
Game Theory-Based Opponent Modeling in Large
Imperfect-Information Games∗

Sam Ganzfried and Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
{sganzfri, sandholm}@cs.cmu.edu

ABSTRACT
We develop an algorithm for opponent modeling in large
extensive-form games of imperfect information. It works by
observing the opponent’s action frequencies and building an
opponent model by combining information from a precom-
puted equilibrium strategy with the observations. It then
computes and plays a best response to this opponent model;
the opponent model and best response are both updated
continually in real time. The approach combines game-
theoretic reasoning and pure opponent modeling, yielding
a hybrid that can effectively exploit opponents after only a
small number of interactions. Unlike prior opponent mod-
eling approaches, ours is fundamentally game theoretic and
takes advantage of recent algorithms for automated abstrac-
tion and equilibrium computation rather than relying on
domain-specific prior distributions, historical data, or a hand-
crafted set of features. Experiments show that our algorithm
leads to significantly higher win rates (than an approximate-
equilibrium strategy) against several opponents in limit Texas
Hold’em — the most studied imperfect-information game
in computer science — including competitors from recent
AAAI computer poker competitions.

Categories and Subject Descriptors
I.2.m [Computing Methodologies]: Artificial Intelligence

General Terms
Algorithms, Economics

Keywords
Game theory, multiagent learning

1. INTRODUCTION
While much work has been done in recent years on ab-

stracting and computing equilibria in large extensive-form

∗This material is based upon work supported by the Na-
tional Science Foundation under IIS grants 0905390 and
0964579. We also acknowledge Intel Corporation and IBM
for their machine gifts.

Cite as: Game Theory-Based Opponent Modeling in Large Imperfect-
Information Games, Sam Ganzfried and Tuomas Sandholm, Proc. of
10th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.),
May, 2–6, 2011, Taipei, Taiwan, pp. 533-540.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

games, relatively little work has been done on exploiting sub-
optimal opponents (aka opponent modeling). While playing
an equilibrium guarantees at least the value of the game in
a two-player zero-sum game, often much higher payoffs can
be obtained by deviating from equilibrium to exploit oppo-
nents who make significant mistakes. For example, against
a poker opponent who always folds, the strategy of always
raising will perform far better than any equilibrium strategy
(which will sometimes fold with bad hands).

Texas Hold’em poker has emerged as the main testbed
for evaluating algorithms in extensive-form games. In ad-
dition to its tremendous popularity, it also contains enor-
mous strategy spaces, imperfect information, and stochastic
events; such elements also characterize most of the chal-
lenging problems in computational game theory and multia-
gent systems. In light of these factors and the AAAI annual
computer poker competition, poker has emerged as an im-
portant, visible challenge problem for AI as a whole, and
multiagent systems in particular.

It is worth noting, however, that a fair amount of prior
work has been done on opponent exploitation in significantly
smaller games. For example, Hoehn et al. [7] run experi-
ments on Kuhn poker, a small two-player poker variant with
about 20 states in its game tree. Recent work has also been
done on opponent exploitation in rock-paper-scissors [12]
and the repeated prisoners’ dilemma [2]. However, these
algorithms do not scale to large games. In contrast, the
game tree of limit Texas hold’em has about 1018 states.

A potential drawback of evaluating algorithms on one spe-
cific problem is that we run the risk of developing algorithms
that are so game specific that they will not generalize to
other settings. Heeding this risk, in this work we abandon
many of the game-specific assumptions taken by prior ap-
proaches. Rather than relying on massive databases of hu-
man poker play [3, 14] and expert-generated features or prior
distributions [7, 16], we will instead rely on game-theoretic
concepts such as Nash equilibrium and best response, which
apply to all games.

In addition, we require our algorithms to operate effi-
ciently in real time (online), as opposed to algorithms that
perform offline computations assuming they have access to
a large number of samples of the opponent’s strategy in ad-
vance [9, 13]. That prior work also assumed access to his-
torical data which included the private information of the
opponents (i.e., their hole cards) even when such informa-
tion was only observed by the opponent. In many multiagent
settings, an agent must play against opponents about whom
he has little to no information in advance, and must learn to

533

exploit weaknesses in a small number of interactions. Thus,
we assume we have no prior information on our opponent’s
strategy in advance, and our algorithms will operate online.

Our main algorithm, called Deviation-Based Best Response
(DBBR), works by noting deviations between the opponent’s
strategy and that of a precomputed approximate equilibrium
strategy, and constructing a model of the opponent based
on these deviations. Then it computes and plays a best re-
sponse to this opponent model (in real time). Both the con-
struction of the opponent model and the computation of a
best response take time linear in the size of the game tree and
can be performed quickly in practice. As discussed above, we
evaluate our algorithm empirically on limit Texas Hold’em;
it achieves significantly higher win rates against several op-
ponents — including competitors from recent AAAI com-
puter poker competitions — than an approximate equilib-
rium strategy does.

2. GAME THEORY BACKGROUND
In this section, we review relevant definitions and results

from game theory.

