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ABSTRACT
Many games have undesirable Nash equilibria. For exam-
ple consider a resource allocation game in which two players
compete for an exclusive access to a single resource. It has
three Nash equilibria. The two pure-strategy NE are effi-
cient, but not fair. The one mixed-strategy NE is fair, but
not efficient. Aumann’s notion of correlated equilibrium
fixes this problem: It assumes a correlation device which
suggests each agent an action to take.

However, such a“smart” coordination device might not be
available. We propose using a randomly chosen, “stupid” in-
teger coordination signal. “Smart”agents learn which action
they should use for each value of the coordination signal.

We present a multi-agent learning algorithm which con-
verges in polynomial number of steps to a correlated equilib-
rium of a wireless channel allocation game, a variant of the
resource allocation game. We show that the agents learn to
play for each coordination signal value a randomly chosen
pure-strategy Nash equilibrium of the game. Therefore, the
outcome is an efficient correlated equilibrium. This CE be-
comes more fair as the number of the available coordination
signal values increases.

We believe that a similar approach can be used to reach
efficient and fair correlated equilibria in a wider set of games,
such as potential games.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms, Economics

Keywords
Multiagent Learning, Coordination, Game Theory

1. INTRODUCTION
The concept of Nash equilibrium forms the basis of game

theory. It allows us to predict the outcome of an interaction
between rational agents playing a given game.
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However, many games have undesirable equilibrium struc-
ture. Consider the following resource allocation game: Two
agents are trying to access a single resource. Agents can
choose between two actions: yielding (Y ) or accessing (A).
The resource may be accessed only by one agent at a time. If
an agent accesses the resource alone, she receives a positive
payoff. If an agent does not access the channel, her payoff is
0. If both agents try to access the channel at the same time,
their attempts fail and they incur a cost c.

The payoff matrix of the game looks as follows:

Y A

Y 0, 0 0, 1
A 1, 0 −c, −c

Such a game has two pure-strategy Nash equilibria (NE),
in which one player yields and the other one goes straight.
It has also one mixed-strategy NE, where each player yields
with probability 1

c+1
. The two pure-strategy NE are effi-

cient, in that they maximize the social welfare, but they are
not fair: Only one player gets the full payoff, even though
the game is symmetric. The mixed-strategy NE is fair, but
not efficient: The expected payoff of both players is 0.

In his seminal paper, Aumann ([1]) proposed the notion of
correlated equilibrium which fixes this problem. A correlated
equilibrium (CE) is a probability distribution over the joint
strategy profiles in the game. A correlation device samples
this distribution and recommends an action for each agent
to play. The probability distribution is a CE if agents do not
have an incentive to deviate from the recommended action.

In the simple game described above, there exists a CE
which is both fair and socially efficient: just play the two
pure-strategy NE with probability 1

2
. This corresponds to an

authority which tells each player whether to yield or access
the resource.

Correlated equilibria have several nice properties: They
are easier to find (for a succinct representation of a game, in
polynomial time, [11]) and every Nash equilibrium is a cor-
related equilibrium. Also, any convex combination of two
correlated equilibria is a correlated equilibrium. However, a
“smart”correlation device which randomizes over joint strat-
egy profiles might not always be available.

It is possible to achieve a correlated equilibrium with-
out the actual correlation device. Assume that the game is
played repeatedly, and that agents can observe the history
of actions taken by their opponents. They can learn to pre-
dict the future action (or a distribution of future actions) of
the opponents. These predictions need to be calibrated, that
is, the predicted probability that an agent i will play a cer-
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tain action aj should converge to the actual frequency with
which agent i plays action aj . Agents always play an action
which is the best response to their predictions of opponents’
actions. Forster and Vohra in [5] showed that in such a case,
the play converges to a set of correlated equilibria.

However, in their paper, Foster and Vohra did not provide
a specific learning rule to achieve a certain CE. Furthermore,
their approach requires that every agent were able to observe
actions of every other opponent. If this requirement is not
met, convergence to a correlated equilibrium is not guaran-
teed anymore.

In this paper, we focus on a variant of the resource al-
location game, a game of wireless channel allocation. In
this game, there are N agents who always have some data
to transmit, and there are C channels over which they can
transmit. We assume that N ≥ C. Access to a channel is
slotted, that is, all agents are synchronized so that they start
transmissions at the same time. Also, all transmissions must
have the same length. If more than one agent attempts to
transmit over a single channel, a collision occurs and none
of the transmissions are successful. An unsuccessful trans-
mission has a cost for the agent, since it has to consume
some of its (possibly constrained) power for no benefit. Not
transmitting does not cost anything.

