
Stop the Compartmentalization: Unified Robust
Algorithms for Handling Uncertainties in Security Games

Thanh H. Nguyen, Albert Xin Jiang, Milind Tambe
University of Southern California, Los Angeles, CA 90089, USA

{thanhhng,jiangx,tambe}@usc.edu

ABSTRACT
Given the real-world applications of Stackelberg security games
(SSGs), addressing uncertainties in these games is a major chal-
lenge. Unfortunately, we lack any unified computational frame-
work for handling uncertainties in SSGs. Current state-of-the-art
has provided only compartmentalized robust algorithms that handle
uncertainty exclusively either in the defender’s strategy or in adver-
sary’s payoff or in the adversary’s rationality, leading to potential
failures in real-world scenarios where a defender often faces mul-
tiple types of uncertainties. Furthermore, insights for improving
performance are not leveraged across the compartments, leading to
significant losses in quality or efficiency.

In this paper, we provide the following main contributions: 1) we
present the first unified framework for handling the uncertainties
explored in SSGs; 2) based on this unified framework, we propose
the first set of “unified” robust algorithms to address combinations
of these uncertainties; 3) we introduce approximate scalable robust
algorithms for handling these uncertainties that leverage insights
across compartments; 4) we present experiments demonstrating so-
lution quality and runtime advantages of our algorithms.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms
Algorithms, Security

Keywords
Game Theory; Robust Optimization; Security; Uncertainty

1. INTRODUCTION
Real-world counter-terrorism applications of defender-attacker

Stackelberg Security Games (SSGs) [3, 9, 13] have led to signifi-
cant research emphasis on handling uncertainty that naturally arises
in these games. Two different approaches have been pursued to
handle this uncertainty. The first approach models this uncertainty
using probability distributions and solves the resulting Bayesian
Stackelberg game models [7, 16]; the second takes a robust op-
timization approach of maximizing defender expected utility un-
der the worst case resulting from such uncertainty [5, 6, 12, 15].

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and
Michael Huhns (eds.), Proceedings of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

While the first approach assumes a known distribution of uncer-
tainties beforehand, the second does not assume such prior knowl-
edge. Since in many real world domains, including applications in
counter-terrorism, we may lack data to generate a prior distribution,
in this paper, we focus on the second approach.

Unfortunately, all previous work in robust optimization in SSGs
compartmentalizes the uncertainties. For example, while some re-
search has focused exclusively on uncertainty over defender’s as-
sessment of adversary’s payoff [6], other work has focused exclu-
sively on uncertainty over defender’s execution of provided strategy
and adversary’s surveillance of this strategy [15], and yet other ex-
clusively on the uncertainty given adversary’s bounded rationality
[5, 12]. The lack of a unified framework implies that existing algo-
rithms suffer losses in solution quality in handling uncertainties in
real-world security situations – where multiple types of uncertain-
ties may exist simultaneously. In addition, insights for improving
performance are not leveraged across these compartments; again
leading to losses in solution quality or efficiency.

This paper remedies these weaknesses of state-of-the-art algo-
rithms when addressing uncertainties in SSGs by providing the fol-
lowing key contributions. First, we are the first to present a unified
computational framework – a single core problem representation
– for handling the different types of uncertainties, as addressed so
far in SSGs, and their combinations. Second, based on this uni-
fied framework, we present a unified algorithmic framework from
which we can derive different “unified” robust algorithms which
address any combination of uncertainties in our framework, avoid-
ing the compartmentalization mentioned above – no other previous
algorithm can handle these combinations of uncertainties. Third,
exploiting new insights from our unified framework, we present fast
approximate algorithms for handling different subsets of uncertain-
ties in large-scale security games. Finally, our experiments show
the solution quality and runtime advantages of our algorithms.

The key insight in our unified robust algorithms is that under any
type of uncertainty, the space of the defender’s strategies can be
partitioned into different sets; for any defender strategy within a set,
the adversary’s feasible strategies are identical. Thus, we can solve
any robust optimization problem for addressing uncertainties as the
maxima of all corresponding simpler sub-optimization problems
created by this partition.

2. STACKELBERG SECURITY GAMES
In SSGs, there is a defender who attempts to optimally allo-

cate her limited resources for protecting a set of T targets, labeled
{1, . . . , T}, against an adversary who tries to attack one of the tar-
gets. The key assumption of SSGs is that the defender commits to
a mixed strategy first and the adversary can observe that strategy
and make his target choice based on that observation [4, 8].

317

We denote by x the defender’s strategy. Specifically, xi refers
to the marginal probability that the defender protects target i. In
this paper, we will focus on the case where the defender can assign
R resources to targets arbitrarily, as long as at most one resource
is on each target [6, 15]. The resulting set of feasible marginal
probabilities is X = {x : 0 ≤ xi ≤ 1,

∑
i xi ≤ R}. In SSGs,

if the adversary attacks target i, he will receive a reward Rai if the
defender is not protecting that target, otherwise, he will receive a
penalty P ai . Conversely, the defender will receive a penalty P di in
former case and a reward Rdi in latter case. Given that the defender
chooses strategy x and the adversary chooses to attack target i, the
expected utility of the adversary, Uai (x), and the defender, Udi (x),
are then equal to Uai (x) = xiP

a
i + (1 − xi)R

a
i and Udi (x) =

xiR
d
i + (1 − xi)P di respectively. Finally, we denote by y ∈ Y

the adversary’s strategy where Y = {y ∈ RT : yi ≥ 0,
∑
i yi =

1} is the feasible region of the adversary’s strategy, i.e., yi is the
probability that the adversary attacks target i. The expected utility
of the defender can be computed as

∑
i yiU

d
i (x).

3. RELATED WORK
There are two leading approaches for addressing uncertainties in

SSGs: 1) modeling uncertainties based on Bayesian Stackelberg
game models; and 2) applying robust optimization techniques.
Bayesian Stackelberg approach. Bayesian game is a model of
probabilistic uncertainty in games, and has been applied to SSGs
for modeling payoff, observation, and execution uncertainties[7,
16]. Furthermore, [16] handles a combination of such uncertain-
ties in SSGs by discretizing this continuous uncertainty space and
solving the resulting Bayesian Stackelberg games with discrete fol-
lower types. Thus, its solution quality depends on the number of
samples. Additionally, [16] does not integrate uncertainty due to
adversary’s bounded rationality. More importantly, the assumption
of a known distribution of uncertainties may be inapplicable for
many real-world security domains. Therefore, in this work, we fo-
cus on applying the second approach.
Robust optimization approach. All previous works following this
approach attempt to compartmentalize uncertainties and apply dif-
ferent algorithms to only address a particular type of uncertainty.
One simple robust algorithm for dealing with uncertainty in the ad-
versary’s bounded rationality is Maximin, which assumes that the
adversary can choose any arbitrary strategy given the defender’s
strategy x. Given Maximin can generate extremely conservative
strategies, BRASS [12] provided an advance to handle uncertainty
due to adversary bounded rationality: BRASS assumes that the ad-
versary can attack any targets which provide within ε of the maxi-
mum expected utility for the adversary where ε is a given constant.

