
Transitioning Multiagent Technology to UAV Applications

Paul Scerri
Robotics Institute

Carnegie Mellon University
pscerri@cs.cmu.edu

Tracy Von Gonten
Integrated Systems

L-3 Communications
Tracy.W.VonGonten@L-

3com.com

Gerald Fudge
Integrated Systems

L-3 Communications
Gerald.L.Fudge@L-

3com.com
Sean Owens

Robotics Institute
Carnegie Mellon University
owens@cs.cmu.edu

Katia Sycara
Robotics Institute

Carnegie Mellon University
katia@cs.cmu.edu

ABSTRACT
This paper describes the transition of academically devel-
oped multiagent technology for UAV coordination to an in-
dustrially developed application. The specific application
is the use of lightweight UAVs with small Received Signal
Strength Indicator sensors to cooperatively locate targets
emitting radio frequency signals in a large area. It is shown
that general techniques can be effectively transitioned, some-
times with minimal changes. However, clear differences in
engineering and testing requirements of academia and com-
mercialization require extensive effort in developing simula-
tion and live flight testbeds. Although the technology has
not yet been commercialized, initial live flight testing shows
the potential of the approach.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—autonomous ve-
hicles, commercial robots and applications

Keywords
Multi-robot, UAV

1. INTRODUCTION
The rapidly improving availability of small, unmanned

aerial vehicles (UAVs) and their ever reducing cost is leading
to considerable interest in multi-UAV applications. How-
ever, while UAVs have become smaller and cheaper, there
is a lack of sensors that are light, small and power efficient
enough to be used on a small UAV yet are capable of taking
useful measurements of objects often several hundred meters
below them. Static or video cameras are one option, how-
ever image processing normally requires human input or at
least computationally intensive offboard processing, restrict-
ing their applicability to teams of very small UAVs. In this
paper, we look at how teams of UAVs can use very small Re-
ceived Signal Strength Indicator (RSSI) sensors whose only
capability is to detect the approximate strength of a Radio

Cite as: Transitioning Multiagent Technology to UAV Applications,
Scerri, Von Gonten, Fudge, Owens and Sycara, Proc. of 7th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2008)- Industry and Applications Track, Berger, Burg, Nishiyama

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Frequency (RF) signal, to search for and accurately locate
such sources. RSSI sensors give at most an approximate
range to an RF emitter and will be misleading when signals
overlap. Applications of such sensors range from finding lost
hikers or skiers carrying small RF beacons to military recon-
naissance operations. Moreover, the basic techniques have a
wider applicability to a range of robotic teams that rely on
highly uncertain sensors, e.g., search and rescue in disaster
environments.

Many of the key technologies required to build a UAV
team for multi-UAV applications have been developed and
are reasonably mature and effective [1, 2, 6]. Moreover,
intelligent agent technology appears to be a promising ap-
proach for building such applications because the abstrac-
tion is clear, extensible and powerful. However, practical use
of multi-UAV teams has yet to emerge because some basic
usability and engineering issues have not been adequately
addressed. Key open issues include scaling the number of
UAVs controllable by a single user, developing an efficient
and effective transition path from research to application
and development of sensors specifically appropriate for small
UAVs. In this paper, we describe ongoing collaboration be-
tween academia and industrial partners aimed at transition-
ing state-of-the-art research into practical applications.

The academic partner in the collaboration, Carnegie Mel-
lon University, has developed algorithms for the key UAV
coordination issues involved in locating RF emitters. The
approach has been presented in detail elsewhere[6] and is
presented only briefly here. Binary Bayesian Grid Filters
(BBGF)[5] are used to represent the probability that there is
an emitter at any particular location. Each UAV maintains
its own BBGF and anonymously forwards a select subset
of sensor readings to some of the other UAVs[8]. The out-
put of the BBGF is transformed into a map of information
entropy. The UAVs plan paths through areas of highest en-
tropy, thus when they fly those paths they can expect to
maximize their information gain. A version of a Rapidly-
expanding Random Tree (RRT) planner[4] is used to deter-
mine UAV paths. Each of the influences on the planned
path, i.e., entropy, the paths of others and terrain, is cap-
tured by a cost map which are combined and used by the
RRT planner to determine the utility of many paths. Clus-
tering algorithms on the BBGF are used to determine likely
emitter locations. These locations are used to automatically
cause a UAV equipped with an EO-camera to go to the area

