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ABSTRACT
A natural generalization of the single-peaked elections is
the k-peaked elections, where at most k peaks are allowed
in each vote. Motivated by NP-hardness in general and
polynomial-time solvability in single-peaked elections, we
aim at establishing a complexity dichotomy of several con-
trol problems for r-approval voting in k-peaked elections
with respect to k. It turns out that most NP-completeness
results in general also hold in k-peaked elections, even for
k = 2, 3. On the other hand, we derive polynomial-time al-
gorithms for certain control problems for k = 2. In addition,
we also study the problems from the viewpoint of parame-
terized complexity and achieve both FPT and W-hardness
results. Several of our results apply to approval voting and
sincere-strategy preference-based approval voting as well.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; G.2.1 [Combinatorics]: Combi-
natorial algorithms; J.4 [Computer Applications]: Social
Choice and Behavioral Sciences

Keywords
single-peaked; approval voting; control; parameterized com-
plexity; kernel

1. INTRODUCTION
Voting is a common method for preference aggregation

and collective decision-making, and has applications in polit-
ical elections, multi-agent systems, web spam reduction, etc.
However, by the Arrow’s impossibility theorem [1], there is
no voting system which satisfies a certain set of desirable
criteria (see [1] for the details) when more than two candi-
dates are involved. One possible way to bypass the Arrow’s
impossibility theorem is to restrict the domain of the prefer-
ences, for instance, the single-peaked domain introduced by
Black [4]. Intuitively, in a single-peaked election, one can or-
der the candidates from left to right such that every voter’s
preferences increase first and then decrease after some point
as the candidates are considered from left to right.

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Recently, the complexity of various voting problems in
single-peaked elections has been attracting attention of many
researchers from both theoretical computer science and so-
cial choice communities [6, 13, 15, 16, 23]. It turned out that
many voting problems being NP-hard in general become
polynomial-time solvable when restricted to single-peaked
elections. However, most elections in practice are not purely
single-peaked, which motivates researchers to study more
general models of elections. We refer readers to [7, 8, 9,
11, 14] for some variations of single-peaked model. In this
paper, we consider a natural generalization of single-peaked
elections, where more than one peak may occur in each vote.
This generalization might be relevant for many real-world
applications. For example, consider a group of people who
are willing to select a special day for an event. In this set-
ting, each voter may have several special days which he/she
prefers for some reason, and the longer the other days away
from these favorite days, the less they are preferred by the
voter. We call this generalization k-peaked elections.

In this paper, we mainly study control problems for r-approval
voting restricted to k-peaked elections. In a control attack,
there is an external agent (e.g., the chairman in an election)
who is willing to influence the results of the election by do-
ing some tricks. There could be two goals that the external
agent wants to reach. One goal is to make some distin-
guished candidate win the election. The other goal could
be to make someone lose the election. The former case is
called a constructive control and the latter case is called a
destructive control. Moreover, the tricks involved in a con-
trol attack include adding some new, unregistered votes to
the registered votes, deleting votes from the registered votes,
adding new candidates to the election or deleting candidates
from the election. We refer readers to [12, 18, 19] for further
information on control attacks.

Approval voting is one of the most famous voting systems
and has been extensively studied both in theory and in
practice. In an approval voting, we are given a set C of
candidates and a set V of voters. Each voter approves or
disapproves every candidate c ∈ C. The system selects a
candidate who is approved by the most voters as a win-
ner. An r-approval voting is a variant of approval voting,
where each voter v casts a vote πv, defined as a linear or-
der (a transitive, antisymmetric, and total binary relation-
ship) over the candidates, and approves the candidates or-
dered in the top r positions in πv and disapproves all other
candidates. Particularly, 1-approval is also called plurality.
Another prominent variant related to approval voting is the
sincere-strategy preference-based approval voting (SP-AV for
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short), proposed by Brams and Sanver [5]. In an SP-AV elec-
tion, each voter provides both a linear order of the candi-
dates and a subset C of candidates such that the candidates
are approved according to C, and the “admissible” and “sin-
cere” properties should be fulfilled (see [5, 12] for the precise
definition).

In the following, we consider only constructive control.
Hemaspaandra et al. [18] proved that the control prob-
lems by adding/deleting votes for approval voting are NP-
complete. The proofs can be adapted to show the NP-
completeness of control by adding/deleting votes in SP-AV [12].
Lin [21] proved that control by adding votes in 4-approval
and control by deleting votes in 3-approval are both NP-
complete, while control by adding votes in 3-approval and
control by deleting votes in 2-approval are polynomial-time
solvable. As for the control by modification of candidates,
approval voting turned out to be immune1 to control by
adding candidates and polynomial-time solvable for control
by deleting candidates [18]. However, the control prob-
lems by adding/deleting candidates are NP-complete for
r-approval, even when degenerated to 1-approval [19]. The
NP-completeness also holds for control by adding/deleting
candidates in SP-AV [12]. Recently, control in approval vot-
ing and r-approval voting have also been considered with
respect to single-peaked elections. Faliszewski et al. [15]
proved that the control problems by adding/deleting votes in
approval are polynomial-time solvable in single-peaked elec-
tions2. Moreover, the control problems by adding/deleting
candidates for 1-approval are polynomial-time solvable in
single-peaked elections [15].

Motivated by the NP-completeness in the general case
and the polynomial-time solvability in the single-peaked case,
we study the complexity of control problems for r-approval
voting in k-peaked elections with respect to various values
of k, aiming at exploring the complexity border for these
control problems. Faliszewski et al. [14] studied a nearly
single-peaked model which is called Swoon-SP and can be
considered as a special case of 2-peaked elections. They
proved that the control problems by adding/deleting can-
didates for 1-approval are NP-complete when restricted to
Swoon-SP elections, implying the NP-completeness of these
problems in 2-peaked elections. We complement their results
by studying the adding/deleting votes case. Our findings are
summarized in Table 1. In particular, we show that, con-
trol by adding votes in r-approval with r being a constant
is polynomial-time solvable in 2-peaked elections, but NP-
complete in k-peaked elections for k ≥ 3. Meanwhile, if r is
not a constant, then control by adding votes in r-approval
in 2-peaked elections becomes NP-complete. Moreover, the
deleting votes case turns out to be NP-complete for k-
peaked elections with k ≥ 2, even for r being a constant.