2.1 Extensive-form games
An extensive-form game is a general model of multiagent

sequential decision-making with imperfect information1. As
with perfect-information games, extensive-form games con-
sist primarily of a game tree; each non-terminal node has
an associated player (possibly chance) that makes the de-
cision at that node, and each terminal node has associated
utilities for the players. Additionally, game states are parti-
tioned into information sets, Ii ∈ Ii, where a player cannot
distinguish among the states in the same information set.
Therefore, the player whose turn it is to move must choose
actions with the same distribution at each state in the in-
formation set.

In this paper, we will only concern ourselves with two-
player, zero-sum2, extensive-form games (though our algo-
rithm extends naturally to multiplayer and non-zero-sum
games as well). Furthermore, we will make the standard
assumption of perfect recall : no player forgets information
that he previously knew.

A history, h ∈ H, is a sequence of actions. A (mixed) strat-
egy for player i, σi, is a function that assigns a probability
distribution over all actions at each information set belong-
ing to i; by convention the opponent’s strategy is denoted
σ−i. Let Σi denote the (mixed) strategy space of player i.
A strategy profile σ is a vector of strategies, one for each
player.

In this paper we will assume that the moves of all players
other than chance are observed by all players; for example,
in poker all moves other than the initial dealing of the cards
are publicly observed. In this setting, we can partition all
game states into public history sets, PHi, where states in
the same public history set correspond to the same history
of publicly observed actions. Note that each public history
set must consist of a set of information sets of player i. For
public history set n ∈ PHi, let An denote the set of actions
of player i at n. In general when we omit subscripts, player

1Much of our description of extensive-form games is adapted
from [11].
2An extensive-form game is zero-sum if the sum of the pay-
offs at each terminal node equals zero.

i will be implied.

2.2 Best responses and Nash equilibria
Player i’s best response to σ−i is any strategy in

arg max
σ′
i∈Σi

ui(σ
′
i, σ−i).

A Nash equilibrium is a strategy profile σ such that σi is a
best response to σ−i for all i. An ε-equilibrium is a strategy
profile in which each player achieves a payoff of within ε of
his best response. Formally, an ε-equilibrium is a strategy
profile σ∗ such that, for all i, we have

ui(σ
∗
i , σ
∗
−i) ≥ max

σi∈Σi
ui(σi, σ

∗
−i)− ε.

All finite games have at least one Nash equilibrium. In the
case of zero-sum extensive-form games with perfect recall,
there are efficient techniques for finding an ε-equilibrium,
such as linear programming (LP) [10], the excessive gap
technique (EGT) [6], and counterfactual regret minimiza-
tion (CFR) [17]. However, the latter two scale to much
larger games; they scale to 1012 states in the game tree,
while the best current LP techniques do not scale beyond
108 states.

Best responses can be computed much more efficiently
than Nash equilibria. Computing a best response involves
a single matrix-vector multiplication followed by a traversal
up the game tree, both of which take linear time in the size
of the game tree.

2.3 Abstraction
Despite the tremendous progress in equilibrium-finding in

recent years, many interesting real-world games (such as
poker) are so large that even the best algorithms have no
hope of computing an equilibrium directly. The standard
approach of dealing with this is to apply an abstraction al-
gorithm, which constructs a smaller game that is similar to
the original game; then the smaller game is solved, and its
solution is mapped to a strategy profile in the original game.
The approach has been applied to two-player Texas Hold’em
poker, first with a manually generated abstraction [1], and
currently with abstraction algorithms [4]. Many abstraction
algorithms work by coarsening the moves of chance, collaps-
ing several information sets of the original game into single
information sets of the abstracted game. We will sometimes
refer to information sets in abstracted games as buckets.

The game tree of limit Texas hold’em has about 1018

states, and recent solution techniques can compute approx-
imate equilibria for abstractions with up to 1012 states [5,
17]. Such algorithms typically take several weeks to compute
an ε-equilibrium for reasonably small ε. On the other hand,
best responses in such an abstraction can be computed in
about an hour. If coarser abstractions are used, best re-
sponses can be computed in minutes or even seconds, and
can potentially be used as a subroutine in adaptive real-time
algorithms.

3. IMPOSSIBILITY OF SAFE
EXPLOITATION

While deviating from equilibrium to exploit an opponent
can often lead to a significantly higher payoff, it also runs
the risk that the exploitative strategy can itself become ex-
ploitable. For example, the opponent could play a certain

534

strategy for several iterations to trick the exploiter, then
exploit him in turn; this is referred to as the get-taught-and-
exploited problem [15].

One might think that this problem can be avoided by only
risking the amount won so far. For example, suppose we are
repeating a two-player zero-sum game (with value zero) 100
times, and have won $50 so far through 50 iterations. Then
if we attempt to exploit the opponent for the next 50 iter-
ations by playing a strategy with exploitability at most $1
per iteration, it appears that we may be able to safely ex-
ploit the opponent by deviating from equilibrium while still
guaranteeing the value of the game. Unfortunately, this in-
tuition is not correct; it is possible that the opponent was
in fact playing an equilibrium all along and that we were
just lucky for the first 50 iterations. If we then deviate from
equilibrium, our overall strategy could actually have a nega-
tive payoff in expectation against an equilibrium opponent.
Formally:

Proposition 1. It is not possible to exploit an opponent
by deviating from equilibrium while simultaneously guaran-
teeing obtaining the value of the game in expectation.