89

(eds.),May,12-16.,2008,Estoril,Portugal,pp.89-96.

and provide a video stream for a user to locate the target.
The overall approach described above has been imple-

mented within the Machinetta[7] proxy infrastructure and
evaluated in increasingly high fidelity testbeds. The coor-
dination reasoning and state estimation code is separated
from the auto-pilot code so that it is applicable to a range
of UAVs capable of waypoint following. More importantly,
the same code is used on low and high fidelity test beds,
allowing an effective transition process. Figure 1 shows the
control interface, with the map display on the left, camera
view at top right (simulated, in this case) and filter output
at the bottom right. Simulation experiments show the ap-
proach to be effective at identifying likely emitter locations
and sending EO-camera equipped UAVs to areas as small as
100m across.

The industrial partner in the collaboration, L-3 Commu-
nications Integrated Systems (L-3/IS), integrated the UAV
system, including the Machinetta software and algorithms
developed by CMU, communications interfaces, Procerus
60” UAV platforms with autopilot and camera, RSSI sen-
sors, and ground station. To validate the behavior and ro-
bustness of the resulting system, L-3/IS developed a high
fidelity simulation environment with OpNet and performed
live flight experiments. The high fidelity simulation environ-
ment, besides providing for performance characterization,
yielded some unexpected benefits including detecting differ-
ences in model assumptions between L-3/IS and CMU, and
the ability to analyze and correct emergent behaviors (i.e.,
undesired system behaviors that result from complex inter-
action of the sub-systems and environment). With tighter
FAA restrictions on live flight testing, having a high fidelity
simulation environment becomes even more important.

Figure 1: Operator interface station showing map
view, camera view and filter output.

2. PROBLEM
Our collaborative research focused on the problem of lo-

calizing an unknown number of RF emitters using a team of
UAVs. Most UAVs in this team are assumed to have RSSI
sensors which measure RF signal strength at a particular fre-
quency band. A small number of UAVs are outfitted with
EO sensors capable of streaming video back to a user. We
assume that the environment is too large to feasibly search
using EO sensors alone. The UAVs must maintain a be-
lief over the state of all emitters in the environment in a
decentralized manner.

The emitters are represented by the set: E = {e1 . . . en}
where n is not known to the team of UAVs. Emitters are all
assumed to be emitting at a single known frequency.1 Emit-
ters are mobile and emit intermittently. The homogeneous
UAVs are represented by the set: U = {u1 . . . um}. Each ui

flies a path given by ~ui(t). During flight a UAV takes sensor

readings, zt(~loc) which are the received signal power at a

location ~loc = {x, y, z} where {x, y, z} gives the Euclidean
coordinates of a point in space relative to a fixed origin.

The sensor readings taken by the ith UAV, up until time
t are zi

t0 . . . zi
t. Each UAV maintains a posterior distribu-

tion P over emitter locations given by P i
t (e1 . . . en|zi

t0 . . . zi
t).

The UAVs proactively share sensor readings to improve each
other’s posterior distribution. At time t each ui can send
some subset of locally sensed readings: ~zi

t ⊂ zi
t0 . . . zi

t.
The true configuration of the emitters in the environment

at time t is represented as a distribution Q such that

Qt(e1 . . . en) = 1

when e1 . . . en gives the true configuration of the emitters at
t. The objective is to minimize the divergence between the
team belief and the true state of the emitters, while mini-
mizing the cost of UAV flight path, and minimizing the total
number of messages shared between UAVs. The following
function expresses this mathematically:

min
~ui

X
t

X
ui∈U

β1Cost(~ui(t)) + β2DKL(P i
t ‖Q) + β3|~zi

t|

where DKL denotes the the Kullback Leibler divergence and
β1...3 are weights which control the importance of the indi-
vidual factors in the optimization process.

