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ABSTRACT
Increasingly in both traditional, and especially Internet-based
marketplaces, knowledge is becoming a traded commodity.
This paper considers the impact of the presence of knowledge-
brokers, or experts, on search-based markets with noisy sig-
nals. For example, consider a consumer looking for a used
car on a large Internet marketplace. She sees noisy signals
of the true value of any car she looks at the advertisement
for, and can disambiguate this signal by paying for the ser-
vices of an expert (for example, getting a Carfax report, or
taking the car to a mechanic for an inspection). Both the
consumer and the expert are rational, self-interested agents.
We present a model for such search environments, and ana-
lyze several aspects of the model, making three main contri-
butions: (1) We derive the consumer’s optimal search strat-
egy in environments with noisy signals, with and without
the option of consulting an expert; (2) We find the optimal
strategy for maximizing the expert’s profit; (3) We study the
option of market designers to subsidize search in a way that
improves overall social welfare. We illustrate our results in
the context of a plausible distribution of signals and values.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Algorithms, Economics
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1. INTRODUCTION
In many multi-agent system (MAS) settings, agents en-

gage in one-sided search [13, 6]. This is a process in which
an agent faces a stream of opportunities that arise sequen-
tially, and the process terminates when the agent picks one
of those opportunities. A classic example is a consumer look-
ing to buy a used car. She will typically investigate cars one
at a time until deciding upon one she wants. Similar settings
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can be found in job-search, house search and other applica-
tions [12, 15]. In modern electronic marketplaces, search is
likely to become increasingly important as, with the prolif-
eration of possible sellers of a good, consumers will turn to
artificial agents, whom we term “searchers,” to find the best
prices or values for items they are interested in acquiring.

The decision making complexity in one-sided search usu-
ally arises from the fact that there is a cost incurred in find-
ing out the true value of any opportunity encountered. For
example, there is a cost to arranging a meeting to test drive a
car you are considering purchasing. The searcher thus needs
to trade off the potential benefit of continuing to search and
seeing a more valuable opportunity with the costs incurred
in doing so. The optimal stopping rule for such search prob-
lems has been widely studied, and is often a reservation
strategy, where the searcher should terminate search upon
encountering an opportunity which has a value above a cer-
tain reservation value or threshold [18, 13]. Most models
assume that the searcher obtains the exact true value of
the opportunities it encounters. However, in many realistic
settings, search is inherently noisy and searchers may only
obtain a noisy signal of the true value. For example, the
drivetrain of a used car may not be in good condition, even
if the body of the car looks terrific. The relaxation of the
assumption of perfect values not only changes the optimal
strategy for a searcher, it also leads to a niche in the market-
place for new knowledge-brokers. The knowledge brokers, or
experts, are service providers whose main role is to inform
consumers or searchers about the values of opportunities.

An expert offers the searcher the option to obtain a more
precise estimate of the value of an opportunity in question,
in exchange for the payment of a fee (which covers the cost
of providing the service as well as the profit of the expert).
To continue with the used car example, when the agent is
intrigued by a particular car and wants to learn more about
it, she could take the car to a mechanic who could investi-
gate the car in more detail to make sure it is not a lemon.
The expert need not be a mechanic – it could be, for ex-
ample, an independent agency, like Carfax, that monitors
the recorded history of transactions, repairs, claims, etc. on
cars. It can also be a repeated visit of the searcher to see
the car, possibly bringing an experienced friend for a more
thorough examination. In all these cases, more accurate in-
formation is obtained for an additional cost (either monetary
or equivalent).

In this paper we investigate optimal search and mecha-
nism design in environments where searchers observe noisy
signals and can obtain (i.e., query the expert for) the ac-
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tual values for a fee. Our main contributions are threefold:
First, we introduce a specific model of one-sided search with
noisy signals and prove that the optimal search rule, for a
large class of real-life settings, is reservation-value based.
Second, we formally introduce the option of consulting an
expert in such noisy search environments, and derive the
optimal strategy for the searcher given a cost of consulting
the expert, as well as the profit-maximizing price for the
expert to charge for its services. As part of the analysis
we prove that under the standard assumption that higher
signals are “good news” (i.e., the distribution of the true
value conditional on a higher signal stochastically domi-
nates the distribution conditional on a lower signal), the
optimal search strategy is characterized by a “double reser-
vation value” strategy, wherein the searcher rejects all sig-
nals below a certain threshold, resuming search, and accepts
all signals above another threshold, thus terminating search,
without querying the expert; the agent queries the expert for
all signals that are between the two thresholds. Finally, we
study a market design mechanism (introduction of a sub-
sidy) with the potential to improve social welfare in such
domains. These mechanisms may be implemented by either
an electronic marketplace that employs the expert (for ex-
ample a website for used cars that has a relationship with a
provider of car history reports), or an entity with regulatory
power like the government. Along with the general theory,
we illustrate our results in a specific, plausible distributional
model, in which the true value is always bounded by the sig-
nal value, and the probability monotonically decays as the
discrepancy between the two increases.

