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ABSTRACT
Models of swarming and modes of controlling them are nu-
merous; however, to date swarm researchers have mostly ig-
nored a fundamental problem that impedes scalable human
interaction with large bio-inspired robot swarms, namely,
how do you know what the swarm is doing if you can’t ob-
serve every agent in the collective? We examine swarm mod-
els that exhibit multiple collective motion patterns from the
same parameters. These multiple emergent behaviors pro-
vide increased expressivity, but at the cost of uncertainty
about the swarm’s actual behavior. Because bandwidth and
time constraints limit the number of agents that can be ob-
served in a swarm, it is desirable to be able to recognize and
monitor the collective behavior of a swarm through limited
samples from a small subset of agents. We present a novel
framework for classifying the collective behavior of a bio-
inspired robot swarm using locally-based approximations of
a swarm’s global features. We apply this framework to two
bio-inspired models of swarming that exhibit a flock and
torus behavior and a swarm, torus, and flock behavior, re-
spectively. We present both a formal metric of expressivity
and a classifier that leverages local agent-level features to
accurately recognize these collective swarm behaviors while
sampling from only a small number of agents.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—multiagent systems, mobile agents

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Swarms and collective behaviors, behavior recognition, bio-
inspired robotics, human-swarm interaction, self-organization

1. INTRODUCTION
Swarms have been hailed as the future of low cost multi-

agent systems because of their inherent robustness, flexi-
bility, and the power of obtaining complex behaviors from
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many simple local interactions [16]. Biologically-inspired
robot swarms are typically characterized by a large num-
ber of agents with limited abilities and are ideally suited for
accomplishing dangerous or uncertain tasks where commu-
nication is limited and agent failures are likely. In many
situations, such as search and rescue, military operations,
and space exploration, it is desirable to have a robust robot
team that is amenable to human interaction. As these bio-
inspired teams grow in size, bandwidth and time constraints
make it increasingly difficult for a human to individually
control and monitor every agent. Thus, there is a need for
limited bandwidth methods to monitor and influence the
collective behavior of a swarm. This is especially important
because many swarm applications may involve contested or
uncertain environments where maintaining communication
with a large proportion of the swarm is unlikely.

Swarm models and control methods are numerous; how-
ever, most research has avoided the problem of recognizing
the collective behavior of a swarm. We address this research
gap by demonstrating a methodology for accurately detect-
ing the emergent collective motion of a robot swarm using
limited information from only a subset of the swarm.

The methodology we propose leverages the fact that col-
lective behaviors are often fundamental attractors of multi-
agent dynamic systems [19, 3, 10], and thus have distinct
global structure. Because this global structure is a func-
tion of local behaviors, we use local samples of agent-level
features to estimate the collective behavior of a swarm. Pre-
vious work by Kerman et al. [6] demonstrates a bio-inspired
swarm model that exhibits two stable emergent behaviors:
a flock and a torus. The work by Kerman et al. also shows
the existence of what we term an expressive region in the
parameter space, that allows multiple emergent behaviors
from the same parameters. The existence of an expressive
region affords switching between swarm behaviors on the fly
by only influencing a subset of the swarm. Our work ex-
amines the problem of recognizing the collective behavior
of a swarm that is operating in an expressive region, using
information from only a subset of the swarm.

Using the model proposed by Kerman et al. [6], we show
that classification between a flock and torus is possible with
high accuracy simply by sampling a small number of agents
and using a simple classifier. In fact, we demonstrate that
because of the high degree of structure found in the collec-
tive behaviors of the swarm, these behaviors can be quickly
and accurately classified even if agents are unable to per-
form self-localization. Using local information on perceived
numbers of neighbors and angular velocity from a subset of
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agents, we demonstrate this concept using a simple naive
Bayes classifier to accurately detect whether the swarm is
moving as a torus or as a flock. We also examine a similar
bio-inspired model proposed by Couzin et al. [3] that has
three distinct collective behaviors: swarm, torus, and flock.
We empirically show that this model also has an expressive
region that allows both a flock and a torus behavior, and
demonstrate that local observations can be used to recog-
nize the collective behaviors in this swarm model.

