
Scenarios for System Requirements Traceability and
Testing

John Thangarajah
RMIT University

Melbourne, Australia
johnt@rmit.edu.au

Gaya Jayatilleke
RMIT University

Melbourne, Australia
gaya.jayatilleke@rmit.edu.au

Lin Padgham
RMIT University

Melbourne, Australia
lin.padgham@rmit.edu.au

ABSTRACT
Scenarios in current design methodologies, provide a natural
way for the users to identify the inputs and outputs of the
system revolving around a particular interaction process. A
scenario typically consists of a sequence of steps which cap-
tures a particular run of the system and satisfies some aspect
of the requirements. In this work we add additional struc-
ture to the scenarios used in the Prometheus agent develop-
ment methodology. This additional structure then facilitates
both traceability and automated testing. We describe our
process for mapping the scenarios and their steps to the ini-
tial detailed design, where we then maintain the traceability
as the design develops. The structured action lists that we
define for both scenarios and their variations provides the
basis for facilitating automated testing of system behavior.
We describe how we use the newly defined structure within
the scenarios to facilitate testing, describing how we auto-
mate test case generation, execution and analysis.

Categories and Subject Descriptors
D.2.5 [Software]: Software Engineering

General Terms
Design, Reliability, Verification

Keywords
Agent Oriented Software Engineering, Requirements Testing

1. INTRODUCTION
Agent Oriented Software Engineering (and the related

agent development platforms or languages) is an approach
to building complex systems which has been shown to be
very efficient (on average 350% faster development time)
compared to standard Java development [1]. Many of the
agent system development methodologies (e.g. Tropos [4],
Prometheus [8], Roadmap [9]) use some kind of scenario or
use case development in the initial stages of agent system
specification and design as a way of exploring and develop-
ing the specification of a software system.

Cite as: Scenarios for System Requirements Traceability and Testing,
John Thangarajah, Gaya Jayatilleke and Lin Padgham , Proc. of 10th
Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6,
2011, Taipei, Taiwan, pp. 285-292.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

In this work we extend the scenarios used in the Prometheus
methodology to provide a more precise and better structured
scenario specification, which can then be used for the impor-
tant aspects of traceability and requirements testing.

Scenarios provide a natural way for end users or clients to
understand the system that is being specified/designed. As
such they are a very useful tool for fleshing out what is ex-
pected of a system. By making them more precise and struc-
tured they can also play an important role in understanding
the implementation, and ensuring that things specified in
scenarios are in fact implemented. They are then also a nat-
ural candidate for a model based approach to requirements
testing.

The scenarios used within Prometheus are already more
structured than standard object-oriented use cases, in that
the steps of a scenario are specified objects within the de-
sign: percepts, actions, goals and sub-scenarios. This allows
reasoning about the relationship of scenarios to other design
entities - for example it is possible to ensure that the set of
scenarios “covers” the system goals.1 In this work we show
how the goals within scenarios (and their sub-scenarios) can
be mapped down to structures of events and plans that are
then mapped to code. This provides traceability from spec-
ification, through code, to design.

The Prometheus scenarios allow for specification of alter-
natives to the sequence described. However, the alternatives
are described only in natural language. It would of course
be possible to develop alternatives as fully specified scenar-
ios. However there is a balance between specifying sufficient
for a good understanding of the system, versus burying the
reader in unnecessary detail which can make it harder to
understand the system essentials. In this work we slightly
extend the notion of scenario alternatives, to require the
specification of actions that would be generated from each
alternative. This then provides us with a model which we
can use as a basis for requirements testing. Essentially we
can test the system by providing the trigger for each scenario
(in various situations), and then ensuring that the actions
generated are consistent with either the main scenario, or
one of the alternatives specified.

In the following sections we first describe the existing rep-
resentation of scenarios in Prometheus, and then describe
our extensions, including the consistency checking that these
allow us to accomplish. Secondly we show how we use sce-

1Coverage of the system goals by a scenario involves a cut
through the goal hierarchy so that each goal is “covered”
either by having an ancestor that is in the cut, or by having
all of its children in the cut.

285



narios (in particular the goals within scenario steps) to gen-
erate skeleton designs which we then annotate in order to
maintain traceability back to the scenario descriptors. Fi-
nally we describe how these scenario specifications are used
to provide the oracle for testing when scenario triggers are
inserted into the system that has been initialized to different
configurations. We then conclude with a summary of what
has been accomplished, and a brief discussion of the future
directions for this work.

