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ABSTRACT

In several realistic domains an agent’s behavior is composed
of multiple interdependent skills. For example, consider a
humanoid robot that must play soccer, as is the focus of
this paper. In order to succeed, it is clear that the robot
needs to walk quickly, turn sharply, and kick the ball far.
However, these individual skills are ineffective if the robot
falls down when switching from walking to turning, or if it
cannot position itself behind the ball for a kick.

This paper presents a learning architecture for a humanoid
robot soccer agent that has been fully deployed and tested
within the RoboCup 3D simulation environment. First, we
demonstrate that individual skills such as walking and turn-
ing can be parameterized and optimized to match the best
performance statistics reported in the literature. These re-
sults are achieved through effective use of the CMA-ES op-
timization algorithm. Next, we describe a framework for
optimizing skills in conjunction with one another, a little-
understood problem with substantial practical significance.
Over several phases of learning, a total of roughly 100–150
parameters are optimized. Detailed experiments show that
an agent thus optimized performs comparably with the top
teams from the RoboCup 2010 competitions, while taking
relatively few man-hours for development.

Categories and Subject Descriptors

I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning
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1. INTRODUCTION
As agents gain complexity and autonomy, automatic learn-

ing and optimization methods become attractive, as (a) they
can improve and refine human intuition, especially in com-
plex, dynamic environments, and (b) they demand signifi-
cantly less labor to adapt to changes in the agent and en-
vironment. As most complex systems naturally decompose
into smaller sub-units, for learning within such systems, it
becomes convenient, even beneficial, to explicitly recognize
their decomposition. In this paper we investigate the learn-
ing of agent behavior that can be decomposed into a se-
quence of atomic skills. Specifically we focus on optimizing
multiple skills within each agent, and present a learning ar-
chitecture for a humanoid robot soccer agent, which is fully
deployed and tested within the RoboCup [3] 3D simulation
environment, as a part of our team, UTAustinVilla.

In general, factors such as nonstationarity make it hard
to provide strong theoretical guarantees when learning mul-
tiple behaviors. Therefore it becomes relevant to investigate
such learning through empirical means. Our case study is
performed within a complex domain, with realistic physics,
state noise, multi-dimensional actions, and real-time con-
trol. In our test domain, teams of six autonomous humanoid
robots play soccer in a physically realistic environment. Al-
though each robot is ultimately controlled through low-level
commands to its joint motors, we devise primitives for skills
such as walking, turning, and kicking. In turn, such skills
are strung together for implementing higher-level behaviors
such as GoToTarget() and DriveBallToGoal(). It is quite clear
that a behavior such as DriveBallToGoal() will be more suc-
cessful if the robot can walk fast, turn quickly and sharply,
and kick the ball with speed and accuracy. On the other
hand, a very fast walk might tend to lead to a fall when
transitioning into a turn; kicks lose their potency if the robot
cannot accurately position behind the ball through precise
side-walking and turning. The key idea in this paper is that
skills can be optimized while respecting the tight coupling
induced over them by high-level behaviors.

Robot soccer has served as an excellent platform for test-
ing learning scenarios in which multiple skills, decisions, and
controls have to be learned by a single agent, and agents
themselves have to cooperate or compete. Although there is
a rich literature based on this domain, most reported work
primarily addresses (a) low-level concerns such as perception
and motor control [5, 17], or (b) high-level decision-making
problems [11, 19]. Thus the first contribution of our paper is
a general methodology for optimizing the intermediate stra-
tum of skills in an agent’s control architecture. The volume
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of the space thus optimized (hundreds of parameters) indeed
marks a qualitative shift from a predominantly hand-coded
approach for agent development to one significantly based
on learning.

A second contribution of our paper is the light it sheds
on designing objective functions (“fitness” functions) for op-
timization. On the one hand, “raw” statistics such as the
precision and speed of soccer skills do not yield skills that
operate well in unison. On the other hand, true objectives
such as goal difference and win-loss record are too noisy to
use effectively as a signal for learning. We demonstrate that
carefully designed intermediate objectives, which require op-
timizing sequences of skills, can promote learning to achieve
high-quality performance. An example of such an objective
is the minimization of the time to score a goal on an empty
field.

