives a connectivity condition
(named “expansion”) which makes the number of PNE get
close to a Poisson(1) distribution.

Definition 6. (Total Variation Distance.) The total vari-
ation distance 4 between two discrete probability distribu-
3Recall that 1− 1/e ' 0.6321
4Although this definition slightly differs from the previous
literature [3], by a constant (1− 1/e)−1, a tighter use of the
Lemma 2 [1] allows us to add this constant without changing
the writing of the previous literature and what will follow.

Figure 2: Proportion of square-grids having a PNE,
as the number of players grows, with different num-
bers of strategies-per-player σ.

tions Z and T over N is defined by:

d(Z, T ) = (1− 1/e)−1(1/2)
∑
k≥0

|P(Z = k)− P(T = k)|

Definition 7. (Poisson(1) Distribution.) A discrete distri-
bution T over N is a Poisson(1) distribution iff:

∀k ∈ N, P(T = k) =
1

e

1

k!

Remark 5. Let us consider a random variable Z over N,
a Poisson(1) distribution T , and a bound B ∈ R≥0. If the
total variation distance d(Z, T ) is upper-bounded by B, then
P(Z > 0) is in

[
(1− 1

e
)(1−B), (1− 1

e
)(1 +B)

]
.

Definition 8. ((α, β)-Expansion.) The expansion of a sub-
set W ⊂ V is E(W ) = {v ∈ V : ∃w ∈ W with {w, v} ∈ E}.
A graph G = (V,E) is said to have (α, β)-expansion iff,
whatever the subset W ⊂ V, |W | ≤ dβ|V |e, it expands into
α times more vertices, that is: |E(W )| ≥ min{dα|W |e, |V |}.

Theorem 2. [3] (Convergence to Poisson(1) under suf-
ficient expansion.) Let G be a support graph with n ver-
tices, and an ε > 0. If G has (α, 1/α)-expansion with α =
(1 + ε) log2(n) then:

d(Z, T ) ≤ 2−n/2 + (exp(n−ε)− 1)

where Z is the distribution of the number of PNE under
PG,σ, and T is a Poisson(1) distribution.

There are also results about random graphs drawn from
the Erdös-Renyi model G(n, p) (where n is the number of
vertices and p ∈ [0, 1] is the probability for an unoriented
edge to exist), it is shown that when there is an ε > 0 such
that c/n2 < p < (1 − ε) ln(n)/(2n) (medium connectivity)
the probability PGn,2(Z > 0) converges to 0, and when p >
2(1 + ε) ln(n)/n the distribution Z of the number of PNE
converges to a Poisson(1) distribution, as n→ +∞.

3.4 Players with same number σ of strategies:
the particular case of bipartite graphs

We summarize now results concerning specifically (aug-
mented) bipartite support graphs [6], with respect to PG,σ
(where there are σ strategies-per-player).
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Theorem 3. [6] Let Gn = K(V 1
n , V

2
n ) be a sequence of

complete bipartite graphs with |V 1
n ∪ V 2

n | = n vertices. If
|V 1
n | and |V 2

n | are unbounded as n→ +∞, then:

PGn,σ(Z > 0)→ 1− 1/e, as n→ +∞.

Definition 9. A graph G = (V 1 ∪V 2, E) is an augmented
bipartite graph AK(V 1, V 2, E) if no pair of nodes in V 2 are
connected by an edge, each node in V 2 is connected to all
nodes in V 1, and nodes in V 1 are arbitrarily connected.

Theorem 4. [6] Let Gn = AKn(V 1
n , V

2
n , En) be a se-

quence of augmented bipartite graphs with |V 1
n | = m and

|V 1
n ∪ V 2

n | = n. If n/3−m tends to +∞ as n→ +∞, then:

PGn,σ(Z > 0)→ 1− (1− (1/σ)m)σ
m

, as n→ +∞.

4. STRATEGIES, CONNECTIVITY
AND POISSON DISTRIBUTION ON PNE

In order to generalize Theorem 2 to the σ strategies-per-
player case, we will need the technical Lemma 1 to give us a
refined upper-bound on the distance between the number of
PNE and a Poisson(1) distribution. This technical lemma
will let us demonstrate two contributions:

• If the support-graph is connected, then more strategies-
per-player can only make the number of PNE get closer
to a Poisson(1) distribution.

