
Rich Goal Types in Agent Programming

Mehdi Dastani
Utrecht University
The Netherlands
mehdi@cs.uu.nl

M. Birna van Riemsdijk
Delft University of Technology

The Netherlands
m.b.vanriemsdijk@tudelft.nl

Michael Winikoff
University of Otago

New Zealand
michael.winikoff@otago.ac.nz

ABSTRACT
Goals are central to the design and implementation of intelligent
software agents. Much of the literature on goals and reasoning
about goals in agent programming frameworks only deals witha
limited set of goal types, typically achievement goals, andsome-
times maintenance goals. In this paper we extend a previously
proposed unifying framework for goals with additional richer goal
types that are explicitly represented as Linear Temporal Logic (LTL)
formulae. We show that these goal types can be modelled as a com-
bination of achieve and maintain goals. This is done by providing
an operationalization of these new goal types, and showing that
the operationalization generates computation traces thatsatisfy the
temporal formula.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Intelligent agents, languages and structures; I.2.5 [Artificial In-
telligence]: Programming Languages and Software; F.3.3 [Logics
and Meaning of Programs]: Studies of Program Constructs; D.3.3
[Programming Languages]: Language Constructs and Features

General Terms
Theory, Languages

Keywords
Agent Programming, Goals, Formal Semantics

1. INTRODUCTION
A widely-accepted approach to designing and programming agents

is thecognitiveapproach, where agents are modeled in terms of
mental concepts such as beliefs, goals, plans and intentions. Of the
various concepts that have been used for cognitive agents, akey
concept isgoals. This is because agents are (by common defini-
tion) proactive, and goals are what allow agents to be proactive.
It is also noteworthy that (the existence of explicitly represented)
goals is one of the clearer differences between (proactive) agents
and active objects. Goals have been extensively studied in artificial
intelligence and multi-agent systems (e.g. [2, 13,16,21]).

Earlier work focused mostly on achievement goals, which rep-
resent a desired state that the agent wants to reach. However, in-

Cite as: Rich Goal Types in Agent Programming, M. Dastani, M.B.
van Riemsdijk, M. Winikoff,Proc. of 10th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2011), Yolum, Tumer, Stone
and Sonenberg (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 405-412.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

creasingly othergoal typesare being studied such as maintenance
goals, which represent a state the agent wants to maintain, and
perform goals, which represent the goal to execute certain actions
(e.g., [4, 7, 8, 11]). However, only considering a small number of
goal types can be limiting, since in practical applicationsthere may
be goals that cannot be captured well by achievement or mainte-
nance or perform goals.

To make this discussion more concrete, consider a personal as-
sistant agent that manages a user’s calendar and tasks. One goal
the agent may have is booking a meeting. This would typicallybe
modelled as an achievement goal that aims to bring about a state
where all required participants have the meeting in their calendar.
However, in practice, diaries change, and we want to ensure that
the meeting remains in participants’ diaries, and that should a key
participant become unable to attend, a new time will be negoti-
ated. This is not captured by an achievement goal. Rather, itis
better modelled by a combined “achieve then maintain” goal which
achieves a certain condition, and then maintains it over a certain
time period. Another task that we might want the agent to under-
take is to ensure that booking travel is not done until the budget is
approved. Note that budget approval may be under the control(or
perhaps just influence) of the agent, i.e. the agent may have plans
for attempting to have the budget approved. Alternatively,it may
be completely outside the agent’s control, in which case theagent
can just wait for it to happen and then enable the travel booking
process.

A number of papers have taken this line of research a step fur-
ther by taking arbitrary Linear Temporal Logic (LTL) formulae as
goals [1, 2, 12, 13, 16], rather than considering specific goal types.
The advantage of this approach is that it does not restrict the goal
types that can be used. However, a possible disadvantage is that it
requires extensive alterations of a more basic agent programming
framework, the practical implications of which are not yet clear.

Temporal logic is also used by MetateM [10], but it is used
directly for agent execution, whereas we use temporal logicas a
design framework for specifying goaltypeswhich are mapped to
existing implementations of achieve and maintenance goals. Addi-
tionally, MetateM requires a particular format for its rules: all rules
are in one of the three forms:start → ϕ, or ψ → ϕ or ψ → φ
whereϕ is a disjunction of literals,ψ is a conjunction of literals,
andφ is a positive literal.

In this paper, we propose an approach that is somewhere in be-
tween those focusing on a limited set of goal types and those in
which arbitrary LTL formulae can be taken as goals. We propose
an approach in which goals that are represented by relatively com-
plex LTL formulae are operationalized bytranslating these LTL
formulae to more basic achieve and maintain goals. The advantage
of this approach is that the goal types can be integrated in existing

405

agent programming frameworks that already have an operational-
ization of achieve and maintain goals. We illustrate the approach
by showing how a number of LTL formulae can be translated to
achieve and maintain goals.

This paper builds on previous work [19] which presented a uni-
fying framework for goals based on viewing goals as LTL formulae
that described desired progressions. This previous work captured
existing basic goal types, whereas we propose a framework that
allows the use of richer goal types. Section 2 provides a brief de-
scription of the unifying framework on which we build. Section 3
presents the new goal types which are formalized and realised in
sections 4 and 5. Finally, in Section 6 we conclude the paper and
discuss some future directions.

2. A UNIFYING FRAMEWORK FOR GOAL
TYPES

This paper builds on the framework of van Riemsdijket al. [19]
in which a goal type is informally considered as a property char-
acterising a set of computation traces. The framework is explained
in terms of an abstract architecture for operationalizing goals such
as achieve and maintain goals. In particular, the operationalized
architecture aims to capture essential aspects of goals in agent pro-
gramming frameworks in terms of properties of computation traces,
abstracting from particular goal types.

The framework models goals as follows. The state includes state-
related propositions, which capture the state of the world,as well
as propositions of the formdonei (a) which capture the performance
of actions. This approach takes an abstract view of a goal type as
a particular pattern, or structure, of a formula in Linear Temporal
Logic (LTL). A given LTL formula corresponds to a set of traces
which make it true, and is viewed as a goal in that it allows a given
system trace to be classified as satisfying the goal or not.

van Riemsdijket al.[19] defined four commonly-used goal types:
achievement goal, (reactive) maintenance goal1, perform goal, and
query goal. These goals are classified into a taxonomy (below), and
an operationalization is provided for them within a single frame-
work, using a simple execution cycle which was extended withad-
ditional rules of the form〈condition,action〉 where actions could
be to Suspend, Activate or Drop a goal.