Finally, as an empirical contribution, we conduct detailed
and extensive experiments related to our investigation. In
particular, we compare several existing optimization meth-
ods, and find CMA-ES [8], a relatively recent addition to
the literature, to be the most robust and effective. We also
show evidence that conjunctive skill optimization can yield
a very competitive soccer agent. The agent we develop here,
which is based on, and motivated by the UTAustinVilla
2010 RoboCup agent, ranks among the top 8 teams from
the RoboCup 2010 competitions.

The remainder of this paper is organized as follows. In
Section 2 we describe the 3D simulation environment for
humanoid robot soccer, along with the architecture of our
agent. Section 3 describes how individual skills are param-
eterized and set up for optimization through several can-
didate methods. Section 4 then presents our methodology
for optimizing these skills in sequence. Comprehensive ex-
perimental results are presented both in Section 3 and in
Section 4. We conclude the paper with a summary and dis-
cussion in Section 5.

2. DOMAIN DESCRIPTION
The RoboCup 3D simulation environment is based on

SimSpark[4], a generic physical multiagent system simula-
tor. SimSpark uses the Open Dynamics Engine[2] (ODE) li-
brary for its realistic simulation of rigid body dynamics with
collision detection and friction. ODE also provides support
for the modeling of advanced motorized hinge joints used in
the humanoid agents.

The robot agents in the simulation are homogeneous and
are modeled after the Aldebaran Nao robot [1], which has
a height of about 57 cm, and a mass of 4.5 kg. The agents
interact with the simulator by sending actuation commands
and receiving perceptual information. Each robot has 22
degrees of freedom: six in each leg, four in each arm, and
two in the neck. In order to monitor and control its hinge
joints, an agent is equipped with joint perceptors and ef-
fectors. Joint perceptors provide the agent with noise-free
angular measurements every simulation cycle (20ms), while
joint effectors allow the agent to specify the direction and
speed (torque) in which to move a joint. Although there is no
intentional noise in actuation, there is slight actuation noise
that results from approximations in the physics engine and
the need to constrain computations to be performed in real-
time. Visual information about the environment is given to
an agent every third simulation cycle (60ms) through noisy
measurements of the distance and angle to objects within

a restricted vision cone (120◦). Agents are also outfitted
with noisy accelerometer and gyroscope perceptors, as well
as force resistance perceptors on both feet. Additionally
agents can communicate with each other every other simu-
lation cycle (40ms) by sending messages limited to 20 bytes.
Figure 1 shows a visualization of the Nao robot and the soc-
cer field during a game.

Agent Skills

At the lowest level of control, each robot is operated by
specifying torques to its joints. As a more convenient ab-
straction, we implement PID controllers for each joint, which
take as input a desired target angle and compute the appro-
priate torque for achieving it. In turn, skills use the PID
controllers as primitives. The set of skills needed to develop
a successful agent, and the focus of this paper, include walk-
ing (forwards, backwards, and sideways), turning, kicking,
standing, goalie-diving and getting up after falling. Further,
it is useful to explicitly breakdown skills such as walking for-
wards into several different speeds. Whereas we are able to
manually program fairly successful goalie-diving and getting
up skills, effective locomotion and kicking skills are harder
to develop manually: in contrast to getting up and goalie-
diving, successful locomotion and kicking require a combina-
tion of dynamic balancing, precision and high speed. Loco-
motion skills further need to be able to transition well to and
from other skills. Thus, for these skills we devise templates
with parameters, which are subsequently optimized.

Bipedal locomotion has long been an active area of re-
search. Pratt’s thesis [16] provides an excellent overview of
the field; Katić and Vukobratović [12] specifically survey in-
telligent control techniques used therein. A majority of the
literature on bipedal locomotion focuses on model-based ap-
proaches. For instance, a humanoid robot is commonly mod-
eled as an inverted pendulum [9], whose dynamics can be
analyzed and used to plan trajectories. Recent approaches
have also considered learning more complicated models, such
as Poincaré maps [15]. Analytical modeling has indeed re-
sulted in classical techniques — such as monitoring the“Zero
Moment Point” of the robot [21] — which can resist noise in
sensing, planning, and actuation, and small irregularities on
the walking surface [14]. Even without explicit modeling of
the dynamics, deviations from the intended trajectory can
be constantly corrected through “closed-loop” control [7].