When P indicates the location of emitters to within a“rea-
sonable”distance, EO assets should be sent to the estimated
location to provide a video feed back to an operator who can
determine the nature of the emitter. The earlier the EO as-
sets are taking video of the emitter the better. However, the
advantage of sending EO assets early can be mitigated by
requiring that too large of an area be covered by video or
by sending assets to areas where there are no emitters, i.e.,
false positives.

2.1 RSSI Sensor
RSSI measurements are available with many transceiver

chips, including, for example the Chipcon CC1020 shown as
an inset in Figure 2 together with the RSSI antenna and
Procerus UAV that we used in our experiments. The in-
formation provided by RSSI sensors alone, however, is very
low quality – although range can be approximately inferred
if source strength and direction relative to the UAV antenna
are known, these parameters are initally unknown and are
subject to change in a dynamic environment. In addition,
multipath fading and shadowing will distort the RSSI mea-
surements – when combined with noise, the resulting RSSI
measurements may have a very large variance even when
range and angle are fixed. For example, Figure 3 presents
RSSI measurements as a function of range taken from live
flight experiments. In this case, the range is known and
the UAV antenna is approximately omni-directional so that
the RF emitter angle relative to the antenna response does

1This will be relaxed in future work.

90

not come into play in the RSSI measurements. This exam-
ple illustrates the difficulty in relying on RSSI information
from a single sensor to estimate range. Another factor that
makes it difficult to interpret the information from a single
RSSI sensor is the fact that there might be multiple emit-
ters contributing to the RSSI measurements. In the context
of an adaptive distributed sensing network, where spatially
diverse information may be combined from a team of co-
operating UAVs, RSSI sensors can be used to localize RF
emitters even with all of these disadvanges.

Figure 2: Procurus Close-Up with RSSI Antenna
and RSSI Sensor (inset).

Figure 3: RSSI Measurements vs. Range (Live
Flight Data).

3. ALGORITHMS
The most important feature of the overall algorithm is the

tight integration of all the key elements to maximize perfor-
mance at a reasonable computational and communication
cost. A Binary, Bayesian Grid Filter (BBGF) maintains an
estimate of the current locations of any RF emitters in the
environment. This distribution is translated into a map of
the entropy in the environment. The entropy is captured
in a cost map. UAVs plan paths with a modified Rapidly-
expanding Randomized Tree (RRT) planner that maximize
the expected change in entropy that will occur due to fly-
ing a particular path. The most important incoming sen-
sor readings, as computed by the KL information gain they
cause, are forwarded to other members of the team for inte-
gration into the BBGFs of other UAVs. Planned paths are
also shared so that other UAVs can take into account the
expected entropy gain of other UAVs when planning their
own paths. The paths of other UAVs are also captured in a

cost map. Additional cost maps, perhaps capturing results
of terrain analysis or no-fly zones, can be easily added to the
planner.

The hardware independent components (planners, filters,
etc.) are isolated from the hardware specific components
(sensor drivers, autopilot) to allow the approach to be quickly
integrated with different UAVs or moved from simulation to
physical UAVs. The hardware independent components are
encapsulated in a proxy which will either be on the physical
UAV or on a UAV ground station, depending on the vehi-
cle. In the experiments below, exactly the same proxy code
is used in simulation as will be used in tests with physical
UAVs. Figure 4 shows the main components and informa-
tion flows from the perspective of one UAV-proxy.

Figure 4: Block diagram of architecture.

3.1 Distributed State Estimation
In this section, we describe the filter used to estimate the

locations of the emitters. In previous work we have described
the algorithms that UAVs use to decide which sensor read-
ings to share with other UAVs, to ensure that each member
of the team has the best possible estimate of emitter loca-
tions while respecting bandwidth limitations[8].