A more recent robust algorithm, RECON [15], shifted focus away
from bounded rationality. RECON only deals with uncertainty
in the defender’s execution and the adversary’s observation. In
particular, given the defender’s planned strategy x, the real strat-
egy that is executed lies within the range H(x) = {x̂ : x̂i ∈
[xi − γi, xi + γi] ∩ [0, 1]}. Moreover, given that strategy, x̂, the
defender’s strategy perceived by the adversary according to his ob-
servations lies within the range [x̂i−ηi, x̂i+ηi]∩[0, 1]. As a result,
the defender’s final strategy at target i perceived by the adversary
can be any value within the range [xi−γi−ηi, xi+γi+ηi]∩ [0, 1]
where (γi, ηi) are given constants.

Kiekintveld et al„ on the other hand, proposed a new robust al-
gorithm called ISG which only focused on uncertainty in the adver-
sary’s payoffs [6]. In particular, given an assumed adversary’s pay-
off at target i, (Rai , P

a
i), the adversary’s actual reward and penalty

will lie within the ranges [Rai −αi, Rai +αi] and [P ai −βi, P ai +βi]
respectively, where (αi, βi) are given constants.

The most recent algorithm, monotonic maximin [5], attempts to
deal with uncertainty exclusively in the adversary’ bounded ratio-
nality. In particular, it attempts to generalize the Quantal Response
(QR) [10] model of bounded rationality which was proposed in be-
havioral economics and has been applied to SSGs. In many cases
such as counter-terrorism domains, the defender does not have suf-
ficient data on the adversary’s behaviors to accurately estimate the
parameters of QR models. Instead, monotonic maximin assumes
that the adversary can choose any strategy y ∈ Y that has the
following monotonicity property (which is satisfied by all known
variants of QR models): Uai (x) ≤ Uaj (x) =⇒ yi ≤ yj . In other
words, the higher the expected utility of a target, the more likely
the adversary will attack that target.

The above discussion summarizes major thrusts to handle ro-
bustness in SSGs as reported in the literature that we unify in our
work. Recent research has explored addressing other types of un-
certainties [1, 2], but these have yet to provide robust algorithms.
Furthermore, our paper is exactly focused on trying to remedy such
salami-slicing of handling of uncertainty.

4. A UNIFIED ROBUST FRAMEWORK

4.1 The space of uncertainties in SSGs
We first summarize the major types of uncertainties that have

been studied in previous works as a 3-dimensional uncertainty space,
shown in Figure 1. As shown in Figure 1, the three dimensions of
the uncertainty space are: 1) uncertainty in the adversary’s payoff;
2) uncertainty related to the defender’s strategy; and 3) uncertainty
in the adversary’s rationality. These dimensions refer to three key
aspects which directly affect both the defender and the adversary’s
utilities. The origin point of the uncertainty space corresponds to
the case with perfectly rational adversary and no uncertainty in the
adversary’s payoff or related to the defender’s strategy.

Figure 1: The uncertainty space

Uncertainty in the ad-
versary’s payoff has been
addressed by ISG [6].
Uncertainty in the de-
fender’s strategy can be
classified into 2 cases,
both addressed by RE-
CON [15]: 1) uncertainty
in the defender’s execu-
tion in which the executed
strategy is different from
the planned strategy of the
defender; and 2) uncer-
tainty in the adversary’s observation of the defender’s executed
strategy. In the dimension of uncertainty in the adversary’s ratio-
nality, the existing methods can be classified into 3 cases: 1) the
adversary can choose any arbitrary strategy (Maximin); 2) the ad-
versary can choose any strategy that satisfies the monotonic prop-
erty (monotonic maximin [5]); and 3) the adversary can choose any
ε−optimal strategy (BRASS [12]). It is known that computing the
defender’s strategy with the first and third cases is equivalent to a
special case of uncertainty in adversary’s payoff [6, 12]. Therefore,
when dealing with rationality uncertainty, we will focus only on the
case of monotonic adversary, i.e., monotonic maximin.

As can be seen, the existing robust solution concepts attempt to
address only a specific type of uncertainty and thus lie on axes of
the space. Thus, we can identify combinations of different uncer-
tainties which correspond to points not on any of the axes, that have
not been addressed by previous works.

318

4.2 A general formulation of uncertainty sets
The existing robust solution concepts for SSGs all follow a stan-

dard robust-optimization approach: first represent the uncertainty
in the system as an uncertainty set of possible models, then choose
the decision variables (defender strategy x in our case) such that the
objective (defender utility) is optimized given the worst-case model
from the uncertainty set. The main difference among the solution
concepts is the way uncertainty sets are defined for different types
of uncertainties. For example, in ISG, the uncertainty sets are inter-
vals of adversary payoffs; in RECON, there is an hyper-rectangular
uncertainty set around x representing the strategy executed by the
defender, and another hyper-rectangular uncertainty set represent-
ing the defender strategy perceived by the adversary.

The first key component of our unified framework is a unified
formulation of uncertainty sets for SSGs that captures all major
existing approaches. Consider an SSG where all or any subset of
the aforementioned uncertainties may be present. We begin by ex-
amining our objective function, which is the defender’s expected
utility

∑
i yiU

d
i (x). In general, Udi (x) is affected by the uncer-

tainty about the execution of defender strategies. The adversary
strategy y will generally depend on his expected utilities Uai (x)
for all actions i, as well as how he makes decisions based on these
expected utilities. Naturally, y is affected by the uncertainty about
adversary rationality. Also, the uncertainties about adversary pay-
offs and adversary’s observation of defender’s strategy both affect
Uai (x), which in turn affects y; furthermore, since the uncertainty
about the defender’s executed strategy will affect the adversary’s
observation of it, that in turn also affects y.

Based on the above observations, we build an uncertainty set that
captures all uncertainties that affect Udi (x), and another for uncer-
tainties that affect y. The former task is simpler since only the
execution uncertainty affects Udi (x). Given x ∈ X, letH(x) ⊆ X
be the set of possible executed defender strategies, assumed to be
convex and non-empty. For example, in RECON the execution un-
certainty is represented as intervals around each xi, as described
in Section 3. Other forms of convex sets are possible, but for con-
creteness in this paper we will focus on the hyper-rectangular form
defined by RECON. Given an executed strategy x̂ ∈ H(x), the
defender’s expected utility when adversary chooses i is Udi (x̂).