“Open-loop” approaches that do not rely on corrective
feedback are typically simpler to implement and tend to

Figure 1: A screenshot of the Nao humanoid robot
(left), and a view of the soccer field during a 6 versus
6 game (right).
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yield faster walks, even if they are less robust to distur-
bances. However, in our simulation there is only minor
noise in sensing or actuating joint angles (note that vision
percepts are still noisy), and the soccer field is perfectly
flat. Consequently we find it effective to develop open-
loop skills for our agent. It must be noted that although
the absence of significant actuation noise simplifies skill-
development in our 3D simulation environment, in compen-
sation the domain necessitates the development of an entire
suite of soccer-related skills: multi-directional walks, turns,
and kicks. Thus simulation enables us to investigate a con-
cept that is relatively unexplored in the mainstream bipedal
control literature. Even the few learning approaches within
the 3D simulation environment have mainly been in the con-
text of straight walking [18].

Each of our open-loop skills is implemented as a periodic
state machine with multiple key frames, where a key frame is
a static pose of fixed joint positions. To provide us flexibility
in designing and parameterizing skills, we design an intuitive
skill description language that facilitates the specification of
key frames and the waiting times between them. Below is an
illustrative example describing the WalkFront skill (further
explained in Section 3).

SKILL WALK_FRONT

KEYFRAME 1
reset ARM_LEFT ARM_RIGHT LEG_LEFT LEG_RIGHT end
setTarget JOINT1 $jointvalue1 JOINT2 $jointvalue2 ...
setTarget JOINT3 4.3 JOINT4 52.5
wait 0.08

KEYFRAME 2
increaseTarget JOINT1 -2 JOINT2 7 ...
setTarget JOINT3 $jointvalue3 JOINT4 (2 * $jointvalue3)
wait 0.08
.
.
.

As seen above, joint angle values can either be numbers
or be parameterized as $<varname>, where <varname> is a
variable value that can be loaded after being learned. Note
that due to left-right symmetry, some of these parameters
influence multiple key frames.

Before proceeding to details about our skill optimization,
it is relevant to observe that alternative parameterizations
of skills could also be conceived. For example, rather than
direct control of joints, foot trajectories could be parame-
terized and tracked using inverse kinematics [13]. We plan
to explore such variations in future work.

3. OPTIMIZING INDIVIDUAL SKILLS
In this section we describe our optimization of the for-

ward walking skill, which essentially illustrates the basic
procedure adopted for optimizing any of our skills. As a
starting point for subsequent optimization, we achieve a rel-
atively stable front walk by programming the robot to raise
its left and right feet alternately to a certain height above the
ground, swinging them slightly forward, and then retracting
them to their initial configurations. Such a hand-coding ex-
ercise for our various skills results in slow but stable skills,
which are not very competitive themselves, but which serve
as useful seeds for further optimization. Our walk consists of
four key frames through which the agent periodically loops.

General intuition for a straight and stable walk suggests that
the legs should move in a symmetric and periodic manner.
For this reason the joint positions of our first two frames
are the same as our next two, except that the positions of
the left and right legs are appropriately mirrored. Based on
informal experimentation we decide to optimize three joint
positions in each leg for each key frame, as they appear to
be the most meaningful for a forward walk. These joints
are the hip moving the leg forward and backwards, knee,
and ankle moving the foot up and down. This provides a
12-dimensional parameter space to optimize, as we have 6
joint positions for each frame (3 for each leg), across two
frames (as frames 3 and 4 are just mirrored values of frames
1 and 2). See Figure 2 for screenshots with the joints we are
optimizing circled. We set the time to transition between
key frames to be 80ms. This time was also determined by
informal experimentation and gives the agent a walk cycle
duration of 320ms (4 × 80ms).

In order to evaluate the performance of a forward walk, we
measure the distance in the forward direction the agent can
travel in 15 seconds. Our performance metric of displace-
ment in the forward direction not only rewards speed, but
it also encourages straight walks (as the shortest distance to
walk is a straight line) and penalizes for lack of robustness
(if the agent falls over it takes several seconds for it to stand
up again). These measurements are taken in an automated
fashion. Our setup on a distributed computing cluster allows
us to run massive amounts of simulations in parallel, which
is necessary in order for our learning algorithms to complete
in a reasonable amount of time. In our experiments we used
Condor [20] as a convenient tool for batch job processing on
a cluster.