Thus, we must turn to algorithms that are exploitable to
some extent in the worst case if we hope to exploit the op-
ponent more than any equilibrium strategy does.

4. DBBR: AN EFFICIENT REAL-TIME
OPPONENT MODELING ALGORITHM

In this section we present our algorithm, Deviation-Based
Best Response (DBBR). It works by observing the oppo-
nent’s action frequencies over the course of game, then us-
ing these observations to construct a model of the opponent’s
strategy. Essentially, we would like to conservatively assume
that the opponent is playing the best (i.e., least exploitable)
strategy that is consistent with our observations of his play.
The obvious way to accomplish this would be to add linear
constraints to the LP for finding an equilibrium [10] that
force the opponent model to conform with our observations.
However, as discussed in Section 2.3, such a computation
could take several weeks, and would not be practical for
real-time play in large games.

To obtain a more practical algorithm, we must find a faster
way of constructing an opponent model from our observa-
tions. DBBR constructs the model by noting deviations of
our opponent’s observed action frequencies from equilibrium
frequencies. For example, in poker suppose an equilibrium
strategy raises 50% of the time when first to act, while the
opponent raises only 30% of the time. While the opponent
might be raising any 30% of hands, a safe guess might be
to assume that he is raising his ‘best’ 30% of hands; we can
construct such a strategy by starting with the equilibrium
strategy, then removing the ‘worst’ 20% of hands from the
raising range. Our algorithm is based on this intuition.

4.1 Overview of the algorithm
Pseudocode for a high-level overview of DBBR is given in

Algorithm 1. In the first step, an approximate equilibrium
σ∗ of the game is precomputed offline. Next, when the game
begins, the frequencies of the opponent’s actions at different
public history sets are recorded. These are used to compute
the opponent’s posterior action probabilities: the probabil-
ities with which he chooses each action at each public his-
tory set n ∈ PH−i. (We say that the elements of PH−i are

numbered according to breadth-first-search (BFS) traversal
order.) Next, we compute the probability the opponent is in
each bucket at n given our model of his play so far; we refer
to these probabilities as the posterior bucket probabilities.
We then compute a full model of the opponent’s strategy by
considering the deviations between the opponent’s posterior
action probabilities and those of σ∗ at n. Based on these
deviations, we iterate over all buckets and shift weight away
from the action probabilities in σ∗ until we obtain a strategy
consistent with our model of the opponent’s action probabil-
ities. Finally, after we have iterated over all public history
sets, we compute a best response to the opponent model.
The next subsections will discuss the different components
of the algorithm in detail.

Algorithm 1 High-level overview of DBBR

Compute an approximate equilibrium of the game.
Maintain counters from observing opponent’s play
throughout the match.
for n = 1 to |PH−i| do

Compute posterior action probabilities at n.
Compute posterior bucket probabilities at n.
Compute full model of opponent’s strategy at n.

end for
return Best response to the opponent model.

4.2 Computing posterior action probabilities
In the course of our play against the opponent, we observe

how often he chooses each action a at each public history
set n; we denote this quantity by cn,a. One idea would be
to assume the opponent will play action a with probability

cn,a∑
a′ cn,a′

.

However, doing this could be problematic for a few reasons.
First, we might not have any observations at a given set
n, in which case this quantity would not even be defined.
More generally, the quality of our observations might vary
dramatically between public history sets; for example, we
have a lot more confidence in sets for which we have 1000
observations than sets for which we have just 1 or 2, and we
would like our algorithm to reflect this. A similar observa-
tion was the motivation behind a recent paper [8], though
that work assumed that the opponent’s private information
was observable.

Our algorithm works by choosing a combination of the ob-
served probability and the probability under the equilibrium
strategy σ∗, where the weight on the observed frequencies is
higher at public history sets for which we have more obser-
vations. Specifically, we use a Dirichlet prior distribution,
where we assume we have seen Nprior fictitious hands at the
given public history set for which the opponent played ac-
cording to σ∗. Let p∗n,a denote the probability that σ∗ plays
action a at public history set n. We compute the posterior
action probabilities, αn,a, as follows:

αn,a =
p∗n,a ·Nprior + cn,a

Nprior +
∑
a′ cn,a′

. (1)

4.3 Computing posterior bucket probabilities
Since we are constructing the model of the opponent’s

strategy using a BFS ordering of the public history sets,

535

we assume that we have already set his strategy for all an-
cestors of the current set n (including the parent n′). Let
sn′,b,a denote our model of the probability that the oppo-
nent plays his portion of the strategy sequence leading to n′,
then chooses action a in bucket b at state n′; this quantity
has already been computed by the time we get to n in the
algorithm. We can use these probabilities to construct the
posterior probability, βn,b, that the opponent is in bucket b
(i.e., in poker, the opponent has those private cards) at pub-
lic history set n. Pseudocode for this procedure is given in
Algorithm 2, where hb denotes the probability that chance
makes the moves needed to put the opponent in bucket b.