Goal

State-based
(declarative)

Action-based
(procedural)

single-state multiple-state perform

query achieve maintain

Q
Q

QQs
�

�
��+

�
��	

@
@@R ?

@
@@R

�
��	 ?

A key feature of this approach is that it balances flexibilitywith
being structured enough to ensure desired properties of goals, and
hence for it to make sense for the resulting constructs to be called
“goals”. A range of desired properties of goals have been identified
in the literature. Winikoff et al. [21, Section 2] survey existing lit-
erature and, based on this, identify the following desired properties
of goals:

1. Persistent: goals should only be dropped for a good reason.
1Maintenance goals are defined as beingproactivewhere violation
of desired state is anticipated and avoided, orreactive, where the
desired state is “recovered” once it is violated [8].

2. Unachieved: goals should not already hold; alternatively,
they are dropped when they are achieved.

3. Possible: goals should be dropped when they are impossible
to achieve.

4. Known: the agent should be aware of its goals. In implemen-
tation terms, this implies a measure of reflectiveness.

5. Consistent: goals should not be in conflict with other adopted
goals.

A number of additional properties are identified by [4]. Someof
these (Producible/Terminable and Suspendable) simply correspond
to the existence of a goal life-cycle. The others (Variable Duration
and Action Decoupled) relate to the notion of long term goalsthat
they argue for.

One advantage of the proposed goals framework is that the prop-
erties representing a specific goal type can be dealt with in ageneral
and systematic way. Suppose we have a goalφ of a certain type.
The framework mapsφ to a goal constructg(R, . . .) whereR is a
collection of rules (derived fromφ) that govern transitions between
goal states. We can then show that the goal’s realization meets the
properties of being persistent, unachieved, and possible,by requir-
ing that the operationalization ofg(R, . . .) results in the goal being
dropped exactly whenφ becomes known to be true, or known to
be impossible. For example, consider the goal to achievep. This
is mapped [19, Section 3.3.1] tog(R, . . .) whereR consists of two
rules: one to activate the goal when it is adopted, and one to drop
the goal whens∨ f becomes true, wheres is the “success con-
dition”, i.e. when the goal is succeeded, heres = p; and f is a
description of a condition under which the goal becomes impos-
sible to achieve. Heref depends on properties ofp, but may be
simply false, if it always remains possible to achievep. Then it is
straightforward to show that, under the operational semantics for
goals defined by [19], the goalg(R, . . .) is dropped exactly whenp
becomes known to be true, or known to be impossible (properties
1–3, above). The property of being known (property 4) is achieved
by having an explicit goal base which allows the agent to reflect on
which goals it has. Consistency (property 5) concerns interactions
between goals, and is beyond the scope of this paper.

3. NEW GOAL TYPES
In this paper, goals are represented explicitly as specific formu-

lae in Linear Temporal Logic (LTL) [9]. While [19] defined the
notion of goal as representing preferred progressions, andinfor-
mally referred to LTL to explain this, the operationalization itself
did not use LTL explicitly in the representation of goals. The LTL
formulae that we use to represent goals are defined by the following
grammar. In addition to basic propositions (p), and standard propo-
sitional connectives, it has the temporal connectives (“eventu-
ally”), (“always”), andU (“until”). We use standard abbrevia-
tions such as⊤ ≡ p ∨ ¬p andφ1 ∨ φ2 ≡ ¬((¬φ1) ∧ (¬φ2)). Note
that we do not use the next () connective because the goals we
consider in this paper does not use this operator.

φ ::= p | ¬φ | φ1 ∧ φ2 |φ | φ | φ1 U φ2

The semantics are the usual ones (given below). They are defined
over a modelM which is an infinite sequence of states, where each
state is a set of propositions that hold in that state. A formula φ
is true with respect to a modelM and an indexi, indicating the

406

current state. We useMi to denote theith state inM.

M, i |= p iff p ∈ Mi

M, i |= ¬φ iff M, i 6|= φ
M, i |= φ1 ∧ φ2 iff M, i |= φ1 andM, i |= φ2

M, i |=φ iff ∃k ≥ i :M, k |= φ
M, i |= φ iff ∀k ≥ i :M, k |= φ

M, i |= φ1 U φ2 iff ∃k ≥ i :M, k |= φ2 and

∀ j such thati ≤ j < k :M, j |= φ1

We now extend the taxonomy of [19] with additional goal types,
including those discussed in the introduction. Specifically, the per-
sonal assistant agent example introduced new goal types. The first,
booking a meeting and then maintaining participant availability,
can be formalised as follows. Letpabe short forparticipantsAvailable,
msbe short formeetingScheduled, andmobe short formeetingOccurs,
then we represent the goal of booking a meeting as the following
LTL formula:

(ms∧ (paU mo))

Considering the second goal, not booking travel until the budget
has been approved, this can be formalised as2:

(¬bookTravel) U budgetApproved

Abstracting from the specific goal instances to general goaltypes,
we have defined goal types of the form(φ1 ∧ (φ2 U τ)) (achieve
φ1 and then maintainφ2 until τ), andφU τ (maintainφ until τ). We
now generalise these goal types by considering a range of ways in
which a (non-temporal) propertyφ can be required to hold over a
number of states.

Consider a multiple-state goal where a (non-temporal) property
φ is required to hold over a number of states in the trace. The
taxonomy in the previous section (from [19]) only supports asingle
multiple-state goal. However, there are a number of ways in which
a goal pattern can apply to a sequence of states. It can apply:

1. to all states:φ;

2. at the start of the trace:φU τ, whereτ is a formula that de-
scribes the state at whichφ is no longer required to be true;

3. at the end of the trace:(τ∧φ), whereτ is a “trigger” for-
mula that describes the state at whichφ begins to be required
to be true; or

4. in the middle of the trace:(τ ∧ (φU τ′)), whereτ is the
starting trigger andτ′ the ending trigger; or

5. it can apply to a number of sub-sequences of states:(τ →
(φU τ′)), whereτ is a trigger that describes a state at which
φ begins to be required to hold, andτ′ describes the states at
whichφ is no longer required to hold.

