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ABSTRACT 
Mood contagion is an automatic mechanism that induces a 
congruent mood state by means of the observation of another 
person's emotional expression. In this paper, we address the 
question whether robot mood displayed during an imitation game 
can (a) be recognized by participants and (b) produce contagion 
effects. Robot mood was displayed by applying a generic 
framework for mood expression using body language. By 
modulating the set of available behavior parameters in this 
framework for controlling pose and motion dynamics, the gestures 
performed by the humanoid robot NAO were adjusted to display 
either a positive or negative mood. In the study performed, we 
varied both mood as well as task difficulty. Our results show that 
participants are able to differentiate between positive and negative 
robot mood. Moreover, self-reported mood matches the mood of 
the robot in the easy task condition. Additional evidence for mood 
contagion is provided by the fact that we were able to replicate an 
expected effect of negative mood on task performance: in the 
negative mood condition participants performed better on difficult 
tasks than in the positive mood condition, even though 
participants’ self-reported mood did not match that of the robot. 

Categories and Subject Descriptors 
I.2.9 [Artificial Intelligence]: Robotics – Commercial robots and 
applications. H.1.2 [Models and Principles]: User/Machine 
Systems – Human factors. H.5.2 [Information Interfaces and 
Presentation]: User Interfaces – Evaluation/methodology. 

Keywords 
Mood Expression, Nonverbal Cues, Behavioral Cues, Body 
Language, Social Robots, Human Robot Interaction (HRI). 

1. INTRODUCTION 
To participate in emotion-based interaction, robots must be able to 
communicate their affective state to others [1]. In human-robot 
interaction (HRI), expressive body language of a robot facilitates 
human understanding of a robot’s behavior, rationale, and 
motives, and is known to increase the perception of a robot as 
trustworthy, reliable, and life-like [2]. Bodily affective expression 
is in particular important for humanoid robots that lack facial 
features such as NAO, ASIMO, and QRIO. In this paper, we 
study the use of body language for expressing mood. 

One reason to focus on mood is that mood is a more long-lasting 
affective state and an individual is at any given time in a more or 
less positive or negative mood. Integrating mood into the body 
language of a robot therefore may provide a robot with an 
interesting alternative and more stable channel for communicating 
affective information than by means of explicit emotion 
expression. This may also contribute to the believability, 
reliability, and lifelike quality of a robot. Our main research 
questions are whether people, while interacting with a robot, can 
recognize mood from robot behaviors that are modulated to 
express positive or negative mood and what the effects of robot 
mood on someone who is interacting with that robot are. Further, 
it is well known that mood can transfer between persons and has 
specific effects on behavior [3] and it is useful to gain insights 
into the effects and possible transfer of mood from a robot to an 
individual.  

Another reason for investigating the design and expression of 
robot mood is that mood typically is a more integral part of 
ongoing behavior whereas emotions are more often expressed by 
explicit gestures that, for a brief period of time, interrupt 
functional behavior. For example, raising arms akimbo to display 
anger [4]; covering eyes by the robot’s hands to display fear [5]; 
and raising both hands can be used to display the emotion of 
happiness [6]. Explicit gestures like these, however, cannot be 
used when a robot is, for example, carrying a box that requires the 
use of both arms and hands. For the expression of mood, a rather 
different model is needed that allows for the expression of 
affective state that is integrated into ongoing (functional) behavior 
of a robot in a more or less continuous fashion. In this paper, we 
extend previous work reported in [7], [8], [9] on a parameterized 
behavior model for expressing mood. The model is adapted here 
to enable the continuous display of mood in an interactive game. 

The remainder of this paper is organized as follows. Section 2 
discusses related work. In Section 3, the mood expression model 
and the interactive game we used in our study are introduced. In 
Section 4, we formulate our main research questions and 
hypotheses. Section 5 discusses the experimental setup and 
Section 6 presents the results. In Section 7, we discuss these 
results and the paper is concluded in Section 8. 