In addition, we present some results for r-approval con-
trol problems with respect to their parameterized complex-
ity. Recently, many voting problems have been studied from
the perspective of parameterized complexity. See [2] for
an overview. A parameterized problem is a language L ⊆
Σ∗ × N, where Σ is a finite alphabet. The first component

1A voting system is immune to a control behavior if one
cannot make a candidate who is not a winner become a final
winner by imposing the strategic behavior on the election.
2In [15], for the approval voting, an election is single-peaked
if there is an order of the candidates such that each voter’s
approved candidates are contiguous within the order.

I ∈ Σ is called the main part of the problem while the sec-
ond component κ ∈ N is called the parameter. Downey
and Fellows [10] established the parameterized complexity
theory, where the class FPT (stands for fixed-parameter
tractable) includes all parameterized problems which ad-

mit O(f(κ) · |I|O(1))-time algorithms. Here f(κ) is a com-
putable function. Another important parameterized com-
plexity class is W[1] which is the basic class for showing
fixed-parameter intractability results. A problem is W[1]-
hard if all problems inW[1] are FPT -reducible to the prob-
lem. We can show a problem being W[1]-hard by giving an
FPT -reduction from another W[1]-hard problem.

Given two parameterized problems Q and Q′, an FPT -
reduction from Q to Q′ is an algorithm that takes as input
an instance (I, κ) of Q and outputs an instance (I ′, κ′) of Q′

such that
(1) the algorithm runs in f(κ) · |I|O(1) time, where f is a

computable function in κ;
(2) (I, κ) ∈ Q if and only if (I ′, κ′) ∈ Q′; and
(3) κ′ ≤ g(κ), where g is a computable function in κ.
Liu et al. [22] proved that control by adding votes in ap-

proval voting is W[1]-hard and control by deleting votes in
approval voting is W[2]-hard3, with the numbers of added
and deleted votes as parameters, respectively. In addition,
they proved that control by adding candidates in 1-approval
is W[2]-hard, with the number of added candidates as the
parameter. Betzler and Uhlmann [3] complemented the re-
sults in [22] by proving that control by deleting candidates
in 1-approval is W[2]-hard, with the number of deleted can-
didates as the parameter.

We extend the above results to k-peaked elections by show-
ing that control by deleting candidates in 1-approval re-
stricted to 3-peaked elections is W[1]-hard with the num-
ber of deleted candidates as the parameter. For the gen-
eral elections, we present two FPT results for control by
adding/deleting votes in r-approval voting, with r being
a constant. Here, the parameter is the number of votes
added/deleted.

Remarks: All our results apply to both unique-winner and
nonunique-winner models. For the sake of clarity, our proofs
and algorithms are solely based on the unique-winner model.
The corresponding results for the nonunique-winner model
can be derived in the similar way. Our NP-completeness
results hold for approval voting and SP-AV as well. For
NP-completeness results, we present only the NP-hardness
proofs, since all problems studied are clearly in NP.

2. PRELIMINARIES
Multisets. A multiset S = {s1, s2, ..., s|S|} is a gener-

alization of a set where objects are allowed to appear more
than once, that is, si = sj is allowed for i 6= j. An element of
S is one copy of some object. We use s ∈+ S to denote that
s is an element of S. The size of S, denoted by |S|, is the
number of elements in S. For two multisets A and B, we use
A]B to denote the multiset containing all elements from A
and B, and use A	B to denote the multiset containing, for
each object s, max{0, n1−n2} copies of s, where n1 and n2

denote the numbers of copies of s in A and B, respectively.
For example, for A = {1, 1, 1, 2, 3, 3, 4} and B = {1, 2, 3},
3A problem is W[2]-hard if all problems in W[2] are FPT -
reducible to the problem, where W[2] is a parameterized
complexity class with W[1] ⊆ W[2].
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General Case k = 1 k = 2 k ≥ 3

adding votes P♠
r is not a constant:

r ≤ 3 : P♦ NP-c, Thm. 2 r ≤ 3 : P

r ≥ 4: NP-c♦ r is a constant: r ≥ 4: NP-c, Thm. 5

r∗ ≥ 4: FPT , Thm. 7 P, Thm. 1

deleting votes

r ≤ 2: P♦

P♠
r ≤ 2 : P r ≤ 2 : P

r ≥ 3: NP-c♦ r ≥ 3: NP-c, Thm. 3 r ≥ 3: NP-c, Thm. 3

r ≥ 4: FPT , Thm. 6

adding candidates r = 1: NP-c♣ P♠ r = 1: NP-c4 r = 1: NP-c4

deleting candidates r = 1: NP-c♣ P♠ r = 1: NP-c4 r = 1: W[1]-h, Thm. 8

Table 1: A summary of the complexity of r-approval control problems. Our new results are highlighted with
underlines. “Thm. #” means that the result follows from Theorem # in this paper. The two FPT results
are with respect to the number of added/deleted votes as parameters, respectively. Results marked by ♦ are
from [21], by ♣ from [19], by ♠ from [15] and by 4 from [14].
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Figure 1: A 2-peaked vote
πv = (c3, c4, c7, c6, c8, c9, c5, c2,
c10, c1) with respect to
L = (c1, c2, . . . , c10). Here, L
is partitioned into L1 and L2

with L1 = (c1, c2, c3, c4, c5)
and L2 = (c6, c7, c8, c9, c10).

A]B = {1, 1, 1, 1, 2, 2, 3, 3, 3, 4} and A	B = {1, 1, 3, 4}. A
multiset B is a submultiset of a multiset A, if, for every ob-
ject s that occurs n times in B, A contains at least n copies
of s. We use B v A to denote that B is a submultiset of A.
r-Approval. An r-approval election can be specified by

a set C of candidates, a set V of voters where every v ∈ V
casts a vote πv which is defined as a linear order over the
candidates C. Each voter v contributes 1 point to each of
the candidates ordered in the top r positions in πv and con-
tributes 0 points to the other candidates. For convenience,
we also use �v to denote πv. For a vote �v and a candidate
c, the position of c in �v is defined as |{c′ ∈ C | c′ �v c}|+1,
where c′ �v c means that c′ is ordered before c in �v. The
multiset of votes casted by V is denoted by ΠV . A winner
is a candidate who gets the highest total score. If there is
only one winner, we call it a unique winner.