The task of defining an uncertainty set for y is more complex
because multiple types of uncertainties are involved. First of all,
recall that execution uncertainty indirectly affects y; but since we
have already represented execution uncertainty using H(x) above,
we take an executed defender strategy x̂ ∈ H(x) as the input of
our definition for the uncertainty set for y. Specifically, given an
executed defender strategy x̂ ∈ H(x), we define Ψ(x̂) ⊆ Y as the
set of possible adversary strategies, resulting from all or any subset
of uncertainties about adversary payoffs, adversary’s observation,
and adversary’s rationality. In this paper we will consider the case
with all uncertainties (Sections 4.3 and 5) as well as special cases
with subsets of uncertainties (Sections 6 and 7), so it is important
to have a definition of the uncertainty set Ψ(x̂) that is general and
versatile. With that motivation in mind, we define the general form
of Ψ(x̂) as follows.

DEFINITION 4.1. Given x̂ ∈ H(x), the uncertainty set Ψ(x̂) ⊆
Y is represented as a set of linear constraints on the adversary
strategy y. Specifically, there are K potential linear constraints on
y, each of which is activated or not depending on x̂. Formally,

Ψ(x̂) = {y ∈ Y : Dk(x̂) =⇒ Ak(y) ≥ 0, k = 1,K},
where Dk(x̂) is a disjunction (logical OR) of a set of conditions:
Dk(x̂) = ∨s(Dks(x̂) ≥ 0)1 where Dks : X → R are known
1As we will see later in the paper, for certain types of uncertain-

scalar piecewise linear functions of x. Finally, Ak : Y → R are
known scalar linear functions of y, i.e., Ak(y) =

∑
i σikyi.

Then, the robust optimization problem of maximizing defender
utility given worst-case uncertainty can be formulated as follows:

P1 : max
x

min
x̂∈H(x)

min
y∈Ψ(x̂)

∑
i

yiU
d
i (x̂)

Next, we show that P1 is sufficiently general, i.e., it can capture
combinations of the previously-studied types of uncertainties.

4.3 Representation of combined uncertainties
We will focus on two cases in which specific formulations of the

uncertainty set are different: 1) combinations of uncertainties with
a rational adversary, i.e., uncertainty in the adversary’s payoff and
the defender’s strategy; and 2) combinations of all other uncertain-
ties with a monotonic adversary. Other points in the uncertainty
space can then be separated into these two cases.

Consider an SSG where there is uncertainty in the adversary’s
payoff, i.e., for each target i, the adversary’s reward and penalty lie
within the range [Rai −αi, Rai +αi] and [P ai −βi, P ai +βi] respec-
tively. Furthermore there is uncertainty about execution and adver-
sary’s observation of the defender strategy as in RECON, with the
former represented by H(x) and the latter represented by intervals
[x̂i − ηi, x̂i + ηi] ∩ [0, 1], i = 1, T .

Given the defender’s executed strategy x̂, the adversary’s util-
ity at target i will vary within the range [Ûamin(x̂, i), Ûamax(x̂, i)]

where Ûamin(x̂, i) and Ûamax(x̂, i) are computed as the following:

Ûamin(x̂, i) = (Rai − αi)(1− x̂maxi) + (P ai − βi)x̂maxi (1)

Ûamax(x̂, i) = (Rai + αi)(1− x̂mini) + (P ai + βi)x̂
min
i (2)

where x̂maxi = min{1, x̂i + ηi} and x̂mini = max{0, x̂i − ηi}.
Rational Adversary. Overall, target i could be potentially attacked
by the adversary only when Ûamax(x̂, i) ≥ maxj{Ûamin(x̂, j)}.
Otherwise, there always exists a target j even with all the uncer-
tainties such that the adversary’s utility at target j is greater than
at target i, which means that the adversary will never attack target
i. Therefore, in the uncertainty set, we haveK = T potential linear
constraints withAk(y) = −yk andDk(x̂) = ∨s=1,T (Ûamin(x̂, s)−
Ûamax(x̂, k) > 0) where k = 1, T . Then (Dk(x̂) =⇒ Ak(y) ≥
0) means that given target k, if there is a target s ∈ {1, 2, . . . , T}
such that Ûamin(x̂, s)− Ûamax(x̂, k) > 0, then yk = 0.
Monotonic Adversary. Overall, because the adversary is mono-
tonic, for any pair of targets (i, j), the following constraint must
hold: Ûamin(x̂, i) ≥ Ûamax(x̂, j) =⇒ yi ≥ yj . Conversely,
there is no constraint on the attacking probability between target i
and j if Ûamin(x̂, i) < Ûamax(x̂, j) and Ûamin(x̂, j) < Ûamax(x̂, i).
Therefore, in the uncertainty set, we have T (T−1)

2
potential lin-

ear constraints indexed by k = (i, j), i 6= j, i, j = 1, T with
Ak(y) = yi − yj and Dk(x̂) = (Ûamin(x̂, i)− Ûamax(x̂, j) ≥ 0).
In this case, there is only one condition in Dk(x̂), i.e., s = 1.

For example, in a 3-target game, we suppose that Ûamax(x̂, 3) >

Ûamin(x̂, 1) > Ûamax(x̂, 2) > Ûamin(x̂, 3). In the case of a ratio-
nal adversary, target 2 will be never attacked by the adversary (the
adversary’s expected utility at this target is always smaller than at
target 1; Ûamin(x̂, 1) > Ûamax(x̂, 2)). In contrast, as both target 1
and 3 satisfy Ûamax(x̂, 3), Ûamax(x̂, 1) > maxi Û

a
min(x̂, i), these

two targets could be potentially attacked by the adversary. There-
fore, we have Ψ(x̂) = {y ∈ Y : −y2 ≥ 0}.
ties we will use strict inequalities Dks(x̂) > 0 instead of weak
inequalities Dks(x̂) ≥ 0.

319

On the other hand, in the case of a monotonic adversary, as
Ûamin(x̂, 1) > Ûamax(x̂, 2) – target 1 will be attacked with higher
probability than target 2, we have Ψ(x̂) = {y ∈ Y : y1−y2 ≥ 0}.

4.4 Simplifying the formulation
In general, it is not straightforward to simplify the max-min-min

problem P1 as a single maximin problem because both the de-
fender’s executed strategy x̂ and the adversary’s strategy y directly
involve in the objective function

∑
i yiU

d
i (x̂) while the feasible re-

gion Ψ(x̂) of y depends on x̂. In the following, we show that P1
can be reformulated as a single maximin problem based on which
we propose a unified robust algorithmic framework described in
Section 5.