2. RELATED WORK 
Affect expression of robots contributes in many ways to human-
robot interaction applications. A long-term field study showed 
that facial expression of robot mood influenced the way and the 
time that people interact with a robot [10]. Emotional behaviors 
made elderly participants perceive a robot as more empathic 
during their conversation [11]. Emotional gestures improved 
participants’ perception of expressivity of a NAO robot during a 
story-telling scenario [12]. In a personal assistant application for 
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children [13], robot emotion expression was shown to improve the 
effectiveness of the robot when used as companion, educator, and 
motivator. In an application of a robot companion that is capable 
to play chess with children [14], robot emotion expression that 
varied with the state of the game was used to help children better 
understand the game state. A preliminary evaluation also 
suggested that the emotional behavior of the robot improved 
children’s perception of the game. In another study [15], this robot 
responded empathically to children’s affective states. Results 
suggest that the robot’s empathic behaviors enhance children’s 
attitude towards the robot. Adaptive multimodal expression was 
studied with children using a quiz game [16]. Expressive 
behaviors were selected based on events in the environment and 
internal parameters. The study showed positive effects of the 
adaptive expression on children and the children’s preference for 
bodily expression. Robots equipped with minimally expressive 
abilities were developed to help children with autism with their 
social abilities [17]. Facial and bodily expressions of the robot 
were used to help children learn to recognize these expressions 
and use their own expressions by imitating the expressions of the 
robot. These robot expressions were found to attract children, 
improve and maintain engagement of the interaction, and evoke 
emotional responses [18]. Affect expression also influences users 
that interact with virtual agents (see [19] for a review). 

The affective states of a robot or a virtual agent can be expressed 
nonverbally by poses and movements of facial and body 
components. Facial expressions have been used in embodiments 
such as Kismet [20], iCat [21], Greta [22], and Max [23], while 
bodily expression has been used for ROMAN [4], NAO [5], [24], 
KOBIAN [6], Greta [22], and Max [23]. Experimental evaluations 
showed that people are capable of recognizing these expressions 
in general. Wallbott [25] investigated whether body movements, 
body posture, gestures, or the quantity and quality of movement in 
general allow us to differentiate between emotions. This study 
found that qualities of movement (movement activity, spatial 
extension, and movement dynamics) and other features of body 
motion can indicate both the quality of an emotion as well as its 
quantity. Furthermore, [4], [6] showed that bodily expression 

combined with facial expression may significantly enhance the 
recognition of a robot’s emotion expression.  

Bodily expression can be generated by directly simulating human 
static postures and movements as done in, e.g., [6], [24]. A more 
generic approach for generating expressive behaviors, however, is 
to modify the appearance of a behavior via the modulation of 
parameters associated with that behavior. Laban movement 
analysis (LMA) [26] models body movements using four major 
components: body, space, effort, and shape, characterized by a 
broad range of parameters. Based on LMA, Chi et al. [27] 
developed the EMOTE framework that uses post-processing of 
pre-generated behaviors to generate expressive gestures for virtual 
agents. The model developed by Pelachaud et al. [22] modifies 
gestures before generating actual movements. This model 
distinguishes spatial, temporal, fluidity, power, overall activation, 
and repetition aspects of behavior. It has been applied to the Greta 
virtual agent [28] and the NAO robot [12] for communicating 
intentions and emotions.  

In previous work, a parameterized behavior model for expressing 
mood using body language while performing (functional) 
behaviors was proposed [7]. We have adapted this parameterized 
behavior model for this work. The model is based on a set of 
generic parameters that are associated with specific body parts 
and that are inherently part of related body movements. These 
parameters subsequently are modulated in order to express various 
moods. This model allows us to integrate mood into functional 
behaviors in a manner that does not interfere with the functions of 
these behaviors. The model was validated by evaluating whether 
users could recognize robot mood in a recognition experiment. 
The results obtained showed that participants who were asked to 
rate valence and arousal were able to differentiate between five 
valence levels and at least four levels of arousal [9]. 