• Under some (σ, q, r)-connectivity property which is less
demanding when there are more strategies-per-player,
the number of PNE converges to a Poisson(1) distri-
bution when the number of players n tends to infinity.

4.1 A technical lemma
We first write a technical (counterintuitive) lemma giving

an upper bound on the distance between the distribution of
the number of PNE (given PG,σ) and a Poisson(1) distribu-
tion. The proof of Lemma 1 is in Appendix A.

Definition 10. Let Q(V ) ⊂ P(V ) denote:

Q(V ) =

{
W ⊂ V :

W 6= ∅ , M(W ) 6= V ,
∀v ∈ V, N (v) ⊆M(W )⇒ v ∈W

}
Lemma 1. (Strong version.) Let G be a graph and let σ

be the number of strategies-per-player. Let T denote a Pois-
son(1) distribution. Recall that for every subset of vertices
W ⊆ V , the degree δ(W ) denotes |N (W )|. We have:

d(Z, T ) ≤
∑
v∈V

σ−δ(v) +
∑

W∈Q(V )

σ−δ(W )

For simplicity, a weak version of this lemma can be obtained
by: instead of summing over W ∈ Q(V ), summing over
the superset {W ⊂ V : W 6= ∅ , M(W ) 6= V }. While the
weak version of Lemma 1 will let us demonstrate theoretical
results in this section, the strong version will enable us to
provide refined bounds for some graphical structures.

4.2 Connectivity and Poisson on PNE
Recall thatN (W ) = ∪v∈WN (v)\W and δ(W ) = |N (W )|.

The conditions of the following Definition 11 state that ev-
ery non-empty subset of vertices W has at least ∆ other
neighbors. Higher is ∆, more the graph is connected.

Definition 11. (∆-neighborhood property.) We say that
a graph G = (V,E) has the ∆-neighborhood property if for
every non-empty subset W ⊂ V :

|W | < n−∆⇒ δ(W ) ≥ ∆

|W | ≥ n−∆⇒W ∪N (W ) = V

Remark 6. The 1-neighborhood property and connectiv-
ity are equivalent. Indeed, if a graph G = (V,E) is con-
nected, then all non-empty subsets W ⊂ V are connected to
V \W and therefore have at least one neighbor. If a graph
G = (V,E) has the 1-neighborhood property, it is always
possible from any vertex v to make a connected component
W ⊃ {v} grow iteratively to any other vertex w.

Remark 7. Given a graph G, by Menger’s Theorem [14],
G has the ∆-neighborhood property iff G is ∆-vertex-connected
(ie: between every pair of vertices, there are at least ∆
vertex-disjoint paths).

The logarithm with basis σ is denoted by logσ(x).

Theorem 5. (∆-convergence.) Let G be a graph and let
σ be the number of strategies-per-player. Let T be a Pois-
son(1) distribution. If G has the ∆-neighborhood property,
then:

d(Z, T ) ≤ nσ−∆ + 2nσ−∆

Therefore, if G is connected, then it has the 1-neighborhood
property, and then more strategies-per-player can only make
the number of PNE Z get closer to a Poisson(1) distribution.
Moreover, considering a sequence of support graphs (Gn)n∈N
such that Gn has the ∆n-neighborhood property and denot-
ing the number of PNE with respect to PGn,σ by Zn, if
∆n ≥ logσ(2)(1 + ε)n for some real constant ε > 0, then:

d(Zn, T ) ≤ n2−n + 2−εn

d(Zn, T ) → 0 as n→ +∞

Proof. The bound nσ−∆ + 2nσ−∆ is a simple conse-
quence of the weak version of Lemma 1, combined with the
∆-neighborhood property. Remark 6 and some calculus give
the other consequences.

4.3 (σ, q, r)-connectivity and Poisson on PNE
The following Theorem 6 refines the Theorem 5 by formu-

lating a condition which makes the number of PNE tend to
Poisson(1) as the number of players tends to infinity.

Definition 12. ((σ, q, r)-connectivity.) Let G be a graph
and let σ be the number of strategies-per-player. The graph
G is (σ, q, r)-connected iff:

∀W ⊂ V , δ(W ) ≥ min{α|W |, |V |}

with α = (1 + q) logσ(n) + r and q ≥ −1 and r ≥ 0.