We compare the performance of four machine learning al-
gorithms while trying to optimize the parameter values for
our different skills. The algorithms we test are hill climbing
(HC), cross-entropy method (CEM) [6], genetic algorithm
(GA), and covariance matrix adaptation evolution strategy
(CMA-ES) [8]. These algorithms are evolutionary (or “pol-
icy search”) in nature and thus involve learning values incre-
mentally across multiple generations of a fixed population
size, where the individuals of a population consist of sets of
parameter weights. As a baseline performance measure we
also sample parameter values using random weight guessing
(RWG). Due to noise in the simulator there can be consider-
able variance in the performance of a skill from one instance
to the next using the same set of parameter weights. In
order to account for this variability in performance we con-
duct multiple runs of the same parameter sets and take the
average of these values when evaluating their performance.

Among these algorithms we try different configurations for
the number of generations, population size, and the number

Figure 2: Nao robot walk frames with the joints we
are optimizing circled.
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of samples we average across to determine the performance
of a set of parameter values. In order to make as fair a
comparison as possible among the algorithms we allocate
each of them the same “sample size” (the total number of
fitness evaluations taken for different sets of parameter val-
ues). For the machine learning algorithms the sample size
is equal to the product of the number of generations, the
population size, and the number of measurements we aver-
age over in determining a parameter set’s performance. For
random weight guessing the sample size is equal to the num-
ber of guesses performed multiplied by the number of mea-
surements used to compute average performance for each
parameter set. For the experiments we shortly report, we
fix this total sample size at 15,000 samples.

After testing the algorithms over many configurations we
find CMA-ES to be the most successful for learning skills in
our setup. Our results, shown in Figure 3(a), are averages
over at least five runs of each algorithm using the configu-
ration with which each performed the best. The distance
values reported are the average measurement for ten runs
of the best parameter set learned by each algorithm taken
after the algorithm is finished running. The post-learning
reevaluation of a parameter set’s performance is necessary
because of the noise in the simulator, and resulting poten-
tial bias toward configurations with less averaging samples
to report an inflated performance value influenced by just a
few lucky high outlier measurements. We find that GA and
CEM do the best with 30 generations and a population size
of 100 averaged across 5 samples, while HC and CMA-ES
perform better with 50 generations and a population size
of 30 averaged across 10 samples. Random weight guess-
ing performs best when guesses are evaluated by averaging
across 5 fitness trials.

Apart from good performance, another advantage we find
with using CMA-ES is its low configuration overhead. All
that is needed to be specified for CMA-ES are initial mean
and standard deviations for each parameter. The mean val-
ues are just our seed values and we find that CMA-ES per-
forms well over a reasonably large range of standard devi-
ation values. The other algorithms’ performances are more
dependent on their algorithm-specific parameter settings.
For HC we get the best values when using an initial step
size of 10◦ and a linear step size decay. For GA we find that
bounding the search space at a maximum of 30◦ from the
seed joint angles gives us the best performance. CEM, like
CMA-ES, also requires a standard deviation for each param-
eter. However, CEM’s performance seems to be more depen-
dent on the values chosen to initialize these standard devi-
ations. In contrast, CMA-ES is less affected by these initial
values due to the way it maintains and adjusts them across
generations using covariance analysis. We determine 30◦

to be a good standard deviation for CEM. We also achieve
our best performance using a standard deviation of 30◦ for
random weight guessing which selects values from Gaussian
distributions centered around our initial seed for each pa-
rameter.

As CMA-ES is found to perform significantly better than
the other algorithms, we describe here in more detail the
experiments conducted with it. Each experiment includes
15,000 sampling runs, in which we vary the learning con-
figuration values of population-size, number of generations,
and number of averaging runs that are executed for each
parameter set generated by the algorithm. This means that

for each configuration, the population-size times the number
of generations times the number of averaging runs is fixed at
15,000. As the sample size is always fixed, when defining a
configuration we face a trade-off: averaging over more runs
gives a more confident fitness value for each parameter set,
but decreases the number of generations and/or the popu-
lation size we can use. Averaging over 1, 2, 5, and 10 runs,
we try 14 different configurations, presented in Figure 3(b).
The configuration that presents the best balance between its
three factors, uses 50 generations, a population size of 30,
and 10 averaging runs for each candidate parameter set. Its
fitness value is 12.16 m/15sec (0.81m/s), with a standard
error of 0.38m/s. A learning curve corresponding to this
configuration is presented in Figure 3(c).