2. SCENARIO SPECIFICATION
In this section we provide a specification for scenarios,

by extending the current representation in the Prometheus
methodology.

The Prometheus methodology supports the complete de-
velopment of agent systems from specification, design, im-
plementation and testing/debugging [8]. It consists of three
key phases that guide the developer with a well defined set
of artifacts and process: System specification is where the
system interface is specified in terms of inputs (percepts),
outputs (actions), the actors, scenarios (akin to use cases in
traditional Object-Oriented design) and the functionality is
identified via goals and roles of the system; Architectural de-
sign where the internals of the system are specified in terms
of agents and communication protocols between them; and
detailed design where each agents internals are detailed to
a level that can be readily implemented in a BDI based
agent platforms such as JACKTM 2. The methodology is
supported by the Prometheus Design Tool (PDT) [7].

A scenario captures a particular run of the system that
typically covers a subset of the requirements. In other words,
scenarios are a way of describing and extending the under-
standing of the requirements at the specification phase. In
Prometheus a scenario is defined as a sequence of steps that
is initiated by a trigger such as a percept, an internal event of
the agent or time. Possible steps in a scenario are achieving
a goal, performing an action3, receiving a percept, perform-
ing another (sub) scenario or other step types not covered by
the above (for example, awaiting a response). For example,
in building an on-line bookstore application, two possible
scenarios that need to be covered are, a user placing a new
book order and querying about a delay in the delivery of an
order. Prometheus also allows for a textual description of
scenario variations. For example in the book ordering sce-
nario shown in figure 1 there may be a scenario variation
described, stating that if there is insufficient stock, then the
user is notified that the book is out of stock and the system
will engage in a process to order more stock.

2.1 Extended Scenario Specification
At present these scenarios are used only for requirements

elicitation and not as a basis for generating system tests. We
extend the current definition of scenarios with a structure
and detail that allows us to propagate the scenario informa-
tion to the implementation constructs through the detailed
design process of Prometheus and use them in generating
scenario based system test cases. Using the new structure
of the scenario, we are also able to assist the developer in

2JACK is the commercial platform developed by Agent Ori-
ented Software www.aosgrp.com.
3An action may map to one or more implementation con-
structs.

Figure 1: Example: Book Order Scenario Steps

Figure 2: Example: Get Payment Sub-Scenario
Steps

checking the consistency of scenarios when sub-scenarios are
used.

All the percepts consumed and actions produced by an
agent system need to be attached to one or more scenarios.
We also require that a scenario lists all the actions that
are generated by the system as part of the execution that is
covered by the scenario. Figure 1 is an example of a possible
sequence of steps for the book order scenario for an on-line
book store, and the steps of its sub-scenario step is shown
in Figure 2.

We make three different extensions to the scenario defini-
tion in Prometheus. Firstly we define a scenario IO-sequence
list to capture allowable sequences of percepts and actions
for a scenario and its variations. Secondly, we add a parame-
ter based test descriptor that identifies relevant variables for
the scenario; and thirdly we add traceability links that prop-
agate scenario information into the detailed design. Each of
these extensions are explained below.

Scenario IO-sequence list
We wish to be able to use the scenarios as a basis for an
initial form of system testing, that focuses on the percepts
coming into the system, and the actions coming out. To
assist with this we add an additional structured field to a
scenario, which we call the scenario IO-sequence list. This
list captures all valid sequences of percepts and actions for
the particular scenario. We note that each default version
of the scenario, as well as each variation, may have multiple
allowable IO-sequences as there may be parallelism or non-
determinism allowed in some of the orderings. Each valid
ordering is specified as a separate IO-sequence in the list.
Percepts and actions arising from sub-scenarios must also
be represented in each IO-sequence. Figure 3 illustrates the
IO-sequence list for the BookOrder scenario.

An initial IO-sequence list, with a single sequence, can be
generated by extracting out the percepts and actions as iden-

286



Figure 3: Book Order Scenario default IO-Sequence

tified in the scenario and its specified sub-scenarios such as
in Figure 3. However the designer must add to this list with
alternative valid sequences. In addition the IO-sequence list
must be specified for scenario variations as we now describe.