Given the defender’s original strategy, x, the adversary’s util-
ity at target i lies within the range [Uamin(x, i), Uamax(x, i)] where
Uamin(x, i) and Uamax(x, i) can be represented as the following:

Uamin(x, i) = (Rai − αi)(1− x+
i) + (P ai − βi)x+

i (3)

Uamax(x, i) = (Rai + αi)(1− x−i) + (P ai + βi)x
−
i (4)

where x+
i = min{1, xi+γi+ηi} and x−i = max{0, xi−γi−ηi}.

We define the set of the adversary’s strategies, L(x), as the follow-
ing: 1) in the case of combined uncertainties with a monotonic
adversary, L(x) = {y ∈ Y : Uamin(x, i) ≥ Uamax(x, j) =⇒
yi−yj ≥ 0}; 2) in the case of combined uncertainties with a ratio-
nal adversary, L(x) = {y ∈ Y : ∨i(Uamin(x, i)− Uamax(x, j) >
0) =⇒ −yj ≥ 0}. In addition, we define Udmin(x, i) as follows:

Udmin(x, i) = max{0, xi − γi}(Rdi − P di) + P di (5)

In other words, Udmin(x, i) is the lowest possible value of defender
expected utility given that defender chose x and attacker chose i.

THEOREM 4.2. P1 is equivalent to the following:

P2 : max
x∈X

min
y∈L(x)

∑
i

yiU
d
min(x, i)

PROOF. See Appendix A of the Online Appendix.2

Finally, as L(x) exhibits the same structure as Ψ(x̂), we can
represent L(x) as {y ∈ Y : Dk(x) =⇒ Ak(y) ≥ 0, k =
1,K}. In particular, in the case of combined uncertainties with
a rational adversary, for all k = 1, T , we obtain the following:
Ak(y) = −yk and Dk(x) = ∨s(Uamin(x, s)−Uamax(x, k) > 0).

Similarly, in the case of combined uncertainties with a mono-
tonic adversary, for all k = (i, j), i, j = 1, T , we haveA(i,j)(y) =
yi− yj and D(i,j)(x) = (Uamin(x, i)−Uamax(x, j) ≥ 0). For ex-
ample, in a 3-target game, given x, suppose that Uamin(x, 1) ≥
Uamax(x, 2) and Uamin(x, 1) ≥ Uamax(x, 3) which mean that the
conditions D(1,2)(x) and D(1,3)(x) are true; then the constraints
A(1,2)(y) ≥ 0 and A(1,3)(y) ≥ 0 must hold on y.

5. UNIFIED ROBUST ALGORITHM

5.1 Divide-and-Conquer
In order to solve P2, we first need to define L(x) which depends

on the defender’s strategy x – this is not a standard maximin prob-
lem. We define a subset C(x) as {k ∈ {1, 2, . . . ,K} : Dk(x)}
which refers to the set of activated linear constraints on y, i.e.,
∀k ∈ C(x), Ak(y) ≥ 0. We define a T × K-constraint matrix
M(C(x)) as the following: for all i = 1, T and k = 1,K:

M(C(x))ik =

{
σik , if k ∈ C(x)
0 , otherwise

2Link: http://teamcore.usc.edu/people/thanhhng/Papers/appendix.pdf

PROPOSITION 5.1. The set of the adversary’s strategies, L(x),
can be formulated as L(x) = {y ∈ Y : [M(C(x))]′ y ≥ 0}
where [M(C(x))]′ is the transposed matrix of M(C(x)).

PROOF. See Appendix B of the Online Appendix.

In the 3-target example described in Section 4.4, we haveC(x) =
{(1, 2), (1, 3)} and A(i,j)(y) = yi − yj , ∀i, j = 1, T which
means that σik = 1 and σjk = −1 with k = (i, j), thus M(C(x))
is represented as the following:

(1, 2) (1, 3) (2, 1) (2, 3) (3, 1) (3, 2)
1 1 0 0 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0


Although the constraint matrix depends on the defender’s strat-

egy x, the set of M(C(x)) is finite. Specifically, M(C(x)) is a
function of the subset C(x) ⊆ {1, 2, ...,K}. In other words, each
subset of {1, 2, ...,K} corresponds to a unique constraint matrix.
Because the set {1, 2, ...,K} has 2K subsets, there are at most 2K

constraint matrices. Our key idea of the unified algorithm is to
conceptually divide the original optimization problem into multi-
ple sub-optimization problems according to the constraint matrix
M(C(x)).

Given a constraint matrix M(C) where C ⊆ {1, 2, ...,K}, the
corresponding sub-optimization problem is defined as

max
x∈Sd

C

min
y∈Sa

C

∑
i

yiU
d
min(x, i) (6)

where SdC and SaC are in turn the sets of the defender’s and adver-
sary’s strategies corresponding toC. In particular, SdC = {x ∈ X :
C(x) = C} = {x ∈ X : ∨s(Dks(x) ≥ 0) ∀k ∈ C, ∧s(Dks(x)
< 0) ∀k /∈ C} and SaC = {y ∈ Y : [M(C)]′y ≥ 0}. In other
words, for all x ∈ SdC , L(x) = SaC . As a result, the inner mini-
mization of (6) can be represented as the following LP:

min
y

∑
i
yiU

d
min(x, i) (7)

[M(C)]′y ≥ 0 (8)∑
i
yi = 1, 0 ≤ yi ≤ 1. (9)

Replacing this LP with its dual, the sub-optimization problem (6)
can be formulated as the following single maximization problem:

max
x,θ,t

t (10)

(M(C)θ)i + t ≤ Udmin(x, i), ∀i = 1, T (11)

x ∈ SdC (12)
θ ≥ 0. (13)

where θ is dually associated with the constraint (8).
Finally, by introducing integer variables to encode the OR oper-

ators in SdC , each sub-optimization problem (10-13) can be solved
as a MILP. The final optimization solution of P2 can be computed
as the maximum of all these sub-optimization problems. However,
there is an exponential number, i.e., 2K , of such sub-optimization
problems that we need to solve. In the next section, we introduce a
single MILP representation for more efficiently solving P2.

5.2 URAC: unified algorithmic framework
Overall, we define an integer vector z ∈ {0, 1}K which en-

codes the set C. Specifically, given a subset C ⊆ {1, 2, ...,K},
then zk = 1 if k ∈ C; otherwise, zk = 0. As a result, we
have: M(C)ik = zkσik. Therefore, by using z to refer to 2K

sub-optimization problems, we obtain the general MILP (14-22).