2. RELATED WORK
Swarm models have been explored by many researchers in

a wide variety of fields. These models are typically capable
of either flocking [15, 21, 12] or cyclic behavior [8, 7], and in
some cases can exhibit multiple group behaviors depending
on the model parameters used [6, 3, 17]. However, to cause a
swarm to switch between behaviors typically requires chang-
ing the model parameters. While much work in the swarm
literature has investigated swarm behaviors and phase tran-
sitions between then [22], we know of little work, other than
that by Kerman et al. [6], that has investigated models that
produce multiple behaviors from the same parameters.

Strömbom [17] proposes an attraction-only swarm model
and shows evidence of several regions in the parameter space
that exhibit two different behaviors using the same model
parameters; however, this model uses periodic boundary
conditions and it is unclear whether these expressive regions
persist if these boundary conditions are removed. Work by
Nevai et al. explores the problem of how a honeybee colony
evaluates the quality of a potential nest site [10]. They de-
velop a dynamic model of the nest-site selection process and
determine conditions under which the colony can switch be-
tween model equilibria. However, this work is for a group de-
cision process, not a group formation control problem which
is the focus of our research.

The work that is probably most similar to ours is the re-
search in multi-agent activity recognition [18, 20, 14, 11].
However, our work differs from previous multi-agent activ-
ity recognition approaches in that we seek to identify the
emergent behavior of a large collective by combining (a) ob-
servations of a few individuals with (b) knowledge of the
attractor structures that describe these collective behaviors.

3. SWARM MODEL
The majority of our analysis and experiments focus on a

model of swarming published by Kerman et al. [6]. The
model consists of a set of N agents with the dynamics for
agent i given by

ẋi = s · cos θi, ẏi = s · sin θi, θ̇i = ωi, (1)

where ci(t) = [xi(t), yi(t)]
T ∈ R2 is the agent’s position at

time t, θi ∈ [−π, π] is the agent’s angular heading, s is the
constant agent speed, and ωi is the agent’s angular veloc-
ity. The magnitude of ωi is bounded by π/2. Thus, the
agent dynamics match the Dubins curve model which is of-
ten used for actual UAV path planning and applies to many
constant-speed, non-holonomic ground robots [5]. Similar to
the Couzin model of biological swarms [3] and the Reynold
model of synthetic agents [15], agents in this model react
to neighbors within three different zones: repulsion, orien-
tation, and attraction. An agent is repelled from neighbors
within its repulsion zone of radius Rr, orients its heading

(a) torus (b) flock

Figure 1: Emergent swarm behaviors in Kerman’s
model. Straight lines represent agent headings.

with neighbors in its orientation zone of radius Ro, and is
attracted to neighbors outside of its orientation zone. The
angular velocity ωi is determined by summing the desired
direction vectors resulting from the repulsion, orientation,
and attraction rules.

Neighbors are chosen with a random neighbor model where,
at each time step, agent i is visible to agent j according
to a Bernoulli random variable with parameter pij(t) =
min

(
1, 1/‖ci(t) − cj(t)‖2). This method of choosing neigh-

bors is similar to the random neighbor model used in [1]
which replicated field observations of starlings and is rele-
vant for actual robot systems which are noisy and where
visibility and sensing are less likely with growing distance.

3.1 Emergent behaviors
This model has two emergent behaviors: a torus and a

flock, shown in Figure 1. A torus has a relatively stationary
group centroid, and either a clockwise or counterclockwise
rotation. The torus behavior could potentially be used for
perimeter monitoring, for a fixed-wing UAV loitering com-
mand, or to provide omni-directional sensing of a target. A
flock has a moving centroid with all of the agents heading in
the same general direction. The flock behavior is ideal for
transporting the swarm quickly from one location to another
and could be used for search or for tracking moving objects.

Previous work has shown that the torus and flock behav-
iors are actually fundamental attractors of the attraction
and orientation dynamics of this model [6, 2]. Additionally,
work in [6] determined parameter values that allow both
group types to emerge. The percentage of trials that con-
verged to a torus and to a flock, when agents were started
with random initial conditions, were calculated for increas-
ing values of Ro and are shown in Figure 2.

3.2 Expressivity
Figure 2 shows the existence of what we term an expressive

region in the parameter space, a set of parameters that allow
multiple emergent behaviors. The existence of an expressive
region affords switching between swarm behaviors simply by
influencing a subset of the swarm. As can be seen in the fig-
ure, the expressive region is approximately 5 < Ro < 14. Be-
cause it is desirable to have a flexible adaptable swarm that
can express multiple behaviors we are interested in finding
the model parameters that maximize expressivity.