The original version of Prometheus scenario descriptors
has only one Variation field as it is a free text field that
can explain multiple variations. In our extension we allow
multiple Variation fields, in order to capture separately each
logical variation, along with its structured IO-sequence list.
Figure 4 shows possible variations for the BookOrder sce-
nario. Variation 1 is for when a book is out of stock. It pro-
duces two actions, a notification to the user that the book
is out of stock and an order for more stock to the supplier.
The two actions may be produced in any order hence there
are two possible IO-sequences as shown in the figure.

Figure 4: Example Scenario Variations

When reusing a scenario as a sub-scenario, the developer
must consider the alternate scenarios of the sub-scenario in
defining the parent level alternate scenarios. Consistency
checking can be done by PDT to ensure that the sub-scenario
IO-sequences used in the parent scenario, are legitimate sub-
scenario sequences. However it is not necessarily the case
that all IO-sequences of the sub-scenario will be reflected
in the parent scenario or its variations.4 Nevertheless it is
useful to have the tool alert the user to cases where all the
sub-scenario variations are not covered in the parent sce-
nario.

Scenario test descriptor
We also add a test descriptor to the scenario design descrip-
tor in order to specify information relevant for testing. This
is following the principle of test descriptors used for unit
testing in the work of Zhang et al. [12, 11]. The test de-
scriptor is defined based on a set of scenario variables, which
are parameters identified as important for the particular sce-

4Some variations in the sub-scenario may be valid only in
contexts other than the parent scenario under consideration.

nario and initialization procedures which must be executed
prior to triggering the scenario execution.

The scenario variables are described in terms of their type
and domain-range, as in Zhang et al. [12]. We also allow a
similar specification of relevant relationships between vari-
ables as in that work (for example, the number of books
ordered is less than the stock available). The test descriptor
must also provide the mapping to the implementation.

Figure 5: Book Order Scenario Test Descriptor

In the book ordering scenario, an example variable that
would be important is the variable that captures the num-
ber of books in stock, stock quantity. Figure 5 shows how
this variable is specified as part of the test descriptor, with
type int and domain range ≥ 0. It also specifies that the
variable belongs at the agent-level (opposed to system-level
for example) to the SalesManager agent class and mapped
to the variable orderBookStock which is of variable type sim-
ple. The type of the variable determines how the variable is
assigned values at run time. We refer the reader to [12] for
further details on this matter.

The initialization procedures are also specified as in Zhang
et al. [12]. For example, in Figure 5, a static method initDB,
which is part of the agent class salesManager is specified to
initialize connections to the stock databases which is used
during the execution of the scenario.

It is intended that test descriptors are filled out after im-
plementation, although some aspects of important variables
may be identified during scenario specification. It is clear
at the stage of scenario development that stock quantity is
important for the above scenario. However details of the
valid range may well be specified after implementation - we
may for example choose to have negative numbers indicat-
ing number of pending orders for which there is no available
stock, or we may choose to have valid values lie between zero
and some maximum. The details must be filled in prior to
testing, in order to ensure that test cases are generated with
all equivalence classes of values for this variable.

Traceability links
Our third modification to scenarios is to introduce links be-
tween scenarios and other entities. In the current Prometheus
Design Tool (PDT), the design model contains a list of rela-
tionship links between entities for traceability. We introduce
the following relationship links to ensure traceability of sce-
narios:

scenario-goal: A link is created between the scenario and
the goal that represents the scenario. A link each is also
created between the scenario and the goals that are steps of
the scenario. These links are used, for example, when a goal
is attempted to be deleted, if the goal is part of a scenario

287



the user is notified of this and prompted to reconsider the
deletion or to also delete the goal-step from the scenario.
Similarly, when a goal-step is deleted from a scenario the
user is asked if the goal representing that goal-step is also
to be deleted from the model.

scenario-percept, scenario-action: A link each is created
between the scenario and its action and percept steps. This
link is used when a percept or action is deleted to prompt the
user to also delete the respective scenario step, or reconsider
the deletion. When an action or percept is deleted from a
scenario, if it is not part of any other scenario then the user
is asked if it is to be deleted from the model as well.

goal-event: When a goal is mapped to an event following a
process described in the following section, a relationship link
is created between the goal and the corresponding event and
the goal is annotated with the event that represents it. We
note that this is a new field of the goal entity type that we
introduce in PDT as it necessary for traceability as follows.
If the event of the goal-event link is deleted then the user
is notified that the event is associated with the goal and
requested to specify an alternative event that represents the
goal. If the user provides such an event then the link is
modified and the goal is annotated accordingly.