320

Overall, this MILP with an instantiation of z is equivalent to a
specific sub-optimization problem (10-13). Since the MILP opti-
mizes over all possible values of z, it computes the maximum of
all these sub-optimization problems, which is the optimal solution
of P2. In particular, constraints (11) and (13) correspond to con-
straints (15-16). In constraint (11), we can rewrite the first term
(M(C)θ)i as

∑
k zkσikθk which is a quadratic expression. We

apply a standard technique to transform it to a linear expression.
Specifically, we define a new variable φk = zkθk. We have zk =
0 =⇒ φk = 0. On the other hand, zk = 1 =⇒ φk = θk where
0 ≤ θk, which means that we only need constraints 0 ≤ φk. As a
result, we have the following constraints on φk: 0 ≤ φk ≤ Nzk
where N is a sufficiently large constant.

max
x,z,φ,q,t

t (14)∑
k
σikφk + t ≤ Udmin(x, i), ∀i (15)

0 ≤ φk ≤ Nzk, ∀k (16)
rk + (1− zk)N ≥ 0, ∀k (17)
rk − zkN < 0, ∀k (18)
rk ≥ Dks(x), ∀k, s (19)
rk ≤ Dks(x) + (1− qks)N, ∀k, s (20)∑

i
xi ≤ R, xi ∈ [0, 1] (21)∑
s
qks = 1, ∀k, zi, qks ∈ {0, 1}. (22)

Furthermore, the feasible set of the defender’s strategies, SdC , in
constraint (12) is computed according to the constraints (17-21).
Specifically, the constraint {∨s(Dks(x) ≥ 0) ∀k ∈ C} of SdC
can be replaced as constraint (17) where rk = maxsDks(x) can
be determined by constraints (19-20). In addition, the constraint
{∧s(Dks(x) < 0) ∀k /∈ C} of SdC corresponds to constraint (18).
MILP solvers generally can not directly deal with strict inequality
constraints like (18). In our implementation, we replace (18) with
rk+ε−zkN ≤ 0, ∀k, s, where ε is a small positive constant. This
usage of ε is consistent with previous formulations such as RECON
and ISG [6, 15].

Finally, in order to express Dks(x) and Udmin(x, i) which are
piecewise linear functions of x, we need extra integer variables. For
example, we can compute Udmin(x, i) (Equation (5)) using integer
variable hi ∈ {0, 1} as the following:

P di ≤ Udmin(x, i) ≤ P di + hiN (23)

bi ≤ Udmin(x, i) ≤ bi + (1− hi)N (24)

where bi = (xi−γi)(Rdi−P di)+P di . We can determineUamin(x, i)
and Uamax(x, i) in Dks(x) in a similar way.

We refer to the MILP (14-22) as the Unified Robust Algorith-
mic framework for addressing unCertainties (URAC). By replacing
Dk(x) and Ak(x) with specific formulations, we obtain a version
of URAC for addressing a particular type of uncertainty, i.e., when
Ak(y) = −yk and Dk(x) = ∨s(Uamin(x, s)−Uamax(x, k) > 0),
the corresponding version of URAC addresses a combined uncer-
tainty with a rational adversary. In fact, no previous robust algo-
rithm could handle all these combinations of uncertainties.

MILP relaxation: We can approximate the piecewise linear func-
tions Uamin(x, i), Uamax(x, i) and Udmin(x, i) with linear functions
to reduce the computational complexity of URAC, e.g., we can re-
place Udmin(x, i) as Udmin(x, i) = (xi − γi)(R

d
i − P di) + P di .

In addition, Uamin(x, i) and Uamax(x, i) can be approximated in a
similar way. We refer to this approximate algorithm as a-URAC.

6. A SCALABLE ROBUST ALGORITHM I
Although (a-)URAC can handle any type of uncertainty in the

uncertainty space, these algorithms struggle to scale up to larger
problems, due to having potentially large numbers of integer vari-
ables. Nevertheless, having the general formulation of uncertainty
sets allows us to make the following observation: the constraint
functionsAk(y) exhibit two different important properties depend-
ing on the types of uncertainties under consideration: 1) in the case
of combined uncertainties with a rational adversary, Ak(y) im-
poses constraints on the targets separately, i.e., Ak(y) = −yk; 2)
in the case of combined uncertainties with a monotonic adversary,
Ak(y) involves multiple targets into constraints, i.e., A(i,j)(y) =
yi − yj . By using these properties, in the next two sections we
present two scalable algorithms.

In the case of combined uncertainties with a rational adver-
sary (Group 1), overall, we want to apply the binary search method
to iteratively search through the space of the defender’s utility. At
each iteration of the binary search, we need to determine if there
exists a feasible solution of the defender’s strategy, x, such that
min

y∈L(x)

∑
i yiU

d
min(x, i) ≥ t where t is a given value. This corre-

sponds to a feasibility version of the MILP (14-22), where given t
we are asked to find a feasible x. At a high level, because Ak(y)
includes only a single target k, constraints (15-20) of x can be de-
composed into separate constraints of xi. Then by examining the
conditions on the defender’s coverage at every target independently,
we can determine if a utility value t is feasible.

In particular, constraints (15-20) provide conditions by which the
linear constraintAj(y) at target j for all j = 1, T is (not) activated.
Denote by r = maxj U

a
min(x, j) the maximum value of the ad-

versary’s lowest utilities over all targets. We call r the adversary’s
“cut-off” utility. In addition, we define i = argmaxj U

a
min(x, j)

as the “cut-off” target. In fact, if t and i are known in advance,
constraints (15-20) reduce to xj ≥ xminj , where xminj is the re-
quired minimum coverage probability of the defender at target j
(which we will explain in detail later). As a result, we can de-
termine the defender’s minimum coverage, {xminj }j , such that the
lowest utility of the defender is t and the “cut-off” target is i. There-
fore, given t, minimum amount of resources required is Rmin =
mini{

∑
j x

min
j |i← “cut-off” target}.

Hence, t is a feasible utility for the defender only when Rmin ≤
R (Constraint 21). By following the binary search approach, we ob-
tain a scalable algorithm called δ−Optimal Robust Algorithm for
Addressing unCertainties (δ−ORAC). This algorithm guarantees
an δ−optimal solution for addressing uncertainties in this group
where δ is a given positive small value. δ−ORAC is a generaliza-
tion of ISG which only deals with uncertainty in the adversary’s
payoff [6]. δ−ORAC arises out of our unified framework and then
with γ = η = 0, it becomes equivalent to ISG, whereas with
α = β = 0, it becomes a robust algorithm for dealing with un-
certainty in the defender’s strategy.