We define the expressive entropy as a measure of the un-
certainty of the emergent behavior of a swarm. In turn, the
expressive entropy is a measure of how amenable the swarm
is to switching its collective behavior given a large enough
perturbation. Thus, expressive entropy tells us two things
about a swarm: the sensitivity of the swarm to signals that
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Figure 2: Probability of the swarm forming a flock
or a torus as a function of the radius of orientation.
The expressive entropy of the swarm is maximized
at the point in the parameter space where a flock
and torus are equally likely.

might make it change behavior and the uncertainty of what
behavior will emerge.

The expressive entropy of a set of agents is defined as

Hexp(Sparam) =
∑

b∈Emergent[Sparam]

p(b) log2

(
1

p(b)

)
(2)

where Sparam denotes a specific point in the parameter space
of the swarm model and Emergent[Sparam] is the set of
emergent collective behaviors possible at Sparam. For ex-
ample, in Figure 2 all of the model parameters are fixed
except for the radius of orientation so we are interested in
the parameter subspace Sparam for 0 < Ro < 30. We also
have Emergent[Sparam] = {flock, torus}. Figure 2 shows
Hexp as a function of the radius of orientation.

We see that Ro ≈ 8 is the point in the parameter space
with maximum expressive entropy, meaning that for agents
that are randomly initiated within some constraints, both
attractors are approximately equally probable. For this rea-
son we use Ro = 8 for the remainder of this paper, but note
that our results are robust to small deviations in this and
other model parameters.1

We argue that this metric is relevant for the generaliz-
ablity of our approach because having the system operate
at maximum expressive entropy induces an important trade-
off in the problem: maximum expressivity means that the
system is as capable of switching between different collec-
tive states as possible which is good, but it also means that
the estimation problem is harder because the prior proba-
bilities of being in any given collective state are maximally
uninformative—making it even more important that we can
recognize the collective behavior of a swarm.

4. DETECTING COLLECTIVE BEHAVIOR
In this section we examine several global indicators of the

collective behavior of a swarm and show how to classify these
behaviors using local information from a small number of
agents. We evaluate the performance of a very simple naive

1Other parameters were set to N = 100, s = 5, k = 0.5,
Ro = 8, and Rr = 1. Simulations used a discrete-time ap-
proximation with simulation time step of ∆T = 0.1 seconds.
Note that our results are robust to small deviations in this
and other model parameters.

Bayes classifier and show that it achieves high accuracy while
even in the presence of transients

4.1 Global indicators of collective behavior
Global indicators of collective behavior are important be-

cause they can be used to inform the selection of local agent-
level features to approximate the collective behavior of a
swarm. Additionally, as opposed to local features chosen
in an ad hoc manner, features that are informed by global
properties will most likely allow us to estimate the collective
state effectively using limited samples.

Two different global measurements of collective behavior
are often used to classify the emergent behavior of a swarm:
group angular momentum, and group polarization [3, 6, 17].
Group angular momentum, mgroup, is a measure of the de-
gree of rotation of the group about the group centroid and
is a value between 0 and 1. The group angular momen-
tum of a swarm reaches a maximum value of 1 if all the
agents rotate around the group centroid in the same direc-
tion. Group polarization, pgroup, measures the degree of
alignment among individuals within the group and is also a
value between 0 and 1. The group polarization of a swarm
reaches a maximum value of 1 when all the agents head in
the same direction.

A torus is characterized by pgroup close to 0 and mgroup

close to 1. A flock is characterized by pgroup close to 1
and mgroup close to 0. For the purpose of evaluating col-
lective behavior recognition we subjectively define a swarm
as a clockwise or counterclockwise torus if mgroup > 0.75
pgroup < 0.25 with the respective rotation. A swarm is de-
fined as a flock if mgroup < 0.25 and pgroup > 0.75. These
values yield classifications that are robust to minor pertur-
bations, while ensuring the fundamental characteristics of a
flock and torus are visually evident.

Examining the emergent behaviors in Figure 1 we see a
clear spatial difference in the graph topology of the agents:
agents are tightly packed in a flock, while a torus has a
large void in the center. The underlying graph topology of a
multi-agent system contains fundamental information about
the global evolution of a group’s behavior [9, 13] providing
a strong theoretical foundation to our approach.