When a goal is deleted, if there is a link to an event (this
will be true for all goals assigned to an agent via roles)
then the user is prompted to check if the event is also to
be deleted5.

The goal-event link also enables the consistency check of
ensuring the scenario and its goal-steps are mapped to an
event.

3. FROM SCENARIOS TO IMPLEMENTA-
TION

In this section we describe how scenarios are mapped from
design to implementation in the Prometheus Design Tool
(PDT) for the purpose of traceability. We note that we only
describe the process and rules for propagation relevant to
scenarios and any new techniques that we introduce. We
refer the reader to [8] for details on the other aspects. In
order to better illustrate the process we use the example of
an electronic bookstore similar to that used in [8] with a
single scenario of a user ordering a book as illustrated in the
previous section, for simplicity.

System Specification In the current methodology, Scenar-
ios are created in the System Specification stage. They are
first identified in the Analysis Overview Diagram, where the
actors6, actions and percepts are specified. Each percept,
action and actor is associated with a scenario that responds
to the percept, produces the action and interacts with the
actor (see Figure 6).

These scenarios are then detailed in the Scenarios descrip-
tor where the trigger and steps of each scenario are identified
(Figure 1 details the BookOrder Scenario). Further, as de-
scribed in the previous section, the IO-sequence lists for the
default case and any variations are specified. The scenarios

5We note that here we only outline the reasoning around
scenarios as these are the additions we propose. There are
however, many other rules such as when a goal is deleted,
the user is prompted to check if all its sub-goals are also to
be deleted and so on.
6Entities external to the system that interact with it.

Figure 6: Analysis Overview

and their steps (including the actions and percepts that are
part of the IO-sequence lists of variations) are propagated
to the level of implementation as follows.

When a scenario is created a corresponding Goal (sce-
nario goal) is automatically created and added to the Goal
diagram. This is to ensure that the system has a goal to
fulfill the scenario. The Goal Diagram captures the goals of
the system. These goals may be further decomposed into
subgoals which maybe an “AND” or “OR” decomposition,
where “AND” requires all subgoals be satisfied for the goal
to be successful and “OR” requires at least one of them to
be satisfied. (See Figure 7.)

Figure 7: Goals Diagram

For each goal-step of a scenario a corresponding goal is
automatically created and associated as a subgoal to the
scenario goal in the Goal Diagram. Multiple goal-steps are
added as an “AND” decomposition as steps are not optional
in a scenario.

Action and percepts are typically created in the Analysis
Overview Diagram and used by scenarios as steps. However,
new actions and percepts may be created when describing
the steps of a scenario, which would cause the actions and/or
percepts to be automatically added to the Analysis Overview
Diagram as associated with the Scenario.

Each scenario step follows the same process as above, with
the exception that its corresponding goal is associated as a
subgoal of the top level scenario goal.

The goals, actions and percepts are propagated to the
Roles Diagram where roles are created and associated with
them. We note that the steps of a single scenario may be
associated with different roles and that not all goals may
be assigned to a role, as the goals may be abstract goals.
However, all goals must be covered by a role, where a goal
is considered to be covered if:
a) it is explicitly mentioned in the goal descriptor in the de-
sign; or
b) all of its children are covered; or
c) its parent is covered.

288



This recursive definition ensures a “coverage cut” through
the goal hierarchy, where all the goals in the cut are asso-
ciated with some role and some scenario. Figure 8 is an
example of role assignment for the bookstore example.

Figure 8: Roles Diagram

We also note that, when a goal is assigned to a role, the
subgoals of that goal are by default assigned to the same
role, unless they are explicitly assigned to another role.

Architectural Design In the Architectural Design stage,
the roles are associated with agents in the Agent-Roles Di-
agram (see Figure 9). Consequently, the scenario goals and
the steps of the scenarios are associated with agents. Note
that if a goal is an abstract goal, it is associated with its
sub-goals and therefore the agents that the sub-goals belong
to.