The highest speeds we are able to achieve when learn-
ing a front walk require a configuration with roughly three
times the number of samples used in the experiments above
(45,000). On our Condor-based system, such a run takes 5-7
hours. Table 1 shows the best results we achieve when opti-
mizing each of our main skills. To the best of our knowledge
these results are among the fastest that have been achieved
in our domain. Unfortunately, there are not many references
in the literature that describes other teams’ walk speeds; and
the only report we are aware of is that of Shafii et al. [18].
In comparing our learned skills with other teams’ using the
released agent binaries from RoboCup 2010, we observe a
clear advantage of the performance statistics we report here
over those of other teams’ skills. As expected, our perfor-
mance statistics also better those achieved in hardware on
Nao robots [10] due to the simplified modeling of our simu-
lator.

4. OPTIMIZING SEQUENCES OF SKILLS
Whereas the results from Table 1 signify that our param-

eterized skills can effectively be optimized using CMA-ES,
the job of deploying these skills to play soccer remains unfin-
ished. Fast locomotion skills, however stable they are when
executed individually, result in frequent falls of the robot
if integrated directly. To see why, consider a typical log of
the skills invoked (every 320ms, as described in the previous
section) by the agent during soccer play:

. . . WalkFront, WalkFront, Turn(R), Turn(R), Turn(R),
WalkFront, WalkFront, WalkFront, Turn(L), Turn(L),
WalkBack, WalkBack, . . . .

The trace shows that skills are highly interleaved, with
frequent transitions between them. In game scenarios, the
same skill is seldom executed for more than a few consecu-
tive cycles. Therefore, optimizing skills in isolation does not

Table 1: Performance statistics for various skills op-
timized using CMA-ES. In this table and all sub-
sequent ones, entries within parentheses correspond
to one standard error.

Skill Statistic Performance

WalkFront Speed 1.07(.00)m/s
WalkBack Speed 1.03(.00)m/s
WalkSide Speed .62(.01)m/s
Turn Angular speed 112.03(.24) ◦/s
Kick Ball displacement 5.09(.07)m
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Figure 3: Experimental results from optimizing WalkFront. Plots show the fitness values — the distance
traveled in 15 seconds — achieved by various learning algorithms and algorithm-specific parameter settings.
In all algorithms the sample size is fixed to 15,000 simulation runs. For evolutionary algorithms this means
that #generations × #avg × population-size = 15,000. Plot (a) shows the best performance achieved by
various methods. Plot (b) shows the performance achieved by CMA-ES under various settings of #generations
and #avg, while (c) shows the progress of learning under the best CMA-ES configuration with training time.
Error bars in all plots correspond to one standard error.

necessarily benefit their combined operation.
In order to optimize sequences of skills to work together,

carefully designed constraints are necessary. We begin by re-
vising the evaluation criterion used by the learning process.
Ideally, when learning a skill, it would be best to evaluate it
with respect to our ultimate goal: the team’s win-loss record
or mean goal difference against a set of opponents. However,
as these are extremely noisy measures, the number of runs
needed in order to obtain reliable performance estimates be-
comes impractical. A much less noisy measure, which still
aligns well with the team’s objective, is the time taken by
a single agent to score a goal on an empty field. We denote
this behavior DriveBallToGoal(), and the associated evalua-
tion metric time-to-score. Pseudo-code for DriveBallToGoal()
is as follows:

function DriveBallToGoal()
if robotDistanceFromBall > threshold_0
getRoughlyBehindBall()

else
chooseKickDirectionAndType()
computeThresholdsForPositioning()
# Position to kick / dribble:
if distanceToPosition > threshold_1

walkFront()
elseif robotOffsetFromKickDirection > threshold_2

turn()
elseif lateralLegAlignementWithBall > threshold_3

sideWalk()
else

kickOrDribble()

We use this behavior for our evaluations, as it achieves
a good balance between eliminating noisy effects such as
the actions of other players, while still requiring the agent
to combine its basic skills in a complex, realistic manner.
Later in this section, we show empirical results validating
the choice of time-to-score as an evaluation metric while op-

timizing skills.
Several skills are used during a learning evaluation through

DriveBallToGoal(). However, it would be inefficient to try
and learn all of them at once, due to the high dimension-
ality of the search space (roughly 100 – 150 parameters).
Instead we use a more efficient approach, which learns one
skill (roughly 12 parameters) at a time, while keeping others
fixed. This process results in a sequence of incremental im-
provements in the agent, with the crucial invariant property
that at any time all the skills work well together. In par-
ticular the optimization process improves the agent’s speed
while keeping it stable, as falls typically result in poor time-
to-score values. In turn, the amount each individual skill
can be optimized is limited by the need to cooperate with
other skills.