3.2 Binary, Bayesian Grid Filter
The filter uses a grid representation, where each cell in

the grid represents the probability that there is an emitter
in the area on the ground corresponding to that location.2

For a grid cell c the probability that it contains an emitter
is written P (c). The grid as a whole acts as the posterior
P i

t (e1 . . . en|zi
t0 . . . zi

t).
To make calculations efficient, we represent probabilities

in log odds form, i.e., lt = logP (i). Updates on grid cells are
done in a straightfoward Bayesian manner.

lt = lt−1 + log
P (ei|zt)

1− P (ei|zt)
− log

P (ei)

1− P (ei)

2A quad-tree or other representation might reduce memory
and computational requirements in very large environments,
but the algorithmic complexity is not justified for reasonable
sized domains.

91

where P (ei|zt) is a inversion of the the signal model, with
the standard deviation extended for higher powered signals,
i.e.,

P (ei|zt) =

8<:
1√

2π(σ2
1)

e−
1
2 (zt−Γ)2 if zt ≥ Γ

1√
2π(σ2

2)
e−

1
2 (zt−Γ)2 otherwise

where σ1 > σ2 scales the standard deviation on the noise
to take into account structural environmental noise and over-
lapping signals. Intuitively, overlapping and other effects
might make the signal stronger than expected, but they are
less likely to make the signal weaker than expected. Figure
5 shows a plot of the (log) probability (y-axis) of a signal
of a particular strength (x-axis) when the emitter is 500 m
from the sensor.

Figure 5: Mapping between probability and signal
strength.

Notice that there is no normalization process across the
grid because the number of emitters is not known. If the
number of emitters were known, a normalization process
might be able to change the probability of emitters even in
areas where no sensor readings had been taken. Initial values
of grid cells are set to values reflecting any prior knowledge
or some small uniform value if no knowledge is available.

The UAVs will fly to areas of maximum entropy, hence the
probability distribution has to be translated into an entropy
distribution. We assume independence between grid cells,
so entropy can be calculated on a grid cell by grid cell basis.
Specifically, the entropy, H, of a grid cell i is:

H(i) = P (i)log(P (i)) + (1− P (i))log(1− P (i))

Figure 6 shows how probability and entropy are related.

3.3 Cooperative Search
In this section, we describe the cooperative path planning

for maximizing the team’s expected information gain and,
hence, its estimate of emitter locations.

Shortly before traversing a path, the UAV plans its next
path, using an RRT planner as described below. The path
is encapsulated in a token and forwarded to some of the
other team members. It is not critical for the token to reach
all other team members, although team performance will
be better if it does. UAVs store all the paths they receive
via tokens. When planning new paths a change in entropy

Figure 6: Mapping between probability of an emit-
ter and entropy. The broken line shows the proba-
bility and the unbroken line the entropy.

due to other UAVs flying their planned paths is assumed
by the planner. Effectively, the entropy is reduced in areas
where other UAVs plan to fly, reducing the incentive for fly-
ing in those areas. If the UAV does not know the current
planned path of a particular UAV, it takes the last known
location of that UAV, i.e., typically the last point on the last
plan from that UAV, and assumes that the UAV moved ran-
domly from there.3 Using this technique, the UAVs mostly
search different parts of the environment, but will sometimes
have overlapping paths. Importantly, the approach is com-
putationally and communication efficient, scalable and very
robust to message loss.

3.4 Modified RRT Planner
Once the UAV has the entropy map and knowledge of

the paths of other UAVs, it needs to actually plan a path
that maximizes the team’s information gain. We chose to
apply an RRT planner [4, 3] because it is fast, capable of
handling large, continuous search spaces and able to handle
non-trivial vehicle dynamics.