Based on these results we investigate a local approxima-
tion of the Fiedler eigenvalue of the underlying graph topol-
ogy formed by agent interactions. The Fiedler eigenvalue,
νn−1, is defined as the second smallest eigenvalue of the
graph Laplacian and is a measure of the connectedness of
the graph [4]. The underlying graph topology in multi-agent
systems is known to be important for the convergence of
consensus protocols and the speed of consensus is directly
related to the algebraic connectivity or Fiedler eigenvalue
[13]. The Laplacian L of an undirected graph is defined as
L = D−A where A is the adjacency matrix induced by the
agent interactions and D is the diagonal matrix with agent
degrees along the diagonal.

4.2 Local agent-level features
We have discussed three global features that distinguish

between the flock and torus behaviors: group polarization,
group momentum, and the Fiedler eigenvalue. We can use
these global properties to motivate related local features.

The group polarization and momentum are related to agent
headings and angular velocities, respectively. The Fiedler
eigenvalue, νn−1, of a graph is related to the degree sequence
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Figure 3: Bayesian network for swarm behavior clas-
sification using samples of local information from
Nsample agents.

(d1, d2, . . . , dn) of the graph by the relationship

0 ≤ νn−1 ≤
n

n− 1
d̄, (3)

where d̄ = 1
n

∑n
i di, and the degree of an agent is the number

of neighbors it interacts with [4]. This relationship shows
that νn−1 is bounded above by the average degree, which
can be estimated by local samples of agent degrees.

Thus, samples of individual agent angular velocities and
numbers of neighbors (degrees) provide information to de-
tect the group type of the swarm. Angular velocity from a
few agents can be used to determine whether the agents are
turning at approximately the same rate (torus) or moving
straight (flock). The degree, or number of neighbors, of a
few agents indicates whether the swarm’s graph structure
has high (flock) or low (torus) connectivity. These features
do not require any kind of localization or shared frame of
reference—they only require that an agent knows how fast
it is turning and how many other agents are nearby.

4.3 Bayesian classification of swarm behavior
We make the Naive Bayes assumption that all features are

conditionally independent given the collective behavior; see
Figure 3. While this may not be true, success of this classi-
fier provides evidence that using local estimates of a global
indicator is a good approach— we don’t need a sophisticated
classifier to determine the collective state. This is important
because when we operate at the point of maximum expres-
sive entropy, the estimation problem is maximally hard in
some sense. If a simple classifier can work, then it tells us
that the global-to-local approach is sound.

Using the two local features discussed in Section 4.2, de-
gree and angular velocity, we compute the Bayesian optimal
estimate of the actual collective behavior, b̂collective as follows

b̂collective = argmax
b

P (b)
∏
i∈S

P
(
di
∣∣ type)P (ωi

∣∣ type) (4)

where b ∈ {clockwisetorus, counterclockwisetorus, flock}, S
is the set of agent samples, and di and ωi are the degree and
angular velocity obtained from the ith agent sample, respec-
tively. The individual likelihoods P

(
d
∣∣ type) and P

(
ω
∣∣ type)

are learned from training data. Because we are interested in
collective behavior recognition at a point of maximum ex-
pressive entropy, we assume P (torus) = P (flock) = 1/2,
although specific beliefs about the collective behavior of the
swarm could be included.

4.4 Behavior classification data sets
To evaluate the accuracy of group type classification we

created a training and a test set, both consisting of simula-
tions for the flock and torus group types. Because a torus
can form in one of two rotations, we attempt to recognize
the rotation of the torus. The training data was obtained
by initializing the swarm to form either a clockwise torus,
counterclockwise torus, or flock. The test data was obtained
by randomly initializing the swarm so it could form either a
flock or a clockwise or counterclockwise torus.