2. THE GENERAL MODEL
The standard one-sided search problem [13] considers an

agent or searcher facing an infinite stream of opportunities
from which she needs to choose one. While the specific value
v of each future opportunity is unknown to the searcher, she
is acquainted with the (stationary) probability distribution
function from which opportunities are drawn, denoted fv(x).
The searcher can learn the value of an opportunity for a cost
cs (either monetary or in terms of resources that need to be
consumed for this purpose) and her goal is to maximize the
net benefit, defined as the value of the opportunity eventu-
ally picked minus the overall cost incurred during the search.
Having no a priori information about any specific opportu-
nity, the searcher reviews the opportunities she encounters
sequentially and sets her optimal stopping rule. The stop-
ping rule specifies when to terminate and when to resume
search, based on the opportunities encountered.

Our model relaxes the standard assumption that the sear-
cher receives the exact true value of an opportunity. Instead,
we assume that the searcher receives, at cost cs, a noisy sig-
nal s, correlated with the true value according to a known
probability density function fs(s|v). In addition, the sear-
cher may query and obtain from a third party (the expert)
the true value v of an opportunity for which signal s was
received, by paying an additional fee ce. The goal of the
searcher is to maximize the total utility received i.e., the ex-
pected value of the opportunity eventually picked minus the
expected cost of search and expert fees paid along the way.

The first question that arises is how to characterize the
optimal strategy for the searcher. A second question is how
the expert sets her service fee ce. In this paper we consider a
monopolist provider of expert services. The searcher’s opti-

mal strategy is directly influenced by ce, and thus implicitly
determines the expected number of times the services of the
expert are required, and thus the expert’s revenue. The
problem can be thought of as a Stackelberg game [5] where
the expert is the first mover, and wants to maximize her
profits with respect to the fee ce she charges searchers.

The new search model raises interesting new questions
about market design. Assuming exogeneity of opportuni-
ties, social welfare, denoted W , is a function of the expected
value to searchers and the expected profit of the expert. (We
abstract away from modeling the existence of “sellers” of op-
portunities, instead viewing them as exogenous, or else as
being offered at some “fair price” by the seller.) We assume
that the provider of expert services has already performed
the “startup work” necessary, and only pays a marginal cost
de per query, and that social welfare is additive. Since the
process scales up linearly in the number of searchers, we can
simply consider the interactions involving a single searcher
and the expert. The social welfare is then the sum of the
expected net benefit to the searcher and the expected profit
of the expert. It turns out that social welfare can be signif-
icantly affected (and improved) if the market designer (or
a regulator like the government) subsidizes queries by com-
pensating the expert in order to reduce query costs to the
searcher.

We now turn to developing the mathematical machinery
to address these problems.

3. OPTIMAL POLICIES
In this section, we analyze the searcher’s optimal search

strategy and her expected use of the expert’s services, given
the fee ce set by the expert. The analysis builds on the triv-
ial non-noisy model and gradually adds the complexities of
signals and having the expert option. From the searcher’s
optimal search strategy we derive the expert’s expected ben-
efits as a function of the fee she sets, enabling maximization
of the expert’s revenue.

One-Sided Search.
The optimal search strategy for the standard model, where

the actual value of an opportunity can be obtained at cost cs,
can be found in the extensive literature of search theory [13,
6]. In this case, the searcher follows a reservation-value rule:
she reviews opportunities sequentially (in random order) and
terminates the search once a value greater than a reservation
value x∗ is revealed, where the reservation value x∗ satisfies:

cs =

∫ ∞
y=x∗

(y − x∗)fv(y)dy (1)

Intuitively, x∗ is the value where the searcher is precisely
indifferent: the expected marginal benefit from continuing
search and obtaining the value of the next opportunity ex-
actly equals the cost of obtaining that additional value. The
reservation property of the optimal strategy derives from the
stationarity of the problem — resuming the search places
the searcher at the same position as at the beginning of the
search [13]. Consequently, a searcher that follows a reserva-
tion value strategy will never decide to accept an opportu-
nity she has once rejected and the optimal search strategy is
the same whether or not recall is permitted. The expected
number of search iterations is simply the inverse of the suc-
cess probability, 1

1−Fv(x∗) , since this becomes a Bernoulli
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sampling process, as opportunities arise independently at
each iteration.