In this paper, we ask the question whether a robot’s mood can be 
transferred from robot to human. Some evidence that supports this 
has been found by Tsai et al. [29] who showed that even still 
images of virtual characters can induce mood. Their study also 

 
                                            (a) positive mood                                 (b) neutral mood                     (c) negative mood 

Figure 1. Modulated gestures for the imitation game: figure (a) shows the four elementary gestures modulated for a 
positive mood; figure (b) shows the four mirrored elementary gestures for a neutral mood; figure (c) shows the slope-
right gesture modulated for a negative mood. Pose parameters (amplitude-vertical, amplitude-horizontal, palm-
direction, and finger-rigidness) are annotated on the figure. 
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revealed an interaction effect between cognitive load and 
contagion in a strategic game: the contagion effect was reduced by 
the mobilization of more cognitive resources required for the 
decision-making task. The application of robot bodily expression 
in an HRI scenario and its effects on the interaction, however, are 
still largely unexplored. To investigate these effects, in the study 
reported in this paper bodily mood expression has been used that 
can be displayed simultaneously with functional behaviors. In 
particular, we address the question whether these body 
expressions can produce a well-known psychological effect — 
emotional contagion (in our case robot mood transferred to 
humans) — during human robot interaction. 

3. EXPRESSING MOOD IN A GAME 
In order to study the effects of robot mood in an interaction 
scenario rather than a setting where participants are explicitly 
asked to recognize mood, we have used a gesture-based game in 
this study and we have applied the mood expression model to 
these gestures. The aim of our work is to design robot mood 
expressions for interactive settings like these that can be 
distinguished by users, have a (positive) effect on user’s mood, 
and have a (positive) effect on a user’s task performance. Instead 
of explicitly asking a user to recognize mood we asked users to 
play a simple imitation game and investigated the effects of 
expressing robot mood on the mood of users and their task 
performance while playing that game. 

3.1 Imitation Game 
The interaction scenario we used in this study is an imitation 
game, in which the humanoid robot NAO performs a sequence of 
gestures that are shown to a human player who is asked to imitate 
the gestures in the same order. Eight gestures were used to form 
the sequences in the game; single left arm pointing to left of robot 
in upward direction, left arm pointing left and downward, right 
arm pointing right and upward, and right arm pointing right and 
downward (see Figure 1b). The left and right arm movements 
were also performed at the same time, resulting in four more 
gestures: both up, both down, slope left (left up right down), and 
slope right (right up left down). The left and right were mirrored 
between participants and the robot. For example, when the robot 
performs a left-arm gesture, the participant should perform a 
right-arm gesture with the same up or down direction. 

The classification of participants’ gestures into one of the eight 
types of gestures was done by one of the experimenters. Using 
this input, the robot system evaluated whether the participant’s 
gestures correctly replicated its own gestures in the right order and 
provided feedback by means of speech. The feedback text was 
selected randomly from a predefined list of sentences, e.g., “Yes, 
those were the right gestures” for a correct imitation, or “No, 
those were not the right moves” for an incorrect imitation.  

To make the game more entertaining and keep the human player 
engaged, the system chose a gesture sequence (item) of a slightly 
different item difficulty for each turn. The selection strategy is 
illustrated in Figure 2. The robot system kept track of how many 
times a participant imitated a gesture sequence correctly, and 
based on this information the system estimated whether the item 
difficulty was too easy, just about right, or too challenging for a 
participant. This estimate then was sent to a rating system (a 
component of the robot system) based on the Glicko rating system 
[30] for selecting the next sequence from a list of predefined 
gesture sequences with different ratings. The selection of a 
sequence depends on not only the rating of the sequence but also 
the current rating of the participant, representing the participant’s 
game skills (for more details see [30]). For example, the rating of 
a sequence should be higher than the current rating of the 
participant. The selection was based on the strategy illustrated in 
Figure 2 aimed at choosing a sequence for each specific 
participant in a certain game state that would keep the participant 
engaged and motivated. The participant rating was initialized to a 
rating that corresponds to an average performance rating and then 
adapted to account for the fact that an easy game or a difficult 
game was started. After each turn this rating was updated by the 
rating system using only the input whether a participant correctly 
or incorrectly imitated a gesture sequence. The ratings of gesture 
sequences were derived from previously played games. 