Apart from goalie dives and getting up skills, all the skills
used by our final agent are optimized. Yet, for the pur-
poses of this paper, we present an isolated study of our op-
timization procedure involving only forward and backward
walks, namely WalkFront and WalkBack, respectively. We
start with a base agent that uses basic, hand-coded versions
of these skills. Let us call this agent A0. Under A0 these
skills are not very fast, but they ensure relative stability dur-
ing locomotion and skill transitions. The idea is to use A0 as
a seed for successive optimizations. Figure 4(a) presents a
skill transition diagram, which shows the main skills of agent
A0 along with the legal transitions between them (marked
by arrows). Notice that the agent can only invoke Kick if it
is already standing; nor can it transition into a skill other
than Stand after executing Kick. In Figure 4(a) the walking
skills of A0 are suffixed “ S” to denote that they are “slow”.

We improve upon A0 in five incremental steps, each step
creating a new agent based on the agent that resulted from
the previous step. We denote the resulting agents A1, A2,
A3, A4, and A5. The first improvement, A1, is created from
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Figure 4: Constraints on transitions between skills represented as state diagrams. For Agent A0 neither the
WalkFront S nor the WalkBack S skills is optimized; the former is optimized (shown with thick border) under
A1. Further skills are added and optimized subsequently under agents A2, A3, and A4. Agent A5 is identical
to A4, except for retuning thresholds and the logic for selecting and invoking our new learned skills.

A0 by optimizing “WalkFront S” using CMA-ES, under the
time-to-score measure. Consider that while WalkFront S is
being optimized under this measure, we are searching for a
set of parameters that both improve speed and maintain sta-
bility. The need to maintain stability while cooperating with
all other skills puts multiple constraints on WalkFront S and
therefore limits how fast WalkFront S can get. We address
this problem in A2, by “decoupling” from WalkFront S an
additional skill called WalkFront F (“F”denoting“fast”). As
seen in Figure 4(c), we constrain the behavior of agent A2
such that WalkFront F can only be invoked following Walk-
Front S, and to transition to any other skills, it must first
transition into WalkFront S. The skills WalkFront S and
WalkFront F have exactly the same template, and initially
the same parameter values. However, optimizing the pa-
rameters of WalkFront F after first optimizing WalkFront S
(under A1) allows the agent to achieve greater speed while
retaining its stability. These properties result from the fact
that WalkFront F is unconstrained by most of the skills that
constrain WalkFront S.

Results in Section 4 demonstrate tangible gains consistent
with our progressive refinements from A0 to A1 to A2. In-
deed the trend is carried forward to agents A3 (Figure 4(d))
and A4 (Figure 4(e)), which are obtained based on a similar
decoupling procedure applied to the WalkBack skill. Re-
call that agents A1 through A4 are all obtained solely by
optimization of one skill at a time, starting from the seed
agent A0. To obtain our final agent, A5, we take A4 and
manually retune thresholds and the logic for selecting and
invoking our new learned skills in order to utilize them to
their full potential. For example, a change in skill speeds can
change the robot’s stopping distance, which in turn affects
the threshold for the decision of whether to continue Walk-
Front, as can be seen in the DriveBallToGoal() pseudo-code.
While the tuning is done here manually, it could potentially
be automated and learned. However, in this paper we focus
on skill learning, and leave the learned tuning as possible
future work.1

Note that agents A0 through A5 all use the same skills,
apart from WalkFront and WalkBack. The turns and side
walks used were also optimized in the manner described
above and were already integrated into our agent A0. It

1Videos showing optimized skills and behav-
ior are provided at the following URL: http:
//www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/
AustinVilla3DSimulationFiles/2010/html/
skilloptimization2010.html.

is worth mentioning, however, that time-to-score does not
serve as an ideal fitness measure while optimizing kicks, as
the kick skill is used only a small fraction of time, and most
of the time is spent on locomotion and positioning behind
the ball. Since Kick is only executed after an intermediate
Stand skill, we optimize kicks by starting the robot behind
the ball, using the distance covered by the ball in the kick
direction as an informative evaluation measure.

Experimental Evaluation

We have just described how we used two main ideas for
learning and optimizing skills: the idea of optimizing a skill
under the constraints of cooperating with other skills, and
the idea of skill decoupling. The remainder of this section
shows that our skill optimization process achieved tangible
gains, that were reflected directly in the agent’s performance
with respect to its ultimate objective: its win-loss record or
goal difference against a set of opponents.