Finally, given a feasible utility t and the “cut-off” target i, xminj

for all j = 1, T can be determined as follows. As rk can be com-
puted as rk = maxsDks(x) = r − Uamax(x, k), the MILP con-
straints (15-20) reduce to the following conditions:
Defender utility condition for targets at which linear constraints
are not activated: For all such targets j, we have zj = 0. As
σjk = −1 if j = k; otherwise, σjk = 0, constraint (15) can be
reduced to the following:

−φj + t ≤ Udmin(x, j), ∀j = 1, T

which implies that if zj = 0, Udmin(x, j) ≥ t or equivalently,
xminj ≥ md

j where md
j is the minimum coverage of the defender

321

on target j ensuring that Udmin(x, j) is at least t. In particular, if

P dj ≥ t, then md
j = 0. Otherwise, md

j =
t−Pd

j

Rd
j−P

d
j

+ γj .

In addition, constraint (18) can be formulated as the following:3

r − Uamax(x, j)− zjN ≤ 0, ∀j = 1, T (25)

which implies that Uamax(x, j) ≥ r if zj = 0.
As the linear constraint at the “cut-off” target i is always not

activated, we have: xmini = md
i . Thus, the adversary’s “cut-off”

utility can be computed as r = Uamin(x, i) = max{P ai −βi, (Rai−
αi)(1−md

i − γi − ηi) + (P ai − βi)(md
i + γi + ηi)}.

Adversary utility condition for targets at which linear constraints
are activated: For all such targets j, we have zj = 1. Constraint
(17) can be simplified as the following:

r − Uamax(x, j) + (1− zj)N > 0, ∀j = 1, T (26)

which implies that Uamax(x, j) < r when zj = 1. We approximate
this constraint by Uamax(x, j) ≤ r − ε, where ε is a small positive
constant.

Thus, if zj = 1, then xminj ≥ ma
j where ma

j = 0 if Raj + αj ≤
r − ε. Otherwise, ma

j =
Ra

j +αj−r+ε
Ra

j +αj−(Pa
j +βj)

+γj + ηj .

As zj is either 0 or 1, we obtain: xminj ≥ min{md
j ,m

a
j }.

Cut-off utility condition for all targets: Finally, we have:

Uamin(x, j) ≤ r, ∀j (27)

This constraint implies: xminj ≥ mk
j for all target j where mk

j =

max{0, Ra
j−αj−r

Ra
j−αj−(Pa

j −βj)
− γj − ηj}. In fact, the constraint (27)

is equivalent to constraint (19).
As a result, we can determine the smallest necessary amount of

defender’s resources at every target j as follows:

xminj = max{mk
j ,min{md

j ,m
a
j }} (28)

Moreover, if {xminj }j satisfy constraint (21), the defender’s strat-
egy x with xj = xminj for all j is a feasible solution given t.

7. A SCALABLE ROBUST ALGORITHM II
We now turn to providing an approximate algorithm for the sec-

ond group, which combines monotonic adversaries with other un-
certainties. To that end, we first focus on approximate algorithm
for the monotonic maximin problem without other uncertainties,
i.e., max

x∈X
min

y∈Lm(x)

∑
i yiU

d(x, i), by exploiting the structure of the

feasible region which corresponds to Ak(y), Lm(x) = {y ∈ Y :
Uai (x) ≥ Uaj (x) =⇒ yi ≥ yj}.

The main computational difficulty of URAC for this case of un-
certainty is due to its T 2 integer variables zk, k = (i, j), i, j =
1, T . At a high level, our approach builds an alternative formula-
tion with fewer integer variables. Given a defender strategy x, the
optimal solution of the inner minimization problem, y∗, will be one
of the extreme points of the polytope of Lm(x) which means that
∀i, j such that y∗i , y

∗
j > 0, then y∗i = y∗j . This implies that Lm(x)

has at most T extreme points [5]. In practice, we observe that the
number of extreme points of Lm(x∗) where x∗ is the optimal so-
lution of the monotonic maximin problem is often much smaller
than T . To exploit this observation, our idea is to find the optimal
x∗ within a subset Sdp ⊆ X such that for each x ∈ Sdp , there are
only p extreme points of Lm(x) where p � T . Intuitively, hav-
ing to consider fewer extreme points should make the computation
3As Dk(x) refers to strict inequalities in this case of uncertainty
(Section 4.4) which differs from Definition 4.1, constraint (25) is
not a strict inequality as (18).

simpler. Indeed, this optimization problem can be formulated as a
MILP with only pT integer variables.

Specifically, we define Sdp to be the set of x such that the targets
can be clustered into p groups, each group having the same attacker
expected utility. Formally, given x ∈ Sdp , define G1, G2, ..., Gp
as a partition of the T targets such that ∀ k = 1, p, we have
Uai (x) = Uaj (x), ∀i, j ∈ Gk, and ∀ k < k′, we have Uai (x) >
Uaj (x), ∀i ∈ Gk, j ∈ Gk′ . Since the monotonic property implies
that Uai (x) = Uaj (x) =⇒ yi = yj , therefore ∀i, j ∈ Gk, we
have yi = yj . We can then write the set of extreme points of L(x)
as Sa(x) = {yk : yki = 1∑k

r=1 |Gr|
,∀i ∈ Gs, s ≤ k; yki =

0,∀i ∈ Gs, s > k}k=1,p. Intuitively, each extreme point yk corre-
sponds to the case that the adversary only attacks targets belonging
to group G1, G2, . . . , Gk with the same probability. As the opti-
mal strategy of the adversary is an extreme point of L(x), then it
belongs to Sa(x). In fact, y∗ = argminyk

∑
i y
k
i U

d
i (x).

Denote by Bdp = ∪k=1,pS
d
k the set of the defender’s strategy

such that each x ∈ Bdp will categorize the targets into no more than
p groups. Finally, given that x∗ ∈ Bdp , the monotonic maximin
problem becomes max

x∈Bd
p

min
y∈Sa(x)

∑
i yiU

d
i (x), which can be en-

coded as the MILP formulated in (29-38), referred to as the Group-
ing Monotonic Maximin-p (GMM-p) where p indicates the maxi-
mum number of groups.

max
x,h,s,t,m

t (29)

Uai (x) + (1− hk,i)N ≥ mk, ∀k, i (30)
mk ≥ Uai (x)− hk,iN + ε, ∀k, i (31)
m1 ≥ Uai (x), ∀i (32)
mk ≥ Uai (x)− hk−1,iN, ∀k, i (33)
hk,i ≥ hk−1,i, ∀k, i (34)

sk,i + t ≤ Udi (x) + (1− hk,i)N, ∀k, i (35)

− hk,iN ≤ sk,i ≤ hk,iN,
∑

i
sk,i = 0, ∀k, i (36)

hp,i = 1, ∀i,
∑

i
h1,i ≥ 1 (37)∑

i
xi ≤ R, 0 ≤ xi ≤ 1, hk,i ∈ {0, 1}, ∀k, i. (38)

In this MILP, hk (k = 1, p) is an integer vector which indicates
targets belonging to individual groups. Specifically, if hk,i = 0
and hk+1,i = 1, target i must belong to group k + 1 and hk′,i =
1, ∀k′ ≥ k + 1 and hk′,i = 0, ∀k′ ≤ k. The variable m repre-
sents the adversary’s expected utility for each group, i.e., all targets
belonging to group k must have the adversary’s expected utility
equal to mk. Variable t is the maximum utility of the defender and
also the objective value for us to optimize. Finally, sk is an aux-
iliary variable used for computing the defender’s utility which is
corresponding to a potential optimal strategy of the adversary.