These cases for multiple-state goal types are summarised inFig-
ure 1. Note that in all cases we require thatφ hold at all states
within the specified region.

Considering the personal assistant example, the first goal(ms∧
(paU mo)) corresponds to the fourth case above and the second
goal corresponds to the second case above. Note that we could
also consider a goal where¬bookTravelmust hold on different se-
quences of states, e.g. that once there is no more money in thebud-
get (nmm) then travel cannot be booked until a (new) budget is ap-
proved, formally:(nmm→ (¬bookTravelU budgetApproved)).

2This goal would be expected to be used in conjunction with a goal
to book travel,bookTravel.

<DDDφDDD> φ<D φDD>τMMM φU τMMMτ<D φDD> (τ ∧φ)MMτ<DφD>τ′MM (τ ∧ (φU τ′))Mτ<Dφ >τ′Mτ<Dφ >τ′M (τ→ (φU τ′))

Figure 1: Multiple-state goal types

We thus define the possible LTL patterns that we allow as multiple-
state goal types as follows, whereφ and τ are propositional (i.e.
non-temporal). Instead of only supporting a single type of multiple-
state goal, as in previous work, we support the following, which
correspond with the cases in Figure 1:

Gm ::= φ | φU τ |(τ ∧φ) |(τ ∧ (φU τ′) | (τ→ (φU τ′))

We also allow the single-state goal typeφ. We would like to
emphasize that the proposed temporal goal types are by no means
exhaustive and that other LTL patterns can be identified to repre-
sent other multiple-state goal types as well. Our claim is that the
proposed goal types are intuitive in that the correspondingLTL pat-
terns represents desirable execution traces as illustrated by the ex-
amples, and that they can be operationalized by means of achieve
and maintain goals. We also would like to note that other goal
types (e.g., those mentioned in Figure 1) can be representedin our
framework as well. For example, the query goal can be represented
as (Bp)∨ (B¬p) (whereBpdenotes that agent believesp in the cur-
rent state), the achieve goal asp, the maintenance goal asp,
and the perform goal asdone(a), wheredone(a) denote the fact that
actiona is performed.

4. REALISING THE NEW GOAL TYPES
The most characterising feature of our programming approach

is to represent goals explicitly as temporal formulae and tooper-
ationalize these formulae in terms of achieve and maintain goals.
The advantage of this approach is that achieve and maintain goal
types have already well-defined operational semantics in some of
the existing agent programming frameworks (e.g., 2APL [6],Ja-
dex [15], and JACK [5]) such that our goal types can be used to
extend these frameworks.

In order to realise the new goal types in an operational setting,
we assume that an agent configuration comprises a belief base, con-
sisting of propositional atoms, and two goal bases. The firstgoal
base, called thetemporal goal base, contains goals specified by
temporal LTL formulae. The second goal base, called thebasic
goal base, consists of achieve goals of the formA(φ) (read as:φ
should be achieved) and maintain goals of the formM(φ, τ) (read
as:φ should be maintained untilτ), whereφ andτ are propositional
formulae. The maintain goalM(φ,⊥) represents thatφ should be
maintained indefinitely.

The operationalization of temporal goal types can then be de-
fined in terms of operations on temporal and basic goal bases.In
this paper, we assume that the achieve and maintain goals have a
correct operationalization. In particular, for the achieve goal we
assume that ifA(φ) is in the basic goal base, then the agent belief
base will eventually entailφ, and for the maintain goals we assume
that if M(φ, τ) is in the basic goal base, then the agent belief base
entailsφ until τ is entailed by the belief base. The latter assump-
tion thus ensures that there is no need for reachievingφ (typically
referred to as reactive maintain goal), since we assume it does not
become false once the basic maintain goal has been adopted. The

407

I S
Adopt

A
Activate

Suspend(X)

Drop(X)

I A
Adopt

S

Suspend(X)

Drop(X)

Activate

Figure 2: Temporal (top) and basic (bottom) goal life cycles

basic maintain goal is thus interpreted as proactive avoiding the vi-
olation of desired states. Clearly, our assumption for the achieve
goal is realistic as many agent programming languages such as
2APL [6] provide already programming constructs to implement
achieve goals with the correct interpretation. Also, our assumption
for the maintain goal is realistic as there exist operationalization
proposals for the maintain goals [11] that perform lookahead steps
to avoid generating execution paths where the goal is violated.

For the purposes of this paper we want to show that our frame-
work realises temporal goals correctly if we have correct opera-
tionalization of achieve and maintain goals. The idea is that the
temporal goalφ can be operationalised by adding the achieve
goalA(φ) to the basic goal base. Similarly, the temporal goalφU τ
can be operationalised by adding the maintain goalM(φ, τ) to the
basic goal base. More complex temporal goals can be operational-
ized by adding both achieve and maintain goals to the basic goal
base, as will be shown in the sequel.

In our framework, goals have a life cycle as illustrated in Fig-
ure 2. Both temporal (top) and basic (bottom) goals begin in an
initial state (I), and can then be either in active (A) or suspended
(S) states. For the reasons explained in the next section, a temporal
goal can be adopted entering in a suspended state and a basic goal
(either an achieve or a maintain goal) can be adopted entering in the
active state. A temporal goal in a suspended state can be activated
after which it can be either suspended again or dropped. A basic
goal in an active state can be either suspended or dropped.

While temporal goals are assumed to be given by an agent pro-
gram (specified by an agent programmer), the basic (achieve and
maintain) goals are adopted as a consequence of processing tem-
poral goals. In our framework, a temporal goal is dropped if it
can be satisfied by adopting an achieve or a maintain goal. A tem-
poral goal is suspended if it can bepartially satisfied by adopting
an achieve or a maintain goal. For this reason, the actionsDrop(X)
andS uspend(X) drop and suspend the corresponding temporal goals
and, at the same time, add the basic goalX to the basic goal base.
This notation should not be confused and read as parameterised
drop and suspend actions. Finally, the actionsDrop(∅) andS us-
pend(∅) remove a temporal goal from temporal goal base and leave
the basic goal base unchanged.

4.1 Life Cycle for Temporal Goals
In order to specify the state transitions of temporal goals,a set

of condition-action pairs is assigned to each temporal goal. The
condition of such a pair is a test on an agent’s belief base andthe
action is to change the goal’s state. The condition-action pairs can
be either generic or domain related. A generic condition-action
pair specifies a transition for all instances of a goal type while a
domain related condition-action pair specifies a transition for a spe-
cific instance of a goal type depending on the application at hand.