We assume that agents only receive binary feedback. If
they transmitted some data, they find out whether their
transmission was successful. If they did not transmit, they
can choose some channel to observe. They receive informa-
tion whether the observed channel was free or not.

The game has several efficient (but unfair) pure-strategy
Nash equilibria, in which a group of C agents gets assigned
all the channels. The remaining N −C agents get stranded.
It has also a fair but inefficient mixed-strategy NE, in which
agents choose the transmission channels at random. As in
the resource allocation game, there exists a correlated equi-
librium which is efficient and fair.

In this scenario, a global coordination device that would
tell each agent which channel to transmit on is not available.
Imagine that the agents are wireless devices belonging to dif-
ferent organizations. Setting up such a coordination device
would require additional communication before the trans-
missions. Moreover, agents cannot observe all the actions
of their opponents, since the feedback they receive is very
limited. Therefore, they cannot learn the fair and efficient
correlated equilibrium from the history of the play.

We propose a different approach to achieve an efficient
and fair correlated equilibrium in such a game. We do not
want to rely on a complex correlation device which needs to
know everything about the game. Also, we do not want to
rely on the history which may not be observable. Instead,
we assume that agents can observe, before each round of the
game, a randomly chosen integer from a set {0, 1, . . . , K−1}.
For each possible signal value, agents learn which action to
take.

Our correlation signal does not need to know anything
about the game. It does not have to tell agents which action
to take. For example, the agents may just observe noise on
some frequency. This is the principal difference from using
the “smart” coordination device, which is assumed in the
original definition of correlated equilibrium.

The main contributions of this work are the following:

• We propose a learning strategy for agents in the wire-
less channel allocation game which, using minimal in-

formation, converges in polynomial time to a randomly
chosen efficient pure-strategy Nash equilibrium of the
game.

• We show that when the agents observe a common in-
teger correlation signal, they learn to play such an ef-
ficient pure-strategy NE for each signal value. The
result is a correlated equilibrium which is increasingly
fair as the number of available signals K increases.

The rest of the paper is organized as follows: In Section 2,
we present the algorithm agents use to learn an action for
each possible correlation signal value. In Section 3 we prove
that such an algorithm converges to an efficient correlated
equilibrium in polynomial time in the number of agents and
channels. We show that the fairness of the resulting equi-
libria increases as the number of signals K increases in Sec-
tion 4. Section 5 highlights experiments which show the ac-
tual convergence rate and fairness. In Section 6 we present
some related work from game theory and cognitive radio
literature, and Section 7 concludes.

2. LEARNING ALGORITHM
In this section, we describe the algorithm which the agents

will use to learn a correlated equilibrium of the wireless chan-
nel allocation game.

Let us denote the space of available correlation signals
K := {0, 1, . . . , K − 1}, and the space of available channels
C := {1, 2, . . . , C}. Assume that C ≤ N , that is there are
more agents than channels (the opposite case is easier). An
agent i has a strategy fi : K → {0} ∩ C which it uses to
decide which channel it will access at time t when it receives
a correlation signal kt. When fi(kt) = 0, the agent does not
transmit at all for signal kt. The agent stores its strategy
simply as a table.

It adapts the strategy as follows:

1. In the beginning, for each s ∈ K, fi(s) is initialized
uniformly at random from C.

2. At time t, if fi(kt) > 0, the agent tries to transmit
over channel fi(kt). If otherwise fi(kt) = 0, the agent
chooses a random channel mi(t) ∈ C which it will mon-
itor for activity.

3. Subsequently, the agent observes the outcome of its
choice: if the agent transmitted over some channel,
she observes whether the transmission was successful.
If it was, the agent will keep her strategy unchanged.
If a collision occurred, the agent sets fi(kt) := 0 with
probability p.

4. If the agent did not transmit, it observes whether there
was a transmission on the channel mi(t) it monitored.
If that channel was free, the agent sets fi(kt) := mi(t).