For simplicity, sometimes we use (a1, a2, ..., an) to denote
the linear order a1 � a2 �, ...,� an. For a vote πv and a sub-
set C ⊆ C, let πv(C) denote the partial vote of πv restricted
to C such that in πv(C) every two distinct candidates in C
preserve the same order as in πv. For example, for a vote
πv = (a, b, c, d, e), πv({b, d, e}) = (b, d, e). For a multiset Π
of votes and a subset C ⊆ C, let Π(C) be the multiset of
votes obtained from Π by replacing each π ∈+ Π by π(C).

Single-peaked/k-peaked elections. An election (C,ΠV)
is single-peaked if there is a linear order L of C such that for
every �v in ΠV and every three candidates a, b, c ∈ C with
a L b L c or c L b L a, c �v b implies b �v a, where a L b
means a is ordered before b in L. The candidate ordered in
the first position of �v is the peak of �v with respect to L.

For an order L = (c1, c2, . . . , cm) of C and a vote πv, we
say πv is k-peaked with respect to L, if there is a k-partition
L1 = (c1, c2, ..., ci), L2 = (ci+1, ci+2, ..., ci+j), . . . , Lk =
(ct, ct+1, ..., cm) of L such that πv(C(Li)) is single-peaked

with respect to Li for all 1 ≤ i ≤ k, where C(Li) is the set
of candidates appearing in Li. See Fig. 1 for an example.

An election is k-peaked if there is an order L of C such
that every vote in the election is k-peaked with respect to
L. Here L is called a k-harmonious order.

Problem definitions. The problems studied in this pa-
per are defined as follows. Throughout this paper, we fix p
as the distinguished candidate.

r-Approval Control by Adding Votes in k-Peaked Elections
(r-AV-k)
Input: An r-approval election (C ∪ {p},ΠV) with a multiset
ΠT of unregistered votes, where both ΠV and ΠT are k-
peaked with respect to a given k-harmonious order L, and
an integer 0 ≤ R ≤ |ΠT |.
Question: Are there at most R votes ΠT ′ in ΠT such that
p is the unique winner/a winner in (C ∪ {p},ΠV ]ΠT ′)?

r-Approval Control by Deleting Votes in k-Peaked Elections
(r-DV-k)
Input: A k-peaked r-approval election (C ∪ {p},ΠV) with a
k-harmonious order L, and an integer 0 ≤ R ≤ |ΠV |.
Question: Are there at most R votes ΠT in ΠV such that p
is the unique winner/a winner in (C ∪ {p},ΠV 	ΠT )?

r-Approval Control by Deleting Candidates in k-Peaked Elec-
tions (r-DC-k)
Input: A k-peaked r-approval election (C ∪ {p},ΠV) with a
k-harmonious order L, and an integer 0 ≤ R ≤ |C|.
Question: Are there at most R candidates C ⊆ C such that
p is the unique winner/a winner in the election
((C ∪ {p}) \ C,ΠV((C ∪ {p}) \ C))?

We use r-AV, r-DV and r-DC to denote the above problems
without the restriction of k-peaked elections, respectively.

3. 2-PEAKED ELECTIONS
In this section, we study the control problems for r-approval

in 2-peaked elections. The following three theorems summa-
rize our findings.

Theorem 1. r-AV-2 is polynomial-time solvable for ev-
ery constant r.
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Recall that r-AV is NP-complete for every constant r ≥ 4
but polynomial-time solvable when restricted to single-peaked
elections [15]. Theorem 1 shows that the polynomial-time
solvability of r-AV remains when extending from single-peaked
elections to 2-peaked elections, for r being a constant. This
bound is tight as indicated by the following theorem. More
precisely, if r is not a constant, r-AV becomes NP-complete
in 2-peaked elections, in contrast to the polynomial-time
solvability in the single-peaked case [15].

Theorem 2. r-AV-2 is NP-complete, if r is not a constant.

The control problem by deleting votes for r-approval is
polynomial-time solvable in single-peaked elections for even
non-constant r [15]. The following theorem shows that by
increasing the number of peaks only by one, this problem
becomes NP-complete.

Theorem 3. r-DV-2 is NP-complete for every constant
r ≥ 3.

3.1 Proof of Theorem 1
We prove Theorem 1 by giving a polynomial-time algo-

rithm based on dynamic programming.
Let ((C ∪ {p}, ΠV), ΠT , L, R) be an instance of r-AV-2.

For c ∈ C, let ←−c (1) be the candidate lying immediately
before c in L and ←−c (i) be the candidate lying immediately
before ←−c (i − 1) in L. Similarly, we use −→c (1) and −→c (i) to
denote the candidates lying immediately after c and−→c (i−1),
respectively. For example, if L = (a, b, c, d, e, f, g, h), then
−→
d (1) = e,

−→
d (4) = h,

←−
d (1) = c and

←−
d (3) = a.

For a vote πv, let 1(v) denote the set of candidates who
get 1 point and 0(v) denote the set of candidates who get
0 points, from πv. For a candidate c, let SCV(c) be the total
score of c from ΠV , that is, SCV(c) = |{πv ∈+ ΠV | c ∈ 1(v)}|.

Given an order A = (a1, a2, . . . , an), a discrete interval I
over A is a consecutive sub-order (ai, ai+1, . . . , ai+t) of A.
We denote the first element ai by l(I) and the last element
ai+t by r(I). We also use A(l(I), r(I)) to denote I. Let
S(I) denote the set of elements appearing in I and set |I| :=
|S(I)|. For example, for a discrete interval I = A(3, 6) over
the order A = (2, 5, 3, 10, 4, 6, 0), S(I) is {3, 4, 6, 10}. A k-
discrete interval over an order A is a collection of k disjoint
discrete intervals over A, where “disjoint” means no element
in A appears in more than one discrete interval. For a k-
discrete interval I, let S(I) =

⋃
I∈I S(I).

Observation 1. For each k-peaked election (C,ΠV) as-
sociated with a k-harmonious order L over C, and each vote
πv ∈+ ΠV , there is a k′-discrete interval I over L such that
0 < k′ ≤ k and 1(v) = S(I).