φ δg(φ)

φ {〈φ,Drop(∅)〉 , 〈¬φ,Drop(A(φ))〉}
φ {〈φ,Drop(M(φ,⊥))〉 , 〈¬φ,S uspend(A(φ))〉,

〈φ, Activate〉}
φU τ {〈φ,Drop(M(φ, τ))〉 , 〈¬φ,S uspend(A(φ))〉,

〈φ, Activate〉}
(τ ∧φ) {〈φ ∧ τ,Drop(M(φ,⊥))〉 ,

〈¬(φ ∧ τ),S uspend(A(φ ∧ τ))〉,
〈φ ∧ τ,Activate〉}

(τ ∧ (φU τ′)) {〈φ ∧ τ,Drop(M(φ, τ′))〉 ,
〈¬(φ ∧ τ),S uspend(A(φ ∧ τ))〉,
〈φ ∧ τ,Activate〉}

(τ→ (φU τ′)) {〈τ ∧ φ,S uspend(M(φ, τ′))〉 ,
〈τ ∧ φ,Activate〉}

Figure 3: Generic Condition-Action Pairs for Temporal Goals

The domain related condition-action pairs can be used for various
purposes, e.g., to activate temporal goals in domain specific situa-
tions in which the goals are likely to be realised (in addition to the
generic ones) or to suspend them in situations in which the goals
are not likely to be realised (in addition to the generic ones). These
domain related condition-action pairs should be designed carefully
since otherwise they may cause undesirable behavior. We assume
domain related condition-action pairs are assigned to eachtempo-
ral goal by the agent programmer in order to influence the lifecycle
of temporal goal based on domain dependent knowledge. We use
δg(φ) to refer to the set of generic condition-action pairs of temporal
goalφ as specified in Figure 3.

It is important to note that these condition-action pairs are only
applicable when goals are in specific states, e.g., goals canonly
be dropped when they are active and activated when they are sus-
pended. The suspension condition-action pairs can not onlyfire in
the active state, but also when a goal is adopted (which movesthe
goal into the suspended state). The applicability of condition-action
pairs are formally specified by the transition rules in Section 5.1.

The first temporal goal type is characterised asφ, whereφ is
a non-temporal formula. The first generic condition-actionpair as-
signed to this goal indicates that whenφ is entailed by the agent’s
beliefs in its current state, then the goalφ can be dropped and no
basic goal is added to the basic goal base. In this case, the tempo-
ral goal is already believed to be satisfied. The second condition-
action pair indicates that ifφ is not entailed by the agent’s beliefs in
its current state, then the goalφ can be dropped, but simultane-
ously the agent adopts the achieve goalA(φ) by adding it to its basic
goal base. Our assumption that the achieve goal is operationalized
correctly ensures that the temporal goalφ will be satisfied by the
agent execution. As we will see later on, these drop actions only
take place if the temporal goal is in its active state. It should be no-
ticed that there is no condition-action pair to activate this temporal
goal. We assume such a condition-action pair is added as a do-
main related pair by the programmer. An example of such a pairis
〈⊤, Activate〉, which is a strong activation condition as it indicates
that the temporal goal should always be activated.

The second temporal goal is characterised byφ, whereφ is
a non-temporal formula. The first condition-action pair drops the
temporal goal and adopts the maintain goal, adding it at the same
time to the basic goal base. Again, our assumption of correctoper-
ationalisation of maintain goals ensures that the temporalgoal will
be satisfied, which is why we can drop the temporal when adopting
the basic maintain goal. That is, there is no need to suspend and

408

reactivate this temporal goal shouldφ no longer be believed, since
the latter is assumed not to occur once the basic maintain goal is
adopted. Note that a maintain goalM(φ,⊥) is adopted in a state
that satisfies the maintain conditionφ. The second condition-action
pair indicates that the temporal goalφ should be suspended ifφ
is not entailed by the current agent’s beliefs, while adopting the
achieve goalA(φ) to pursue a state from which the maintain goal
can be maintained. This can occur only when adopting this tempo-
ral goal whileφ does not hold. Since this temporal goal is dropped
after activation, it cannot be suspended again from the active state.
The third pair ensures that the temporal goal is activated again upon
achievement ofφ.

The operationalisation of the third temporal goal type is very
much similar to the second one sinceφ is equivalent toφU⊥,
i.e., the only difference is thatφ should be maintained untilτ holds,
and thus not indefinitely as was the case withφ.

The fourth temporal goal type is characterised by(τ ∧ φ).
The first condition-action pair ensures thatφ is maintained indefi-
nitely if the agent’s current beliefs entailsφ ∧ τ. However, if either
φ or τ do not hold, then the temporal goal is suspended and the
achieve goalA(φ ∧ τ) is added to the basic goal base. This ensures
that the agent will pursue the condition before maintainingφ indef-
initely. The third pair ensures that the goal is activated again once
the conditionφ ∧ τ is satisfied. We adopt a goal to achieve bothφ
andτ, and not justτ, because in the state in which the agent transi-
tions from achievingτ to maintainingφ, we wantφ to be true (so it
can be maintained). This is also the reason why the third condition-
action pair has a condition ofφ ∧ τ, and not justτ. These points
also apply to the following temporal goal types.

The fifth temporal goal type is characterised by(τ ∧ (φU τ′)).
The first condition-action pair indicates that ifφ∧ τ holds, then the
temporal goal can be dropped and at the same time the basic main-
tain goalM(φ, τ′) is adopted. Note that ifφ ∧ τ holds, the maintain
goal M(φ, τ′) ensures thatφ is maintained untilτ′ is achieved. The
second condition-action pair covers the situation where eitherφ or
τ does not hold. In such a situation, the temporal goal cannot be
realized. The temporal goal is therefore suspended, but thebasic
achievement goalA(φ ∧ τ) is added in order to achieve the condi-
tion for the first condition-action pair and the goal is activated again
once this condition is satisfied.