Figure 9: Agent-Role Diagram

The System Overview Diagram illustrates the agents and
the percepts that the agent responds to and the actions it
produces (see Figure 10).

Figure 10: System Overview Diagram

G2

G G

G1

G

G

P

e1 e2

P1

e

P2

e3

P4

e4

P5

P3

(a) (b)

AND

OR

3

4 5

M1

M2

Figure 11: Goals to Events/Plans

Detailed Design
The actions and percepts associated with each agent are

propagated into the Agent Overview diagram where the de-
signer then develops plans to handle the percepts and pro-
duce the actions.

Currently in PDT goals are not propagated into the De-
tailed Design, however, the designer may annotate the plans
to indicate which goal it satisfies. We extend PDT to auto-
matically propagate goals into the Agent Overview Diagram
as described below. The aim is to guide the designer in de-
veloping plans to satisfy its goals using the goal hierarchies
in the Goal diagram in such a way that it follows the BDI
principles of allowing a choice of plans to achieve a particu-
lar goal. This also allows goals to be traceable throughout
the design and consequently scenarios, which are mapped to
goals, to also be traceable.

For each (top-level) goal associated with an agent (which
is automatically determined from the Agent-Role Diagram,
and stored in the agent descriptor), depending on the goal
decomposition attained from the Goal Diagram, correspond-
ing (empty skeleton) plan and event structures are created
in the Agent Overview Diagram as follows:

An event is created to represent the goal, which we term
the goal-event, and;

- If the goal has no decomposition then a plan is created to
handle the goal-event. The designer may add further plans
which represent the different ways of achieving the goal.

- If the goal has “AND” decomposed subgoals (e.g. G has
G1, G2 and G3 in Figure 11(a)), a plan is created to handle
the goal-event (e.g. P in Figure 11) which posts the subgoals
as follows:

If the subgoal is associated with the same agent, a corre-
sponding (subgoal) event is posted by the plan, and a plan
that handles that event is created (e.g. event e1, and plan
P1 in Figure 11(b)). The designer may add further plans to
handle the event, if there is more than one way of achieving
the subgoal.

If the subgoal is associated with another agent, then a
message is created as outgoing from the plan (e.g. M1 in
Figure 11(b)) and the message is propagated into the Agen-
tOverview Diagram of the other agent.

- If the goal has “OR” decomposed subgoals (e.g. G2 has
G4 and G5 in Figure 11(a)) then a plan is created for each

289



subgoal so that the designer may encode the choice between
the subgoals as context conditions of the plans (e.g. P3 and
P4 in Figure 11(b)). This supports the BDI principles in
programming agents.

For each subgoal that is part of the same agent, an event
is posted by the subgoal plan, and a plan that handles the
event is created (e.g. e4 and P5 in Figure 11(b)). The reason
for posting an event to handle the goal rather than handling
the goal as part of the plan that posts it, is to allow the
designer to add alternate ways of achieving the subgoal if
any.

For each subgoal that is part of another agent, a message
is created as outgoing from the plan (e.g. M2 in Figure
11(b)) and propagated into the AgentOverview Diagram of
the other agent.

A similar process is applied recursively down the tree until
all the goals are either mapped to an event and at least one
plan that handles that event, or a message that is delegated
to another agent. Figure 12 shows the AgentOverview Di-
agram for the SalesManager agent which incorporates the
propagation process described.

Figure 12: Agent Overview Diagram: SalesManager

Consistency Cross-Check for Scenarios:

PDT provides a consistency check feature that checks the
model against a set of rules and alerts the user if any rule
is violated. The following rules ensures that Scenarios and
all their steps are mapped to the detailed design which is
used to generate the code for the system (PDT provides an
automated code generation feature that generates skeleton
code in the JACK agent language). For a given scenario:

• All action and percept steps are associated with at
least one plan. This includes the actions specified as
alternative outputs of the scenario.

• The scenario goal and all its subgoals (as specified in
the Goal Diagram) are associated with a role. A goal is
associated with a role if one of the following is satisfied:
- the goal is assigned to a role.
- all its subgoals are associated with a role: note this is
recursive and that different subgoals may be associated
with different roles.
- the goal’s parent goal is assigned to a role: by default
a goal is assigned to the same role as its parent unless
explicitly assigned to another.