3. CONVERGENCE
An important property of the learning algorithm is if, and

how fast it can converge to a pure-strategy Nash equilibrium
of the channel allocation game for every signal value. The
algorithm is randomized. Therefore, instead of analyzing its
worst-case behavior (which may be arbitrarily bad), we will
analyze its expected number of steps before convergence.
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3.1 Convergence for C = 1, K = 1

We prove the following theorem:

Theorem 1. For N agents and C = 1, K = 1, 0 < p < 1,
the expected number of steps before the allocation algorithm
converges to a pure-strategy Nash equilibrium of the channel

allocation game is O
“

1
p(1−p)

log N
”
.

To prove the convergence of the algorithm, it is useful to
describe its execution as a Markov chain.

When N agents compete for a single signal value (a“slot”),
a state of the Markov chain is a vector from {0, 1}N which
denotes which agents are attempting to transmit. For the
purpose of the convergence proof, it is only important how
many agents are trying to transmit, not which agents. This
is because the probability with which the agents back-off
is the same for everyone. Therefore, we can describe the
algorithm execution using the following chain:

Definition 1. A Markov chain describing the execution of
the allocation algorithm for C = 1, K = 1, 0 < p < 1 is
a chain whose state at time t is Xt ∈ {0, 1, . . . , N}, where
Xt = j means that j agents are trying to transmit at time t.

The transition probabilities of this chain look as follows:

P (Xt+1 = N |Xt = 0) = 1 (restart)

P (Xt+1 = 1|Xt = 1) = 1 (absorbing)

P (Xt+1 = j|Xt = i) =

 
i

j

!
pi−j(1− p)j i > 1, j ≤ i

All the other transition probabilities are 0.

We are interested in the number of steps it will take this
Markov chain to first arrive at state Xt = 1 given that it
started in state X0 = N . This would mean that the agents
converged to a setting where only one of them is transmit-
ting, and the others are not. This quantity is known as the
hitting time.

Definition 2. [10] Let (Xt)t≥0 be a Markov chain with
state space I. The hitting time of a subset A ⊂ I is a
random variable HA : Ω → {0, 1, . . .} ∪ {∞} given by

HA(ω) = inf{t ≥ 0 : Xt(ω) ∈ A}
Specifically, we are interested in the expected hitting time

of a set of states A, given that the Markov chain starts in
an initial state X0 = i. We will denote this quantity

kA
i = Ei(H

A).

In general, the expected hitting time of a set of states A
can be found by solving a system of linear equations. Solving
them analytically for our Markov chain is however difficult.
Fortunately, when the Markov chain has only one absorbing
state i = 0, and it can only move from state i to j if i ≥ j,
we can use the following theorem to derive an upper bound
on the hitting time (proved in [12]):

Theorem 2. Let A = {0}. If

∀i ≥ 1 : E(Xt+1|Xt = i) <
i

β

for some β > 1, then

kA
i <

˚
logβ i

ˇ
+

β

β − 1

The Markov chain of our algorithm does not have the
property required by this theorem. The problem is that the
absorbing state is state 1, and from state 0 the chain goes
back to N .

Nevertheless, we can use Theorem 2 to prove the following
lemma:

Lemma 1. Let A = {0, 1}. The expected hitting time of
the set of states A in the Markov chain described in Defini-

tion 1 is O
“

1
p

log N
”
.

Proof. We will first prove that the expected hitting time
of a set A′ = {0} in a slightly modified Markov chain is

O
“

1
p

log N
”
.

Let us define a new Markov chain (Yt)t≥0 with the follow-
ing transition probabilities:

P (Yt+1 = 0|Yt = 0) = 1 (absorbing)

P (Yt+1 = j|Yt = i) =

 
i

j

!
pi−j(1− p)j j ≥ 0, i ≥ 1

Note that the transition probabilities are the same as in
the chain (Xt)t≥0, except for states 0 and 1. From state 1
there is a positive probability of going into state 0, and
state 0 is now absorbing. Clearly, the expected hitting time
of the set A′ = {0} in the new chain is an upper bound on
the expected hitting time of set A = {0, 1} in the old chain.
This is because any path that leads into state 0 in the new
chain either does not go through state 1 (so it happened
with the same probability in the old chain), or goes through
state 1, so in the old chain it would stop in state 1 (but it
would be one step shorter).