We ran three sets of experiments, in which we measured
our agent both with respect to the time-to-score measure
and with respect to its actual game performance, and com-
pared the results with released binaries from RoboCup 2010.
In the first set of experiments we measured the progress
achieved by each step of our optimization process, which
started from the seed agent A0, continued by creating the
agents A1-A4 by optimizing one skill at a time, and finally
tuned A4 to be the final agent A5. Table 2 shows the re-
sults of playing agents A0-A5 against each other in full 6
vs. 6 games. In this setup, each of the players in a team
is played as the same agent, namely one of A0, A1,..., A5.
Each cell in the table shows the mean goal difference along
with the standard error, averaged over 100 full games. It
can be seen that every agent outperforms its predecessors.
This result demonstrates how our skill-optimization process
indeed achieved better game performance.

Table 2: Game results between agents A0 through
A5. Entries show the goal difference (row − column)
from 10 minute games.

A0 A1 A2 A3 A4
A5 2.11(.10) .77(.10) .70(.10) .58(.09) .48(.08)
A4 1.66(.10) .46(.08) .15(.07) .03(.07)
A3 1.67(.10) .28(.08) .01(.08)
A2 1.33(.10) .20(.07)
A1 1.23(.10)
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In the second set of experiments we compared the time-to-
score performance of our initial agent A0, our final agent A5,
and the set of all released agent binaries from RoboCup 2010
we were able to run on our computers. In each experiment,
we placed the ball in the middle of the field, which is 9m
from the goal, and then placed the agent 1 meter behind the
ball. We then measured the time it takes the agent to score
a goal. Table 3 shows the mean time it takes the agents to
score from this position, averaged over 500 runs, along with
the standard error. Our agent A5 is ranked second with a
mean time of 34.49 seconds, whereas the top agent’s mean
time to score is 31.08 seconds. Note that A0 is ranked in
the middle of the table with a time of 63.52. Agents A1–A4,
which are not shown in the table achieved times that rank
them between A0 and A5.

In our third set of experiments, we tested our agents A0
and A5 in playing full 6 vs. 6 games against the released
RoboCup 2010 agent binaries. The results are shown in
Table 4. The leftmost column shows the row agent’s rank
in RoboCup 2010. The rightmost columns show the re-
sults achieved by agents A0 and A5, when playing against
RoboCup binaries. Each cell shows the mean goal difference
between a column agent and a row agent, averaged over 100
full games, along with the standard error. Note that nega-
tive values (in bold) mean a positive goal difference for our
agent, therefore the bolded part of the table is where our
agent performed better than the row agent.

Two interesting facts can be observed in Table 4. The first
one is the correlation between the actual game performance
and the time-to-score measure (Table 3). An agent, whether
our agent or another team’s agent, with good game perfor-
mance usually had good time-to-score performance. Recall
that while optimizing our agent’s skills, we used the time-
to-score measure along with the DriveBallToGoal() behavior
as a less-noisy alternative for measuring real game perfor-
mance. Here we confirmed that while doing so, much of
the complexities of real game scenarios that are relevant to
skills execution were still retained. Therefore the time-to-

Table 3: Time to score on an empty field, starting
the center of the field. Each row corresponds to A0,
A5, or an agent from the RoboCup 2010 competi-
tion. Averages are over 500 runs.

Agent Time-To-Score/s

Apollo3d 31.08 (1.46)
A5 34.49 (0.89)

RoboCanes 36.18 (1.40)
NaoTH 36.75 (1.63)

UTAustinVilla 37.20 (0.89)
FCPortugal 47.54 (1.94)
SEURedSun 52.11 (2.49)

A0 63.52 (1.05)
Little Green Bats 71.02 (1.96)

FutK 77.89 (4.19)
BeeStanbul 98.56 (3.63)
Nexus3D 152.76 (5.15)
RoboPub 291.86 (1.17)
NomoFC 295.48 (1.32)
Bahia3D 300.01 (0.00)
Alzahra 300.01 (0.00)

Table 4: Full game results, averaged over 100
games. Each row corresponds to an agent from the
RoboCup 2010 competitions, with its rank therein
achieved. The two rightmost columns correspond
to our base agent A0 and final agent A5, respec-
tively. Entries show the goal difference (column −
row) from 10 minute games. Goal differences in fa-
vor of A0 and A5 are shown in bold.