By Observation 1, for every vote πv in a 2-peaked election
associated with L as a 2-harmonious order, 1(v) can be rep-
resented by a 2-discrete interval or a 1-discrete interval over
L. See Fig. 2 for an example.

We first derive a polynomial-time algorithm for 4-AV-2.
It is easy to generalize the algorithm to r-AV-2 with r being
a constant. The following observation is trivial.

Observation 2. Every true-instance of r-AV has a solu-
tion where each added vote approves p.

Due to Observation 2, we can safely assume that for each
πv ∈+ ΠT , p ∈ 1(v). By Observation 1, for every vote

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

peak

peak

πv

I1v I2v

peak

πupeak

Iu

Figure 2: This figure shows
two votes πv = (c3, c4, c7, c6,
c8, c9, c5, c2, c10, c1) and πu =
(c7, c6, c5, c8, c9, c10, c1, c4, c3, c2).
Each vote gives one point
to its top four ordered
candidates. 1(v) is repre-
sented by a 2-discrete interval
{I1v = (c3, c4), I2v = (c6, c7)}
and 1(u) is represented
by a 1-discrete interval
{Iu = (c5, c6, c7, c8)}.

πv ∈+ ΠT , 1(v) can be represented by a 2-discrete inter-
val Iv = {Ipv , Ipv} or a 1-discrete interval Iv = {Ipv} with
p ∈ S(Ipv ). Let S be the set of all votes πv ∈+ ΠT where
1(v) is represented by a 1-discrete interval over L. We say
two votes have the same type if they approve the same can-
didates. Since every voter approves exactly four candidates,
S has at most four different types: (1) votes approving
←−p (3),←−p (2),←−p (1), p; (2) votes approving←−p (2),←−p (1), p,−→p (1);
(3) votes approving ←−p (1), p,−→p (1),−→p (2); and (4) votes ap-
proving p,−→p (1),−→p (2),−→p (3). We then can try all possibili-
ties of how many votes in the solution are from each of the
four types of votes in S. This reduces the original instance to
at most R4 sub-instances. Thus, in the following, we assume
that every vote in ΠT is represented by a 2-discrete interval.
Let ~ΠT = (πv1 , πv2 , ..., πv|T |) be an order of ΠT such that

r(Ipvi) = r(Ipvj ) or r(Ipvi) L r(I
p
vj ) for all 1 ≤ i < j ≤ |ΠT |.

Our dynamic programming algorithm uses a binary dy-
namic tableDT (i, j, s, s1, s2, s3, s4, s5, s6, si,1, si,2, si,3), where
we setDT (i, j, s, s1, s2, s3, s4, s5, s6, si,1, si,2, si,3) = 1 if there
is a submultiset ΠT ′ v {πv1 , πv2 , . . . , πvi} satisfying

(1) |ΠT ′ | = j;
(2) πvi ∈+ ΠT ′ ;
(3) max{SCV∪T ′(c) | c ∈ C} = s;
(4) SCV∪T ′(ct) = st for all 1 ≤ t ≤ 6, where c3 =
←−p (1), c2 = ←−p (2), c1 = ←−p (3), c4 = −→p (1), c5 = −→p (2) and
c6 = −→p (3); and

(5) SCV∪T ′(ci,t) = si,t for all t ∈ {1, 2, 3}, where ci,1 =
r(Ipvi), ci,2 = ←−ci,1(1) and ci,3 = ←−ci,1(2). (See Fig. 3 for an
illustration of (4) and (5)).

pci,1

si,2

ci,2

si,3

ci,3

si,1 s3

c3

s2

c2

s1

c1

s4

c4

s5

c5

s6

c6

I p̄vi Ipvi

L

Figure 3: Illustration of (4) and (5) in the definition
of DT .

It is easy to see that the given instance is a true-instance
if there is a DT (n,R′, s, s1, s2, . . . , s6, sn,1, sn,2, sn,3) = 1
for some n ≤ |ΠT |, R′ ≤ R, s ≤ SCV(p) + R′ − 1 and
s′ ≤ s for all s′ ∈ {s1, s2, ..., s6, sn,1, sn,2, sn,3}. There-
fore, to solve the problem we need to calculate the values
of DT (i, j, s, s1, s2, . . . , s6, si,1, si,2, si,3) for all 1 ≤ j ≤ R,
j ≤ i ≤ |ΠT |, 1 ≤ s ≤ SCV(p) + R − 1 and s′ ≤ s for
all s′ ∈ {s1, s2, ..., s6, si,1, si,2, si,3}. Thus, we have at most
|T | ·R · (|V|+R)10 entries to calculate.

We use the following iterative recurrence to update the ta-
ble. DT (i, j, s, s1, s2, . . . , s6, si,1, si,2, si,3) = 1, if at least
one of the following cases applies:
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Case 1. ∃DT (i1, j − 1, s, s′1, s
′
2, . . . , s

′
6, s
′
i1,1, s

′
i1,2, s

′
i1,3) = 1

such that conditions (1)-(4) hold.
Case 2. ∃s′ ∈ {s1, s2, ..., s6, si,1, si,2, si,3} with s′ = s and
∃DT (i1, j − 1, s− 1, s′1, s

′
2, . . . , s

′
6, s
′
i1,1, s

′
i1,2, s

′
i1,3) = 1 such

that conditions (1)-(4) hold.
The four conditions are:
(1) j − 1 ≤ i1 ≤ i− 1;
(2) st = s′t + SC{vi}(ct) for all 1 ≤ t ≤ 6;
(3) si,t = s′i1,t1 + SC{vi}(ci,t) for all ci,t = ci1,t1 ; and

(4) si,t = SCV∪{vi}(ci,t) for all ci,t ∈ {r(I p̄vi),
←−−−
r(I p̄vi)(1),

←−−−
r(I p̄vi)(2)} \ {r(I p̄vi1 ),

←−−−−
r(I p̄vi1 )(1),

←−−−−
r(I p̄vi1 )(2)}.

The algorithm is easy to be generalized for r ≥ 4 by using
a bigger but still polynomial-sized dynamic table.

3.2 Proof of Theorem 2
We prove Theorem 2 by a reduction from a variant of

Independent Set which is NP-complete [20].
Let ( ) denote an empty order containing no element.