One-Sided Search with Noisy Signals.
Before beginning the analysis of search with noisy signals,

we emphasize that, given fv(x) and fs(s|v), we can also
derive the distribution of the signal received from a ran-
dom opportunity, fs(x), and the distribution of true values
conditional on signals, fv(v|s) (the conditionals are inter-
changeable by Bayes’ law). In many domains, it may be
easier to assess/learn fs(s) than fv(v|s) as most past ex-
perience involves signals, with the actual value revealed for
only a subset of these signals.

When the searcher receives a noisy signal rather than the
actual value of an opportunity, there is no guarantee that
the optimal strategy is reservation-value based as in the case
where values obtained are certain. Indeed, the stationarity
of the problem still holds, and an opportunity that has been
rejected will never be recalled. Yet, in the absence of any
restriction over fs(s|v), the optimal strategy is based on a set
S of signal-value intervals for which the searcher terminates
the search. The expected value in this case, denoted V (S),
is given by:

V (S) = −cs + Pr(s /∈ S)V (S) + Pr(s ∈ S)E[v|s ∈ S]

= −cs + V (S)

∫
s/∈S

fs(s) ds+

∫
s∈S

fs(s)E[v|s] ds (2)

The fact that the optimal strategy may not be reservation-
value based in this case is because there may be no correla-
tion between the signal and the true value of the opportu-
nity. Nevertheless, in most real-life cases, there is a natural
correlation between signals and true values. In particular,
a fairly weak and commonly used restriction on the condi-
tional distribution of the true value given the signal goes a
long way towards allowing us to recapture a simple space of
optimal strategies. This is the restriction that higher signal
values are “good news” in the sense that when s1 > s2, the
conditional distribution of v given s1 first-order stochasti-
cally dominates that of v given s2 [19, 14]. The condition
requires that given two signals s1 and s2 where s1 > s2, the
probability that the actual value is greater than any particu-
lar value v is greater for the case where the searcher receives
signal s1. Formally:

Definition 1. Higher signals are good news (HSGN)
assumption: If s1 > s2, then, ∀y, Fv(y|s1) ≤ Fv(y|s2).

This enables us to prove the following theorem.

Theorem 1. For any probability density function fv(v|s)
satisfying the HSGN assumption, the optimal search strategy
is a reservation-value rule, where the reservation value, t∗,
satisfies:

cs =

∫ ∞
s=t∗

(
E[v|s]− E[v|t∗]

)
ds (3)

Proof: The proof is based on showing that, if according to
the optimal search strategy the searcher should resume her
search given a signal s, then she must necessarily also do so
given any other signal s′ < s. Let V denote the expected
benefit to the searcher if resuming the search. Since the
optimal strategy given signal s is to resume search, we know
V > E[v|s]. Given the HSGN assumption,

∫
y
yfv(y|s′) dy <∫

y
yfv(y|s) dy holds for s′ < s. Therefore, V > E[v|s′],

proving that the optimal strategy is reservation-value. Then,
the expected value of the searcher when using reservation
signal t is given by:

V (t) = −cs + V (t)

∫ t

s=−∞
fs(s) ds+

∫ ∞
s=t

E[v|s]fs(s) ds

=
−cs +

∫∞
s=t

E[v|s]fs(s) ds
1− Fs(t) (4)

where Fs(s) is the cumulative distribution function of the
signal s. Setting the first derivative according to t of Equa-
tion 4 to zero we obtain: V (t∗) = E[v|t∗]. The second
derivative for t∗ that satisfies the latter equality confirms
that this is indeed a global maximum. Finally, using integra-
tion by parts over the derivative according to t of Equation
4 we obtain Equation 3, and the value t∗ can be calculated
accordingly. 2

The social welfare W is the expected gain to the searcher
from following the optimal strategy, V (t∗) = E[v|t∗]. The
expected number of search iterations is 1

1−Fs(t∗) , since this

is a Bernoulli sampling process.