• All goals that are part of the scenario and assigned
to a role are mapped to an event and the event is
handled by at least one plan (this is automated via
the propagation process described above, however, the
check is to ensure that changes made by the designer
does not violate it)

• If a percept is a trigger to the scenario then it must
be associated with the same role associated with the
scenario goal or, if the scenario goal is abstract, the
role associated with the first non-abstract goal-step.

• Each (sub)scenario step also satisfies the above.

4. TEST FRAMEWORK
One of the motivations for the greater structure in the sce-

nario descriptors is to be able to do testing of scenarios as
part of requirements or acceptance testing. At this level we
want to initiate a particular interaction (scenario) in a wide
range of different situations with respect to input variations,
and ensure that the system behavior is as expected. “As ex-
pected” in this context is defined precisely by the sequences
of actions and percepts defined in the IO-sequence lists for
the scenario, including its variations. Testing then requires
that the environment exists, and perhaps is initialized (e.g.
stock levels of books established), the trigger is provided to
start off the scenario, and the ensuing sequence of actions
and percepts are recorded.

The following analysis may be performed from the recorded
sequence of percepts and actions:

• If the sequence matches one of that in the IO-sequence
lists for the scenario and its variations, then the test
succeeds.

• If a sequence is observed which has not been specified,
then a trace of the program, using a tool within the im-
plementation platform, can help in identifying where
the sequence has diverged from what was expected.
It may also be the case that the unexpected sequence
is valid and wasn’t identified by the developer in the
design, in which case the scenario specification be re-
vised to include the IO-sequence as a variation to the
scenario.

• The IO-sequences observed by the different success-
ful test cases are noted. If there are some specified
IO-sequences that are not observed, then the tester is
notified of this. This could be due to (a) insufficient
test cases to cover all possibilities, (b) a fault in the
implementation (for example, no plan produces an ac-
tion that is part of the sequence), or (c) a fault in the
IO-sequence specification (for example, the sequence
is not achievable).

It is often the case that it is not practical to test the sys-
tem “in situ”. In this case we need some kind of mechanism
to collect the actions and provide the percepts. To achieve
this we propose the use of an agent based simulation plat-
form such as Repast [6]. These simulation platforms already
provide a sound and well-adopted infrastructure for simulat-
ing complex environments such as those that agent systems
typically operate in.

We leverage these concepts to provide the basic infrastruc-
ture necessary for testing scenarios which we now describe.

290



The simulator acts as an environment for generating per-
cepts and consuming actions. In other work we have inte-
grated a BDI agent platform (JACK) with an agent based
simulation platform (Repast) via percepts and actions with
message passing that synchronises the two systems. In the
integrated model, each BDI agent that interacts with the
simulation environment has a corresponding simulation agent
that acts as a sensor-actuator for sending percepts from the
environment to the BDI agent and executing actions of the
BDI agent within the simulated environment (See Figure
13). While it is possible to achieve the same with a single
simulation agent, having individual simulation agents pro-
vide an independent thread of execution for each agent and
also simplifies the implementation.

Test Agent

A

B

C

A

B

C

Test Agent

Simulation EnvironmentAgent System

P

P

P

P

A

A

A

A

A P= Action = Percept

Figure 13: Interaction with the Sim environment

For the purpose of testing the system, we introduce a BDI
Test Agent (BDI-TA) and a Simulator Test Agent (SIM-
TA), to set up and execute the test cases. Whilst the BDI-
TA will be able to directly access and set-up any system level
information, in order to set-up information that is internal
to an agent, each agent is required to have a HandleTestData
plan which is triggered by a TestData message sent by the
BDI-TA.

An overview of the testing process is as follows:

• The SIM-TA sends the relevant test data, such as the
initial values for the test variables and initialization
procedures to the BDI-TA via a StartTest percept which
is handled by the HandleStartTest plan in the BDI-TA.
This marks the start of a test case execution. The test
descriptor for the scenario to be tested is used to de-
termine the appropriate information that needs to be
initialized.

• The BDI-TA sets up any system level information and
runs initialization procedures and sends a TestData
message to the relevant agents for setting up agent
internal beliefs or variables. For example, in test-
ing the BookOrder scenario, the value for the variable
stock quantity and the initDB initialization procedure
will be established by the SalesManager agent (refer
Figure 5). When all initializations are complete, the
BDI-TA informs the SIM-TA of this by sending the
action StartSimulation.