However, efficient RRT planners typically rely on using a
goal destination to guide which points in the space to expand
to. In this case, there is no specific goal, the UAV should just
find a path that maximizes information gain. Initial tests
with an RRT planner showed them to be inefficient in such
cases. Moreover, the RRT planner did not handle the sub-
tle features of the entropy map well. To make the planner
more efficient for this particular problem, it was necessary to
change a key step in the algorithm. Specifically, instead of
picking a new point in space to expand the nearest node to-
wards, a promising node is selected and expanded randomly
outwards in a number of directions. This modified search
works something like a depth first search, but with the RRT
qualities of being able to quickly handle large, continuous
search spaces and vehicle dynamics. Notice that this change
also eliminates the most computationally expensive part of
a normal RRT planner, the nearest neighbor computation,
making it much faster.

Algorithm 3.4 shows the modified RRT planning process.
Input to the algorithm includes a cost map encoding the
goals of the vehicle and another cost map with the known
paths of other vehicles. Lines 1-5 initialize the algorithm,
creating a priority queue (plist) and initial node (n). The
ordering of the priority queue is very important for the func-
tioning of the algorithm, since the highest priority node will

3In future work, we may take into account that the other
UAV will also be attempting to maximize entropy and
thereby create better models of what it intends to do.

92

be expanded. The function ComputePriority uses both
the cost of the node and the number of times it has been
expanded to determine a priority. Intuitively, the algorithm
works best if good nodes that have not been expanded too
many times previously are expanded. The main search loop
is lines 6-17 and is repeated 20,000 times (about 10ms on
a standard desktop.) The highest priority node is taken off
the queue (then added again with new priority). This node,
representing the most promising path, is expanded 10 times
in the inner loop, lines 10-17. The expansion creates a new
node, representing the next point on a path, extending the
previous best path by a small amount. The Expand function
is designed so that all new nodes lead to kinematically fea-
sible paths. The function ComputeCost then determines
the cost for the new search node, taking into account the
cost of the node it succeeds and the cost maps. The cost
map representing other paths will return positive infinity if
the new node leads to a path segment that would lead to
a collision. The expanded nodes are added to the priority
list for possible future expansion and the process continues.
Finally, the node with the lowest cost is returned. The best
path is found by iterating back over the prev pointers from
the best node.

Algorithm 1: RRT Planning Process
RRTPlanner(x, y, CostMaps, time, state)
(1) plist← []
(2) n← 〈x, y, t, cost = 0, prev = ∅, priority = 0〉
(3) n← ComputePriority(n)
(4) plist.insert(n)
(5) best = n
(6) foreach 20000
(7) n← plist.removeF irst()
(8) n.priority ← ComputePriority(n)
(9) plist.insert(n)
(10) foreach 10
(11) n′ ← Expand(n)
(12) n′.prev = n
(13) n′.cost = Cost(n, CostMaps)
(14) n′.priority ← ComputePriority(n′)
(15) plist.insert(n′)
(16) if n′.cost < best.cost
(17) best← n
(18) Return best

The planning process plans several kilometers and takes
less then 0.5s on a standard desktop machine, even with
other proxy processes continuing in parallel.

Using the Planner.
If the UAV only plans a short distance ahead, it can fail

to find plans that lead it to high value areas that are a
long distance away. However, if the UAV plans long paths,
it loses reactivity to new information (both sensor readings
and plans of others). Our approach is to allow the UAV to
plan long paths, but only use the first small piece of the path.
In this way, the UAV will reach high value, distant areas by
repeatedly creating plans to that area and executing part of
the plan, but it can also react quickly to new information.

4. TRANSITION
The transition from pure simulation to live flight with

UAVs involved a number of steps. The first step was to
select a UAV platform and RSSI sensor. As discussed ear-
lier, we integrated the Chipcon CC1020 onto Procerus UAVs

with 60” wingspan. Figure 7 shows a team of four Procerus
UAVs ready for flight. We selected the Procerus UAV based
on: cost, built-in cameras, ease of hardware / software inte-
gration, data link which supported simultaneous multi-UAV
control, and the Kestral autopilot interface. The Machinetta
agents provide waypoints to the autopilot and thus do not
need to have precise understanding of the UAV flight con-
trol surfaces and dynamics. This not only simplifies the
autonomous control, but also allows inclusion of other plat-
forms, including possibly large fixed wing UAVs or rotary
wing UAVs.