The Expert Option.
The introduction of an expert extends the number of de-

cision alternatives available to the searcher. When receiving
a noisy signal of the true value, she can choose to (1) reject
the offer without querying the expert, paying search cost cs
to reveal the signal for the next offer; (2) query the expert
to obtain the true value, paying a cost ce, and then make
a decision; or (3) accept the offer without querying the ex-
pert, receiving the (unknown) true value of the offer. In case
(2), there is an additional decision to be made, whether to
resume search or not, after the true value v is revealed.

As in the no-expert case, a solution for a general density
function fv(v|s) dictates an optimal strategy of a complex
structure. In our case, the optimal strategy will have the
form of (S′, S′′, V ), where: (a) S′ is a set of signal inter-
vals for which the searcher should resume her search with-
out querying the expert; (b) S′′ is a set of signal intervals
for which the searcher should terminate her search without
querying the expert (and pick the opportunity associated
with this signal); and (c) for any signal that is not in S′

or S′′ the searcher should query the expert, and terminate
the search if the value obtained is above a threshold V , and
resume otherwise. The value V is the expected benefit from
resuming the search and is given by the following modifica-
tion of Equation 2:

V = −cs + V

∫
s∈S′

fs(s) ds− ce
∫
s 6∈{S′,S′′}

fs(s) ds+∫
s 6∈{S′,S′′}

fs(s)
(
V

∫ V

−∞
fv(x|s) dx+∫ ∞

x=V

xfv(x|s) dx
)
ds+

∫
s∈S′′

fs(s)E[v|s] ds (5)

The first element on the right hand side of the equation
applies to the case of resuming search, in which case the
searcher continues with an expected benefit V . The second
element is the expected payment to the expert. The next
elements relate to the case where the search is resumed based
on the value received from the expert (in which case the
expected revenue is once again V ) and where the search is
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terminated (with the value E[v|s] obtained as the revenue),
respectively. Finally, the last element applies to the case
where the searcher terminates the search without querying
the expert.

We can show that under the HSGN assumption, each of
the sets S′ and S′′ actually contains a single interval of sig-
nals, as illustrated in Figure 1.

Theorem 2. For fv(y|s) satisfying the HSGN assump-
tion (Definition 1), the optimal search strategy can be de-
scribed by the tuple (tl, tu, V ), where: (a) tl is a signal
threshold below which the search should be resumed; (b) tu
is a signal threshold above which the search should be termi-
nated and the current opportunity picked; and (c) the expert
should be queried given any signal tl < s < tu and the op-
portunity should be accepted (and search terminated) if the
value obtained from the expert is above the expected value of
resuming the search, V , otherwise search should resume (see
Figure 1). The values tl, tu and V can be calculated from
solving the set of Equations 6-8:

V =− cs + V

∫ tl

s=−∞
fs(s) ds− ce

∫ tu

s=tl

fs(s) ds+∫ tu

s=tl

fs(s)
(
V

∫ V

x=−∞
fv(x|s) dx ds+∫ ∞

x=V

xfv(x|s) dx ds
)

+

∫ ∞
s=tu

fs(s)E[v|s] ds (6)

ce =

∫ ∞
y=V

(y − V )fv(y|tl) dy (7)

ce =

∫ V

−∞
(V − y)fv(y|tu) dy (8)

Proof: The proof extends the methodology used for proving
Theorem 1. We first show that if, according to the optimal
search strategy the searcher should resume her search given a
signal s, then she must also do so given any other signal s′ <
s. Then, we show that if, according to the optimal search
strategy the searcher should terminate her search given a
signal s, then she must also necessarily do so given any other
signal s′′ > s. Again, we use V to denote the expected
benefit to the searcher if resuming the search.