4.4.1 Training data
To obtain data to model the numbers of neighbors and

angular velocities of the flock and torus group types we ran
three experiments: one for the flock, one for the clockwise
torus, and one for the counterclockwise torus. Each ex-
periment consisted of 100 replicates of 100 seconds each.
For the flock simulations each agent’s initial heading was
set to θ = 0 and the agents’ starting locations were ran-
domly chosen in the interval [−20, 20] × [−20, 20]. These
parameters were used because we found that they ensured
that the swarm formed a flock. The initial positions for a
torus were also chosen randomly, with initial headings set
to θi = atan2(yi, xi) ± π/2, where the sign of π/2 was cho-
sen depending on the desired orientation of the torus. This
was done to ensure that the swarm formed a torus. For each
simulation we let the group type stabilize for 25 seconds and
then recorded the number of neighbors and angular velocity
for each agent in the group every tenth of a second for the
remainder of the simulation.

4.4.2 Test data
We created a test set by running 100 replicates with ran-

dom initial headings and positions so that each simulation
could produce either a flock or a torus. Out of the 100 sim-
ulations, 53 formed a torus and 47 formed a flock where the
convergence was checked using the final mgroup and pgroup
for each replicate. We also found that out of the 53 simula-
tions that formed a torus, 26 formed a clockwise torus and
27 formed a counterclockwise torus.

4.4.3 Estimating likelihoods
We estimated the likelihood P

(
d
∣∣ type) of an agent having

a certain number of neighbors d, given that the group is in
a torus or a flock formation using the maximum likelihood
estimate resulting from the training data.

To estimate the likelihood P (ω|type), we discretized an-
gular velocity values using bins widths of .1 radians/second
from -1.6 radians/second to 1.6 radians/second resulting in
32 bins then created a discrete probability distribution by
binning all of the training data and normalizing the counts.

4.5 Classifying collective behavior
We let Nsample represent the number of agents sampled to

obtain an estimate of the collective behaivor of the swarm.
To simulate limited bandwidth we varied the number of
agents sampled, Nsample, as well as the number successive
samples taken from each of these agents. Samples were taken
from agents every simulation update, corresponding to every
10th of a second. Because the test data is generated from
simulations that started at random initial conditions, there
can be a large amount of transient behavior before the group
type stabilizes. To give ample time for a group type to form
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Figure 4: Collective behavior classification accuracy
as the number of agents sampled increases for dif-
ferent numbers of successive samples per agent. Re-
sults are for a swarm with 100 agents.

we gave the simulations 90 seconds to form and used the last
10 seconds (100 simulation updates) for computing the clas-
sification accuracy. This resulting classification accuracies
are very high, as shown in Figure 4.

4.6 Effects of transients
Because it takes time for the collective behaviors to fully

form, we investigated classifier performance in the presence
of transient dynamics. To do this we evaluated the classifi-
cation accuracy at 5 second intervals from 5 to 100 seconds
of simulation time. We started sampling after 5 seconds of
simulation time to mitigate the effects of initial positions
and headings and to allow the group type to begin forming.
This resulted in 20 different classification accuracies that we
can compare to see how accuracy changes as the different
group types emerge.

We used the number of neighbors and the angular ve-
locity of sampled agents to classify between the clockwise
torus, counterclockwise torus, and flock behaviors. Because
of the transient behavior of the swarm at the beginning of
the simulation we sampled only once from each agent every
5 seconds and classified the group behavior based only on
the most recent samples taken.

The classification results for values of Nsample equal to 1,
2, 5 and 10 are shown in Figure 5. We see that the classifier
performs extremely poorly when sampling once after only
5 seconds of simulation time. The reason for this is that
many times an elongated flock-like transient forms and then
flips into a torus. Also, simulations that actually formed
flocks tend to start off very elongated, resulting in agents
having fewer neighbors and the group type being initially
classified as a torus. Thus, we conclude that while it is highly
beneficial to wait for group types to form, group types can
be classified with moderate accuracy early in the simulation
while only sampling from a small percentage of the agents.

4.7 Discussion
We demonstrated that the collective behavior of a swarm

can be accurately classified using samples from a small per-
centage of agents in a swarm. We showed that combining
samples of the number of neighbors with samples of angular
velocity achieves high classification accuracy. These results
are robust to group types that are not fully formed, the in-
herent noise from our stochastic topology, and the precision

Figure 5: Accuracy for recognizing emerging collec-
tive behaviors despite transient dynamics. Results
are for sampling once from Nsample different agents.
By 100 seconds the collective behaviors have fully
formed.

loss that occurs when discretizing angular velocity.
While our results show extremely high accuracy, we note

that this is because the flock and torus are stable distinct
behaviors. This feature is desired in swarm behaviors be-
cause of the guaranteed robustness of the swarm to noise
and agent errors. Thus, the robustness of the behaviors
provides highly discriminative local agent-level features for
easily recognizing the collective behavior of the swarm even
when operating at a point of maximal expressiveness. The
high accuracy achieved when sampling from only one agent
also means that a single can classify the entire group be-
havior by itself. This is an important feature that could be
applied to autonomous underwater or air vehicles that must
cooperate with limited or no communication and which may
change their behavior depending on what they perceive the
entire collective is doing, without requiring message passing
or convergence to a consensus.