Finally, the sixth temporal goal type is characterized by(τ →
(φU τ′)). The first condition-action pair specifies that whenφ ∧ τ
is entailed by an agent’s belief base the temporal goal can besus-
pended (not dropped) and the basic maintain goalM(φ, τ′) adopted.
The adopted maintain goal ensures the maintenance ofφ until τ′.
Note that the temporal goal can be pursued again since it was sus-
pended, instead of being dropped. The second condition-action pair
is to activate the temporal goal. Note that the condition of this pair
is the same as the condition of the first pair, but that the firstpair
is applicable only to active goals and the second only to suspended
goals. However, in order to avoid a loop (suspend, activate,sus-
pend, . . .) we impose an additional condition that a suspended goal
of this type cannot be activated again until the plan generated for the
goal has been performed. Formalising this restriction is straightfor-
ward but is omitted for space reasons.

4.2 Life Cycle for Basic Goals
Generic condition-action pairs are also assigned to basic goals

when they are adopted for a temporal goal. As we will see later,
these condition-action pairs implement the generic relation between
beliefs and goals, e.g., an achieve goalA(φ) is dropped whenφ is
believed and a maintain goalM(φ, τ) is dropped ifτ is believed.

Note that the second condition-action pair for basic maintenance

BGoal Condition − Action Pairs λ
A(φ) {〈φ,Drop〉 }
M(φ, τ) {〈¬φ ∧ ¬τ,S uspend〉 , 〈φ ∨ τ, Activate〉 , 〈τ,Drop〉}

Figure 4: Generic Condition-Action Pairs for Basic Goals

goals, which activates the goal, is only applicable to suspended
goals (as defined in the transition rules in Section 5.2). On the
other hand, the last condition-action pair, which drops a basic main-
tenance goal, can only be applied to an active basic maintenance
goal. It should also be observed that our assumption about correct
operationalisation of maintain goals implies that the condition of
the suspend action is never satisfied, and therefore the basic main-
tain goal never gets into the suspended state. This condition-action
pair is used in cases where the assumption that maintenance goals
are correctly operationalised does not hold.

Additionally, a set of domain related condition-action pairs are
assigned to each basic goal. Like temporal goals, domain related
condition-action pairs for basic goals should be used with care
since otherwise they may cause undesirable behavior. The condition-
action pairs for basic goals may seem redundant as they do notcon-
tribute to the operationalisation of temporal goals. However, these
condition-action pairs generalise the presented framework, thus al-
lowing for the design of arbitrary basic goal behaviors, which may
be useful for a variety of domain dependent applications. For ex-
ample, a robot with an achieve goal to be at a certain positionwill
suspend its achieve goal when its battery charge is not sufficient.

5. OPERATIONAL SEMANTICS
The operationalization of goal types is accomplished by opera-

tional semantics, which indicate possible transitions between agent
configurations due to goal processing.

Definition 1 The agent configuration is defined as a tuple〈σ, γt, γb〉,
whereσ is the agent’s belief base (a finite set of propositional
atoms),γt is the temporal goal base (a finite set of triples of the
form (φ, state,∆) whereφ is a temporal formula, state is the state
of the temporal goal (init, active or susp(ended)), and∆ is the set of
condition-action pairs governing the life cycle), andγb is the basic
goal base (a finite set of triples of the form(g, state,∆) where g is
one of A(φ) or M(φ, τ), or M(φ,⊥), and the remaining components
are the same as for the temporal goal base). A(φ) and M(φ, τ) de-
note goals to achieve and maintain the non-temporal formulaφ, re-
spectively. The maintain goal M(φ, τ) has an additional argument,
a propositionτ, that indicates the deadline until whichφ should be
maintained.

The operational semantics defines how the agent pursues com-
plex temporal goals in terms of the pursuit of basic achievement and
maintenance goals. How the agent pursues basic achievementand
maintenance goals is not defined here, and can be found elsewhere
(e.g. [19]). We make assumptions about the pursuit of achieve-
ment and maintenance goals being operationalised correctly, and
then show that, given these assumptions, the semantics given here
correctly achieve complex temporal goals.

5.1 Transition Rules for Temporal Goals
Below, we specify transition rules for individual temporalgoals,

and after that transition rules that lift these to sets of temporal goals.
Letφ be a temporal goal,δd a set of domain related condition-action
pair for φ, andδg(φ) be the set of generic condition-action pairs as
defined in Section 4.1. Letλ be the generic condition-action pair

409

for basic goals as defined in Figure 4. We define+(X, γb) (i.e., γb

extended with basic goalX) as follows (note that we do not add any
domain related condition-action pair to basic goals).

• +(∅, γb) = γb

• +(X, γb) = γb ∪ {(X,active, λ)}
The first two rules below (Adopt1 andAdopt2) define the adop-

tion of a temporal goal (φ, init, δd), firstly in the case where there is
a condition-action pair to suspend the goal while adopting abasic
goal, and secondly where there is no applicable condition-action
pair to suspend the goal (no basic goal is added). Note that inboth
cases, temporal goals are adopted entering in the suspendedstate.
Temporal goals are initially suspended in order to ensure that their
corresponding maintain goal is added to the basic goal base only
in states where their maintain condition is satisfied. This can be
verified by observing the condition-action pairs that add maintain
goals to the basic goal base in Figure 3. Note that the application of
the first transition rule adds a maintain goal to the basic goal base
only for the sixth goal type and only when the condition of theto be
added maintain goal is satisfied. In other cases, the temporal goals
that would add a maintain goal are suspended without adding the
maintain goal to the basic goal base until the maintain conditions
are satisfied.

In contrast to temporal goals, basic goals are adopted in an ac-
tive state (see above in the definition of+(X, γb)). This is because
achieve goals can always be activated, i.e., there is no reason why
they should be suspended at the start. A maintain goal can also start
in an active state since its adoption condition ensures its maintain
condition holds as explained above.

It is also important to notice that in the first two transitionrules
we use generic condition-action pairs only fromδg (and not from
∆). This is because domain related condition-action pairs are only
used for activation and dropping of the goals, not for their adop-
tion. Finally, observe that the first five transition rules allow tran-
sitions from one single temporal goal to a set of temporal goals.
This means that these transition rules cannot be applied consecu-
tively. However, the last transition rule is designed to manage the
processing of a set of temporal goals in terms of transitionsthat are
derivable from the first five transition rules.