Theorem 6. Let G be a graph and let σ be the number
of strategies-per-player. Let T be a Poisson(1) distribution.
If G is (σ, q, r)-connected, then:

d(Z, T ) ≤ n−qσ−r +
(
exp

(
n−qσ−r

)
− 1
)

Therefore, considering a sequence of support graphs (Gn)n∈N,
with αn = (1 + q) logσ(n) + rn, and denoting the number of
PNE with respect to PGn,σ by Zn, we have:
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1. If q > ε for some real constant ε > 0 and rn ≥ 0,
Then d(Zn, T )→ 0 as n→ +∞

2. If rn → +∞ as n→ +∞ and q ≥ −1,
Then d(Zn, T )→ 0 as n→ +∞

Proof. From the weak version of the Lemma 1, we have:

d(Z, T ) ≤
∑
v∈V

σ−δ(v) +

n−1∑
k=1

M(W )6=V∑
W∈Pk(V )

σ−δ(W )

First, since G is (σ, q, r)-connected, we have:∑
v∈V

σ−δ(v) ≤
∑
v∈V

σ−((1+q) logσ(n)+r) = n−qσ−r

Second, we also have:

M(W )6=V∑
W∈Pk(V )

σ−δ(W ) ≤

(
n

k

)
σ−((1+q) logσ(n)+r)k

≤ nk

k!
n−(1+q)kσ−rk =

(
n−qσ−r

)k
k!

By identifying the power series of exp
(
n−qσ−r

)
, we have:

n−1∑
k=1

(
n−qσ−r

)k
k!

≤ exp
(
n−qσ−r

)
− 1

The other consequences follow directly.

The conditions of the Theorem 6 formulate an expansion
of every subset of vertices. As σ grows, these conditions are
easier (since logσ+1(x) ≤ logσ(x)) and the bound on d(Z, T )
is smaller, speeding up the convergence when n tends to
infinity. The (σ, q, r)-connectivity is a too strong condition
for graphical structures like rings, paths, trees, and grids.

5. DETERMINISTIC GRAPHS
Rings, paths, binary trees, Halin graphs (obtained from a

binary tree by adding one big cycle on its leaves), square-
grids and many other deterministic support graphs do not
fulfill the conditions of the Theorem 6. However, they still
seem to exhibit a Poisson(1) behavior for the PNE number,
when the number of strategies-per-player σ is greater than
two. In fact, for these structures, most subsets W ⊂ V are
highly connected and only a few subsets W ⊂ V have a small
number of neighbors: it calls for a refined use of Lemma 1.

We will do experiments for various numbers n of play-
ers and σ of strategies-per-player: We compute the intervals
given by Lemma 15 and an estimation of PG,σ(Z > 0). These
intervals, denoted by [inf, sup], are evaluated for rings and
paths by the combinatoric bounds of Theorems 7 and 8 (see
Appendix B), unknown for binary trees and Halins, and for
square grids: exactly computed, from Lemma 1. Bounds be-
low 0 or above 1 are marked by ‘-’. Each PG,σ(Z > 0) value
(denoted by ‘P’) is estimated by 200 random instances that
are solved by the junction tree algorithm or SAT solvers.
Intractable sizes are marked by ‘-’.

5Recall that d(Z, T ) ≤ B implies PG,σ(Z > 0) ∈[
(1− 1

e
)(1−B), (1− 1

e
)(1 +B)

]
.

5.1 Rings and paths
The following Theorems 7 and 8 (based on Lemma 1) give

bounds on the distance between the number of PNE and a
Poisson distribution in rings and paths.