• The SIM-TA also provides the simulator agents that
may generate percepts during the scenario execution

with information to be contained in the percept, which
corresponds to a particular test case. It is possible
to identify which agent handles the triggering percept
for the particular scenario from the design specifica-
tion using the traceability links as described in sec-
tion 2.1. For example, in the BookOrder scenario the
data required by the SalesManager agent to populate
the BookOrderPercept such asorder details will be pro-
vided by the SIM-TA. These state variable initializa-
tion is achieved by calling the appropriate “set meth-
ods” of the simulation agents.

• Once the above set-up process is complete (including
receiving the action StartSimulation from BDI-TA) the
SIM-TA starts the execution of the rest of the simula-
tion agents. For example in the BookOrder scenario,
this will make the SalesManager simulation agent send
the BookOrderPercept to the SalesManager BDI agent.
Once the system execution starts the SIM-TA does not
interact with any of the agents in the system as part
of the usual execution, but simply records actions gen-
erated and percepts received.

• Any action produced by an agent is executed via its
corresponding simulator agent, which simulates the ef-
fects of the action on the environment. Which may
in turn produce percepts. For example, the Payment-
Manager agent produces the PaymentRequest action,
which when executed in the simulator generates the
PaymentDetailsPercept which is delivered back to it.

• Apart from action triggered percepts, the scenario may
also require percepts at particular time intervals, or
when a particular state of the environment is true.
Simulator agents execute routines at every simulation
cycle. Therefore, the tester/developer should encode
the routines for producing these percepts within the
corresponding simulator agents. It might also be the
case that not sending an intermediate percept is part
of a test case that tests the behavior of the system
when the percept is not received (does the system fail
gracefully?).

• The test case execution ends when a pre-defined time-
out is reached for the complete scenario execution. It
could also end if a pre-defined timeout for a particular
action is not met.

• All the actions and percepts generated during the ex-
ecution of a particular test case is recorded. The data
for all test case executions for a particular scenario is
gathered and later analyzed.

Note that we currently only support the testing of a single
scenario at a time. We assume the execution of the scenario
under test in isolation where interacting scenarios are not
considered. Testing interacting scenarios is part of the future
work.

In order to assist the developer in the above process the
following automated code generation can be performed:

• Using the design specification it is possible to obtain
the percepts and actions relevant to a particular agent.
The code stubs for executing these actions and gener-
ating the percepts are created in the corresponding
simulator agent which the developer can then fill-in.

291



• When generating test cases, the initialization proce-
dures and variables are extracted from the test de-
scriptor of the scenario and presented to the user as a
test specification. The user can then set the values of
the variables that form the different test cases.

• The code stubs of the SIM-TA, BDI-TA and the Han-
dleTestData plan for each agent are created.

The specification of the variables that influence a scenario
in the test descriptor of that scenario allows automated test
case generation, using the domain range for the variables and
any comparative relationships specified. Such an approach
is already fully implemented in PDT for the unit testing
framework of Zhang et al. [12].

5. DISCUSSION/CONCLUSION
In this paper we have extended the specification of sce-

narios in Prometheus methodology to include information
that allows (a) a structured specification of the variations of
a given scenario in terms of percept and action sequences;
(b) traceability of the scenario throughout the various design
stages; and (c) the scenario to be tested for the expected out-
comes in terms of the specified percept and action sequences.
We then provide a detailed process for mapping scenarios to
implementation, using the Prometheus Design Tool, auto-
matically propagating information where possible. Finally,
we provide an approach for testing the scenarios, using an
agent based simulation platform.

Given the nature of an agent system behavior, which in-
cludes asynchronous handling of percepts from the envi-
ronment and simultaneous execution of multiple intentions
(plans), it is not trivial to use standard test automation
frameworks for testing agent systems. Moreover, existing
scripting based automation tools [3] require extensive set up
to simulate a complex environment that an agent system
operates in. Therefore, we use an agent simulation platform
such as Repast for simulating the environment for the agent
system and enabling the test case execution for scenarios.

While formal verification is one approach that can be
used for validating requirements (such as the Z specifica-
tion), these methods require additional knowledge in the
developers part to apply them and are also not well sup-
ported by practical agent implementation platforms (such
as JACK) based on main stream programming languages
(such as Java). Hence, even if the design model is verified,
the implementation should still be tested via a practical ap-
proach as proposed in this work.