Algorithm 2 ComputeBucketProbs(n)

for b = 1 to |Bn| do
n′ ← parent(n)
a← action taken to get from n′ to n.
βn,b ← hb · sn′,b,a

end for
Normalize the values βn so they sum up to 1.

4.4 Computing the opponent model
In this section we will present three different techniques for

computing the opponent model. Recall that our high-level
goal is to compute the ‘best’ (i.e., least exploitable) strategy
for the opponent that is consistent with our observations of
his behavior. We could accomplish this by performing an
equilibrium-like computation; however, such a computation
is too challenging to be performed in real time.

Rather than find the strategy consistent with our observa-
tions that is least exploitable, we will instead find the strat-
egy that is ‘closest’ to the precomputed equilibrium. It turns
out that this can be accomplished efficiently in practice, and
intuitively we would expect strategies closer to equilibrium
to be less exploitable.

4.4.1 Weighted L1-distance minimization
Recall that the L1 distance between two vectors x and y

is defined as

||x− y||1 =

k∑
i=1

|xi − yi|. (2)

While this function treats all indices of the vector equally,
in some cases we might want to put more weight on some
components than on others. If p is a probability distribution
over the integers from 1 to k, we define the weighted L1

distance between x and y as

k∑
i=1

pi · |xi − yi|. (3)

Now, suppose we are at public history set n, where βn,b
denotes the posterior probability that we are in bucket b, as
computed by Algorithm 2. If we let the yi’s in Equation 3
correspond to the equilibrium probabilities of taking each
action, and let the pi’s correspond to the βn,b’s, then we
can formulate the problem of finding the strategy closest to
the precomputed equilibrium, subject to the posterior action
probabilities αn,a, as an L1-distance minimization problem.

Formally, we can formulate the optimization problem as
follows, for a given public history set n:

minimize
∑
b∈Bn

∑
a∈An

[
βn,b · |xn,b,a − σ∗n,b,a|

]
(4)

subject to
∑
b∈Bn

[βn,b · xn,b,a] = αn,a for all a ∈ An∑
a∈An

xn,b,a = 1 for all b ∈ Bn

0 ≤ xn,b,a ≤ 1 for all a ∈ An, b ∈ Bn
Recall that Bn denotes the set of all buckets we could

be in at public history set n, while An denotes the set of
actions at n. The variables xn,b,a correspond to the model
of the opponent’s strategy that we are trying to compute.
Note that we can do this optimization separately for each
public history set n; it makes more sense to do many smaller
optimizations than to do a huge one for all public history
sets at once, since the computations of the actions taken at
different states do not depend on each other.

So as discussed above, we will perform a separate opti-
mization at each n according to the program of Equation 4.
It turns out that this can be cast as a linear program (LP)
and solved efficiently using CPLEX’s dual simplex algorithm
for solving LPs. Doing this for each public history set n
yields the opponent model x. Note that the program could
have many solutions, and that CPLEX will just output the
first solution it encounters (and not necessarily the solu-
tion that performs best in practice). This means that there
might actually exist a strategy that minimizes L1 distance
from equilibrium that performs better in practice than the
strategy output by CPLEX.

4.4.2 Weighted L2-distance minimization
While Section 4.4.1 uses the weighted L1 distance to mea-

sure the proximity of two strategies, we could also use other
distance metrics. In this section we will consider another
common distance function: the weighted L2 distance.

Similarly to Equation 2, the L2 distance between x and y
is defined as

||x− y||2 =

√√√√ k∑
i=1

(xi − yi)2. (5)

Analogously to the L1 case, we define the weighted L2

distance between x and y as√√√√ k∑
i=1

pi · (xi − yi)2. (6)

The new program for computing the opponent model at
n is the following:

minimize
∑
b∈Bn

∑
a∈An

[
βn,b · (xn,b,a − σ∗n,b,a)2] (7)

subject to
∑
b∈Bn

[βn,b · xn,b,a] = αn,a for all a ∈ An∑
a∈An

xn,b,a = 1 for all b ∈ Bn

0 ≤ xn,b,a ≤ 1 for all a ∈ An, b ∈ Bn
Note that we can omit the square root, since it is a mono-

tonic operator. The resulting formulation in Equation 7 is a

536

quadratic program (QP), which can also be solved efficiently
in practice using CPLEX. As in the L1 case, we can for-
mulate and solve a separate optimization problem for each
public history set n to compute the opponent model x.

4.4.3 Our custom weight-shifting algorithm
While the previous two sections described how to compute

an opponent model using two popular distance functions,
perhaps we can do even better by designing our own custom
algorithm that takes into account the conservative reasoning
about the opponent that we discussed earlier. In this section
we will describe such an algorithm. In particular, it takes
into account the fact that we already know an approximate
ranking of the buckets at each public history set from the
approximate equilibrium σ∗.