The second step was to develop a high fidelity simulation
environment that would support multiple agents running on
separate processors in a distributed network similar to the
UAV distributed network. The high fidelity simulation en-
vironment uses OpNet (a commercial RF / communications
modeling tool) with the terrain modeling module DTED
data, integrated with UAV platform dynamic models, wind
models (added later based after early live flight testing), and
the Terrain Integrated Rough Earth Model (TIREM) prop-
agation delay model. TIREM predicts the RF propagation
loss from 1 MHz to 40 MHz, over land and water, and in-
cludes a number of parameters in simulating RSSI measure-
ments, including ground conductivity, humidity, and surface
refractivity. We also developed interface software to link be-
tween the Machinetta agents / algorithms and the OpNet
simulation. With all of this in place, we can run the Ma-
chinetta intelligent agents in a distributed network and the
simulation can take into account network communications
issues in addition to RF propagation, UAV dynamics, wind,
terrain, and antenna response. On the Machinetta side of
the simulation interface, the Machinetta software is identical
to the Machinetta software used for live flight testing, thus
ensuring high fidelity of the results with minimal software
effort.

The third step was to validate the expected RSSI model
used in the simulations. After integration of the RSSI sen-
sors onto the UAVs and basic check-out, we flew three UAVs
in close formation with a narrow-band signal on the ground
and compared the RSSI measurements – this provided an
estimate of the variance of the individual RSSI sensor in a
live flight environment and this also provided a validation
that the RSSI sensor readings between different UAVs were
consistent.

The fourth step was to develop additional layers of soft-
ware to ensure positive control of the UAVs in case of unde-
sired emergent behaviors. This extra software checked the
waypoints generated by the Machinetta agents to ensure the
waypoints were within the operational area; in addition, this
software allowed for full override of the Machinetta agents
at any time. In the case of communications loss, the Kestral
autopilot would force the UAV to circle the last known way-
point.

Some additional items that were addressed during integra-
tion and transition to live flight included: Re-host of soft-
ware from Linux OS to Windows OS to support our avail-
able distributed network compute platforms; translation of
coordinate systems between the autopilot local East, North,
Up system and the Machinetta Euclidean coordinate system;
signal level units conversions to dBm with approximate gain
of antenna / receiver; and modification of network communi-
cations from the UDP Machinetta default to TCP/IP when
interfacing outside of Machinetta.

93

One of the advantages of Machinetta is that it is a very
general framework and is thus quite flexible. Thus, the over-
all adaptation from prior multi-agent applications to the RF
emitter localization UAV team domain did not require any
significant changes to the core Machinetta software. In addi-
tion, adding the cooperative team behavior to perform video
search of the expected emitter locations was also performed
with minimal or no impact to the core Machinetta software.
On the other hand, this level of abstraction can be a po-
tential difficulty as seen by our team in tracking down some
differences in the signal model assumptions – Machinetta is
written in fairly abstract objected-oriented code and track-
ing down variables can be difficult if one is not familiar with
the code.

Figure 7: Procerus UAV Team (on Rack Before
Flight Test).

5. COMPARING RESULTS

RSSI Localization Live Flights and Emergent Behav-
ior.