Theorem 7. (Distance to Poisson(1) for Rings.) Con-
sider a random payoff GG with a ring support graph G =
(V,E) (that is: V = {1, . . . , n} and E = {{i, i+ 1}}1≤i≤n ∪
{{n, 1}}) and with σ strategies per player. We have:

d(Z, T ) ≤ nσ−2 + 2(cosh(nσ−1)− 1)

Theorem 8. (Distance to Poisson(1) for Paths.) Con-
sider a random payoff GG with a path support graph G =
(V,E) (that is: V = {1, . . . , n} and E = {{i, i+1}}1≤i≤n−1)
and with σ strategies per player. We have:

d(Z, T ) ≤ 2σ−1 + nσ−2 + 2(exp(nσ−1)− 1)

We compare the combinatoric bounds of Theorems 7 and
8 (see the proofs in Appendix B) to an experimental esti-
mation of PG,σ(Z > 0) (Table 1). The theoretical bounds
seem to really overestimate the distances between Z and a
Poisson(1) behavior for PG,σ(Z > 0). Therefore, the simple
existence of these bounds seems to be already a good indica-
tor of a Poisson(1) behavior. In rings and paths, a growth on
the number σ of strategies-per-player appears to slow down
the convergence, as n tends to infinity, of PG,σ(Z > 0) to 0,
as indicated by Theorems 7 and 8.

5.2 Binary trees and Halins

Table 2: Estimations of the likelihood of PNE exis-
tence PG,σ(Z > 0) in binary trees and Halin graphs

binary trees Halin
σ \ n 15 31 63 15 31 63

2 0.46 0.22 0.04 0.48 0.24 0.04
3 0.46 0.16 0.04 0.50 0.35 0.10
4 0.41 0.21 0.01 0.59 0.44 0.19
5 0.46 0.17 0.08 0.64 0.49 0.24

Paths and rings differ by the two leaves, their dispari-
tions making PG,σ(Z > 0) grow faster when σ grows (Table
1). Similarly, binary trees and Halin graphs only differ by
the degrees of the (n + 1)/2 leaves. As σ grows, the like-
lihood PG,σ(Z > 0) grows faster in Halins than in binary
trees (Table 2). The negative impact on the convergence of
PG,σ(Z > 0) to 0 as n tends to infinity, is stronger in Halins.
Poorly connected leaf-players can create instabilities.

5.3 Square-grids

Table 3: Bounds for the likelihood of PNE existence
PG,σ(Z > 0) in square grids

inf sup inf sup inf sup
σ \ n 16 25 36

6 0.271 0.993 0.185 - - -
8 0.472 0.793 0.450 0.814 0.276 0.988
10 0.543 0.721 0.535 0.729 0.459 0.806
12 0.576 0.688 0.572 0.692 0.532 0.732
14 0.594 0.671 0.592 0.673 0.569 0.696
16 0.604 0.660 0.603 0.661 0.589 0.676
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Table 1: Estimations of the probability of PNE in rings and paths, and the intervals of Theorems 7 and 8
Rings inf P sup inf P sup inf P sup inf P sup inf P sup
σ \ n 4 8 12 16 20

6 0.562 0.63 0.702 0.140 0.53 - - 0.50 - - 0.47 - - 0.33 -
10 0.607 0.62 0.657 0.455 0.64 0.809 0.099 0.60 - - 0.55 - - 0.45 -
14 0.619 0.68 0.645 0.542 0.69 0.722 0.361 0.61 0.904 0.070 0.66 - - 0.60 -
18 0.624 0.63 0.640 0.577 0.66 0.687 0.468 0.67 0.796 0.294 0.67 0.970 0.050 0.58 -

Paths 4 8 12 16 20
6 - 0.65 - - 0.51 - - 0.36 - - 0.36 - - 0.29 -
10 0.095 0.68 - - 0.55 - - 0.52 - - 0.47 - - 0.41 -
14 0.255 0.67 - - 0.63 - - 0.49 - - 0.46 - - 0.48 -
18 0.341 0.69 - 0.005 0.58 - - 0.60 - - 0.55 - - 0.51 -

We evaluate in square-grids the bounds from Lemma 1
by computing the vector δk = |{W ∈ Q(V )|δ(W ) = k}|,
k ∈ [0, n]. It enables to evaluate the bounds [inf, sup], for
whatever σ, at a same computational cost (Table 3). As
indicated by the experimental evidences (Figure 2, Table 3),
the number σ of strategies-per-player has a strong impact
on the likelihood of a PNE: a small growth on σ seems to
almost negate the convergence of PG,σ(Z > 0) to 0 as n
tends to infinity, and the number of PNE becomes bounded
to a Poisson(1) distribution.