For example, suppose the opponent is only raising 30% of
the time when first to act, while σ∗ raises 50% of the time in
that situation (as given in the example at the beginning of
this section). Instead of doing a full L1 or L2-minimization
explicitly, we could use the following heuristic algorithm:
sort all buckets by how often the opponent raises with them
under σ∗, then greedily keep removing buckets from his rais-
ing range until the weighted sum (using the βn,b’s as weights)
equals 30%. This is a simple greedy algorithm, which can
be run significantly more efficiently in practice than the L1

and L2-minimization procedures described in the last two
subsections, which must repeatedly use CPLEX at runtime.

For simplicity, we present our algorithm for the case of
three actions, although it extends naturally to any number
of actions. First we initialize the opponent’s strategy at
n, σn, to the equilibrium σ∗. We also initialize our current
model of his action probabilities γn to p∗n,a, the equilibrium
action probabilities.

Next, we check whether the opponent is taking action 3
more often than he should at n by comparing αn,3 to γn,3.
If he is, we are going to want to increase the probabilities he
plays action 3 in various buckets; otherwise, we will decrease
these probabilities. For now, we will assume that αn,3 > γn,3
(the other case is handled analogously).

We start by adding weight to the bucket that plays action
3 with the highest probability at n; denote this bucket by b̂.
If

γn,3 + βn,b̂ · (1− σn,b̂,3) < αn,3, (8)

we set σn,b̂,3 = 1, since that will not cause γn,3 to exceed
αn,3 once it is adjusted. Otherwise, we increase σn,b̂,3 by
(αn,3−γn,3)

β
n,b̂

. (Recall that βn,b̂ denotes the posterior proba-

bility that the opponent holds bucket b̂ at n, as computed
in Algorithm 2.) Let ∆ denote the amount by which we
increase σn,b̂,3. We will also increase the action probability
γn,3 by βb̂ ·∆.

Next we must compensate for this increase of the prob-
ability of playing action 3 in bucket b̂ by decreasing the
probabilities of playing actions 1 and/or 2. Let a denote the
action (1 or 2) played with lower probability in σn in bucket

b̂, and let a denote the other action. If σn,b̂,a ≥ ∆, then we
set σn,b̂,a = σn,b̂,a −∆ and update γn,a accordingly. Other-
wise, we set σn,b̂,a = 0 and remove the remaining probability
∆− σn,b̂,a from σn,b̂,a.

If the inequality of Equation 8 held above, then our op-
ponent model probabilities still do not agree with the poste-
rior action probabilities, and thus we must continue shifting

probability mass; we continue by setting b̂ to the bucket that
plays action 3 with the second highest probability at n, and
repeating the above procedure. Otherwise, we are done set-
ting the probabilities for action 3, and we perform a similar
procedure to shift weight between the probabilities that he
plays actions 1 and 2 until they agree with αn.

We have now constructed an opponent model that agrees
with our posterior action probabilities. Note that we had to
iterate over possibly all of the buckets at public history set
n. Since each bucket is contained in only one public history
set, the algorithm’s run time is linear in the size of the game
tree.

Additionally, although we presented this algorithm for the
case of three actions at n, it easily generalizes to more ac-
tions. Rather than just designating a and a, we will sort all
actions in the order of how often they are played in bucket
b̂, and proceed through this list adjusting probabilities as in
the three-action case.

4.5 Full algorithm
In practice, constructing an opponent model and comput-

ing a best response at each repetition of the game (e.g., hand
in poker) might be too slow. This can be mitigated by do-
ing so only every k repetitions. In addition, we may want
to start off playing the equilibrium σ∗ for several repeti-
tions so that we can obtain a reasonable number of samples
of the opponent’s play, rather than trying to exploit him
immediately. Overall, our full algorithm will have three pa-
rameters: T denotes how many repetitions to first play the
equilibrium σ∗ before starting to exploit, k denotes how of-
ten to recompute an opponent model and best response, and
Nprior from Equation 1 is the parameter of the action prob-
ability prior distributions. Pseudocode for the algorithm is
given in Algorithm 3, where M is the number of repetitions
in the match.

Algorithm 3 DBBR(T,k,Nprior)

for iter = 1 to T do
Play according to the precomputed equilibrium strategy
σ∗

end for
opponent model = ComputeOppModel(Nprior)
σBR = ComputeBestResponse(opponent model)
for iter = T + 1 to M do

if iter is a multiple of k then
opponent model = ComputeOppModel(Nprior)
σBR = ComputeBestResponse(opponent model)

end if
Play according to σBR

end for

5. EXPERIMENTS AND DISCUSSION
We used two-player Limit Texas Hold’em as our experi-

mental domain. It is a large-scale game with 1018 states in
the game tree. It is the most-studied full-scale poker game in
computer science, and is also played by human professionals.

5.1 Limit Texas Hold’em
The rules of the game are as follows. Each player at the

table is dealt two private hole cards, and the players initially
have 1 and 2 chips invested in the pot respectively. Then

537

there is a round of betting, after which three cards (called
the flop) are dealt face up in the middle of the table. Then
there is another round of betting, followed by another card
dealt face up (the turn); then one more round of betting,
followed by a fifth card face up (the river), followed by a
final round of betting.

