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My thesis will demonstrate that distributed constraint
optimization (DCOP) search algorithms can be scaled up
(= applied to larger problems) by applying the knowledge
gained from centralized search algorithms.

1. INTRODUCTION
Agent-coordination problems can be modeled as dis-

tributed constraint optimization (DCOP) problems [10, 12,
20]. A DCOP problem consists of a set of agents, each re-
sponsible for taking on (= assigning itself) a value from their
finite domains. The agents coordinate their value assign-
ments subject to a set of constraints. Two agents are said
to be constrained if they share a constraint. Each constraint
has an associated cost which depends on the values taken on
by the constrained agents. A complete solution is an assign-
ment of values to all agents. The cost of a complete solution
is the sum of the constraint costs of all constraints resulting
from the given value assignments. Solving a DCOP prob-
lem optimally means to find a complete solution such that
the sum of all constraint costs is minimized. Finding such a
cost-minimal solution is NP-hard [10].

This model is rapidly becoming popular for formulating
and solving agent-coordination problems [6, 7, 5]. As a re-
sult, DCOP algorithms that use search techniques such as
ADOPT (Asynchronous Distributed Constraint Optimiza-
tion) [10] have been developed.

2. CONTRIBUTIONS
Since solving DCOP problems is NP-hard, my research

concentrates on finding intelligent ways to scale up DCOP
search algorithms such that they can be used in larger ap-
plications. DCOP search algorithms can be viewed as dis-
tributed versions of centralized search algorithms with as-
sumptions that are specific to DCOP problems. For exam-
ple, the solution space (= space of all possible solutions) of
DCOP problems is bounded by the number of agents in the
problem. Therefore, some of the knowledge gained by re-
searchers investigating centralized search algorithms might
apply to DCOP search algorithms as well.

To avoid reinventing the wheel, my thesis will center
around scaling up DCOP search algorithms by applying
the knowledge gained from centralized search algorithms.
I made a design choice to reuse the framework of ADOPT,
which is one of the pioneering DCOP search algorithms, as
the starting platform for the work in my dissertation. The
motivation for this decision is that ADOPT has been ex-
tended very widely [9, 1, 11, 2, 14]. In particular, my con-
tributions lie along two axes: (1) Memory availability of
agents and (2) Requirement of solution optimality.

For problems where the agents have a minimal amount
of memory and the cost-minimal solution is required, I in-
troduced a new DCOP search algorithm called Branch-
and-Bound ADOPT (BnB-ADOPT) in [16], that speeds
up ADOPT by one order of magnitude for sufficiently
large DCOP problems. BnB-ADOPT is a memory-bounded
asynchronous DCOP search algorithm that uses the mes-
sage passing and communication framework of ADOPT but
changes the search strategy of ADOPT from best-first search
to depth-first branch-and-bound search. Experimental re-
sults show that BnB-ADOPT is faster than ADOPT for suf-
ficiently large DCOP problems because the available heuris-
tics for these problems are often uninformed. The key con-
tribution of this work is the identification and verification
of depth-first branch-and-bound search instead of best-first
search as the preferred search strategy for DCOP problems,
which is consistent with findings for centralized search algo-
rithms [19].

For problems where the agents have more than the mini-
mal amount of memory, I introduced new caching schemes
called MaxPriority, MaxEffort and MaxUtility in [18], that
are tailored to DCOP search algorithms including ADOPT
and BnB-ADOPT, and thus speed up both algorithms fur-
ther. These caching schemes make use of the lower and
upper bounds maintained by agents in ADOPT and BnB-
ADOPT, as well as the knowledge of which search strategy
is employed by ADOPT and BnB-ADOPT. Our experimen-
tal results show that the MaxEffort and MaxUtility schemes
perform better than the other schemes for ADOPT, and the
MaxPriority scheme is generally no worse than the other
schemes for BnB-ADOPT. The speedup from caching for
ADOPT is significantly larger than that for BnB-ADOPT
since ADOPT needs to re-acquire information that was
purged due to memory limitations. The key contribution of
this work is the investigation of the different caching schemes
and the identification of preferred schemes for the different
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algorithms. In general, these schemes should apply to other
DCOP search algorithms as well since they also maintain
lower and upper bounds on the solution quality.

For problems where the cost-minimal solution is not re-
quired, I introduced two approximation mechanisms for
ADOPT and BnB-ADOPT that trade off solution qual-
ity for faster computation time in [17]. The approxima-
tion mechanisms, namely the Relative Error Mechanism and
the Weighted Heuristics Mechanism, provide relative error
bounds (i.e. a percentage off the minimal cost). These
mechanisms complement existing mechanisms that only al-
low absolute error bounds (i.e. an absolute off the mini-
mal cost). Additionally, experimental results show that the
Weighted Heuristics Mechanism dominates the other mecha-
nism. The key contribution of this work is the introduction
of the Weighted Heuristics Mechanism, which should also
apply to other DCOP search algorithms that use heuristics
to guide their search. This mechanism was motivated by
Weighted A* [13], an approximation algorithm based on the
centralized search algorithm A* [3].

I conducted my experiments in three problem types that
are commonly used to evaluate DCOP algorithms. The
three problem types are the problem of coloring graphs, the
problem of allocating targets to sensor networks and the
problem of scheduling meetings. I measured the runtime of
the algorithms using two commonly used metrics, namely
time slices called cycles [10] and non-concurrent constraint
checks [8].

3. FUTUREWORK
So far, my contributions only apply to static problems

(i.e. problems that do not change over time). To complete
my thesis, I plan to extend my work to dynamic problems
by developing new DCOP search algorithms that operate
efficiently in these environments. Specifically, I have two
objectives in mind: (1) algorithms that find cost-minimal
solutions of dynamic DCOP problems; and (2) algorithms
that find error-bounded solutions of DCOP problems that
are most similar to the solutions of the problems before they
changed (due to changes in the environment). I plan to
measure the similarity of two solutions by the number of
agents that take on the same value in both solutions.

To achieve the first objective, I plan to develop DCOP
search algorithms that perform a new search every time the
DCOP problem changes but reuse information from the pre-
vious searches. Therefore, these algorithms should be faster
than those that run each search from scratch. This plan is
motivated by incremental centralized search algorithms [15].

To achieve the second objective, I plan to develop a
DCOP search algorithm that employs limited discrepancy
search [4]. Limited discrepancy search searches for solu-
tions in the order of increasing numbers of discrepancies,
i.e. numbers of agents that take on values different from
their previous values, and is thus ideally suited for finding
the most similar error-bounded solution.
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