〈c,S uspend(X)〉 ∈ δg(φ) σ |= c

〈σ, (φ, init, δd), γb〉 → 〈σ, {(φ, susp, δd ∪ δg(φ))},+(X, γb)〉 Adopt1

¬∃〈c,S uspend(X)〉 ∈ δg(φ) : σ |= c

〈σ, (φ, init, δd), γb〉 → 〈σ, {(φ, susp, δd ∪ δg(φ))}, γb〉 Adopt2

The following rule activates a suspended temporal goal.

〈c, Activate〉 ∈ ∆ σ |= c
〈σ, (φ, susp,∆), γb〉 → 〈σ, {(φ,active,∆)}, γb〉 Activate

The following rule suspends an active temporal goal and (possi-
bly) adds a basic goal to the basic goal base.

〈c,S uspend(X)〉 ∈ ∆ σ |= c

〈σ, (φ,active,∆), γb〉 → 〈σ, {(φ, susp,∆)},+(X, γb)〉 S uspend

The following rule drops a temporal goal and (possibly) addsa
basic goal to the basic goal base.

〈c,Drop(X)〉 ∈ ∆ σ |= c

〈σ, (φ,active,∆), γb〉 → 〈σ, {},+(X, γb)〉 Drop

The following transition rule specifies how the above rules for
single temporal goals (denoted asg) can be lifted to temporal goal

bases. Note that whereasg is a single goal (a tuple),g′ is a set of
goals (either singleton or empty).

g ∈ γt 〈σ,g, γb〉 → 〈σ,g′, γ′b〉
〈σ, γt, γb〉 → 〈σ, (γt \ {g}) ∪ g′, γ′b〉

Lift

5.2 Transition Rules for Basic Goals
The following rules specify the life cycle of a basic goalX. The

DropBasicrule indicates that if a basic goal is in an active state,
then it can be dropped if there is a corresponding condition-action
pair for which the condition is satisfied in the current stateand the
action is a drop action. It should be noted that for a basic achieve-
ment goal we have〈φ,Drop〉, which indicates that the basic goal
A(φ) can be dropped whenφ holds. Similarly, for a basic main-
tain goal we have〈τ,Drop〉, which indicates that the maintain goal
M(φ, τ) can be dropped ifτ holds in the current state.

〈c,Drop〉 ∈ ∆ σ |= c

〈σ, γt, (X,active,∆)〉 → 〈σ, γt, {}〉 DropBasic

The following transition rule (S uspB) specifies that a goal in an
active state can be suspended. Note that the corresponding condition-
action pair for a maintain goal indicates that a maintain goal can be
suspended if neitherφ nor τ hold in the current state.

〈c,S uspend〉 ∈ ∆ σ |= c

〈σ, γt, (X,active,∆)〉 → 〈σ, γt, {(X, susp,∆)}〉 S uspB

The next transition rule is designed to manage the transition of
a basic goal from suspended to active state. Note that the corre-
sponding condition-action pair for a maintain goal states that the
basic maintain goalM(φ, τ) can be activated if eitherφ or τ hold in
the current state.

〈c,Activate〉 ∈ ∆ σ |= c
〈σ, γt, (X, susp,∆)〉 → 〈σ, γt, {(X,active,∆)}〉 ActivB

Finally, as for temporal goals, we have a transition rule that spec-
ifies how the above rules for single basic goals (denoted asg) can
be lifted to basic goal bases. Note again that whereasg is a single
basic goal (a tuple),g′ is a set of basic goals (either singleton or
empty).

g ∈ γb 〈σ, γt, g〉 → 〈σ, γt,g′〉
〈σ, γt, γb〉 → 〈σ, γt, (γb \ {g}) ∪ g′〉 LiftB

5.3 Properties
In the following, we useP to denote the set of non-temporal

propositional formulae, and we use|=, |=cwa, and |=LT L to respec-
tively denote propositional entailment, propositional entailment based
on the closed-world assumption, and LTL entailment.

We define the transition systemΣ to include the rules defined ear-
lier in this section. It is important to observe that the transition sys-
temΣ contains other transition rules in addition to those presented
in sections 5.1 and 5.2. In particular,Σ is assumed to contain transi-
tion rules for action execution, which may change the beliefstates.
As the application of transition rules may be interleaved, possible
belief changes may influence the goal life cycles. One assumption
that we make about the details of transition systemΣ, is that the
rules defined earlier in this section have a higher priority than other
rules. So for instance, if there are two applicable transition rules,
say one for deriving/allowing an action execution transition, and
the other for the application of a condition-action pair of agoal,
then the second transition rule is applied to derive/allow the tran-
sition of goal life cycle. This assumption is crucial to showthe
properties of our transition system in the rest of this section.

410

Definition 2 LetS = 〈σ1, γ1
t , γ

1
b〉 → 〈σ2, γ2

t , γ
2
b〉 → . . . be an infi-

nite sequence of configurations generated by the transitionsystem
Σ. In this sequence, the transition〈σi , γi

t, γ
i
b〉 → 〈σi+1, γi+1

t , γi+1
b 〉 is

derived by the application of a transition rule ofΣ. The sequence
S is called atraceof Σ. The traceS of Σ is called afair traceif it
is generated by afair run of the transition system, that is, a run in
which every transition rule that is enabled infinitely often, is also
applied infinitely often.

Note that every finite trace is a fair trace. Furthermore, theprior-
ity assumption does not affect fairness, since in any given configu-
ration, there is only a finite number of goal-related transitions that
can be applied. In the following, we consider only infinite traces
(which can be guaranteed by adding an “idling” rule that transitions
a configuration to itself if no other transition rules are applicable).
We useσi , γi

b, andγi
t to denote the ingredients of theith state of a

traceS.

Definition 3 Let S be a traceof Σ. We define B(S), called the
belief trace ofS, to be the LTL-trace s= s1s2 . . . (where si is
a state assigning a truth value to each atomic proposition),if the
following condition holds:

∀φ ∈ P,∀i ∈ N : σi |=cwa φ ⇔ si |= φ
Furthermore, observe that sinceφ is non-temporal, we also have
that si |= φ⇔ B(S), i |=LT L φ.

The following proposition states that for every trace thereis one
unique belief trace possible.

Proposition 1 Let S be a trace ofΣ. The belief trace B(S) is
uniquely determined byS.
Proof: This proposition is the direct consequence of matching be-
lief basesσi with states si using the closed-world assumption. I.e.,
state si assigns the truth value of propositions based on their truth
values inσi using closed-world assumption.