6. CONCLUSIONS
This paper gives theoretical explanations about the inter-

play between the graphical structure, the sizes of the strat-
egy sets and the probability of existence of a PNE, in games
with independent random payoffs. While for two strate-
gies per player the existence of a PNE is unlikely for many
graph structures [6, 3, 10], a reasonable growth of the num-
ber of strategies makes this likelihood behave more like a
Poisson(1) distribution: when the number of players goes to
infinity in (σ, q, r)-connected graphs, and when the number
of players is fixed in some graphs (rings, paths, square-grids).

The next perspectives are to study random support graphs
(like the models from Erdös-Rényi, Barabási-Albert, and
Watts-Strogatz) different numbers of strategies per player,
correlated payoffs, and evolutionary solution concepts.
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APPENDIX
A. PROOF OF LEMMA 1

The proof of Lemma 1 relies on a convergence lemma to
Poisson(1). By using this convergence lemma, we demon-
strate the intermediate technical Lemma 3, to get rid of the
probabilites. Using this intermediate technical Lemma 3, we
achieve the proof of Lemma 1.

A.1 Convergence lemma to Poisson(1)
We first remind the same convergence lemma used in [3],

which comes from [1]. For simplicity, it is presented with
the notations of its upcoming present application.

Lemma 2. Let {Ys}s∈S be a set of Bernoulli variables
with Z =

∑
s∈S Ys such that E [Z] = 1. For each Ys, we

define the neighborhood of dependence Ds ⊂ S to contain
(at least) all the variables Yt from which Ys is not indepen-
dent. Finally, let T be a Poisson(1) variable and d(Z, T ) the
total variation distance between Z and T . Then we have:

d(Z, T ) ≤ b1 + b2

where:

b1 =
∑
s∈S

∑
t∈Ds

P(Ys)P(Yt)

b2 =
∑
s∈S

∑
t∈Ds\{s}

P(Ys ∩ Yt)

A.2 Intermediate technical lemma
Recall that G = (V,E) is a support graph and that the

discrete strategy sets Sv all have the same cardinality σ.
For each global strategy profile s ∈ S, the Bernoulli variable
Ys is the indicator that s is a PNE. The distribution Z de-
scribes the number of PNE with respect to PG,σ. We have
EG,σ [Z] =

∑
s∈S EG,σ [Ys] = σn × σ−n = 1 6.

Lemma 3. Let G = (V,E) be a graph and let σ be the
number of strategies per player. With respect to PG,σ, let
Z be the distribution of the number of PNE and let T be a
Poisson(1) distribution. We have:

d(Z, T ) ≤ σ−n|D0|+ σ−n
n−1∑
k=1

|Dk
0 |σk

where:

D0 = {s ∈ S : ∃v ∈ V, sN (v) = 0N (v)}

is a function of G and σ, and so is:

Dk
0 =

{
s ∈ S \ {0} :

∀v ∈ V, sN (v) = 0N (v) ⇒ sv = 0v
|{v ∈ V, sN (v) = 0N (v)}| = k

}

We know no intuitions about the subsets D0, D
k
0 ⊂ S,

they are technical.

Proof. Proof of the Lemma 3. Now, in order to use the
Lemma 2, for each s ∈ S, we need to define the “neighbor-
hoods of dependence” of Ys, denoted by Ds.

First, remark that for a given player v and two global ac-
tion profiles s and t, if sN (v) 6= tN (v), then the best response

6Recall that the mathematical expectation of a random vari-
able is not always a good indicator of its “center”.

indicators Xs,v and Xt,v are independent. Similarly, if for
all players v we have sN (v) 6= tN (v), then Ys and Yt are in-
dependent. So, for a PNE indicator Ys, it is sufficient for
Lemma 2, to define this neighborhood of dependence:

Ds = {t ∈ S : ∃v ∈ V, sN (v) = tN (v)}

Remark that the sets Ds have the same size, whatever s ∈ S.
Let us denote 0 ∈ S one fixed global strategy profile. Then,
using Lemma 2, we have:

b1 =
∑
s∈S

∑
t∈Ds

P(Ys)P(Yt) = σn|D0|σ−nσ−n = σ−n|D0|

Now let us proceed with b2. Remark that:

b2 =
∑
t∈S

∑
s∈Dt\{t}

PG,σ(Ys ∩ Yt)