We also demonstrated that the behavior of a swarm can be
classified using samples of a few agents’ number of neighbors
and angular velocity. The classification was done using only
features that did not require self localization or any kind of
global reference frame. Because swarms may be tasked to
environments where GPS is limited or unavailable and loss of
communication or noisy signals may be common, monitoring
a swarm in those scenarios is critical.

Before ending this section, note that we investigated the
potential scalability of the classifiers for larger swarms. We
calculated statistics for the number of neighbors and angular
velocity of agents in a flock and torus of size N = 200, 300,
and 400 and found that the distributions over an agent’s
number of neighbors and angular velocity continue to be
distinct for larger group sizes. Table 1 shows the means and
standard deviations forN = 200–400. Based on these results
we hypothesize that accurate group type classification from
limited samples is possible for larger groups. Future work
should validate this hypothesis.

5. COUZIN’S MODEL
To demonstrate that the methods proposed for collective

behavior recognition in Section 4 apply to other multi-agent
systems, we consider Couzin’s model [3]. Couzin’s model
[3] is similar to the Kerman swarm model, but has several
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N Behavior #N µ #N σ AV µ AV σ

200
Torus 19.20 4.14 0.38 0.25
Flock 47.19 12.18 0.00 0.72

300
Torus 27.09 5.25 0.37 0.32
Flock 62.39 15.89 0.00 0.74

400
Torus 34.39 6.28 0.36 0.37
Flock 75.98 19.06 0.00 0.75

Table 1: The sample means (µ) and standard devia-
tions (σ) for the distributions of number of neighbors
(#N) and angular velocity (AV) as the size of the
swarm, N, increases.

(a) swarm (b) torus (c) flock

Figure 6: Emergent behaviors in Couzin’s model.
Straight lines represent agent headings.

key differences: (1) it produces three distinct group types: a
swarm, a torus, and a flock (see Figure 6), (2) agents have a
blind spot, (3) it uses a fixed maximum turning rate instead
of using integrator dynamics, (4) it uses non-stochastic and
non-overlapping behavior zones to create a metric topology
with a maximum sensing range Ra, and (5) it adds explicit
noise to the individual agent headings.

The agent dynamics in Couzin’s model are similar to Ker-
man’s model; agents repel from neighbors within a repulsion
radius Rr, orient with agents within an orientation zone Ro,
and attract to agents within an attraction zone Ra. The
model consists of N agents that move at a constant speed s,
have a vision range of α radians, and can turn at most β ra-
dians per second. Agents update their heading and position
every ∆t seconds.2

5.1 Expressive regions
To find parameter settings that can exhibit multiple group

types, we performed an experiment similar to the one dis-
cussed in previously, but for Couzin’s model. We ran a series
of 100 replicates for values of Ro between 1 and 10 in 0.5
unit increments. We then used the results of the final state
of the simulation after 100 seconds to determine what group
type had formed. Each replicate was started from random
initial conditions. We determined the ground truth behavior
as follows

bcollective =


swarm, if mgroup < 0.3 and pgroup < 0.3

torus, if mgroup > 0.6 and pgroup < 0.3

flock, if mgroup < 0.3 and pgroup > 0.6

(5)
where the torus behavior was designated as either a clock-

2Simulation parameters were N = 100, Rr = 1, Ra = 15,
s = 3 units/second, α = 5π/3 radians, and β = 1.4 radians,
and ∆t = 0.1 seconds. We added η ∈ U(−0.2, 0.2) radi-
ans/second of noise to the individual agent headings, where
U(·, ·) is the continuous uniform distribution.