If the optimal strategy given signal s is to resume search
then the following two inequalities should hold, describing
the superiority of resuming search over terminating search
(Equation 9) and querying the expert (Equation 10):

V > E[v|s] (9)

V > −ce +

∫ ∞
y=V

yfv(y|s) dy + V

∫ V

y=−∞
fv(y|s) dy (10)

Given the HSGN assumption and since s′ < s, Equation 9
holds also for s′, and so does Equation 10 (which can be
formalized after some mathematical manipulation as: V >
−ce + V +

∫∞
y=V

(y − V )fv(y|s) dy). The proof for s′′ > s is

similar: the expected cost of accepting the current oppor-
tunity can be shown to dominate both resuming the search
and querying the expert. We omit the details because of
space considerations. The optimal strategy can thus be de-
scribed by the tuple (tl, tu, V ) as stated in the Theorem.
Therefore, Equation 5 transforms into Equation 6. Taking
the derivative of Equation 6 w.r.t. tl and equating to zero,

we obtain a unique tl which maximizes the expected benefit
(verified by second derivative), and similarly for tu. Finally,
using integration by parts over the derivatives of Equation
6 w.r.t. tl and tu we obtain Equations 7-8. 2

Intuitively, tl is the point at which a searcher is indifferent
between either resuming the search or querying the expert
and tu is the point at which a searcher is indifferent between
either terminating the search or querying the expert. The
cost of purchasing the expert’s services must equal two dif-
ferent things: (1) the expected savings from resuming the
search when the actual utility from the current opportunity
(which is not known) turns out to be greater than what
can be gained from resuming the search (once it is revealed)
(this is the condition for tl); (2) the expected savings from
terminating the search in those cases where the actual util-
ity from the current opportunity (once revealed) is less than
what can be gained from resuming the search (for tu).

Figure 1: Characterization of the optimal strat-
egy for noisy search with an expert. The searcher
queries the expert if s ∈ [tl, tu] and accepts the offer if
the worth is greater than the value of resuming the
search V . The searcher rejects and resumes search
if s < tl and accepts and terminates search if s > tu,
both without querying the expert.

It is notable that there is also a reasonable degenerate case
where tl = tu(= t). This happens when the cost of querying
is so high that it never makes sense to engage the expert’s
services. In this case, a direct indifference constraint exists
at the threshold t, where accepting the offer yields the same
expected value as continuing search, so V = E[v|t]. This
can be solved in combination with Equation 4, since there
are now only two relevant variables.

Expected number of queries: The search strategy
(tl, tu, V ) defines how many times the expert’s services are
consulted. In order to compute the expected number of
queries, we consider four different types of transitions in the
system. Let A be the probability that the searcher queries
the expert and then does not accept, resuming search, B
be the probability that the searcher resumes search without
querying, C be the probability that the searcher terminates
without querying, andD be the probability that the searcher
queries the expert and terminates search. Then:

A = Pr(tl ≤ s ≤ tu and v < V ) (11)

B = Pr(s < tl) (12)

C = Pr(s > tu) (13)

D = Pr(tl ≤ s ≤ tu and v ≥ V ) (14)

Let Pj denote the probability that the searcher queries
the expert exactly j times before terminating. The searcher
can terminate search after exactly j queries in one of two
ways: either she makes j − 1 queries, then queries the ex-
pert and chooses to terminate, or she makes j queries and
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then chooses to terminate without querying the expert. Fac-
toring in all the possible ways of interleaving j queries with
an arbitrary number of times that the searcher chooses to
continue search without querying the expert, we get:

Pj =

∞∑
m=0

(m+ j − 1)!

m!(j − 1)!
Aj−1BmD +

∞∑
m=0

(m+ j)!

m!j!
AjBmC

=
Aj

(1−B)j
(
D

A
+

C

1−B )

Then the expected number of queries, when charging an
expert fee ce, is given by

∑∞
j=0 jPj , yielding

ηce = E(Number of queries|ce) =
(1−B)D + CA

(1−B −A)2
(15)

Expected number of opportunities examined: Us-
ing the same notation as above, we see that the probability
of terminating the search at any iteration is C + D, and
these are independent Bernoulli draws at each opportunity.
Therefore the expectation of the number of opportunities
examined is simply ηs = 1/(C +D).

Expected profit of the expert: Let de denote the
marginal cost of the service the expert is providing. The
expected profit of the expert is then simply

πe = E(Profit) = (ce − de)ηce
The expert can maximize the above expression with respect
to ce (ηce decreases as ce increases) to find the profit maxi-
mizing price to charge searchers.

Social Welfare: The social welfare is given by the sum
of all parties involved, thus far just the searcher and the
expert. Of course this generalizes to multiple agents as well,
since each search process would be independent. We define:

W = Vc∗e + πe (16)

where c∗e is the fee that maximizes the expert’s profit.