3.2 Mood Expression Model 
To enable a robot to express a long-lasting affect state such as 
mood, even during task execution, we adapted a previously 
developed model for integrating affect expression with functional 
behaviors (e.g., task behaviors, communicative gestures, and 
walking). In this model, behaviors are parameterized (see Figure 
3), and by varying behavior parameters different moods can be 
expressed. The set of parameters is generic and can be used to 
modulate behavior parameters of arbitrary behaviors. Example 
parameters include the speed of movement and the amplitude of a 
movement. A parameter may also be associated with a particular 
body part of the robot (e.g., head, hand palm, and finger). For a 
specific behavior, one only needs to specify which parameters 
should be varied to express mood while performing that behavior. 
Moreover, by varying these parameters the “style” of executing a 
particular functional behavior can be modified without changing 
the particular function of that behavior. The style thus can be 
selected such that a range of affective states can be expressed, and 
affect can be displayed throughout a series of behaviors.  

One of our goals of the study we performed is to apply and 
evaluate this model in a more interactive scenario as a step 
towards the application of this mood expression model in real-life 

 

Figure 2. Item selection strategy. 
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application context. To this end, we used the imitation game 
introduced above. The robot gestures used in this game were 
adapted using the design principles (Table 1) gained from 
previous studies [7], [8], [9] in order to express robot mood while 
the robot is playing the game, i.e., performing various gesture 
sequences that are to be imitated. 

The robot arm movements are the primary relevant movements 
for the imitation game. Three pose parameters, amplitude, palm-
direction, and finger-rigidness, were used for the arm. The 
amplitude relates to three aspects: vertical extent, horizontal 
extent, and arm extension; these are controlled individually by the 
joints shoulder-pitch, shoulder-roll, and elbow-roll (see Figure 
1a). We also used two pose parameters for head movement (see 
Figure 1c). Two motion parameters, motion-speed and hold-time, 
were used to modulate the motion dynamics. Decay-speed was 
used in [7] to control the speed of movements when robot 
actuators return to its initial poses. In this study, we used motion-
speed as decay-speed because decay-speed was found to correlate 
with motion-speed in [8]. The design principles for mood 
expression used to control these parameters have been evaluated 
in a recognition experiment in a laboratory setting in a previous 
study [9]. In that study, it was also found that the parameters for 
motion-speed, hold-time, and head-vertical correlate with arousal 
(Table 1). The modulated game gestures thus do not only display 
the valence of the robot mood but also the arousal. The resulting 
gestures for positive and negative moods are illustrated in Figure 
1a, c. A video clip of the gestures used in this study and gestures 
modulated by mood on a continuous scale is available online.1 

4. RESEARCH QUESTIONS AND 
HYPOTHESES 
The main questions addressed in this study are (a) whether 
participants can differentiate between positive and negative robot 
mood expressed in gestures during an interaction scenario, rather 
than in a pure recognition task, and (b) whether mood expressed 
by a robot induces mood contagion effects in human observers. 

Because it is known from psychology that cognitive load should 
not influence the recognition accuracy of emotion [31], and as we 
in the long term aim at a model that is able to generate robot 
moods that are recognized by observers in a similar fashion as 
mood expressed by humans, we need to show that our recognition 

                                                                 
1 http://ii.tudelft.nl/SocioCognitiveRobotics/index.php/ImitatGameMood   

results do not depend on the difficulty of the interaction task. A 
second reason to vary the difficulty of the task is that we want to 
be able to replicate mood effects on task performance [32], [33], 
[34], [35], [36], as a behavioral measure for mood contagion (in 
addition to self-reported mood). 

As a result, in this study we looked at the effect of robot mood 
(positive versus negative) and task difficulty (difficult sequences 
to imitate versus easy sequences) on three dependent constructs: 
observed robot mood (self-reported valence and arousal), observer 
mood (self-reported valence and arousal), and task performance 
(percentage of correct imitation sequences). We formulated the 
following hypotheses: 

H1. Robot behavior influences how participants rate perceived 
robot mood: participants rate robot mood more positive 
when the robot behavior is modulated to display positive 
mood than when the behavior is modulated to display 
negative mood. This effect should not be dependent on the 
easy and difficult task conditions. 