Assumption 1 The achieve goal A(φ) is properly operationalized
by a transition system S if the following condition holds forevery
traceS of Σ:

∀i : (A(φ),active,∆) ∈ γi
b ⇒ ∃ j ≥ i : σ j |=cwa φ

Assumption 2 The maintain goal M(φ, τ) is properly operational-
ized by a transition system S if the following condition holds for
every traceS of Σ:

∀i : (M(φ, τ),active,∆) ∈ γi
b⇒

(∃ j ≥ i : σ j |=cwa τ) ∧ (∀ i ≤ k < j : σk |=cwa φ)
or τ = ⊥ ∧ (∀k ≥ i : σk |=cwa φ)

The following propositions show that the operational semantics
defined in section 5 correctly operationalize complex temporal goals
(in γt) using the basic achievement and maintenance goals (inγb).
Generally, correct realisation is the property that if a temporal LTL
formulaχ is in the temporal goal base of statei and is active, for-
mally (χ,active,∆) ∈ γi

t, thenB(S), i |=LT L χ. However, since this
only holds for the particular goal patterns that have been opera-
tionalized, we prove this for each case separately. All propositions
are based on assumptions 1 and 2.

Proposition 2 If (φ,active,∆) ∈ γi
t, then B(S), i |=LT L φ for

all fair tracesS of Σ.
Proof: Case 1: Assume thatσi 6|=cwa φ. By the definition of the
condition-action pairs forφ and the transition rule for Drop, we

have that, sinceφ ∈ γi
t, we must have that A(φ) ∈ γi+1

b . There-
fore by assumption 1 (and definition 3) we have that∃ j ≥ i + 1 :
B(S), j |=LT L φ and hence by the semantics of LTL that B(S), i |=LT L

φ. Case 2: Assume thatσi |=cwa φ. Hence B(S), i |=LT L φ and
trivially B(S), i |=LT Lφ.

The following proposition states that a property can be main-
tained if it already holds.

Proposition 3 If (φ,active,∆) ∈ γi
t andσi |=cwa φ, then B(S), i |=LT L

φ for all fair tracesS of Σ.
Proof: Sinceφ ∈ γi

t, by the definition of the condition-action
rules and the transition rule for Drop, we have that M(φ,⊥) ∈
γi+1

b . By assumption 2 (and definition 3), sinceσi |=cwa φ and
∀ j ≥ i + 1 : σ j |=cwa φ, we have∀ j ≥ i : B(S), j |=LT L φ and
hence B(S), i |=LT L φ.

The following proposition shows thatφU τ is correctly opera-
tionalized. It assumes thatτ , ⊥, sinceφU⊥ is false in LTL.

Proposition 4 If (φU τ, active,∆) ∈ γi
t (whereτ , ⊥), andσi |=cwa

φ, then B(S), i |=LT L φU τ for all fair tracesS of Σ.
Proof (sketch): Since(φU τ) ∈ γi

t, by the definition of the condition-
action pairs and of the transition rules, we have M(φ, τ) ∈ γi+1

b . By
assumption 2 the traceS at configuration i+ 1 satisfies∃ j ≥ i + 1 :
σ j |=cwa τ ∧ ∀k : i + 1 ≤ k < j : σk |=cwa φ. From this condition
together with the definition 3 and the fact that B(S), i |=LT L φ, it is
easy to see that B(S), i |=LT L φU τ.

Proposition 5 If ((τ ∧ φ),active,∆) ∈ γi
t, then B(S), i |=LT L

(τ ∧φ) for all fair tracesS of Σ.
Proof (sketch): We consider two cases in configuration i. Case 1:
σi 6|=cwa φ ∧ τ (eitherφ or τ is not believed in the current configu-
ration). Since(τ ∧φ) ∈ γi

t, by the definition of the condition-
action pairs and of the transition rules, we have A(φ ∧ τ) ∈ γi+1

b .
By assumption 1 (and definition 3), we have that∃ j ≥ i + 1 :
B(S), j |=LT L φ ∧ τ. Since(τ ∧ φ) is never removed from
the temporal goal base (the condition-action pairs always suspend,
and never drop it), we have(τ ∧φ) ∈ γ j

t . By the definition of
the condition-action pairs and of the transition rules, andbecause
σ j |=cwa φ ∧ τ, we have M(φ,⊥) ∈ γ j+1

b . From,σ j |=cwa φ, assump-
tion 2 and the definition 3, we have B(S), j |=LT L φ and hence
B(S), i |=LT L (τ ∧φ). Case 2:σi |=cwa φ ∧ τ. It is easy to see
that the proposition holds in this case by having i= j in the proof
sketch of case 1.

Proposition 6 If ((τ∧(φU τ′)),active,∆) ∈ γi
t, then B(S), i |=LT L

(τ ∧ (φU τ′)) for all fair tracesS of Σ.
Proof (sketch): The proof is similar to the proof of the previous
proposition.

The following proposition assumes thatτ→ φ. The justification
for this assumption is that we want to show that the temporal goal is
correctly realised. In the case whereτ becomes true butφ does not
hold, the temporal goal immediately fails, i.e.nooperationalisation
is able to realise the goal. We thus exclude this case.

Proposition 7 If ((τ→ (φU τ′)),active,∆) ∈ γi
t andτ→ φ, then

B(S), i |=LT L (τ→ (φU τ′)) for all fair tracesS of Σ.
Proof (sketch): We want to show that B(S), i |=LT L (τ→ (φU τ′)),
i.e. that for any j≥ i, we have B(S), j |=LT L (τ → (φU τ′)). There
are two cases. Case 1:σ j 6|=cwa τ. In this case the implication triv-
ially holds. Case 2:σ j |=cwa τ. Sinceτ → φ, we haveσ j |=cwa φ.
Since the temporal goal is always suspended and never dropped,
(τ → (φU τ′)) ∈ γ

j
t for all j ≥ i. Thus, by the definition of

411

the condition-action pairs and of the transition rules, andsince
σ j |=cwa τ ∧ φ, we have M(φ, τ′) ∈ γ j+1

b . By assumption 2 the trace
S at configuration j+ 1 ensures thatφ will be entailed by the belief
base untilτ′ is entailed. Becauseσ j |=cwa φ, traceS at configura-
tion j ensures thatφ is entailed by the belief base untilτ′ is entailed,
i.e. B(S), j |=LT L φU τ′, from which B(S), j |=LT L (τ → (φU τ′))
trivially follows.