Rank Team A0 A5

1 Apollo3d -4.29 (.17) -1.88 (.13)
2 NaoTH -3.79 (0.14) -1.85 (0.10)
4 BoldHearts -3.15 (0.13) -0.08 (0.11)

5-8 SEURedSun -1.93 (0.13) -1.16 (0.1)
5-8 RoboCanes -1.81 (0.12) -0.38 (0.09)
5-8 FCPortugal -1.57 (0.11) 0.43 (0.09)
9-16 UTAustinVilla -1.54 (0.09) 0.9 (0.09)
9-16 FutK -0.23 (0.06) 2.14 (0.1)
9-16 BeeStanbul 0.76 (0.07) 4.08 (0.11)
9-16 Nexus3D 1.67 (0.06) 4.08 (0.09)
9-16 Little Green Bats 1.84 (0.08) 5.0 (0.11)
9-16 NomoFC 3.62 (0.09) 7.07 (0.09)
17-20 Bahia3D 3.59 (0.08) 7.49 (0.1)
17-20 RoboPub 5.25 (0.08) 7.92 (0.1)
17-20 Alzahra 6.39 (0.08) 10.59 (0.09)

score measure is both effective, as it correlates with game
performance, and efficient, due to the reduced noise. How-
ever, note that the correlation is not expected to be perfect:
in real games there are factors like decision-making strate-
gies, formations, defensive tactics and more, that affect the
game performance, but do not reflect in the DriveBallTo-
Goal() behavior. The second interesting fact is that our final
agent, A5, was ranked in the table among the top 8 teams of
RoboCup 2010. As this ranking was achieved mainly using
our skill optimization process, with some additional tuning,
this demonstrates the effectiveness of our suggested method
of optimizing skills under constraints.

5. SUMMARY AND DISCUSSION
In several practical tasks an agent’s behavior is composed

of qualitatively distinct components. Can this natural de-
composition be used as a means to scale learning to com-
plex tasks? In this paper we presented a successful case
study of doing so in the context of humanoid robot soccer.
In particular we focused on the intermediate “skills” layer
of a soccer agent’s architecture. Together, the skills of a
soccer agent constitute a rich and complex aspect of behav-
ior, which it would be impractical to optimize as a single
monolithic block. We carefully engineered skills and rules
for transitions, and showed that optimizing components in
an incremental manner could significantly improve perfor-
mance. Each skill has 10–20 parameters; overall the number
of parameters optimized is around 100–150.

We believe our case study is a compelling example for
the methodology of decomposing a large learning problem
into components and devising informative objective func-
tions. Several practical systems resemble a soccer agent’s
control hierarchy, and often are indeed evaluated ultimately
through success (win) and failure (loss). This paper also
leads to recommendations for an optimization framework
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and experimental support for the CMA-ES algorithm, which
can serve as a useful starting point for related undertakings.

The RoboCup 3D simulation environment engenders the
novel research question of developing a suite of interacting
humanoid robotic skills, a relatively unexplored question in
the literature, which this paper addresses. Our demonstra-
tion specifically finds appeal for developing humanoid robot
soccer teams by investing significantly in learning and op-
timization. The architecture we presented here was a main
building block in developing our team, UTAustinVilla, and
the agents we presented here were motivated by, and based
on, our UTAustinVilla 2010 RoboCup agent. Our detailed
experimental results provide conclusive evidence for the im-
provements achieved with each incremental optimization,
and the final agent we develop (agent A5) ranks among
the top eight teams from the RoboCup 2010 competitions.
The human labor involved in developing our agent is rela-
tively low compared to the CPU time spent optimizing skills,
which is on the order of 100,000 hours.

In future work we intend to further extend the scope of
learning within our agent by replacing currently hand-coded
components (such as fine positioning and getting up). For
our basic locomotion skills, it is also relevant to consider al-
ternative parameterizations that involve closed-loop control
and inverse kinematics. Such approaches are likely to even-
tually extend the reach of our learning paradigm to hardware
platforms by using simulators that model physical robots
more precisely. Additionally we can seek to further refine
our coupled set of learned skills by using them as a seed
for our optimization framework. By continuing to optimize
the coupled skills in an alternating and iterative manner,
where they are learned in the context of previously opti-
mized skills, it is likely that further improvements to them
can be realized.
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