During each betting round, each player has three possible
options. (1) fold : pass and forfeit his chance of winning the
pot. (2) call : put a number of chips equal to the size of the
current bet into the pot. (3) raise: put a fixed number of
additional chips in the pot beyond what was needed to call.

If one player folds during the course of betting, then the
other player wins the entire pot. If neither player has folded,
the player with the best five-card hand (constructed from his
two hole cards and the five community cards) wins the pot.
In case of a tie, the players split the pot evenly.

As in the AAAI computer poker competitions, in our
experiments, each match consists of 3000 duplicate hands:
3000 hands are played normally, then the players switch po-
sitions and play the same 3000 hands (with no memory of
the previous hands). This is a well-known technique for re-
ducing the variance so that fewer hands are needed to obtain
statistical significance. Whenever we match two players, we
have them play several duplicate matches and report the
standard error.

5.2 Experimental results
We ran our algorithm against several opponents; the re-

sults are shown in Table 1. The first four opponents —
Random, AlwaysFold, AlwaysCall, and AlwaysRaise — play
näıvely as their names suggest. GUS2 and Dr. Sahbak were
entrants in the 2008 AAAI computer poker competition, and
Tommybot was an entrant in the 2009 competition; we se-
lected these bots to experiment against because they had the
worst performances in the competitions, and we expect op-
ponent modeling to provide the biggest improvement against
weak opponents. Against stronger opponents one might pre-
fer to always play the precomputed equilibrium rather than
turning on the exploitation. This can be accomplished by
periodically looking at the win rate, and only attempting to
exploit the opponent if a win rate above some threshold is
attained.

GS5 is a bot we entered in the 2009 AAAI computer poker
competition that plays an approximate-equilibrium strategy.
It was computed using an abstraction which had branching
factors of 15, 40, 6, and 6 respectively in the four betting
rounds. The parameter values we used in DBBR (as de-
scribed in Section 4.5) were T = 1000, k = 50, Nprior =
5, with GS5 playing the role of the initial approximate-
equilibrium strategy (i.e., we ran GS5 for the first 1000
hands of each match and recomputed an opponent model
and best response every 50 hands subsequently). Since each
match consists of 3000 duplicate hands, this means that GS5
and DBBR play the same strategy for the first third of each
match.

We set T = 1000 since it is essential that our algorithm
obtains a reasonable number of samples of the opponent’s
play (in different parts of the game tree) before attempting
to exploit. As discussed in the next paragraph, our main mo-
tivation in setting k was to allow us to update the opponent
model as frequently as we could while remaining under the
competition time limit. For Nprior, we wanted to choose a
small number so that our observations would quickly trump

the prior for common public history sets, but so that the
prior would have more weight if we had just one or two ob-
servations. Note that setting Nprior = 5 means that our
prior and our observations will have equal weight in our
model when we have observed the opponent’s action 5 times
at the given public history set. Changing the parameter
values could certainly have a large effect on the results, and
should be studied further.

Unfortunately GS5 was too large to use as the approximate-
equilibrium strategy in our real-time opponent modeling up-
dates. Therefore, we also precomputed an approximate-
equilibrium σ∗ that used a much smaller abstraction than
GS5: the branching factors of its abstraction were 8, 12, 4,
and 4. While σ∗ is clearly an inferior strategy to GS5, it
was small enough to allow us to construct opponent models
and compute best responses in just a few seconds, keeping
us within the time limit of the AAAI competition.

We experimented with all three of the approaches for
computing the opponent model described in Section 4.4:
the three algorithms DBBR-L1, DBBR-L2, and DBBR-WS
(i.e., ‘Weight-Shifting’) correspond to the three different al-
gorithms in that section. We ran all three of these algo-
rithms against each of the opponents described above (with
the exception of Tommybot, which we were not able to play
against DBBR-L1 and DBBR-L2 due to technical issues).

As shown in Table 1, our main algorithm DBBR-WS per-
formed significantly better against all of the opponents than
GS5 did (in one case, the win rate was over twice as high).
Furthermore, DBBR-WS beat GUS2 by more than any other
bot in the 2008 competition did, and its win rates against
Dr. Sahbak and Tommybot were surpassed by the win rate
of just a single bot.

5.3 Comparing the opponent modeling
algorithms

It is not totally clear from the results in Figure 1 which of
the three algorithms for constructing the opponent model —
L1, L2, or our weight-shifting algorithm — is best. For ex-
ample, DBBR-WS obtains a win rate of 1.391 sb/h against
AlwaysRaise while DBBR-L1 obtains a win rate of 0.878
sb/h, but DBBR-L1 obtains a win rate of 2.164 sb/h against
Random while DBBR-WS obtains only 1.769 sb/h. Simi-
larly, for all other pairings there exist opponents such that
one bot achieves a higher win rate against one opponent, but
not against the other opponent. So there is no clear total
ordering of the three algorithms.