4. MARKET DESIGN
Above, we have described the basics of search in such

expert-mediated markets. In this section, we describe possi-
ble uses of the theory described above to improve the design
of markets in which such search takes place. The prospect
of designing or significantly influencing these markets is not
remote. Consider the design of a large scale Internet web-
site like autotrader.com. The listings for cars that users see
are signals, and they may be unsure of a car’s true worth.
autotrader can partner with a provider of reports like Car-
fax, to make it easy for users to look up a car’s worth. In or-
der to be general, let us refer to autotrader as “the market”
(or in some instances as “the market designer”) and Carfax
as the expert. The market wants to attract customers to
it, rather than to rival markets. The best way of doing this
is to provide customers with a high value shopping experi-
ence. The expert wishes to maximize its profits. Since the
market and the expert both have significant power, it is rea-
sonable to imagine them coming up with different models
of the kinds of relationships they may have. It is notable
that while we are thinking about private markets here, this
entire discussion is equally relevant to a big player like the
government as market designer, and independent providers
of expert services.

In order to provide customers with the highest value shop-
ping experience, the market may choose to subsidize the
cost of expert services. A typical problem with subsidiza-
tion is that it often decreases social welfare because the true
cost of whatever is being subsidized is hidden from the con-
sumer, leading to overconsumption of the resource. In this
instance, however, the natural existence of many monopo-
lies in expert services, combined with the existence of search
frictions, make it quite possible that subsidies will in fact in-
crease social welfare. We show in Section 5 that this is in
fact the case for some natural distributions.

The basic framework of subsidization works as follows.
Suppose a monopolist provider of expert services maximizes
its profits by setting the querying cost to c∗e , yielding an
expected profit πe = (c∗e − de)ηc∗e (this discussion is on a
per-consumer basis). The market designer can step in and
negotiate a reduction of the fee ce charged by the expert, for
the benefit of the agents. In return for the expert’s agree-
ment, the market designer will need to offer a per-consumer
payment β to the expert, which fully compensates the ex-
pert for the decreased revenue, leaving her total profit the

same. Since c
′
e < c∗e , ηc′e > ηc∗e (the consumer queries more

often because she has to pay less). The compensation for a

requested decrease in the expert’s fee from c∗e to c
′
e is thus

β = (c∗e−de)ηc∗e−(c
′
e−de)ηc′e . The overall welfare per agent

in this case increases by Vc′e
−Vc∗e , where Vc′e

and Vc∗e are the

expected value of searchers according to Equation 6-8, when

the expert uses a fee c
′
e and c∗e respectively, at a cost β to

the market designer. Since the expert is fully compensated
for her loss due to the decrease in her fee, the change in the
overall social welfare is Vc′e

− Vc∗e − β. Under the new pric-

ing scheme c
′
e, and given the subsidy β, the social welfare

is given by W
′

= Vc′e
+ πe − β. In the following section we

illustrate how such a subsidy β can have a positive change
over the social welfare.

An interesting special case to consider is when de = 0.
We can think of this case as “digital services,” analogous to
digital goods like music MP3s – producing an extra one of
these has zero marginal cost. Similarly, producing an ex-
tra electronic history of a car, like a Carfax report, can be
considered to have zero marginal cost. In this case, there is
no societal cost to higher utilization of the expert’s services,
so subsidy is welfare improving right up to making the ser-
vice free. These are the cases where it could make sense for
the market designer or government to take over offering the
service themselves, and making it free, potentially leverag-
ing the increased welfare of consumers by attracting more
consumers to their market, or increasing their fees.

5. A SPECIFIC EXAMPLE
In this section we illustrate the theoretical analysis given

in the former section for a particular plausible distribution of
signals and values. This case illustrates the general structure
of the solutions of the model and demonstrates how inter-
ventions by the market designer can increase social welfare.

We consider a case where the signal is an upper bound on
the true value. Going back to the used car example, sellers
and dealers offering cars for sale usually make cosmetic im-
provements to the cars in question, and proceed to advertise
them in the most appealing manner possible, hiding defects
using temporary fixes. Specifically, we assume signals s are
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Figure 2: Effect of cs on the signal thresholds (tl,tu) and agent utility V

uniformly distributed on [0, 1], and the conditional density
of true values is linear on [0, s]. Thus

fs(s) =

{
1 if 0 < s < 1

0 otherwise
fv(y|s) =

{
2y
s2

for 0 ≤ y ≤ s
0 Otherwise

We can substitute in these distributions in Equations 6
through 8 and simplify. From Equation 6:

V = −cs + V tl − ce(tu − tl) +
V 3(tu − tl)

3tutl
+

1− t2l
3

V =
2tl
3

+
V 3

3t2l
− ce (from Equation 7)

ce =

∫ V

0

(V − y)fv(y|tu) dy =
V 3

3t2u
(from Equation 8)

We can find feasible solutions of this system for differ-
ent parameter values, as long as the condition tl < tu holds.
Otherwise, when ce is high enough that querying never makes
sense, a single threshold serves as the optimal strategy, as
in the case with no expert. In the latter case, we obtain the
optimal reservation value to be used by the searcher from
Equation 3, yielding t∗ = 1−√3cs.

The other thing to note here is that Equation 8 above
is for the case when the support on signal s is unbounded.
When there is an upper limit on s i.e s ≤ m for some m (as
is the case here, where signals are bounded in [0, 1]), once
tu reaches m (we never buy without querying), Equation 8
does not hold. Now the system rejects if the signal is below
tl or queries if it is above.

Figure 2(a) illustrates how the reservation values tl and
tu change as a function of cs for ce = 0.05. The vertical axis
is the interval of signals. As can be seen from the graph,
for very small search cost (cs) values, the searcher never ter-
minates search without querying the expert.1 Due to the
low search cost the searcher is better off only querying the
expert when a high signal is received. The expert option
is preferred over accepting without querying the expert for
those high signals, because if a low value is received from the
expert then the cost of finding a new opportunity with a high
signal is low. As the search cost cs increases, there is some

1When search costs are 0 the problem is ill-defined. The
first point on the graph shows an extremely low, but non-
zero search cost. In this case tu = 1 and tl is almost 1, but
not exactly, and the expert is again always queried.
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Figure 3: Expert’s profit as a function of ce and de
for cs = 0.01.

behavior that is not immediately intuitive. The reservation
values tl and tu become closer to each other until coinciding
at cs = 0.08, at which point the expert is never queried any-
more. The reason for this is that the overall value of contin-
uing search goes down significantly as cs increases, therefore
the cost of querying the expert becomes a more significant
fraction of the total cost, making it comparatively less de-
sirable. This is a good example of the additional complexity
of analyzing a system with an expert, because in the static
sense the cost of consulting the expert does not change, so
the fact that the expert should be consulted less and less
frequently is counter-intuitive. Figure 2(b) illustrates the
change in the searcher’s welfare as a function of the search
cost, cs, for different values of the service fee, ce, charged
by the expert. As expected, the searcher’s welfare is better
with the expert option than without, and the smaller the fee
charged by the expert, the better the searcher’s welfare.

Expected number of queries.
We can find the expected number of queries in this case

by using our knowledge of the uniform distribution and the
noise distribution in Equations 11-15, yielding
A = V 2( 1

tl
− 1

tu
); B = tl; C = (1− tu);

D = tu − tl − V 2( 1
tl
− 1

tu
)

which give the final expressions:

ηce =
tltu(tu − tl)

tut2l − tlV 2 − tutl + tuV 2
; ηcs =

1

1− tl − V 2( 1
tl
− 1

tu
)
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The monopolist expert’s optimal strategy.
Using the above derivations, it is now easy to calculate

numerically the value of c∗e that maximizes πe, trading off
decreasing number of queries η and increasing revenue per
query ce. Figure 3 shows examples of the graph of expected
profit for the expert as a function of the expert’s fee, ce,
for different values of de, the marginal cost to the expert of
producing an extra “expert report”, for cs = 0.01.

Subsidizing the expert.
As discussed above, the market designer or the govern-

ment can guarantee the reduction of the expert’s charge from

c∗e to c
′
e, keeping πe constant, by paying a per-consumer sub-

sidy β to the expert. Figure 4 shows the improvement in so-
cial welfare, denoted δ(W ), as a function of the subsidy paid
to the expert, β, for various de values (where cs = 0.01).

From the graphs, we do indeed find that subsidization can
lead to substantial increases in social welfare, even when
there is a significant marginal cost of producing an expert
report. While this could be from a reduction in search and
query costs or an increase in the expected value of the op-
portunity finally taken, the data in Table 1 indicates that
the latter explanation is the dominant factor in this case.
It is also worth noting that social welfare is maximized at
the point where the searcher pays exactly de per query, thus
fully internalizing the cost to the expert of producing the
extra report. If the searcher had to pay less, it would lead
to inefficient overconsumption of expert services, whereas
if she had to pay more, the expected decline in the value
she receives from participating in the search process would
outweigh the savings to the market designer or government
from having to pay less subsidy.