6. DISCUSSION
In this paper we built on a temporal logic view of agent goals by

defining new, novel, goal types, and showing how these new goal
types could be operationalized in terms of existing base goal types
(achievement and maintenance). The operationalization isbased
on a goal life cycle where transitions between states of goals are
governed by condition-action pairs. We show that the operational-
ization realizes traces on which the temporal goals are satisfied, as-
suming satisfaction of the basic goal types. Through this wehave
provided a flexible framework for operationalizing rich goal types.
Other goal types can be added by providing their translationto the
basic goal types. Although we have provided several examples in
the paper, future work will have to show which goal types are par-
ticularly useful in practice. This may also depend on the domain
that is modelled.

An important topic for future work to allow gaining more practi-
cal experience with the framework is implementing it on top of con-
ventional agent-oriented programming languages, such as 2APL
[6], Jadex [15], Jason [3], JACK [5] etc. It is interesting tonote
that the proposed framework appears to be a good match with rule-
based systems, as used in Opal [20]. Also, we aim to extend the
framework to include subgoals along the lines of [14], and then
using this as a basis for incorporating goal suspension/resumption
and abortion (based on [17,18]).

7. REFERENCES
[1] F. Bacchus and F. Kabanza. Planning for temporally

extended goals. InProceedings of the 13th National
Conference on Artificial Intelligence (AAAI’96), pages
1215–1222, 1996.

[2] C. Baral and J. Zhao. Non-monotonic temporal logics for
goal specification. InInternational Joint Conference on
Artificial Intelligence (IJCAI), pages 236–242, 2007.

[3] R. H. Bordini, J. F. Hübner, and M. Wooldridge.
Programming multi-agent systems in AgentSpeak using
Jason. Wiley, 2007. ISBN 0470029005.

[4] L. Braubach and A. Pokahr. Representing long-term and
interest BDI goals. InProgramming Multi-Agent Systems
(ProMAS), 2009.

[5] P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas. JACK
Intelligent Agents - Components for Intelligent Agents in
Java. Technical report, Agent Oriented Software Pty. Ltd,
Melbourne, Australia, 1998. Available from
http://www.agent-software.com.

[6] M. Dastani. 2APL: a practical agent programming language.
Autonomous Agents and Multi-Agent Systems,
16(3):214–248, 2008.

[7] M. Dastani, M. B. van Riemsdijk, and J.-J. Ch. Meyer. Goal
types in agent programming. InProceedings of the 17th
European Conference on Artifical Intelligence 2006
(ECAI’06), volume 141 ofFrontiers in Artificial Intelligence
and Applications, pages 220–224. IOS Press, 2006.

[8] S. Duff, J. Harland, and J. Thangarajah. On proactivity and
maintenance goals. InAutonomous Agents and Multi-Agent

Systems (AAMAS), pages 1033–1040, Hakodate, 2006.
[9] E. Emerson. Temporal and modal logic. In J. van Leeuwen,

editor,Handbook of Theoretical Computer Science, volume
B: Formal Models and Semantics, pages 996–1072. Elsevier,
Amsterdam, 1990.

[10] M. Fisher and A. Hepple. Executing logical agent
specifications. In R. H. Bordini, M. Dastani, J. Dix, and
A. El Fallah-Seghrouchni, editors,Multi-Agent
Programming: Languages, Platforms and Applications,
volume 2, chapter 1, pages 3–29. Springer, 2009.

[11] K. Hindriks and M. B. van Riemsdijk. Satisfying
maintenance goals. InDeclarative Agent Languages and
Technologies (DALT’07), volume 4897 ofLNAI, pages
86–103. Springer, 2008.

[12] K. V. Hindriks, W. van der Hoek, and M. B. van Riemsdijk.
Agent programming with temporally extended goals. In
Autonomous Agents and Multi-Agent Systems (AAMAS),
pages 137–144. IFAAMAS, 2009.

[13] S. M. Khan and Y. Lespérance. A logical account of
prioritized goals and their dynamics. In G. Lakemeyer,
L. Morgenstern, and M. A. Williams, editors,Proc. of the 9th
International Symposium on Logical Formalizations of
Commonsense Reasoning, pages 85–90, 2009.

[14] M. Morandini, L. Penserini, and A. Perini. Operational
semantics of goal models in adaptive agents. In C. Sierra,
C. Castelfranchi, K. S. Decker, and J. S. Sichman, editors,
Autonomous Agents and Multi-Agent Systems (AAMAS),
pages 129–136. IFAAMAS, 2009.

[15] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: a BDI
reasoning engine. In R. H. Bordini, M. Dastani, J. Dix, and
A. El Fallah Seghrouchni, editors,Multi-Agent
Programming: Languages, Platforms and Applications.
Springer, Berlin, 2005.

[16] S. Shapiro and G. Brewka. Dynamic interactions between
goals and beliefs. InInternational Joint Conference on
Artificial Intelligence (IJCAI), pages 2625–2630, 2007.

[17] J. Thangarajah, J. Harland, D. Morley, and N. Yorke-Smith.
Aborting goals and plans in BDI agents. InAutonomous
Agents and MultiAgent Systems (AAMAS), 2007.

[18] J. Thangarajah, J. Harland, D. Morley, and N. Yorke-Smith.
Suspending and resuming tasks in intelligent agents. In
Padgham, Parkes, Müller, and Parsons, editors,Autonomous
Agents and Multi-Agent Systems (AAMAS), 2008.

[19] M. B. van Riemsdijk, M. Dastani, and M. Winikoff. Goals in
agent systems: A unifying framework. In Padgham, Parkes,
Müller, and Parsons, editors,Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 713–720. IFAAMAS,
2008.

[20] M. Wang, M. Nowostawski, and M. K. Purvis. Declarative
agent programming support for a FIPA-compliant agent
platform. In R. H. Bordini, M. Dastani, J. Dix, and A. El
Fallah-Seghrouchni, editors,ProMAS, volume 3862 of
LNCS, pages 252–266. Springer, 2005.

[21] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah.
Declarative & procedural goals in intelligent agent systems.
In Proceedings of the Eighth International Conference on
Principles of Knowledge Representation and Reasoning
(KR), Toulouse, France, Apr. 2002.

412