That being said, DBBR-L2 does at least as well (or essen-
tially the same) against all of the opponents as DBBR-L1,
except for Dr. Sahbak; this suggests that DBBR-L2 is a
stronger program. As between DBBR-L2 and DBBR-WS,
it really seems to depend on the opponent. DBBR-WS per-
forms significantly better against AlwaysRaise, GUS2, and
Dr. Sahbak and slightly better against AlwaysFold than
DBBR-L2; however, DBBR-L2 performs significantly bet-
ter against Random and slightly better against AlwaysCall
than DBBR-WS. So DBBR-WS performs significantly bet-
ter against three of the six opponents than DBBR-L2 (and
essentially the same against two opponents), suggesting that
it is a better algorithm.

In addition, DBBR-WS performs significantly better against
both of the actual opponents from the AAAI competition
(GUS2 and Dr. Sahbak) than DBBR-L2, which suggests
that it might perform better in practice against realistic op-

538

Random AlwaysFold AlwaysCall AlwaysRaise GUS2 Dr. Sahbak Tommybot
GS5 0.854 ± 0.008 0.646 ± 0.0009 0.582 ± 0.005 0.791 ± 0.009 0.636 ± 0.004 0.665 ± 0.027 0.552 ± 0.008

DBBR-WS 1.769 ± 0.025 0.719 ± 0.002 0.930 ± 0.014 1.391 ± 0.034 0.807 ± 0.011 1.156 ± 0.043 1.054 ± 0.044
DBBR-L1 2.164 ± 0.036 0.717 ± 0.002 0.935 ± 0.017 0.878 ± 0.032 0.609 ± 0.054 1.153 ± 0.074
DBBR-L2 2.287 ± 0.046 0.716 ± 0.002 0.931 ± 0.026 1.143 ± 0.084 0.721 ± 0.050 1.027 ± 0.072

Table 1: Win rate in small bets/hand of the bot listed in the row. The ± given is the standard error (standard
deviation divided by the square root of the number of hands).

ponents. This fact, combined with the fact that DBBR-WS
is more efficient than the other algorithms, which have to
perform many optimizations using CPLEX at runtime, sug-
gest that DBBR-WS is a better algorithm to use in practice.

Note that this does not imply that the weighted L1 and L2

distance functions are poor distance metrics; it just means
that the particular solution output by CPLEX does not do as
well as the solution output by DBBR-WS. It is very possible
that if CPLEX used different LP/QP algorithms, it might
find a solution that does significantly better. This would
certainly be a worthwhile avenue for future work.

5.4 Win rates over time
One might expect that DBBR3 would immediately begin

exploiting the opponents at hand 1001 — when it switches
from playing an approximate equilibrium to opponent mod-
eling — and that the win rate would increase steadily. In
fact, this happened in the matches against most of the bots.
For example, Figure 1(a) shows that DBBR’s profits against
AlwaysFold increase linearly over time, and Figure 1(d) shows
that DBBR’s win rate increases in a concave fashion.

Surprisingly, we observed a different behavior in the matches
against AlwaysRaise and GUS2. In both of these matches,
the win rate decreases significantly for the first several hun-
dred hands before it starts to increase, as shown in Figure 1.
This happens because the approximate-equilibrium strategy
plays some action sequences with very low probability, lead-
ing it to not explore the opponent’s full strategy space in the
1000 hands. This will lead to a significant disparity between
the prior and actual strategies of the opponent at hand 1001
if the opponent’s strategy differs significantly from the ap-
proximate equilibrium in those unexplored regions. This in
turn may cause DBBR to think it can immediately exploit
the opponent in certain ways, which turn out to be unsuc-
cessful; but eventually as DBBR explores these sequences
further and gathers more observations, it figures out suc-
cessful exploitations.

The following hand from our experiments between DBBR
and AlwaysRaise exemplifies this phenomenon. The hand
was the 1006’th hand of the match. There were many raises
and re-raises during the preflop, flop, and turn betting rounds.
When the river card came, DBBR had only a ten high (a
very weak hand in this situation). However, based on its
observations during the first 1005 hands, it knew that Al-
waysRaise had a very wide range of hands given this bet-
ting sequence, many of which were also weak hands (though
probably still stronger than ten high). On the other hand,
DBBR had very few observations of how AlwaysRaise re-
sponds to a series of raises on the river, since GS5 made
those plays very rarely during the first 1000 hands; hence,
DBBR resorted to the prior to model the opponent, which
had the opponent folding all of his weak hands to a raise

3The results in this section refer to our main algorithm,
DBBR-WS.

(since GS5 would do this). So DBBR thought that raising
would get the opponent to fold most of his hands, while in
reality AlwaysRaise continues to raise with all of his hands.
In this particular hand, DBBR lost a significant amount of
money due to the additional raises he made on the river with
a very weak hand.

6. CONCLUSION
We presented DBBR, an efficient real-time algorithm for

opponent modeling and exploitation in large extensive-form
games. It works by observing the opponent’s action fre-
quencies and building an opponent model by combining in-
formation from a precomputed equilibrium strategy with the
observations. This enables the algorithm to combine game-
theoretic reasoning and pure opponent modeling, yielding a
hybrid that can effectively exploit opponents after a small
number of interactions.