=
∑
t∈S

PG,σ(Yt)
∑

s∈Dt\{t}

PG,σ(Ys|Yt)

= σ−n
∑
t∈S

∑
s∈Dt\{t}

PG,σ(Ys|Yt) (1)

For a term in the sum 1, that is for a fixed t = 0 in S, we
have by the definition of Ys and by the independence of the
players’ preferences (even conditionally to Y0):∑

s∈D0\{0}

PG,σ(Ys|Y0) =
∑

s∈D0\{0}

PG,σ(∩v∈VXs,v|Y0)

=
∑

s∈D0\{0}

∏
v∈V

PG,σ(Xs,v|Y0) (2)

For a term in the sum 2, that is for a fixed s ∈ D0 \ {0}
and for a fixed v ∈ V , we have exactly one of the following
(about PG,σ(Xs,v|Y0)):

• If sN (v) 6= 0N (v) then Y0 gives no information and then

PG,σ(Xs,v|Y0) = PG,σ(Xs,v) = σ−1.

• If sN (v) = 0N (v) and sv 6= 0v, since best responses are
singletons, then PG,σ(Xs,v|Y0) = 0.

• If sM(v) = 0M(v), then PG,σ(Xs,v|Y0) = 1.

To summarize:∑
s∈D0\{0}

∏
v∈V

PG,σ(Xs,v|Y0)

=
∑

s∈D0\{0}

I

 ∀v ∈ V
sN (v) = 0N (v)

⇒ sv = 0v

σ|{v∈V :sN(v)=0N(v)}|−n

That is why we refine the notation D0 = {s ∈ S : ∃v ∈
V, sN (v) = 0N (v)} by introducing the notations Dk

0 for k =
1, . . . , n, defined by:

Dk
0 =

{
s ∈ S \ {0} :

∀v ∈ V, sN (v) = 0N (v) ⇒ sv = 0v
|{v ∈ V, sN (v) = 0N (v)}| = k

}
and then we have:∑

s∈D0\{0}

PG,σ(Ys|Y0) = σ−n
n−1∑
k=1

|Dk
0 |σk

And generalizing by symmetry, to any t ∈ SV :

b2 = σ−n
∑
t∈SV

∑
s∈Dt\{t}

PG,σ(Ys|Yt)

= σ−nσ+n
n−1∑
k=1

|Dk
0 |σk−n
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which completes the proof of Lemma 3.

A.3 Achieving the proof of Lemma 1
Recall that by Lemma 3, we have:

d(Z,W ) ≤ σ−n|D0|+ σ−n
n−1∑
k=1

|Dk
0 |σk

First, to upper-bound |D0|, we cover the set D0 roughly:

D0 ⊆
⋃
v∈V

{
s ∈ S : sN (v) = 0N (v)

}
which lets us upper-bound |D0| by

∑
v∈V σ

n−δ(v) and σ−n|D0|
by
∑
v∈V σ

−δ(v). We now proceed with Dk
0 . Recall that:

Dk
0 =

{
s ∈ S \ {0} :

∀v ∈ V, sN (v) = 0N (v) ⇒ sv = 0v
|{v ∈ V, sN (v) = 0N (v)}| = k

}
We cover Dk

0 by identifying the subsets W ⊂ V of k vertices
such that sN (v) = 0N (v). Remark that by the definition of

Dk
0 , for all vertices v in one of these subsets W ⊂ V , since

sN (v) = 0N (v) then sv = 0v. Then we can cover Dk
0 by:

Dk
0 ⊆

⋃
W∈Pk(V )

{
s ∈ S \ {0} : sM(W ) = 0M(W )

}
Then, since we lose |M(W )| = δ(W ) + k degrees of freedom
for s ∈ S \ {0}, we have for 1 ≤ k ≤ n− 1:

|Dk
0 | ≤

M(W )6=V∑
W∈Pk(V )

σn−(δ(W )+k)

Summing completes the proof of Lemma 1, weak version:

σ−n
n−1∑
k=1

|Dk
0 |σk ≤

n−1∑
k=1

M(W )6=V∑
W∈Pk(V )

σ−δ(W )