For a linear order A = (a1, a2, . . . , an), let A[ai, aj ] (resp.
A(ai, aj ], A[ai, aj) and A(ai, aj)) with i ≤ j be the sub-
order (ai, ai+1, . . . , aj) (resp. (ai+1, ai+2, . . . , aj) if i < j
and ( ) if i = j, (ai, ai+1, . . . , aj−1) if i < j and ( ) if
i = j, and (ai+1, ai+2, . . . , aj−1) if i < j − 1 and ( ) if j ≥
i ≥ j − 1), and let A[aj , ai] (resp. A[aj , ai), A(aj , ai] and
A(aj , ai)) be the reversed order of A[ai, aj ] (resp. A(ai, aj ],
A[ai, aj) andA(ai, aj)). For two linear ordersA = (a1, a2, ..., an)
and B = (b1, b2, ..., bm) with A ∩ B = ∅, denote by (A,B)
the linear order (a1, a2, ..., an, b1, b2, ..., bm). Let [n] be the
set {1, 2, ..., n}.

A Variant of Independent Set (VIS)

Input: A multiset T = {T1, T2, ..., Tn} where each Ti ∈+ T
is a set of discrete intervals of size 4 over (1, 2, ..., 12n) and
|Ti| ≤ 3 for all Ti ∈+ T .
Question: Is there a set S ⊆

⋃
T∈+T T of discrete intervals

such that |S| = n, |S ∩ Ti| = 1 for every Ti ∈+ T and no
two discrete intervals in S intersect?

Given an instance E = (T = {T1, T2, . . . , Tn}) of VIS, we
construct an instance E ′ = ((C ∪ {p}, ΠV), ΠT , L, R = n)
for r-AV-2 as follows.

Let I =
⋃
T∈+T T . For each discrete interval I ∈ I, let

l(I) be its left endpoint and r(I) be its right endpoint. Let Γ
be the set of all elements appearing in some discrete interval
of I, i.e., Γ = {S(I) | I ∈ I}. Let ~Γ = (x1, x2, . . . , x|Γ|) be
an order of Γ where xi < xi+1 for all i ∈ [|Γ| − 1].

Candidates: We create three kinds of candidates C, D
and E: (1) C = Γ; (2) D contains exactly 2n− 1 candidates
d1, d2, . . . , dn, . . . , d2n−1; (3) E contains exactly (n + 3) ·
(|C|+|D|−1) dummy candidates x′1, x

′
2 , ..., x

′
|C|·(n+3), d

′
1, d
′
2

, ..., d′(n+3)·(|D|−1) which will never be winners. The distin-
guished candidate is dn, that is, p = dn. Moreover, r = n+4.

2-Harmonious Order: L = (~Γ, ~D, ~E) where ~D = (d1,

d2, ..., d2n−1) and ~E = (x′1, ..., x
′
|C|·(n+3), d

′
1, ..., d

′
(n+3)·(|D|−1))

Registered Votes ΠV : (1) for each xi ∈ C, create n− 2
votes defined as (xi,L[x′(n+3)i−n−2, x

′
i(n+3)],L(xi, x1],

L(xi, x
′
(n+3)i−n−2),L(x′i(n+3), d

′
(|D|−1)·(n+3)]); (2) for each di ∈

D where i ∈ [n − 1], create n − (i + 1) votes defined as
(di,L[d′(n+3)i−n−2, d

′
i(n+3)],L(di, x1],L(di, d

′
(n+3)i−n−2),

L(d′i(n+3), d
′
(|D|−1)·(n+3)]); (3) for each di ∈ D where i ∈

{n+ 1, n+ 2, . . . , 2n− 1}, create i− (n+ 1) votes which is
defined as (di,L[d′(n+3)i−2n−5, d

′
(i−1)·(n+3)],L(di, x1],

L(di, d
′
(n+3)i−2n−5),L(d′(i−1)·(n+3), d

′
(|D|−1)·(n+3)]).

Unregistered Votes ΠT : For each Iij ∈ Ti ∈+ T , cre-
ate a corresponding unregistered vote which is defined as
(L[l(Iij), r(Iij)],L[di, d

′
(|D|−1)·(n+3)],L(l(Iij), x1],L(r(Iij), di−1]).

Clearly, this vote approves exactly all four candidates ly-
ing between l(Iij) and r(Iij) (including l(Iij) and r(Iij))
in L and all candidates lying between di and di+n−1 (in-
cluding di and di+n−1) in L. Thus, every unregistered vote
approves dn.

It is clear that all votes are 2-peaked with respect to L.
Due to the construction, it is easy to see that SCV(c) =
n − 2 for all c ∈ C, SCV(di) = n − i − 1 for all di ∈ D
with i ∈ [n − 1], SCV(di) = i − n − 1 for all di ∈ D with
i ∈ {n + 1, n + 2, . . . , 2n − 1}, and SCV(c) ≤ n − 2 for all
c ∈ E and SCV(dn) = 0.
⇒: Suppose that E is a true-instance and let S be a so-

lution for E . Let ~S = (I1, I2, . . . , In) be an order of S
where Ii = S ∩ Ti for all i ∈ [n]. Then, we can make dn
the unique winner by adding votes from ΠT according to S.
More specifically, for each Ii ∈ S we select its corresponding
vote constructed as above and add it to the election. Clearly,
the final score of dn is n. Due to the construction, no two
added votes πv and πu which correspond to two different in-
tervals Ii and Ij , respectively, approve a common candidate
from C. Thus, after adding these votes to the election, no
candidate in C has a higher score than that of dn. To analyze
the score of dj ∈ D with j ∈ [n− 1], we observe that for any
i > j the vote corresponding to Ii does not approve dj . Since
SCV(dj) = n− j− 1 and |S ∩Ti| = 1 for all i ∈ [j], we know
that the final score of dj is less than n. Similarly, to analyze
the score of dj ∈ D with j ∈ {n + 1, n + 2, . . . , 2n − 1},
we observe that for any i ≤ j − n the vote corresponding
to Ii does not approve dj . Since SCV(dj) = j − n − 1 and
|S∩Ti| = 1 for all i ∈ {j−n+1, j−n+2, ..., n}, we know that
the final score of dj is less than n. The final score of each
c ∈ E is clearly less than n − 2 since no unregistered vote
approves c. Summarize the above analysis, we conclude that
the distinguished candidate dn becomes the unique winner
after adding the selected votes to the election.
⇐: Suppose that E ′ is a true-instance and S′ is a multiset