Our initial live flights tested the RSSI localization adap-
tive team distributed sensing behavior. Prior to live flights
we ran Monte Carlo simulations to characterize the perfor-
mance, due to time and expense of flights. Live flights are
used to validate the Monte Carlo results, including any spe-
cific unusual behaviors observed in simulations. Our RSSI
localization live flight tests qualitatively agreed with our
Monte Carlo simulations performed using the high fidelity
OpNet simulation environment, but both cases (live flight
and OpNet simulation) exhibited some behavior not ob-
served in the CMU simulation environment. One behavior
in particular illustrates the potential of undesired emergent
behaviors– the occasional circling of a UAV about a single
waypoint, as can be seen by the yellow UAV path in Figure 8.
This particular phenomena was caused by a combination of
factors related to interaction of different system components,
including the Machinetta update rate and the interface soft-
ware between Machinetta and the UAVs. Machinetta was
generating updates at a very high rate and sometimes way-
point commands for different UAVs would collide because of
the finite transmission time to the UAV. When these mes-
sages collided, some of the waypoints would be dropped and
once the UAV reached its waypoint, it would circle about
that waypoint while waiting for an update. This behavior
was also observed in the high fidelity OpNet simulation en-

vironment for two reasons: the same interface software was
used and the agents were in a physically distributed network
with the possibility of message collisions. Later flight tests
are planned to test additional behaviors such as the video
search team behavior after RSSI localization.

Although correcting the circling around a waypoint prob-
lem was fairly straightforward, this case does illustrate the
potential of undesired emergent behaviors and how impor-
tant it is to incorporate constraints on these behaviors. In
this case, one can imagine alternative designs that would
have resulted in a much worse emergent behavior. One op-
tion would be for a UAV to default to maintain its course and
speed when no new messages were received. In a very early
simulation, a different emergent behavior resulted in the
UAVs leaving the area completely, so our research team was
deliberate in preventing any emergent behavior that would
lead to the UAVs leaving the area. Another alternative
would be if Machinetta generated low-level auto-pilot con-
trol commands – dropped messages under this scenario could
easily result in the UAV crashing. While these are rather
obvious poor design choices to avoid, this example shows
how an emergent behavior with potentially disastrous conse-
quences can develop in a complex system and how emergent
behaviors can be constrained through design choices.

Number of UAVs and Number of Emitters.
The second experiment varied both the number of emit-

ters and number of UAVs in the environment. Figure 9
shows that more UAVs led to a faster decrease in the KL-
divergence, showing that the additional UAVs were useful.
Interestingly, more UAVs actually made reducing the KL-
divergence faster. We hypothesize that this was because the
UAVs were able to use the additional signals in the environ-
ment to quickly identify RF emitter locations.

Figure 9: The impact on KL-divergence of changing
the number of UAVs and the number of RF emitters.

Figure 10 shows the average distance from the location
where a UAV was ordered to take a picture to the true lo-

94

Figure 8: Example Live Flight Constrained Emergent Behavior.

Figure 10: Average accuracy of picture orders.

cation of the target in the various configurations. Figure
10 shows that increasing the number of RSSI UAVs in the
scenario provides more accurate picture orders. An increase
in the number of emitters caused a loss of accuracy, likely
due to ambiguity in the received signal due to overlap.

Figure 11 shows the average distance traveled per RSSI
UAV in kilometers before all the emitters were found. Figure
12 shows the total distance traveled by all the RSSI UAVs
before all emitters were found. Notice that in the 20 UAV
case the UAVs traveled less distance each, but more in total
than in the 10 UAV case, suggesting a speed/fuel tradeoff
when determining how many UAVs to deploy.

Figure 13 shows the total number of false positives that

Figure 11: Distance traveled per RSSI UAV.

were recorded over 10 runs for each configuration. A false
positive was defined as any picture order that was not within
a 1000m range of the true location. The number of false pos-
itives is zero when there is only one emitter and in all cases,
but significant when there are multiple emitters, pointing to
the ambiguity induced by the overlapping signals.

During the initial experiments it was observed frequently
that early in a run a RSSI-equipped UAV would pass near an
emitter and a rough estimate of the emitter location would
be obtained. Most of the entropy around the emitter would
be removed leaving only a small patch of very high entropy
right around the emitter. Unfortunately, on this single pass
the estimate of location would not be sufficiently accurate

95

Figure 12: Total distance traveled by UAVs.