Figure 7: Probability of Couzin’s model producing
either a swarm, a torus, or a flock for different val-
ues of Ro. The expressive entropy Hexp is maximized
at the point where a flock and a torus are approxi-
mately equally likely.

wise or counterclockwise torus based on the rotational di-
rection of the majority of the agents in the swarm. Because
the group types in Couzin’s model do not form as clearly as
in Kerman’s model, these conditions are more relaxed.

Figure 7 shows the probability of each group type form-
ing for each value of Ro that was simulated. We see that
there is not an expressive region that forms both swarm and
torus behaviors. This is because once the radius of orien-
tation is greater than the radius of repulsion, the agents
start orienting with each other and the swarm undergoes a
phase transition and forms a torus. This can be seen by the
immediate jump in the probability of forming a torus and
the immediate drop in the probability of forming a swarm
when Ro is increased from 1 to 1.5. As the radius of ori-
entation is increased past 1.5, the torus stabilizes and then,
for high enough values of Ro, flocks become the dominant
group type. Figure 7 also shows the expressive entropy of
the swarm. We use Ro = 6 as the point in the parameter
space that approximately maximizes expressive entropy.

We examined the simulations that didn’t meet any of the
criteria in Equation 5 and found that they either formed a
noisy torus with agents rotating in the both directions (for
Ro = 1.5) or formed something in between a flock and a
torus, with most of the agents clumped up but still moving
around in circles. We also checked for fragmentation by
looking at the positions of the agents at the end of each the
simulation and checking to see if the underlying interaction
graph formed by the radius of attraction was connected. We
found that only two of the simulations fragmented. These
two simulations were not used in the following analysis.

5.2 Classification features
We used the same features used in Section 4. We cal-

culated the distributions over number of neighbors and an-
gular velocity for a swarm, a torus, and a flock using the
same simulations used to investigate the expressive region
in Couzin’s model. We used the 100 replicates with Ro = 1,
the 98 replicates that formed a clockwise or counterclock-
wise torus when Ro = 2, and the 99 replicates that formed
a flock and did not fragment when Ro = 8.5 to model the
swarm, clockwise and counterclockwise torus, and flock, re-
spectively. The torus rotation was determined by inspecting
the final angular velocity of each agent for each replicate. We
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Figure 8: Behavior recognition accuracy for distin-
guishing between a flock, a clockwise torus, and a
counterclockwise torus in Couzin’s swarm model.

found that there were 47 clockwise torus simulations, and 51
counterclockwise torus simulations.

Figure 6 shows a snap shot of a swarm, torus, and flock.
Because all three group types tend to be tightly packed with
the torus lacking the large void that is found in Kerman’s
model, the distributions of numbers of neighbors and angu-
lar velocities in Couzin’s model are similar making it harder
to detect the collective behavior of the swarm.

5.3 Torus and flock classification
Because there is no expressive region that allows both a

swarm and a torus to form, we first investigate only dis-
criminating between the torus and flock group types. We
created a test set of 100 simulations using Ro = 6 to test
the accuracy of a naive Bayes classifier using the number of
neighbors and angular velocity as features. Using Ro = 6
will form either a flock or a torus with approximately equal
probability. Thus, there are three possible classifications: a
clockwise torus, a counterclockwise torus, or a flock. Figure
8 shows how the classification accuracy changes as the band-
width constraint on the number of agents sampled and the
number of successive samples take from each agent changes.

The classification accuracies for Couzin’s model are much
lower than for Kerman’s model (see Figure 4), but we see
that sampling more than 10 agents provides high classifica-
tion accuracies as long as a sufficient number of samples are
taken. The lower classification accuracies were a result of
most of the flock simulations being misclassified as either a
clockwise or counterclockwise torus. Increasing the band-
width and number of samples increases the accuracy, but
the majority of the errors still come from misclassifying a
flock as a torus. When Nsample ≥ 5 and at least 5 sam-
ples/agent are used, there are no misclassifications between
the clockwise and counterclockwise torus. Thus, our chosen
features discriminate well between torus behaviors, but do
not discriminate as well between a flock and a torus.