Overall, constraints (30-34) guarantee that all targets in the same
group will have the same adversary’s expected utility and ∀i ∈
Gk, j ∈ Gk′ , k < k′, we have: Uai (x) > Uaj (x). Further-
more, constraints (35-36) guarantee that if t∗ is the optimal ob-
jective value, then t∗ = mink{U

d
(x, k)} where U

d
(x, k) is cor-

responding defender’s utility to a potential optimal strategy yk of
the adversary in Sa(x). Details of the MILP are provided in the
proof of Theorem 7.1, in Appendix C of the online appendix.

THEOREM 7.1. Denote by v∗p the maximum utility of the de-
fender returned by GMM-p. For all p > p′, we have: v∗p ≥ v∗p′ .
Morever, there exists 1 ≤ p ≤ T such that v∗p = v∗ where v∗ is the
maximum utility of the defender computed by monotonic maximin.

322

(a) Uncertainty setting:
α = β = .1, γ = η = .01

(b) Uncertainty setting:
α = β = .5, γ = η = .05

Figure 2: Solution quality, all uncertainties

In the case of combination of monotonic adversary with other
uncertainties, the grouping idea can still be applied but a some-
what different approach is needed.

8. EXPERIMENTAL RESULTS
We systematically generated payoff structures based on covari-

ance games in GAMUT [11]. We adjust the covariance value r ∈
[−1.0, 0.0] with step size λ = 0.1 to control the correlation be-
tween rewards of players. The rewards and penalties of both the
defender and the adversary are chosen within the ranges [1, 10] and
[−10,−1] respectively. The experimental results are obtained us-
ing CPLEX on a 2.3 GHz machine with 4GB main memory. All
comparison results except where noted with our algorithms are sta-
tistically significant under bootstrap-t (α = .05) [14].

8.1 Solution quality
We show that our robust algorithms outperform other existing

robust algorithms discussed in Section 3 in both small-scale and
large-scale game scenarios, under conditions of low or high uncer-
tainties, and given any combinations of uncertainties.
Small-scale domains: In our first set of experiments, we exam-
ine the performance of our algorithms in the case of small-scale
games which are motivated by real-world domains such as LAX or
Boston harbor [13]. We first examine the game settings in which
uncertainties exist in all 3 dimensions of the uncertainty space (Fig-
ure 1): the adversary’s payoff, the defender’s strategy, and the ad-
versary’s rationality. Specifically, we examine two cases: 1) low
uncertainty: (α = β = 0.1, γ = η = 0.01); and 2) high uncer-
tainty: (α = β = 0.5, γ = η = 0.05). In both cases, the adversary
responds monotonically. We evaluate the performance of URAC-1
and a-URAC-1 – versions addressing a combination of all uncer-
tainties including monotonic adversary against ISG, RECON, and
monotonic maximin (MM). For ISG and RECON, we search over
the range of [0.1, 5.0] with step size λ1 = 0.2 and the range of
[0.01, 0.5] with step size λ2 = 0.02 to find the parameter settings
for (α, β, γ, η) that provide the highest defender’s expected utility
in our settings. In fact, when the sampled values of parameters are
sufficiently large, i.e., α = β = 5.0, ISG’s optimal solution corre-
sponds to Maximin’s. In these figures, the results are averaged over
500 payoff structures.

Figure 2 shows the defender’s worst-case expected utility (y-
axis) while varying the number of targets (x-axis). As shown in
Figure 2, even though the parameters of both ISG and RECON
are optimally tuned over the sampled values, both URAC-1 and a-
URAC-1 still obtain significantly higher defender’s expected util-
ity. For example, in Figure 2(a), in the 6-target case, while ISG,
RECON, and MM achieve a utility of -0.064, -0.2631, and -0.9672,
respectively, the defender’s utilities obtained by URAC-1 and a-
URAC-1 are, in turn, 0.1892 and 0.1822.

Now we switch to the case of a combination of a subset of or
individual uncertainties. In this case, in addition to URAC, we
evaluate the performance of our approximate algorithms. Figure
3(a) shows the solution quality of URAC-2 and δ−ORAC where

(a) Uncertainty setting:
α = β = .5, γ = η = .05

(b) Uncertainty setting: mono-
tonic adversary

Figure 3: Solution quality, approximate algorithms

δ = 1e−8 in comparison with RECON and ISG in the case of com-
bined uncertainties with a rational adversary. URAC-2 is a version
of URAC to address this combination of uncertainties. The param-
eter values of both RECON and ISG are selected similarly to the
previous experiment. In addition, we compare the solution qual-
ity of URAC-3, GMM-3, and GMM-2 with monotonic maximin
(MM) and the top-K algorithms with K = 2, 3 when addressing
the monotonic adversary without any additional uncertainty (Fig-
ure 3(b)). URAC-3 is a version of URAC corresponding to this
case of uncertainty. Specifically, the top-K algorithms approximate
the monotonic maximin solution; higher K achieves higher solu-
tion quality but runs more slowly. The Top-3 and Top-2 algorithms
are chosen as they are the top performers [5]. In these figures, the
results are averaged over 100 payoff structures.