Our experiments in full-scale two-player limit Texas Hold-
’em poker show that DBBR is effective in practice against a
variety of opponents, including several entrants from recent
AAAI computer poker competitions. DBBR achieved a sig-
nificantly higher win rate than an approximate-equilibrium
strategy against all of the opponents in our experiments.
Furthermore, it achieved a higher win rate against the op-
ponents from previous competitions than all of the entrants
from that year’s competition achieved (except for at most
one). We compared three different algorithms for construct-
ing the opponent model, and conclude that our custom weight-
shifting algorithm outperforms algorithms that employ weight-
ed L1 and L2-distance minimization.

While DBBR is able to effectively exploit weak opponents,
it might actually become significantly exploitable to strong
opponents (e.g., opponents who operate in a finer-grained
abstraction). Thus, we would like to only attempt to ex-
ploit weak opponents, while playing the equilibrium against
strong opponents. This can be accomplished by periodically
looking at the win rate, and only attempting to exploit the
opponent if a win rate above some threshold is attained. Our
current work involves developing automated schemes that al-
ternate between DBBR and equilibrium play based on the
specific opponent at hand. In addition, DBBR could be ex-
tended to the setting where the opponent’s private informa-
tion from the previous game iteration is sometimes observed.
Finally, future work could look at more robust versions of
DBBR, where the opponent model allows the opponent to
sometimes deviate from his observed action probabilities, or
a safer strategy than the actual best response is used.

7. REFERENCES
[1] Darse Billings, Neil Burch, Aaron Davidson, Robert

Holte, Jonathan Schaeffer, Terence Schauenberg, and
Duane Szafron. Approximating game-theoretic
optimal strategies for full-scale poker. IJCAI, 2003.

539

(a) (b) (c)

(d) (e) (f)

Figure 1: Profits and win rates over time of DBBR-WS against several opponents. Results against AlwaysFold
are shown in Figures 1(a) and 1(d), results against AlwaysRaise are shown in Figures 1(b) and 1(e), and results
against GUS2 are shown in Figures 1(c) and 1(f). The top three graphs show profit over time, and the bottom
three show win rates over time.

[2] Doran Chakraborty and Peter Stone. Convergence,
targeted optimality, and safety in multiagent learning.
ICML, 2010.

[3] Aaron Davidson, Darse Billings, Jonathan Schaeffer,
and Duane Szafron. Improved opponent modeling in
poker. IJCAI, 2000.

[4] Andrew Gilpin and Tuomas Sandholm. A competitive
Texas Hold’em poker player via automated abstraction
and real-time equilibrium computation. AAAI, 2006.

[5] Andrew Gilpin, Tuomas Sandholm, and Troels Bjerre
Sørensen. Potential-aware automated abstraction of
sequential games, and holistic equilibrium analysis of
Texas Hold’em poker. AAAI, 2007.

[6] Andrew Gilpin, Samid Hoda, Javier Peña, and
Tuomas Sandholm. Gradient-based algorithms for
finding Nash equilibria in extensive form games.
WINE, 2007. Extended version in Math. of OR, 2010.

[7] Bret Hoehn, Finnegan Southey, Robert C. Holte, and
Valeriy Bulitko. Effective short-term opponent
exploitation in simplified poker. AAAI, 2005.

[8] Michael Johanson and Michael Bowling. Data biased
robust counter strategies. AISTATS, 2009.

[9] Michael Johanson, Martin Zinkevich, and Michael
Bowling. Computing robust counter-strategies. NIPS,
2007.

[10] Daphne Koller, Nimrod Megiddo, and Bernhard von
Stengel. Efficient computation of equilibria for
extensive two-person games. GEB, 1996.

[11] Marc Lanctot, Kevin Waugh, Martin Zinkevich, and
Michael Bowling. Monte Carlo sampling for regret
minimization in extensive games. COLT workshop on
Online Learning with Limited Feedback, 2009.

[12] Peter McCracken and Michael Bowling. Safe strategies
for agent modelling in games. AAAI Fall Symposium
on Artificial Multi-agent Learning, 2004.

[13] Marc Ponsen, Marc Lanctot, and Steven de Jong.
MCRNR: Fast computing of restricted Nash responses
by means of sampling. AAAI workshop on Interactive
Decision Theory and Game Theory Workshop, 2010.

[14] Marc Ponsen, Jan Ramon, Tom Croonenborghs, Kurt
Driessens, and Karl Tuyls. Bayes-relational learning of
opponent models from incomplete information in
no-limit poker. AAAI, 2008.

[15] Tuomas Sandholm. Perspectives on multiagent
learning. Artificial Intelligence, 2007.

[16] Finnegan Southey, Michael Bowling, Bryce Larson,
Carmelo Piccione, Neil Burch, Darse Billings, and
Chris Rayner. Bayes’ bluff: Opponent modelling in
poker. UAI, 2005.

[17] Martin Zinkevich, Michael Bowling, Michael
Johanson, and Carmelo Piccione. Regret minimization
in games with incomplete information. NIPS, 2007.

540