of votes chosen from ΠT which makes dn the unique winner
in the election (C ∪ D ∪ E, ΠV ] S′). It is easy to verify
that |S′| = n, since otherwise, at least one of C would be a
winner; thus, the final score of dn is n and every c ∈ C can
get at most one point from S′. Therefore, no two votes in S′

approve a common candidate of C, implying that S′ must
be a set. Let P1, P2, . . . , Pn be a partition of ΠT where Pi
contains all votes corresponding to the intervals of Ti ∈+ T .
Clearly, Pi is a set. We claim here that |S′∩Pi| = 1 for every
i ∈ [n]. Suppose this is not true, then there must be a certain
Pi with |S′ ∩ Pi| ≥ 2. Let S1 = S′ ∩ Pi (thus, |S1| ≥ 2),
S2 = {πv ∈ S′∩Pi′ | i′ < i} and S3 = {πv ∈ S′∩Pi′ | i′ > i}.
It is clear that |S1| + |S2| + |S3| = n. Since all votes in S1

approve both di and di+n−1, all votes in S2 approve di but
do not approve di+n−1, and all votes in S3 approve di+n−1

but do not approve di, then,

SCV]S′(di) + SCV]S′(di+n−1)
= SCV(di) + |S1|+ |S2|+ SCV(di+n−1) + |S1|+ |S3|
= n− i− 1 + |S1|+ |S2|+ i− 2 + |S1|+ |S3|
= 2n− 3 + |S1|
≥ 2n− 1
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Thus, at least one of di and di+n−1 has final score at least
n, contradicting that dn is the unique winner. The claim is
true. It is now easy to see that the set of discrete intervals
corresponding to S′ forms a solution for E .

3.3 Proof of Theorem 3
We first prove that 3-DV-2 is NP-hard by a reduction

from Vertex Cover on bounded degree-3 graphs which is
NP-complete [17]. Then, we will show that the proof applies
to r-DV-2 for r ≥ 4 with a slight modification.

An undirected graph is a tuple G = (V,E) where V is
the set of vertices and E is the set of edges. We also use
V (G) to denote the vertex set of G. For a vertex u ∈ V ,
NG(u) denotes the set of its neighbors in G, that is, NG(u) =
{w | (w, u) ∈ E}. The degree of a vertex u is the number
of its neighbors. A graph is a bounded degree-3 graph if it
contains at least one degree-3 vertex but no vertex having
degree greater than 3. A vertex cover for a graph G = (V,E)
is a subset S ⊆ V such that every edge in E has at least one
of its endpoints in S.

Vertex Cover on Bounded Degree-3 Graphs (VC3)
Input: A bounded degree-3 graph G = (V, E) and a positive
integer κ.
Question: Does G have a vertex cover of size at most κ?

To prove the NP-hardness of 3-DV-2, we first introduce
a property for bounded degree-3 graphs. This property may
be of independent interest since many graph problems are
NP-hard when restricted to graphs with bounded degree 3.

An interval over the real line is a closed set [a, b] = {x ∈
R | a ≤ x ≤ b} where a and b are real numbers. An interval
is trivial if a = b. For an interval I, denote by l(I) and r(I)
its left-point and right-point, respectively. A t-interval is a
set of t intervals over the real line. A graphG = (V, E) is a t-
interval graph if there is a set TG of t-intervals and a bijection
f : V → TG such that for every u,w ∈ V , (u, w) ∈ E if
and only if f(u) and f(w) intersect. Here, TG is called a
t-interval representation of G. For simplicity, we use Iu =
{I1
u, I

2
u, ..., I

t
u} to denote f(u). For two real numbers a and

b with a ≤ b, we define (a, b) = {x ∈ R | a < x < b}.
The following lemma states that every bounded degree-3

graph has a 2-interval representation such that every vertex
is represented by a 2-interval with one interval is trivial, and
two 2-intervals only intersect at the endpoints.

Lemma 4. For every bounded degree-3 graph G there is
a 2-interval representation for G such that for every u ∈
V (G), Iu = {I1

u, I
2
u} satisfies one of the following:

1. I1
u = [x1, x1], I2

u = [x2, x3], x1 < x2 < x3 and @u′ ∈
V (G) \ {u} such that r(I(u′)) ∈ (x2, x3) or l(I(u′)) ∈
(x2, x3);

2. I1
u = [x1, x2], I2

u = [x3, x3], x1 < x2 < x3 and @u′ ∈
V (G) \ {u} such that r(I(u′)) ∈ (x1, x2) or l(I(u′)) ∈
(x1, x2),

for each I(u′) ∈ {I1
u′ , I2

u′}. Moreover, such a 2-interval rep-
resentation can be found in polynomial time. See Fig. 4 for
an example.

We now show the reduction. Let E = (G, κ) be an in-
stance of VC3 and I(G) be a 2-interval representation of
G satisfying all conditions in Lemma 4. For every Iu =
{I1
u, I

2
u}, let D(u) be the endpoints of I1

u and I2
u (due to

u1

u2 u3 u4

Figure 4: The left-hand figure illustrates a 2-interval
representation of the right-hand graph. Here, the
2-intervals from up to down represent the vertices
u1, u2, u3 and u4, respectively.

Lemma 4, |D(u)| = 3 for all u ∈ V (G)), and let Γ =⋃
u∈V (G) D(u). Let ~Γ = (x1, x2, . . . , x|Γ|) be the order of Γ

with xi < xi+1 for all i ∈ [|Γ|−1]. We construct an instance
E ′ = ((C ∪ {p}, ΠV), R = κ, L) of 3-DV-2 as follows.

Candidates: C = Γ ∪ {p, c1, c2, c3, c4} with c1, c2, c3, c4
being dummy candidates, which would never be winners.