If the chain is in state Yt = i, the next state Yt+1 is drawn
from a binomial distribution with parameters (i, 1−p). The
expected next state is therefore

E(Yt+1|Yt = i) = i(1− p)

We can therefore use the Theorem 2 with β := 1
1−p

to

derive that for A′ = {0}, the hitting time is:

kA′
i <

l
log 1

1−p
i
m

+
1

p
≈ O(

1

p
log i)

which is also an upper bound on kA
i for A = {0, 1} in the

old chain.

Lemma 2. The probability hi that the Markov chain de-
fined in Definition 1 enters state 1 before entering state 0,
when started in any state i > 1, is greater than 1− p.

Proof. Calculating the probability that the chain X en-
ters state 1 before state 0 is equal to calculating the hitting
probability , i.e. the probability that the chain ever enters a
given state, for a modified Markov chain where the proba-
bility of staying in state 0 is P (Xt+1 = 0|Xt = 0) = 1. For
a set of states A, let us denote hA

i the probability that the
Markov chain starting in state i ever enters some state in
A. To calculate this probability, we can use the following
theorem (proved in [10]):

Theorem 3. Let A be a set of states. The vector of hit-
ting probabilities hA = (hA

i : i ∈ {0, 1, . . . , N}) is the mini-
mal non-negative solution to the system of linear equations

hA
i =


1 for i ∈ AP

j∈{0,1,...,N} pijh
A
j for i /∈ A
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For the modified Markov chain which cannot leave neither
state 0 nor state 1, computing hA

i for A = 1 is easy, since the
matrix of the system of linear equations is lower triangular.

We’ll show that hi ≥ γ = 1− p for i > 1 using induction.
The first step is calculating hi for i ∈ {0, 1, 2}.

h0 = 0

h1 = 1

h2 = (1− p)2h2 + 2p(1− p)h1 + p2h0

=
2p(1− p)

1− (1− p)2
=

2(1− p)

2− p
≥ 1− p.

Now, in the induction step, derive a bound on hi by as-
suming hj ≥ γ = 1− p for all j < i, j ≥ 2.

hi =
iX

j=0

 
i

j

!
pi−j(1− p)jhj

≥
iX

j=0

 
i

j

!
pi−j(1− p)jγ − ipi−1(1− p)(γ − h1)− pih0

= γ − ipi−1(1− p)(γ − 1) ≥ γ = 1− p.

This means that no matter which state i ≥ 2 the Markov
chain starts in, it will enter into state 1 earlier than into
state 0 with probability at least 1− p.

From Lemma 2, we derive that in the original Markov
chain (where stepping into state 0 meant going into state N),
the chain takes on average 1

1−p
passes through all its states

before it converges into state 1. We know from Lemma 1

that one pass takes in expectation O
“

1
p

log N
”

steps, so

the expected number of steps before reaching state 1 is

O
“

1
p(1−p)

log N
”
. This concludes the proof of Theorem 1.

3.2 Convergence for C ≥ 1, K = 1

Theorem 4. For N agents and C ≥ 1, K = 1, the ex-
pected number of steps before the learning algorithm con-
verges to a pure-strategy Nash equilibrium of the channel

allocation game is O
“
C 1

1−p

h
1
p

log N + C
i”

.

Proof. In the beginning, in at least one channel, there
can be at most N agents who want to transmit. It will take

on average O
“

1
p

log N
”

steps to get to a state when either

1 or 0 agents transmit (Lemma 1). We will call this period
a round.

If all the agents backed off, it will take them on average
at most C steps before some of them find an empty channel.
We call this period a break.

The channels might oscillate between the “round” and
“break” periods in parallel, but in the worst case, the whole
system will oscillate between these two periods.

For a single channel, it takes on average O
“

1
1−p

”
oscil-

lations between these two periods before there is only one
agent who transmits in that channel. For C ≥ 1, it takes on

average O
“
C 1

1−p

”
steps between“round”and“break”before

all channels have only one agent transmitting. Therefore, it

will take on average O
“
C 1

1−p

h
1
p

log N + C
i”

steps before

the system converges.

3.3 Convergence for C ≥ 1, K ≥ 1

To show what is the convergence time when K > 1, we
will use a more general problem. Imagine that there are K
identical instances of the same Markov chain. We know that
the original Markov chain converges from any initial state to
an absorbing state in expected time T . Now imagine a more
complex Markov chain: In every step, it selects uniformly
at random one of the K instances of the original Markov
chain, and executes one step of that instance. What is the
time Tall before all K instances converge to their absorbing
states?