The testing approach developed compliments other work
on testing agent systems such as the unit testing framework
of Zhang et. al. [12] which we build upon, the goal-oriented
testing approach of the eCAT tool [5] which is based on the
goal models associated with the Tropos methodology [4], the
JAT framework [2] for testing agents developed in the JADE
platform 7 that specifies a fault model based on general agent
features and provides skeleton code for testers to manually
develop test cases and the SUNIT framework based on the
SEAGENT model [10].

One of the limitations of the current approach is that it
tests a given scenario in isolation. This simplification has
helped us focus on building a framework for using scenar-
ios for system testing. However, in a “live” agent system

7jade.tilab.com/

simultaneous scenarios are in execution giving rise to action-
percept sequences influenced by each other. More work is
required in supporting the test developer and extending the
simulation environment to be able to support interacting
scenarios.

To our knowledge this is the first work that explores the
use of an agent simulation platform as a test automation
tool to test an agent system. We intend to explore this fur-
ther in two directions. Firstly, we intend on evaluating our
framework by testing several agent systems from different
application domains in order to gain further insight into the
effectiveness of our approach. Secondly, we plan to extend
the PDT design interfaces to allow developers to graphically
define the simulation agent details, providing a unified in-
terface for designing system(BDI) and test(SIM) agents.

6. REFERENCES
[1] Steve S. Benfield, Jim Hendrickson, and Daniel Galanti.

Making a strong business case for multiagent technology. In
Proceedings of AAMAS’06, pages 10–15, New York, NY,
USA, 2006. ACM.

[2] Roberta Coelho, Uir Kulesza, Arndt von Staa, and Carlos
Lucena. Unit Testing in Multi-Agent Systems using Mock
Agents and Aspects. In Proceedings of the 2006
International Workshop on Software Engineering for
Large-Scale Multi-Agent Systems, pages 83–90. ACM Press,
2006.

[3] Mark Fewster and Dorothy Graham. Software test
automation: effective use of test execution tools. ACM
Press/Addison-Wesley Publishing Co., New York, NY,
USA, 1999.

[4] Fausto Giunchiglia, John Mylopoulos, and Anna Perini.
The tropos software development methodology: processes,
models and diagrams. In AAMAS ’02: Proceedings of the
first international joint conference on Autonomous agents
and multiagent systems, pages 35–36, New York, NY, USA,
2002. ACM.

[5] Cu D. Nguyen, Anna Perini, and Paolo Tonella. ecat: a
tool for automating test cases generation and execution in
testing multi-agent systems (demo paper). In 7th
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2008), Estoril, Portugal,
May 2008.

[6] Michael J. North, Nicholson T. Collier, and Jerry R. Vos.
Experiences creating three implementations of the repast
agent modeling toolkit. ACM Trans. Model. Comput.
Simul., 16(1):1–25, 2006.

[7] Lin Padgham, John Thangarajah, and Michael Winikoff.
Prometheus design tool. In Proceedings of The AAAI
Conference on Artificial Intelligence, pages 1882–1883,
Chicago, USA, 2008.

[8] Lin Padgham and Michael Winikoff. Developing Intelligent
Agent Systems: A practical guide. Wiley Series in Agent
Technology. John Wiley and Sons, 2004.

[9] Leon Sterling and Kuldar Taveter. The Art of
Agent-Oriented Modeling. The MIT Press, 2009.

[10] Ali Murat Tiryaki, Sibel Öztuna, Oguz Dikenelli, and
Riza Cenk Erdur. Sunit: A unit testing framework for test
driven development of multi-agent systems. In AOSE,
pages 156–173, 2006.

[11] Zhiyong Zhang, John Thangarajah, and Lin Padgham.
Automated unit testing intelligent agents in pdt. In
AAMAS ’08: Proceedings of the 7th international joint
conference on Autonomous agents and multiagent systems,
pages 1673–1674, Estoril, Portugal, 2008.

[12] Zhiyong Zhang, John Thangarajah, and Lin Padgham.
Model based testing for agent systems. In 10th
International Workshop on Agent Oriented Software
Engineering (AOSE2009), Budapest, Hungary, May 2009.

292