2-Harmonious Order: L = (~Γ, p, c1, c2, c3, c4).
Votes: There are two types of votes: votes disapproving

p and votes approving p. There are |V (G)| votes of the first
type each of which corresponds to an Iu in I(G) for u ∈
V (G). More specifically, for every Iu, let (xi, xj , xk) be the
order of D(u) with xi < xj < xk, then we create a vote πu =
(xi, xj , xk,L(xi, x1],L(xi, xj),L(xj , xk),L(xk, c4]). Thus, πu
approves D(u). Due to Lemma 4, either xi or xk lies con-
secutively with xj in L, that is, one of xi = ←−xj(1) and
xk = −→xj(1) must hold, which implies that all votes of the
first type are 2-peaked with respect to L. There are only
two votes of the second type: (p, c1, c2, c3, c4,L(p, x1]) and
(p, c3, c4, c1, c2,L(p, x1]). It is clear that these two votes are
2-peaked with respect to L.

In the following, we prove that E is a true-instance if and
only if E ′ is a true-instance.

(⇒:) Suppose that E is a true-instance and S is a vertex
cover of size at most κ of G. Then, we delete all votes in
{πu | u ∈ S}. After deleting these votes, no two votes of the
first type approve a common candidate in C, since otherwise,
V (G)\S could not be an independent set, contradicting the
fact that S is a vertex cover. Thus, after deleting these votes
all candidates except for p have only one point. Since p has
two points, p is the unique winner.

(⇐:) Suppose that E ′ is a true-instance. Observe that
every true-instance of 3-DV has a solution containing only
votes which do not approve p. Let S′ be such a solution of
size at most κ. Therefore, p has two points in the election
after removing all votes in S′; thus every other candidate
can have at most one point after removing all votes of S′,
which implies that no two votes of the first type approve a
common candidate in C in the final election, further implying
that the vertices corresponding to S′ form a vertex cover of
size at most κ for G.

In order to prove that r-DV-2 is NP-hard for any con-
stant r ≥ 4, we need to modify the proof slightly. First, we
add some dummy candidates. More specifically, there are
t = r − 3 dummy candidates Xi = {x1

i , x
2
i , ..., x

t
i} with the

order (x1
i , x

2
i , ..., x

t
i) between xi ∈ Γ and xi+1 ∈ Γ in the

2-harmonious order L whenever there is a u ∈ V (G) such
that [xi, xi+1] ∈ Iu. Besides, we have other 2r − 6 dummy
candidates c5, c6, ..., c2r−2 lying after c4 in L, with the or-
der (c5, c6, ..., c2r−2). Thus, there are totally t · |V (G)| +
2r − 6 new dummy candidates here. We change the first
type of votes as follows: for every u ∈ V (G) with Iu =
{[xi, xi+1], [xj , xj ]} (resp. Iu = {[xi, xi], [xj , xj+1]}), we cre-
ate a vote defined as (L[xi, xi+1], xj ,L(xi, x1],L(xi+1, xj),
L(xj , c2r−2]) (resp. (xi,L[xj , xj+1],L(xi, x1],L(xi, xj),
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L(xj+1, c2r−2])). As for the second type of votes, we have
still two votes defined as (L[p, c2r−2],L(p, x1]) and (p,L[cr, c2r−2],
L[c1, cr),L(p, x1]), respectively. Then, with the same argu-
ment, we can show that r-DV-2 is NP-hard for any r ≥ 4.

4. 3-PEAKED ELECTIONS
In Section 2, we proved that control by adding votes in

r-approval is polynomial-time solvable when restricted to 2-
peaked elections and r being a constant. In this section,
we show that the tractability of the problem does not hold
when extended to 3-peaked elections.

Theorem 5. r-AV-3 is NP-complete for every constant
r ≥ 4.

Proof. We first prove the NP-hardness of 4-AV-3 by
a reduction from Independent Set on bounded degree-3
graphs which is NP-complete [17]. An independent set in a
graph G = (V,E) is a subset S ⊆ V such that every edge in
E has at most one of its endpoints in S.

Independent Set on Bounded Degree-3 graphs (IS3)
Input: A bounded degree-3 graph G = (V,E) and a positive
integer κ.
Question: Does G have an independent set containing ex-
actly κ vertices?

For an instance E = (G, κ) of IS3, let I(G) be a 2-
interval representation of G which satisfies all conditions in
Lemma 4. Let D(u),Γ and ~Γ be defined as in Subsect. 3.3.
We construct an instance E ′ = ((C ∪ {p}, ΠV), ΠT , L, R =
κ) of 4-AV-3 as follows.

Candidates: C = Γ ∪ {p, c1, c2, c3}.
3-Harmonious Order: L = (~Γ, p, c1, c2, c3).
Registered Votes ΠV : The role of registered votes is

to guarantee that all candidates of Γ have the same score
κ − 2. To this end, we first create κ − 2 votes defined as
(L[xi, xi+3],L(xi, x1],L(xi+3, c3]) for every i = 1, 5, . . . ,
4b|Γ|/4c − 3. Then, we create some further votes according
to |Γ|. Case 1. |Γ| ≡ 0 mod 4. We create no further
vote. Case 2. |Γ| ≡ 1 mod 4. We create additional κ −
2 votes defined as (x|Γ|,L[c1, c3],L(x|Γ|, x1], p). Case 3.
|Γ| ≡ 2 mod 4. We create additional κ − 2 votes defined
as (x|Γ|−1, x|Γ|, c1, c2,L(x|Γ|−1, x1], p, c3). Case 4. |Γ| ≡ 3
mod 4. We create additional κ− 2 votes defined as
(L[x|Γ|−2, x|Γ|], c1,L(x|Γ|−2, x1], p, c2, c3).

Unregistered Votes ΠT : For each u ∈ V (G), let (xi, xj , xk)
be the order of D(u) with xi < xj < xk. We create a vote
πu = (xi, xj , xk, p,L(xi, x1],L(xi, xj),L(xj , xk),L(xk, p),
L(p, c3]). Due to Lemma 4, either xi or xk lies consecutively
with xj in L; thus, all these unregistered votes have 3 peaks
xα, xβ and p where {xα, xβ} ⊆ {xi, xj , xk} ({xα, xβ} de-
pends on whether xj lies consecutively with xi or with xk),
with respect to L.

In the following, we prove that E is a true-instance if and
only if E ′ is a true-instance. It is easy to see that SCV(x) =
κ−2 for all x ∈ C\{p, c1, c2, c3}, SCV(p) = 0 and SCV(c) ≤
κ− 2 for all c ∈ {c1, c2, c3}.