H2. Participants’ affective states are influenced by the robot 
mood: participants’ affective self-reports are more positive 
in the positive robot mood condition than the negative robot 
mood condition.  

H3. Participants’ task performance is better in the negative robot 
mood condition than in the positive robot mood condition. 

The latter hypothesis needs some explanation. If robot mood 
influences participant mood, then we should be able to observe 
mood effects on task performance. The imitation game is a detail-
oriented game in need of bottom-up attention because the goal is 
to watch and repeat robot movements exactly. It is well known 
that orientation towards details and bottom-up attention is favored 
in neutral-to-negative mood states, as opposed to creative and out 
of the box thinking in positive mood states [34], [35], [36]. 
Therefore, if mood contagion happens, we would expect to see 
higher task performance in the negative mood condition than in 
the positive mood condition.  

5. EXPERIMENTAL SETUP 
We used a mixed model 2x2 design with game difficulty (easy / 
difficult) as a between-subject factor and robot mood (positive / 
negative) as a within-subject factor. Each participant plays with 
the robot in only one game difficulty condition (easy or difficult) 
and in both robot mood conditions (positive/active and 
negative/passive) in two sessions. Each session took between 6 
and 10 minutes and involved 10 imitations. The game difficulty 
was manipulated by restricting the items that the rating system 
could select by the item ratings (see Section 3.1): for an easy 
game condition, the item ratings ranged from 300 to 1500; for a 
difficult game condition, the item ratings ranged from 1501 to 
2800. Mood was manipulated by controlling behavioral 
parameters as explained in Section 3.2. Task difficulty was 
manipulated by the length of the sequence and the variation of the 
gestures in the sequence. Participants were randomly assigned to 
the two groups (Table 2). The order of the mood conditions was 
counter-balanced. After the two sessions, participants were asked 
to report the perceived robot mood as well as their own mood 

Table 1. Design principles for mood expression 

Parameters Valence Arousal 

Amplitude  
large positive / 
small negative / 

Palm 
Direction 

extrovert positive / 
introvert negative / 

Finger 
Rigidness 

straight positive / 
bent negative / 

Motion 
Speed 

fast positive active 
slow negative passive 

Hold Time 
short positive active 
long negative passive 

Head 
Vertical 

raised positive active 
lowered negative passive 

Head 
Horizontal 

follow arm1 positive / 
look forward negative / 

1 look forward when two arms act. 

Table 2. Experiment conditions and participant groups 

Game 
Difficulty 

Robot Mood 
Negative/Passive Positive/Active 

Easy Group A Group A 
Difficult Group B Group B 
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using Self-Assessment Manikins [37]. Participants’ game 
performance was assessed by the percentage of correct imitations 
during each session (the score of the participant for that session).  

5.1 Materials 
A Wizard-of-Oz method (Figure 4)  was used in this experiment 
for the recognition of the participants’ gestures. An operator was 
sitting in the room next door to the experiment room. He could 
see and hear the participants via a webcam and microphone. His 
task was to recognize the correctness of the participants’ response. 
The operator classified all gestures made by the participants. 
Procedural instructions on how to classify were given to the 
operator: each gesture had to be classified as one of the eight 
gestures the robot displayed, and in the event that the operator 
could not classify a gesture he was told to ignore that gesture and 
continue. The operator had been trained before the experiment to 
minimize the chance that he made mistakes during the operation.  

A screen (Figure 4) was placed on the wall just behind the robot 
so that participants knew that the “robot” could see their gestures. 
Participants were told that the screen was used for facilitating the 
recognition of gestures by the robot, while in fact this was the 
operator’s view. A grey NAO robot (NaoQi version 1.14; head 
version 4.0; body version 3.3) was used with LED lights switched 
off. The robot provided oral feedback on the participant’s 
imitation performance by indicating whether a sequence of 
gestures performed by the participant correctly reproduced the 
gestures performed by the robot. The robot accompanied its 
gestures with speech (e.g., “Left up.” “Both down.”). The robot 
voice and texts were affect neutral. That is, phrases such as 
“Excellent!” or “Very good!” were avoided. The robot (58cm tall) 
was placed on a desk (Figure 4) to ensure that participants could 
see the robot by facing the robot and looking straight ahead.  