This is an extension of the well-known Coupon collec-
tor’s problem ([4]). We will prove the following rough upper
bound:

Lemma 3. Let there be K instances of the same Markov
chain which is known to converge to an absorbing state in
expectation in T steps. If we select randomly one Markov
chain instance at a time and allow it to perform one step of
the chain, it will take on average E[Tall] = O(K2T ) steps
before all K instances converge to their absorbing states.

Proof. Let Ri be the number of steps of the joint Markov
chain after which the instance i converges (by joint Markov
chain we mean the chain that selects randomly an instance
to perform one step). We are interested in

E [Tall] = E

»
max

i∈{1,...,K}
Ri

–
For this, it holds that

E

»
max

i∈{1,...,K}
Ri

–
≤ E

"
KX

i=1

Ri

#
=

KX
i=1

E [Ri]

For ∀i, E[Ri] = KT , because an instance i is selected in
every step with probability 1

K
, and it takes it in expectation

T steps to converge. Therefore, E[Tall] ≤ K2T .

For arbitrary C ≥ 1, K ≥ 1, the following theorem follows
from Theorem 4 and Lemma 3:

Theorem 5. For N agents and C ≥ 1, K ≥ 1, 0 < p < 1,
the expected number of steps before the learning algorithm
converges to a pure-strategy Nash equilibrium of the channel
allocation game for every k ∈ K is

O

„
K2C

1

1− p

»
C +

1

p
log N

–«
.

From [1] we know that any Nash equilibrium is a corre-
lated equilibrium, and any convex combination of correlated
equilibria is a correlated equilibrium. We also know that all
the pure-strategy Nash equilibria that the algorithm con-
verges to are efficient: there are no collisions, and in every
channel for every signal value, some agent transmits. There-
fore, we conclude the following:

Theorem 6. The learning algorithm defined in Section 2
converges in expected polynomial time (with respect to K, C,
1
p
, 1

1−p
and log N) to an efficient correlated equilibrium of

the wireless channel allocation game.
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Figure 1: Average number of steps to convergence
for N = 64, K = N and C ∈ {1, 2, . . . , N}.

4. FAIRNESS
Agents decide independently for each value of the coordi-

nation signal (a “slot”). Therefore, every agent has an equal
chance that the game converges to an equilibrium which is
favorable to her. If the agent can transmit in the resulting
equilibrium for a given signal value, we say that the agent
wins the slot. For C available channels and N agents, an
agent wins a given slot with probability C

N
(since no agent

can transmit in two channels at the same time).
We can describe the number of slots won by an agent i as

a random variable Xi. This variable is distributed according
to a binomial distribution with parameters

`
K, C

N

´
.

As a measure of fairness, we use the Jain index ([7]). For
a random variable X, the Jain index is the following:

J(X) =
(E[X])2

E[X2]

When X is distributed according to a binomial distribu-
tion with parameters (K, C

N
), its first and second moments

are

E[X] = K · C

N

E
ˆ
X2˜ =

„
K · C

N

«2

+ K · C

N
· N − C

N
,

so the Jain index is

J(X) =
C ·K

C ·K + (N − C)
.

For the Jain index it holds that 0 < J(X) ≤ 1. An allo-
cation is considered fair if J(X) = 1.

Theorem 7. For any C, if K = ω
`

N
C

´
, that is the limit

limN→∞ N
C·K = 0, then

lim
N→∞

J(X) = 1,

so the allocation becomes fair as N goes to ∞.

Proof. The theorem follows from the fact that

lim
N→∞

J(X) = lim
N→∞

C ·K
C ·K + (N − C)
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2
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K = 2N

Figure 2: Average number of steps to convergence
for C = N

2
and varying K.

For this limit to be equal to 1, we need

lim
N→∞

N − C

C ·K = 0

which holds exactly when K = ω
`

N
C

´
(note that we assume

that C ≤ N).

5. EXPERIMENTAL RESULTS

5.1 Convergence
First, we are interested in the convergence of our alloca-

tion algorithm. From Section 3 we know that it is polyno-
mial. How many steps does the algorithm need to converge
in practice?

Figure 1 presents the average number of convergence steps
for N = 64, S = N and increasing number of available
channels C ∈ {1, 2, . . . , N}. Interestingly, the convergence
takes the longest time when C = N . The lowest convergence
time is for C = N

2
, and for C = 1 it increases again.