Figure 13: The number of false positives.

to justify sending an EO-equipped UAV, but other areas of
the environment were completely unsearched so the UAVs
would fly elsewhere. Thus, the clusters would remain too
large until most of the map had been visited. As a test
comparison, we added a bonus reward for a UAV to visit
small areas with very high entropy, expecting that this would
allow these emitters to be located more quickly.

Figure 14 shows the comparison of performance with and
without this extra cost map enabled on a scenario of 20
RSSI UAVs and 3 emitters. The extra cost map allows the
first emitter to be discovered approximately 40% earlier as
the UAVs focus on removing the entropy surrounding the
target. The effect is considerably less on the time taken to
find all emitters however which could be attributed to the
fact that UAVs are slightly less inclined to explore, instead
focusing on suspected targets. We anticipate that at even
higher numbers of emitters, the impact of this additional
reward may even be negative. This will be investigated in
future work.

Figure 14: Comparison of performance with and
without high belief cost map.

6. LESSONS LEARNED
The collaborative partnership between CMU and L-3/IS

has proven fruitful – the combination of theory and sys-
tems integration experience allowed us to rapidly develop
an autonomous UAV system far more quickly than either
could have done without collaboration. In working with
academia, L-3/IS has observed that university collaborators
are far more willing to tackle high risk projects than typical
sub-contractors; we have also found that having high level
discussion of project goals instead of a detailed requirements
specifications on research projects is beneficial – this avoids
accidentally constraining the solution space and provides the
university the flexibility to work out of the box.

7. CONCLUSIONS
This paper presented a successful transition of maturing

agent technology to an industrial application. The key les-
son from this collaboration, for future acedemia-industry
collaboration is that the collaboration works best when tasks
are divided according to the strengths of the partners, but
close cooperation ensures each partner is cognizant of the
other partners constraints. CMU delivered software devel-
oped in simulation and based on solid theory but only ef-
fective for the limited enviroment conditions modeled in a
lightweight simulator. L-3/IS brought engineering exper-
tise to bear to ground models, integrate with hardware and
adapt high fidelity simulations. It is hoped that this ap-
proach will lead to exciting commercial applications.

8. ACKNOWLEDGEMENTS
The authors would like to thank the following research

collaborators on the project who supported system integra-
tion and flight test: Josh Anderson, Vaughn Bowman, Jon
Brown, Michael Custer, Dan Rutherford, and Ken Stroud.

9. REFERENCES
[1] R. Beard, T. Mclain, D. Nelson, and D. Kingston.

Decentralized cooperative aerial surveillance using
fixed-wing miniature uavs. IEEE Proceedings: Special Issue
on Multi-Robot Systems, to appear.

[2] L. Bertuccelli and J. How. Search for dynamic targets with
uncertain probability maps. In IEEE American Control
Conference, 2006.

[3] N. Kalra, D. Ferguson, and A. Stentz. Constrained
exploration for studies in multirobot coordination. In Proc.
IEEE International Conference on Robotics and
Automation, 2006.

[4] S. LaValle and J. Kuffner. Randomized kinodynamic
planning. International Journal of Robotics Research,
20(5):378–400, 2001.

[5] H. P. Moravec. Sensor fusion in certainty grids for mobile
robots. AI Magazine, 9(2):61–74, 1998.

[6] P. Scerri, R. Glinton, S. Owens, D. Scerri, and K. Sycara.
Geolocation of rf emitters by many uavs. In AIAA
Infotech@Aerospace 2007 Conference and Exhibit, 2007.

[7] P. Scerri, D. V. Pynadath, L. Johnson, P. Rosenbloom,
N. Schurr, M. Si, and M. Tambe. A prototype infrastructure
for distributed robot-agent-person teams. In AAMAS’03.

[8] P. Velagapudi, O. Prokopyev, K. Sycara, and P. Scerri.
Maintaining shared belief in a large multiagent team. In In
Proceedings of FUSION’07, 2007.

96