(⇒:) Suppose that E is a true-instance and S is an inde-
pendent set of size κ. Then we add all votes corresponding
to S, that is, all votes in {πu | u ∈ S}, to the election. Since
S is an independent set, no two added votes approve a com-
mon candidate except p; thus, each candidate except p has
a final score at most κ− 1. Since each added vote approves
p, it follows that p has a final score of κ points, implying

that p becomes the unique winner in the election including
the new votes.

(⇐:) Suppose that E ′ is a true-instance and S′ is a solu-
tion. Clearly, p has a final score of κ points. Since p is the
unique winner, for every c ∈ C \ {p}, there is at most one
vote in S′ approving c. Thus, no two votes in S′ approve a
common candidate except p. Due to the construction, the
vertices corresponding to S′ must be an independent set.

The proof applies to r-AV-3 for any constant r ≥ 5 by a
similar modification as discussed in Subsect. 3.3.

5. PARAMETERIZED COMPLEXITY
In this section, we study several control problems for r-

approval from the viewpoint of parameterized complexity.
The first two FPT results are for the general case.

Theorem 6. r-DV is FPT with the number of deleted
votes as the parameter, where r is a constant.

Proof. To derive the FPT algorithm, we divide the can-
didates C into two parts: C1 = {c ∈ C | SCV(c) ≥ SCV(p)}
and C2 = C \ C1. Meanwhile, we divide ΠV into two parts:
ΠV1 = {πv ∈+ ΠV | ∃c ∈ C1 with c ∈ 1(v)} and ΠV2 =
ΠV 	 ΠV1 . That is, ΠV1 contains all the votes which ap-
prove at least one candidate which has at least the same
score as p, and ΠV2 contains other votes. We observe that
every true-instance of r-DV has a solution S with S v ΠV1 .
Due to the observation, we can restrict our attention to ΠV1 .
Since at most R votes can be deleted and each deleted vote
approves at most r candidates, |C1| ≤ r · R holds for ev-
ery true-instance. We assume now that |C1| ≤ r · R in the
given instance. We say two votes have the same type if they
approve the same candidates. Clearly, there are at most
O((r · R)r) different types of votes in ΠV1 . Since every so-
lution includes at most R votes from each type of votes,
we have at most RO(f(R)) cases to check where f(R) = Rr,
implying an FPT algorithm for r-DV.

Theorem 7. r-AV is FPT with the number of added
votes as the parameter, where r is a constant.

Faliszewski et al. [14] proved that control by deleting can-
didates in 1-approval is NP-hard when restricted to Swoon-
SP elections. Since Swoop-SP is a special case of 2-peaked
elections, 1-DC-k with k ≥ 2 is NP-hard. We strengthen
this result by proving that 1-DC-3 is W[1]-hard with the
number of deleted candidates as the parameter.

Theorem 8. 1-DC-3 is W[1]-hard with the number of
deleted candidates as the parameter.

Proof. We prove the theorem by an FPT reduction
from Independent Set which is W[1]-hard [10]. For a lin-

ear order ~A = (a1, a2, ..., an) over A = {a1, a2, ..., an} and

a subset B ⊆ A, denote by ~A \ B the linear order of A \ B
obtained from ~A by deleting all elements in B. For an in-
stance E = (G = (V,E), κ) of Independent Set we construct
an instance E ′ of 1-DC-3 as follows.

Candidates: V ∪ {p, a, a1, a2, ..., aκ, b, b1, b2, ..., bκ}.
3-Harmonious Order: Let F = (c1, c2, ..., cn) be an

(arbitrary) order of V . Then, the 3-harmonious order L is
given by (bκ, bκ−1, ..., b1, b, p, a, a1, a2, ..., aκ, c1, c2, ..., cn).

Votes: Let m := |E|. There are seven types of votes.
(1) 2m− 1 votes defined as (L[a, cn],L[p, bκ]); (2) 2m votes
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defined as (L[p, cn],L[b, bκ]); (3) 2m + κ − 1 votes defined
as (L[b, bκ],L[p, cn]); (4) for each edge {ci, cj} ∈ E(G) with
i < j, create one vote defined as (ci, cj ,L[a, aκ],L[p, bκ],F \
{ci, cj}); (5) for each vertex ci, create one vote defined
as (ci,L[p, aκ],L[b, bκ],F \ {ci}) and one vote defined as
(ci,L[a, aκ],L[p, bκ],F \ {ci}); (6) κ + 1 votes defined as
(L[a1, cn],L[a, bκ]); (7) one vote defined as (L[b1, bκ],L[b, cn]);
It is easy to verify that all constructed votes are 3-peaked
with respect to L.

Number of Added Candidates: R = κ.
(⇐:) It is easy to verify that E is a true-instance implies
E ′ is a true-instance: for every independent set S of size κ,
deleting the candidates S from the election clearly make the
distinguished candidate p become the unique winner.

(⇒:) Suppose that E ′ is a true-instance and S′ is a solution
with |S′| ≤ κ. We first observe that b 6∈ S′. This observation
is true, since otherwise, all candidates in {b1, b2, ..., bκ} must
be deleted, contradicting that |S′| ≤ κ. The same argument
applies to the candidate a. However, in order to beat b, ex-
actly k candidates from V must be deleted so that p can get
extra k points from the constructed votes of case 5. Since
|S′| ≤ κ, S′ must be a subset of V . Moreover, no two candi-
dates c1, c2 ∈ S′ are adjacent to each other in the graph G,
since otherwise, the candidate a would get at least one extra
point from the constructed votes of case 4, and p cannot be
the unique winner. Thus, S′ forms an independent set of
size κ of G.

6. CONCLUSION
In this paper, we study the k-peaked elections which gen-

eralize the single-peaked elections by allowing at most k-
peaks in each vote. We derive a dichotomy of the complexity
of control problems for r-approval voting in k-peaked elec-
tions with respect to k. Moreover, we present some results
concerning the parameterized complexity of these problems
in general as well as k-peaked elections. All of our results
work for both unique-winner and nonunique-winner models.
In addition, several of our results apply to approval vot-
ing and SP-AV as well. Another possible research direction
could be studying more strategic behaviors for other voting
systems in k-peaked elections.
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