What happens when we change the size of the signal space K?
Figure 2 shows the number of convergence steps in that case,
for increasing number of agents in the system. Note that
this graph uses a double logarithmic scale, so a straight line
denotes polynomial, rather than linear dependence of the
number of convergence steps on N .

5.2 Fairness
From Section 4, we know that when K = ω

`
N
C

´
, the Jain

fairness index converges to 1 as N goes to infinity. But how
fast is this convergence? How big do we need to choose K,
depending on N and C, to achieve a reasonable bound on
fairness?

Figure 3 shows the Jain index as N increases, for C = 1
and C = N

2
respectively, for various settings of K. Even

though every time when K = ω
`

N
C

´
the Jain index in-

creases, there is a marked difference between the various
settings of K.

5.3 Optimizing Fairness
We saw how fair the outcome of the allocation algorithm is

when agents consider the game for each slot independently.
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Figure 3: Jain fairness index for different settings of C and K, for increasing N .

However, is it the best we can do? Can we further improve
the fairness, when each agent correlates her decisions for
different signal values?

In a perfectly fair solution, every agent wins (and conse-
quently can transmit) for the same number of slots. How-
ever, we assume that agents do not know how many other
agents there are in the system. Therefore, the agents do not
know what is their fair share of slots to transmit in. Nev-
ertheless, they can still use the information in how many
slots they already transmitted to decide whether they should
back-off and stop transmitting when a collision occurs.

Definition 3. For a strategy fi of an agent i, we define its
cardinality as the number of signals for which this strategy
tells the agent to transmit:

|fi| = |{k ∈ K|fi(k) > 0}|

Intuitively, agents whose strategies have higher cardinality
should back-off more often than those with a strategy with
low cardinality.

We compare the following variations of the channel allo-
cation scheme, which differ from the original one only in the
probability with which agents back off on collisions:

Constant Our scheme; Every agent backs off with the same
constant probability p.

Linear The back-off probability is p = |fi|
K

.

Exponential The back-off probability is p = γ

“
1− |fi|

K

”
for

some parameter 0 < γ < 1.

Worst-agent-last In case of a collision, the agent who has
the lowest |fi| does not back off. The others who col-
lided, do back off. This is a greedy algorithm which
requires more information than what we assume that
the agents have.

To compare the fairness of the allocations in experiments,
we need to define the Jain index of an actual allocation. For

an allocation X = (X1, X2, . . . , XN ), its Jain index is:

J(X) =

“PN
i=1 Xi

”2

N ·PN
i=1 X2

i

Figure 4 shows the average Jain fairness index of an allo-
cation for the back-off probability variations. The fairness
is approaching 1 for the worst-agent-last algorithm. It is
the worst if everyone is using the same back-off probabil-
ity. As the ratio between the back-off probability of the
lowest-cardinality agent and the highest-cardinality agent
decreases, the fairness increases.

This shows that we can improve fairness by using different
back-off probabilities. Nevertheless, the shape of the fairness
curve is the same for all of them. Furthermore, the exponen-
tial back off probabilities lead to much longer convergence,
as shown on Figure 5.

6. RELATED WORK
Broadly speaking, in this paper we are interested in games

where the payoff an agent receives from a certain action is
inversely proportional to the number of other agents who
chose the same action. How can we achieve efficient and fair
outcome in such games? Variants of this problem have been
studied in several previous works.

The simplest such variant is the Minority game ([3]). In
this game, N agents have to simultaneously choose between
two actions. Agents who chose an action which was cho-
sen by a minority of agents receive a payoff of 1, whereas
agents whose action choice was in majority receive a payoff
of 0. This game has many pure-strategy Nash equilibria, in
which some group of

¨
N−1

2

˝
agents chooses one action and

the rest choose the other action. Such equilibria are efficient,
since the largest possible number of agents achieve the max-
imum payoff. However, they are not fair: the payoff to the
losing group of agents is always 0. This game has also one
mixed-strategy NE which is fair: every agent chooses its ac-
tion randomly. This equilibrium, on the other hand, is not
efficient: the expected size of the minority group is lower
than

¨
N−1

2

˝
due to variance of the action selection.
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Figure 4: Jain fairness index of the channel al-
location scheme for various back-off probabilities,
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2
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Savit et al. ([13]) show that if the agents receive feed-
back on which action was in the minority, they can learn to
coordinate better to achieve a more efficient outcome in a
repeated minority game. They do this by basing the agents’
decisions on the history of past iterations. Cavagna [2] shows
that the same result can be achieved when agents base their
decisions on the value of some random coordination signal
instead of using the history. This is a direct inspiration for
our work.

