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1. THESIS TOPIC
Sequential decision making from experience, or reinforce-

ment learning (RL), is perfectly suited to autonomous agents
that are situated in an unknown environment, and which
must use their interactions with the environment to learn be-
havior that maximizes long-term gains. In general, this set-
ting can be treated as a Markov Decision Problem (MDP),
comprising a set of states S, a set of actions A, a reward
function R : S × A × S → R, and a transition function
T : S × A× S → [0, 1]. In an MDP, the objective is to find
a policy π : S → A that maximizes the expected long-term
reward from every state s ∈ S. This can be done by deter-
mining the optimal action value function Q∗ : S × A → R,
from which the optimal policy, denoted π∗, can be derived
as: π∗(s) = argmaxa Q∗(s, a),∀s ∈ S.

Classical approaches such as temporal difference learn-
ing [6], which proceed by successively refining the action
value function based on observed experiences, provide effi-
cient solutions to MDPs with finite sets of states and ac-
tions. Yet, a predominant number of sequential decision
making problems that arise in practice have continuous (or
very large) state spaces, which force the use of function ap-
proximation. Further, in many applications, sensor noise
corrupts the state signal. As a consequence, nearly every
RL problem in practice corresponds to a Partially Observ-
able MDP (POMDP), to which most of the theoretical guar-
antees of value function-based (VF) methods fail to extend.
Coping with partial observability in a principled manner has
merited considerable attention in the literature [2], but is yet
to scale to complex tasks with continuous state spaces.

Policy Search (PS) methods [1, 7] are optimization meth-
ods that directly seek to find parameters w∗ of the opti-
mal policy π∗ by searching through the space of parameters
W . In so doing, they do not necessarily compute the value
function of the policy, and consequently, are likely to be
less sample-efficient than VF methods. At the same time,
their asymptotic performance is likely to be affected less by
function approximation and partial observability. For most

sequential decision making problems that arise in practice,
there exist no theoretical bounds for the sample efficiency or
asymptotic performance of either VF or PS methods; it is
left to empirical devices to ascertain how these contrasting
method perform.

This thesis aims to develop learning methods for practi-
cal sequential decision making tasks by integrating VF and
PS methods, with the objective of achieving both sample ef-
ficiency and superior asymptotic performance.

2. COMPLETED WORK

2.1 Empirical Analysis of VF and PS Methods
As the first step towards combining the merits of VF and

PS methods, we conduct a systematic empirical study to
examine their relative strengths and weaknesses [3]. To do
so, we devise a suite of “grid world” domains that can be
varied for four parameters: problem size s, action noise p,
expressiveness of function approximation χ, and state noise
σ. Across a broad range of parameters settings (1250 in
total), we record the performance of Sarsa, a classical VF
method, and cross entropy optimization, a PS method.

We see clear patterns in the domain characteristics for
which each class of methods excels. Our experiments il-
lustrate that VF methods enjoy superior sample complexity
and asymptotic performance when provided precise function
approximators and complete state information. However,
with inadequate function approximation and noisy state in-
formation, their performance drops significantly, and indeed
below the asymptotic performance achieved by PS methods.
With fixed values of s = 10, p = 0.3, and σ = 0, we observe
the effect of varying the function approximation paramater
χ in Figures 1(a) and 1(b). At χ = 1 (exact representation
of state space), VF indeed converges to the optimal policy,
and at a much quicker rate than PS. Yet, under a deficient
representation (χ = 0.1), VF performs very poorly when
compared to PS, which does not show such a drastic drop
in asymptotic performance. Increasing the state noise σ ad-
versely affects the asymptotic performance of both VF and
PS methods, although the decline is more gradual for PS.

We implement a simple scheme to integrate VF and PS,
which we enforce to share the same representation. In this
integrated method, VF+PS, the learned representation of
VF after a certain number of episodes of learning is trans-
ferred to PS. As visible in Figures 1(a) and 1(b), VF+PS
inherits both the superior sample efficiency of VS and the
high asymptotic performance of PS. Not only does VF+PS
achieve higher asymptotic performance than both VF and
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Figure 1: Empirical Analysis of VF and PS methods. In (a) and (b), note the break in the x axis at 10,000
episodes, beyond which a log scale is adopted. Descriptions are provided in text.
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Figure 2: Keepaway Pass and GetOpen. The graphs shows three GetOpen policies (Random (GO:R), Hand-
coded (GO:HC) and learned (GO:L)) when paired with a Pass policy that is Random (P:R (a)), Hand-coded
(P:HC (b)), or Learned (P:L (c)).

PS on a majority of our test settings, we also demonstrate its
effectiveness on the more complex Keepaway task in robot
soccer [5] (Figure 1(c)).

2.2 VF+PS for a Complex Multiagent Task
Whereas previous successful results in the Keepaway task

have limited learning to an isolated, infrequent decision that
amounts to a turn-taking behavior among players (Pass), we
expand the agents’ learning capability to include the more
ubiquitous action of moving without the ball (GetOpen) [4].
GetOpen induces a complex MDP, which is not suitable to
be learned by VF approaches, such as the one employed
by Stone et al. for learning Pass. Unlike Pass, there are
multiple players executing GetOpen at any instant of time.
We provide a PS method for learning GetOpen. As a result,
we learn a composite behavior (Pass+GetOpen) in which
multiple agents execute learned policies simultaneously.

As reported in Figure 2, the learned GetOpen policy
(GO:L) matches the best hand-coded policy for this task
(GO:HC) when paired with a hand-coded Pass policy (P:HC).
Indeed GO:L outperforms GO:HC when paired with a ran-
dom Pass policy (P:R). Importantly, we notice that Pass
and Getopen can be learned simultaneously, signifying that
a very complex multiagent task can be completely learned by
decomposing it into components that are learned separately
by VF and PS methods (Figure 2(c)).

3. PROPOSED WORK
In our empirical analysis, we identify three relevant classes

of methods to include in our study: actor-critic algorithms,
policy gradient methods, and VF methods using eligibility
traces [3]. All these methods show some degree of resistance
to deficient function approximation and partial observabil-
ity; we aim to include them in our comparison of VF and
PS methods. Intelligently determining the “transfer point”

in our VF+PS algorithm, i.e., when to stop applying VF and
switch to PS, constitutes yet another problem for proposed
research.

One of the reasons PS methods such as evolutionary algo-
rithms are not sample-efficient is because they have to negate
the stochasticity in fitness estimates of candidate solutions
by taking an average over multiple evaluations. Currently
we are currently working on a statistical technique to reduce
the number of such evaluations needed to get reliable esti-
mates. Needless to say, we seek to extend our results from
the Keepaway domain to other complex, realistic sequential
decision making tasks.
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