5.4 Swarm, torus, and flock classification
Couzin’s model has an expressive region where both the

torus and flock behaviors can form, but has a phase transi-
tion between the swarm and torus behaviors. Because of this
there is no single set of parameters that will form either a
swarm or torus with equal probability. However, it is still in-
teresting to see if group type classification can be done with
high accuracy when the swarm can be in more than three

Figure 9: Behavior recognition accuracy for distin-
guishing between a swarm, a clockwise torus, a coun-
terclockwise torus, and a flock in Couzin’s swarm
model.

behaviors. To test the classification accuracy in this case, we
created a test set with 100 simulations of a swarm (Ro = 1),
100 simulations of a torus (Ro = 2), and 100 simulations of
a flock (Ro = 8.5). This simulates a point of maximum ex-
pressivity, because each behavior (swarm, torus, and flock)
has a 1/3 chance of emerging. The values of Ro were cho-
sen to ensure a high likelihood of every simulation forming
the desired group type. All other parameters were kept the
same as before, and each simulation was started with ran-
dom initial positions and headings.

Before computing the accuracy of the classifier we checked
each simulation’s final mgroup and pgroup to see if the de-
sired group type had formed. We also checked the final po-
sitions of the agents to check for group fragmentation. We
found that none of the simulations fragmented for any of the
parameter settings. For Ro = 1, all 100 of the simulations
formed a swarm. For Ro = 2, 93 of the simulations formed a
torus, 4 simulations formed a flock, and 3 simulations failed
to converge to a distinct group type. For Ro = 8.5, 98 of
the simulations formed a flock and 2 never formed a distinct
group type. In the subsequent analysis we use only the sim-
ulations that fully formed a group type. This resulted in a
test set of 295 simulations.

Figure 9 shows classification accuracy as a function of
Nsample. The classification accuracies with three group types
are noticeably lower than with two possible group types.
As before, using more samples increases accuracy, and that
more samples are needed to reach high classification ac-
curacies with Couzin’s model than for classification using
Kerman’s model. We examined the classification errors and
found that most of the errors came from from misclassifying
a behavior as a swarm or misclassifying a swarm as another
behavior. We also found that the largest number of these
errors occur between the flock and swarm group types. This
was found to be a result of the similarity between the dis-
tributions for the number of neighbors and angular velocity
of a flock and of a swarm. This is a case where adding
information about agent headings would be beneficial.

6. SUMMARY AND FUTURE WORK
This research focuses on a major problem that impedes

scalable interactions with large bio-inspired robot swarms:
accurately detecting the collective state of a robot swarm
using limited information from a subset of the swarm. We
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presented a formal metric called expressive entropy that can
be used to determine the point in the parameter space with
maximum expressivity. We propose that swarm systems
should operate at, or near, the point of maximum expres-
sive entropy to provide the maximum flexibility in possible
collective behaviors. However, maximizing the expressive
entropy of a swarm also means that the estimation prob-
lem is harder because the prior probabilities of being in any
given collective state are maximally uninformative.

We presented a novel framework for classifying the col-
lective behavior of a bio-inspired robot swarm using locally-
based approximations of global features of the emergent col-
lective behaviors. Using a bio-inspired model of swarming
proposed by Kerman et al. [6], we showed that even if agents
are not capable of determining their location or heading, we
can accurately classify the group behavior of the swarm us-
ing local samples from individual agents. This accuracy re-
mains high even if limited bandwidth restricts the number
of observable agents. We investigated behavior recognition
for swarms undergoing transient dynamics and provided ev-
idence that our method of detecting collective behavior from
limited samples scales to larger swarm sizes.

We also demonstrated that our methodology for behavior
recognition generalizes to Couzin’s swarm model [3]. Ker-
man’s model has collective behaviors that are very distinct
and afford high accuracy behavior recognition with very
low bandwidth. Couzin’s model, on the other hand, has
emergent behaviors that are not as distinct which resulted
in lower accuracies and higher bandwidth requirements to
sample more agents. Thus, while we hypothesize that our
approach is applicable to many other multi-agent systems,
depending on the distinctness of the collective behaviors,
obtaining high recognition accuracy with limited bandwidth
may require sampling agent positions and headings and us-
ing more complex models such as Hidden Markov Models or
Conditional Random Fields [20].

Future work should investigate how well the methods we
described scale to larger swarm sizes and also investigate
how human or environmental influences affect behavior recog-
nition accuracy. Other future work includes applying our
collective behavior recognition framework to more complex
swarm behaviors, to models with many emergent behaviors,
and to actual robot swarms.
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