5.2 Participants 
36 students (25 males and 11 females) whose ages range from 19 
to 41 (Mean = 26.6, SD = 4.1) were recruited from the Delft 
University of Technology for this experiment. They were from 
nine different countries, but most of them are Dutch (N=13) or 
Chinese (N=13). A pre-experiment questionnaire confirmed that 
the participants had little expertise on the design of gestures or 
behaviors for robots or virtual agents. As compensation, each 
participant received a gift after the experiment. Participants were 
encouraged to obtain a high score: they were told beforehand that 
the winner would receive a prize. 

5.3 Procedure  
Before the experiment, each participant was asked to fill in 
demographics and a general questionnaire about previous 
experiences with robots. Participants were told that the robot was 
autonomous (as is common in a Wizard-of-Oz setup). Participants 
were told to pay attention to the game in general, and we did not 
emphasize mood or behavior to try to eliminate a demand effect 
(participants rating what they think we want them to feel / see). 
Participants were asked to act slowly to ensure that the robot 
could recognize their gestures. In addition, participants were told 
that they did not need to mimic the exact movements of the robot, 
but to imitate the correct direction (of four possible directions). 
They were asked to not make any other gestures to avoid 
misrecognition. They were informed that the experiment contains 
two sessions with different experiment conditions. 

The robot started the interaction when the participant was ready, 
which was indicated by a thumbs-up gesture of the participant. 
After the participant finished an imitation (sequence of 

movements), the robot told whether it was correct or not, and the 
score of the participant was updated in the system but not shown 
to the participant. Then the robot started the next turn and 
performed the next gesture sequence. Each session contained 10 
turns. There was no break between the two sessions, but 
participants were clearly informed about the session switch. 

After the two sessions, participants filled in the post-experiment 
questionnaires and SAM affect self-report. The experiment took 
about 30 minutes on average. After the experiment, participants 
were fully debriefed, and each participant signed a consent form. 

6. RESULTS 
6.1 Manipulation check 
Task difficulty was effectively manipulated. An independent 
sample t test showed that the difference in correctness is 
significant between the easy (Mean = 72%, SD = 10%), and 
difficult (Mean = 33%, SD = 18%) conditions (t(34)=8.121, 
p<0.001). In addition, we asked participants to rate to what extent 
they thought the game is challenging on a 5-point Likert scales (-2 
to 2) after the experiment. Participants in the difficult-game group 
considered the game more challenging than those in the easy-
game group (t(34)=2.428, p<0.05).  

6.2 Participants consistently differentiate 
between positive and negative robot mood 
Participants were able to distinguish between positive and 
negative robot mood and this distinction was consistent across the 
two task difficulty conditions, as evidenced by a mixed 
MANOVA with robot mood and difficulty as independent factors 
and perceived valence and arousal of the robot mood as dependent 
variable. This analysis (see Figure 5) shows that robot mood had a 
significant effect on participants’ robot mood perception: 
F(2,33)=23.597, p<0.001, η2=0.588. The perceived valence and 
arousal were significantly different between positive and negative 
conditions: F(2,33)=27.008, p<0.001, η2=0.443 for the valence; 
F(2,33)=44.222, p<0.001, η2=0.565 for the arousal. In addition, 
task difficulty did not influence mood perception significantly 
(F(2,33)=1.589, p=0.219, η2=0.088). These results directly 
support our first hypothesis (H1). Moreover, participants rated the 
positive robot mood as positive (one sample t-test on valence 
measure, t(35)=8.620, p<0.001), and active during the interaction 
(one sample t-test on arousal t(35)=8.544, p<0.001), and rated the 
negative robot mood as passive (one sample t-test testing on 

Figure 4. The Wiz-of-Oz setting: the wizard recognized 
the gestures of the participant and input into the system; 
the system selected next gesture sequence and the robot 
generated the mood-modified gestures automatically. 