As shown in Figure 3, δ−ORAC, GMM-2, and GMM-3 signif-
icantly outperform the other existing robust algorithms. Their so-
lution quality is approximately the same as URAC-2 and URAC-3,
respectively. For example, in Figure 3(a), in the case of 9-target
games, while the defender’s utility obtained by both URAC-2 and
δ−ORAC is -1.16, ISG and RECON only achieve utilities of -1.89
and -1.87, respectively. These results show that our robust algo-
rithms outperform other existing robust algorithms in terms of so-
lution quality in small-scale games. The only exception is the iso-
lated uncertainty of monotonic adversary where MM provides the
exact optimal solution.
Large-scale domains: Here, we show that our approximate algo-
rithms significantly outperform other robust algorithms for address-
ing a combination of a subset of or individual uncertainties. We
examine 2 game settings: 1) combined uncertainties with a rational
adversary (Figure 4(a)); and 2) monotonic adversary (Figure 4(b)).
In these figures, the results are averaged over 100 payoff structures.
Given the limited scalability of URAC to large games, we do not
include its result. Figure 4 shows that our approximate algorithms
obtain a significantly higher utility than other robust algorithms in
large-scale games. For example, in Figure 4(a), in the case of 80-
target games, δ−ORAC achieves a utility of -2.06 while RECON
and ISG obtain only -2.82 and -2.83, respectvely.

(a) Uncertainty setting:
α = β = .5, γ = η = .05

(b) Uncertainty setting: mono-
tonic adversary

Figure 4: Solution quality, approximate algorithms
Furthermore, even when δ−ORAC only attempts to address a

specific type of uncertainty, i.e., uncertainty in the defender’s strat-
egy (α = β = 0.0), it provides a higher solution quality than the
fastest robust algorithm, i-RECON [15], for dealing with this type
of uncertainty. In this experiment, δ−ORAC guarantees to obtain
an δ−optimal solution with δ = 1e − 8 while i-RECON does not

323

ensure any solution bound. As shown in Figure 5, while both al-
gorithms achieve the similar expected utility when γ = η = .01,
when the uncertainty increases, i.e., γ = η = .05, i-RECON ob-
tains lower defender’s utility than δ−ORAC. For example, in Fig-
ure 5(b), in the case of 320-target games, δ−ORAC obtains a de-
fender’s utility of -3.54 on average while i-RECON achieves only
-3.84. Overall, our robust algorithms significantly outperform the
existing robust algorithms for addressing uncertainties.

(a) γ = η = .01 (b) γ = η = .05

Figure 5: Solution quality, uncertainty in defender’s strategy

8.2 Runtime performance
In addition to solution quality, we show that our approximate

algorithms obtain an efficient runtime performance in comparison
with other robust algorithms in large-scale games. The results are
average over 100 payoff structures. In Figure 6, the y-axis indi-
cates the runtime in seconds and the x-axis shows the number of
targets. Figure 6(a) shows that δ−ORAC runs significantly faster
than i-RECON and its runtime is approximately the same as ISG;
i-RECON’s runtime grows quickly while δ−ORAC’s runtime is
consistently fast as the number of targets increases. For example,
i-RECON’s runtime reaches 144.25 seconds while δ−ORAC and
ISG take only 0.05 and 0.046 seconds on average in 320-target
games, respectively.

Furthermore, our GMM-p algorithm is shown to have approx-
imately the same runtime as the Top-K algorithm (Figure 6(b)).
While our approximate algorithms achieve higher quality without
sacrificing runtime, some URAC versions are unable to scale-up.
For example, when addressing a combination of all uncertainties
(i.e., α = β = 0.5, γ = η = 0.05, monotonic adversary), URAC-
1’s runtime is 85.17 seconds for 9-target games while our approx-
imate algorithms take less than 1 second; of course, URAC-1 ad-
dresses a combination of uncertainties that no algorithm can.

(a) Uncertainty setting:
α = β = .5, γ = η = .05

(b) Uncertainty setting: mono-
tonic adversary

Figure 6: Runtime performance, approximate algorithms

9. CONCLUSION
In this paper, we provide the following main contributions: 1)

we present the first unified framework to handle all the uncertain-
ties where robust algorithms have been defined in security games;
2) we provide a unified algorithmic framework from which we can
derive different “unified” robust algorithms to address combina-
tions of these uncertainties; 3) we introduce approximate robust
scalable algorithms; 4) we show through our experiments that our
algorithms improve runtime performance and/or solution quality.

10. ACKNOWLEDGEMENTS
This research was supported by MURI Grant W911NF-11-1-

0332 and by the United States Department of Homeland Security
through the Center for Risk and Economic Analysis of Terrorism
Events (CREATE) under grant number 2010-ST-061-RE0001.

11. REFERENCES
[1] B. An, M. Brown, Y. Vorobeychik, and M. Tambe. Security

games with surveillance cost and optimal timing of attack
execution. In AAMAS, 2013.

[2] B. An, M. Tambe, F. Ordonez, E. Shieh, and C. Kiekintveld.
Refinement of strong stackelberg equilibria in security
games. In AAAI, 2011.

[3] N. Basilico, N. Gatti, and F. Amigoni. Leader-follower
strategies for robotic patrolling in environments with
arbitrary topologies. In AAMAS, 2009.

[4] V. Conitzer and T. Sandholm. Computing the optimal
strategy to commit to. In ACM, 2006.

[5] A. X. Jiang, T. H. Nguyen, M. Tambe, and A. D. Procaccia.
Monotonic maximin: A robust stackelberg solution against
boundedly rational followers. In GameSec, 2013.

[6] C. Kiekintveld, T. Islam, and V. Kreinovich. Security games
with interval uncertainty. In AAMAS, 2013.

[7] C. Kiekintveld, J. Marecki, and M. Tambe. Approximation
methods for infinite bayesian stackelberg games: modeling
distributional payoff uncertainty. In AAMAS, 2011.

[8] D. Korzhyk, V. Conitzer, and R. Parr. Complexity of
computing optimal stackelberg strategies in security resource
allocation games. In AAAI, 2010.

[9] J. Letchford and Y. Vorobeychik. Computing randomized
security strategies in networked domains. In AARM
Workshop In AAAI, 2011.

[10] R. McKelvey and T. Palfrey. Quantal response equilibria for
normal form games. Games and economic behavior,
10(1):6–38, 1995.

[11] E. Nudelman, J. Wortman, Y. Shoham, and
K. Leyton-Brown. Run the gamut: A comprehensive
approach to evaluating game-theoretic algorithms. In
AAMAS, 2004.

[12] J. Pita, M. Jain, F. Ordonez, M. Tambe, S. Kraus, and
R. Magori-Cohen. Effective solutions for real-world
stackelberg games: When agents must deal with human
uncertainties. In AAMAS, 2009.

[13] M. Tambe. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press, 2011.

[14] R. Wilcox. Applying contemporary statistical techniques.
Academic Press, 2002.

[15] Z. Yin, M. Jain, M. Tambe, and F. Ordonez. Risk-averse
strategies for security games with execution and
observational uncertainty. In AAAI, 2011.

[16] Z. Yin and M. Tambe. A unified method for handling
discrete and continuous uncertainty in bayesian stackelberg
games. In AAMAS, 2012.

324