For the strong version of Lemma 1, we need to consider
the constraints sN (v) = 0N (v) ⇒ sv = 0v of Dk

0 . Given
one of these W ∈ Pk(V ), if a vertex v has its neighborhood
N (v) included inM(W ), then sN (v) = 0N (v), and the vertex
v turns out to be one of the exactly k vertices such that
sN (v) = 0N (v). Therefore v is necessarily in W . Let us
define Qk(V ) ⊂ Pk(V ) to be:

Qk(V ) =

{
W ⊂ V :

|W | = k ∧ M(W ) 6= V ∧
∀v ∈ V, N (v) ⊆M(W )⇒ v ∈W

}
Then, we have for 1 ≤ k ≤ n− 1:

|Dk
0 | ≤

∑
W∈Qk(V )

σn−(δ(W )+k)

Since Q(V ) =
⋃

1≤k≤n−1Qk(V ), summing over k achieves
the proof of Lemma 1, strong version.

B. PROOFS OF THE THEOREMS 7 AND 8
Proof of Theorem 7. In order to prove Theorem 7, recall

that by Lemma 1 (strong version), we have:

d(Z, T ) ≤
∑
v∈V

σ−δ(v) +
∑

W∈Q(V )

σ−δ(W )

Since we are in a ring,
∑
v∈V σ

−δ(v) is evaluated to nσ−2.
For the second quantity, given W in Q(V ), let γ(W ) be the

number of connected components (CC) of G(W ), and let

Q(p)(V ) = {W ∈ Q(V )|γ(W ) = p} be the elements of Q(V )
with γ(W ) = p connected components. Since each CC (the
black vertices in Figure 3) induces two neighbors in the ring
(the green and red vertices in Figure 3) and δ(W ) = 2γ(W ),
the second quantity can be upper-bounded by:

∑
W∈Q(V )

σ−δ(W ) =

n−1∑
p=1

∣∣∣Q(p)(V )
∣∣∣σ−2p =

dn/5e∑
p=1

2

(
n− 3p

2p

)
σ−2p

In the right-hand of this equality, we enumerate the cardinal-

ities
∣∣∣Q(p)(V )

∣∣∣ by choosing 2p alternating green/red separa-

tors among the vertices, to build the CCs of W , as in Figure
3 (green opens a CC, and red closes it). Each CC contains at
least one vertex, and since N (v) ⊆ M(W ) ⇒ v ∈ W then
we must have at least two vertices between a red-closing
and a green-opening. Therefore, the choice of separators
can be done in an abstract ring of n − 3p vertices, and∣∣∣Q(p)(V )

∣∣∣ = 2
(
n−3p

2p

)
. The enumeration is done twice, to

allow CCs containing the vertices 1 or n (ie: reds open and

greens close). A calculus:
(
n−3p

2p

)
σ−2p ≤ (nσ−1)2p

(2p)!
and the

power series of the cosh function concludes the proof.
Proof of Theorem 8. In this second proof,

∑
v∈V σ

−δ(v) =

2σ−1 + (n − 2)σ−2 and the number of CCs is enumerated
by four different cases, displayed on the right of Figure 3.
The first is when 1 /∈ W ∧ n /∈ W . It sums up to less
than cosh(nσ−1)− 1. The second and third cases are when
1 ∈ W ∧ n /∈ W or 1 /∈ W ∧ n ∈ W . They use 2p − 1
separators and sum up to less than 2 sinh(nσ−1). In the
fourth case, when 1 ∈ W ∧ n ∈ W , there are at least p ≥ 2
CCs, and this case is therefore bounded by cosh(nσ−1)− 1.

d(Z, T ) ≤ 2σ−1 + (n− 2)σ−2

+

n−1∑
p=1

(
n− p− 2(p− 1)

2p

)
σ−2p

+ 2

n−1∑
p=1

(
n− p− 2(p− 1)

2p− 1

)
σ−(2p−1)

+

n−1∑
p=2

(
n− p− 2(p− 1)

2p− 2

)
σ−(2p−2)

The equality exp(x) = cosh(x)+sinh(x) ends this proof.

Figure 3: Combinations of separators in rings and
paths: the light-green neighbors open black con-
nected components of W, which are closed by the
dark-red neighbors.
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