Robot

Participant

Wizard

Experiment Room Wizard Room
Wall
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arousal t(35)=-2.086, p<0.05) but they did not rate it significantly 
more negative than neutral (t(35)=-0.435, p=0.666). This further 
supports our first hypothesis (H1), as it shows that arousal 
manipulation was in the right direction for both positive and 
negative, and that valence of the positive mood was also 
perceived as being more positive than neutral.  

6.3 Participants’ mood depends on robot mood 
Participants’ affective states were influenced by the robot mood in 
the expected directions, supporting our second hypothesis (H2) 
that robot mood has a contagion effect on human observers. A 
mixed MANOVA with robot mood and difficulty as independent 
factors and self-reported participant mood valence and arousal as 
dependent variables showed that both mood (F(2,33)=8.379, 
p=0.011, η2=0.337) and task difficulty (F(2,33)=4.397, p<0.05, 
η2=0.210) influenced participants’ self-reported mood. Post hoc 
analyses showed that participant arousal (F(1,17)=20.302, 
p<0.001, η2=0.544) and participant valence (F(1,17)=10.000, 
p<0.01, η2=0.370) were significantly influenced in the easy task 
condition, but not in the difficult task condition (see Figure 6). 
This suggests that we were able to measure mood contagion 
effects with self-reported mood only for the easy task. In the 
difficult task, no contagion effect seems to be present.  

6.4 Task performance depends on robot mood 
Finally, participants’ game performances were influenced by the 
robot mood (H3). A mixed ANOVA showed that participants’ 
scores (percentage of correct imitations) were significantly 
(F(1)=7.335, p=0.011, η2=0.177) different when the robot showed 
a negative mood. Post-hoc tests showed that participants’ scores 
were significantly different between the robot mood conditions for 
the difficult game condition only (F(1,17)=6.608, p<0.05, 
η2=0.280), but not for the easy game condition (see Figure 7). The 
direction of the mood effect on task performance is exactly as one 

would expect based psychological research [34], [35], [36]: a 
neutral-to-negative mood state favors orientation towards details 
and bottom-up attention as opposed to a positive mood state. This 
type of processing is needed to perform well on the imitation task.  

7. DISCUSSION 
First and foremost, this study showed that our model for bodily 
mood expression of a humanoid robot successfully generalized to 
the behaviors needed in the imitation game: we applied the 
parameter modulation principles obtained in [7] to the imitation 
gestures directly (see Section 3.2); and results show that 
participants distinguish between positive and negative robot 
mood, even when they were faced with a high task load. 
Moreover, the recognition of the valence and arousal is consistent 
with the findings in [9]: modulating these behavior parameters 
varied both valence and arousal in the same direction. We would 
like to stress that this is an important contribution to the ability of 
appearance-constrained robots lacking facial expression 
capabilities to express affective signals. Further, this is an 
important step towards the expression of affect during task 
execution of a robot, something humans do automatically (e.g., 
walking in a sad, happy, or angry way looks very different).   

Figure 5. The participants’ perceived valence and 
arousal of the robot mood during the interaction. 
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Figure 7. The participants’ game performance. 
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Our aim in this study has been to use bodily mood expression that 
does not interfere with the behavioral functions of body 
movements and to study the effects of mood expression. This has 
been achieved by using a parameterized behavior model, but this 
does not necessarily mean that no additional effects besides the 
mood expression in an interaction scenario have been introduced. 
More specifically, effects on the game itself may have been 
introduced: mood expression potentially influenced game 
difficulty. For example, the use of head movements for expressing 
mood was reported by one participant as something that distracted 
attention and thus made it more difficult for that participant to 
remember the exact sequence. Another participant reported that 
the slow speed of the gestures in the negative mood condition 
increased the duration of the sequence, and consequently, 
increased the time that the participant needed to remember the 
sequence. Even so, participants consistently rated the difficult 
game as more challenging than the easy game, and participants 
actually performed better in the negative mood condition. 

We asked participants to report their own mood only after the two 
sessions, because we wanted to avoid introducing a demand effect 
in the second session. This may have influenced the self-reported 
mood because of mood decay effects or because of the different 
robot mood in the second session. In a mixed MANOVA we 
found a significant interaction effect between mood condition and 
mood order on self-reported valence and arousal (F(2,33)=3.507, 
p<0.05, η2=0.175), primarily caused by a decay in self-reported 
arousal for the mood condition that was presented first. This 
shows that presentation of the second session indeed diminishes 
the self-reported contagion effect of the first session. 