The ideas from the literature on Minority games have re-
cently found their way into the cognitive radio literature.
Mahonen and Petrova [8] present a channel allocation prob-
lem much like ours. The agents learn which channel they
should use using a strategy similar to the strategies for mi-
nority games. The difference is that instead of preferring
the action chosen by the minority, in the channel allocation
problem, an agent prefers channels which were not chosen by
anyone else. Using this approach, Mahonen and Petrova are
able to achieve a stable throughput of about 50% even when
the number of agents who try to transmit over a channel
increases. However, each agent is essentially choosing one
out of a fixed set of strategies, which they cannot adapt.
Therefore, it is very difficult to achieve a perfectly efficient
channel allocation.

Another, more general variant of our problem, called dis-
persion game was described by Grenager et al. in [6]. In a
dispersion game, agents can choose from several actions, and
they prefer the one which was chosen by the smallest number
of agents. The authors define a maximal dispersion outcome
as an outcome where no agent can move to an action with
fewer agents. The set of maximal dispersion outcomes cor-
responds to the set of pure-strategy Nash equilibria of the
game. They propose various strategies to converge to a max-
imal dispersion outcome, with different assumptions on the
information available to the agents. On the contrary with
our work, the individual agents in the dispersion games do
not have any particular preference for the actions chosen or
the equilibria which are achieved. Therefore, there are no
issues with achieving a fair outcome.

Verbeeck et al. [14] use reinforcement learning, namely
linear reward-inaction automata, to learn Nash equilibria
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Figure 5: Convergence steps for various back-off
probabilities.

in common and conflicting interest games. For the class
of conflicting interest games (to which our wireless channel
allocation game belongs), they propose an algorithm that
allows the agents to circulate between various pure-strategy
Nash equilibria, so that the outcome of the game is fair. In
contrast with our work, their solution requires more commu-
nication between agents, and it requires the agents to know
when the strategies converged. In addition, linear reward-
inaction automata are not guaranteed to converge to a PSNE
in conflicting interest games; they may only converge to pure
strategies.

All the games discussed above, including the wireless chan-
nel allocation game, form part of the family of potential
games introduced by Monderer and Shapley ([9]). A game
is called a potential game if it admits a potential function.
A potential function is defined for every strategy profile,
and quantifies the difference in payoffs when an agent uni-
laterally deviates from a given strategy profile. There are
different kinds of potential functions: exact (where the dif-
ference in payoffs to the deviating agent corresponds directly
to the difference in potential function), ordinal (where just
the sign of the potential difference is the same as the sign of
the payoff difference) etc.

Potential games have several nice properties. The most
important is that any pure-strategy Nash equilibrium is just
a local maximum of the potential function. For finite poten-
tial games, players can reach these equilibria by unilaterally
playing the best-response, no matter what initial strategy
profile they start from.

The existence of a natural learning algorithm to reach
Nash equilibria makes potential games an interesting candi-
date for our future research. We would like to see to which
kind of correlated equilibria can the agents converge there,
if they can use a simple correlation signal to coordinate.

7. CONCLUSIONS
In this paper, we proposed a new approach to reach de-

sirable correlated equilibria in games. Instead of using a
“smart” coordination device, as the original definition of CE
assumes, we use “stupid” signal, a random integer k taken
from a set K = {0, 1, . . . , K − 1}, which has no a priori re-
lation to the game. Agents then are “smart”: they learn,
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for each value of the coordination signal, which action they
should take.

We showed a learning strategy which, for a variant of
a wireless channel allocation game, converges in expected
polynomial number of steps to an efficient correlated equi-
librium. We also proved that this equilibrium becomes in-
creasingly fair as K, the number of available synchroniza-
tion signals, increases. We have confirmed both the fast
convergence as well as increasing fairness with increasing K
experimentally.

In the future work, we would like to see whether this ap-
proach (“stupid” coordination signal and “smart” learning
agents) can help to reach desirable correlated equilibria of
other games, such as potential games.
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