Participants’ assessment of the robot mood is a comprehensive 
affective appraisal over all aspects on display including robot 
body movements, the robot’s speech, game events, etc. In line 
with this the attribution of a mood was explained differently by 
different participants even though only body language was varied 
in both sessions (see Section 5). Some participants thought the 
robot mood changed because of their performance within a 
session. For example, one participant said “the robot’s mood was 
negative because I always made mistakes.” Additional evidence 
that robot mood was consciously recognized by participants is 
provided by the fact that a participant indicated that the robot was 
happy because the robot did not display a negative mood even 
when she made many mistakes. Some participants also said they 
recognized mood by means of the voice of the robot even though 
no changes were made to the robot’s voice between the two 
sessions. This also indicates that participants were consciously 
aware that the robot mood changed.  

In this study, the bodily expression of robot mood produced 
contagion effect on the participants: 1) explicitly, participants’ 
self-reported valence and arousal was significantly influenced by 
the robot mood under the easy game condition; and 2) implicitly, 
participants’ game performance was significantly influenced by 
the robot mood under the difficult game condition, suggesting that 
participants’ true mood might be influenced by the robot mood 
during task execution even though they did not report it after the 
task. We have no clear explanation for the absence of an influence 
on self-reported mood in the difficult condition, apart from the 
following two. Tsai et al. [29] proposed that the contagion effect 
of a virtual character still image was hindered by the occupation 
of cognitive resources by decision-making. It could be the case 
that in our study self-reported mood was somehow hindered by 
cognitive load. Another alternative explanation is that the 
participant’s mood in the difficult task was more negative by 

default, because the task was difficult. The fact that the 
participant’s negative mood was not rated even more negative 
could thus be due to a floor effect as one does typically not get 
into a very bad mood due to a game in an experiment. Hence, no 
effect of negative mood induction due to the robot mood was 
measured. The same sort of explanation would hold for why we 
did not find an effect of robot mood on participants’ task 
performance in the easy task. Here we probably had a ceiling 
effect: the easy imitation game is so easy, that no matter what 
your own mood is, you can do it almost perfectly. Finally, we 
cannot completely rule out alternative explanations for our 
findings that would argue, e.g., that participants were entertained 
more in the positive condition and for this reason somehow 
performed worse. Even so, explanations like these would still 
suggest some kind of mood transfer would have happened. 

8. CONCLUSION AND FUTURE WORK 
This study shows that it is feasible to use parameterized behavior 
to express a robot‘s mood in an actual HRI interaction scenario. 
Results show that people are clearly able to distinguish between 
positive and negative robot mood. Our results also suggest that 
mood contagion takes place between the robot and the human. We 
have evidence for this contagion effect in the following two 
forms: 1) participants self-reported mood matches that of the 
robot mood, and 2) participants’ task performance is lower in the 
positive robot mood condition compared to the negative robot 
mood condition replicating a well-known mood-cognition effect.  

To the best of our knowledge, this study is one of the very few in 
which the robot mood expressed by bodily expression is clearly 
distinguished by participants and the robot mood has an effect on 
participants, which we interpreted as mood contagion. Our study 
is unique in that a) robot mood expression was evaluated and 
investigated in a real HRI scenario, b) mood expression was 
realized by integrating robot body language into functional 
behaviors required by a task, and c) the participants were not 
primed to pay attention to any form of affective expression. 

One additional interesting aspect that we found in our study is that 
participants attributed the robot mood to various factors that were 
not manipulated. In a complex interaction scenario such as the 
imitation game, participants may believe that the affective state of 
a robot is shaped by the events that happen during the game, the 
objects present in the interaction scenario, or, for example, by the 
(performance of) participants themselves. It is interesting to 
explore this conscious attribution of mood and its causes to a 
robot in more detail in future work. Moreover, the self-reports on 
mood are subjective; we will annotate the video records using an 
event-based coding scheme to get more reliable results. 
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