6. RELATED WORK
The autonomous agents literature has often considered

the problem of search which incurs a cost [2, 9, 10]. The
underlying foundation for such analysis is search theory [4,
15], and in particular, its one-sided branch which considers
an individual sequentially reviewing different opportunities
from which she can choose only one. The search incurs a cost
and the individual is interested in minimizing expected cost
or maximizing expected utility ([13, 7, 16], and references
therein). To the best of our knowledge, none of the one-
sided search literature in either search theory or multi-agent
systems, has considered the resulting market dynamics when
observations are not accurate and more accurate information
can be purchased from a self-interested agent.

Relaxation of the perfect signals assumption is typically
found in models of two-sided search [1], including marriage
or dating markets [3] and markets with interviewing [11].
The literature has not to this point focused on the decision
problems faced by self-interested knowledge brokers, or how
their presence affects the market.

In terms of market interventions, the two-sided search lit-
erature has considered the impact of search frictions on labor
markets (the 2010 Nobel Prize in Economics was awarded
for this work [15, 4]). One classic regulatory intervention in
these models is the introduction of a minimum wage, which
can be shown to be welfare increasing in many contexts [8],
but we are unaware on any work on subsidizing providers of
expert knowledge, as we discuss here.

7. DISCUSSION AND CONCLUSIONS
The power of modeling markets using search theory is well

established in the literature on economics and social science
[12; 1, inter alia]. It has led to breakthroughs in under-
standing many domains, ranging from basic bilateral trade
[17] to labor markets [15]. While knowledge has always been
an economically valuable commodity, its role continues to
grow in the Internet age. The ubiquity of electronic records
and communications means there is an increasing role for
knowledge brokers in today’s marketplaces. For example, it
is now feasible for agencies like Carfax to collect the avail-
able records of every recorded accident, insurance claim, oil
change, inspection, and so on for every car. The presence of
such knowledge brokers necessitate that we take them into
account in modeling the search process of consumers.

This paper takes the first step in this direction. We in-
troduce a search model in which agents receive noisy signals
of the true value of an object, and can pay an expert to
reveal more information. We show that, for a natural and
general class of distributions, the searchers optimal strategy
is a “double reservation” strategy, where she maintains two
thresholds, an upper and a lower one. When she receives
a signal below her lower threshold, she rejects it immedi-
ately. Similarly, when she receives a signal above her upper
threshold, she accepts it immediately. Only when the signal
is between the thresholds does she consult the expert, de-
termining whether to continue searching or accept the offer
based on the information revealed by the expert.

In such models, there is scope for an authority like a mar-
ket designer or regulator to improve social welfare by sub-
sidizing the cost of querying the expert. The benefit to the
searcher of having less friction in the process could poten-
tially more than offset the cost to the authority. The down-
side would be that if the authority provided too much sub-
sidy, this could lead to inefficient overconsumption of costly
(to produce) expert services. By solving the model for a
natural combination of the distribution of signals and the
conditional distribution of the true value given the signal, we
can analyze such questions more specifically. We show that
in our example, subsidies can in fact be welfare-enhancing,
and, in fact, social welfare is maximized when the searcher
has to pay exactly the marginal production cost of expert
services. Both the model and our results are significant for
designers of markets in which consumers will search and the
need for expert services will arise naturally (like an Internet
marketplace for used cars), because by enhancing social wel-
fare, the market designer can take market share away from
competitors, or perhaps charge higher commissions, because
it is offering a better marketplace for consumers.

There are several directions for future research, from both
the expert’s perspective and the market-designer’s. An in-
teresting problem for the monopolist expert is the optimal
pricing of bundles of queries, where agents must purchase a
bundle, instead of individual reports. More realistic model-
ing of “startup costs” and hence the average “supply curve”
of expert services (instead of the marginal cost considered
here) may also explain a richer range of behaviors. The
existence of the expert has ramifications beyond one-sided
search, our focus in this paper. For example, in two-sided
search markets like labor markets, there may be different
types of experts: those who conduct background checks, for
example, or providers who run independent testing services
to vet potential employees. What are their incentives, and
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Without Subsidy With Subsidy
de ce ηcece csηs Worth V W subsidy ce ηcece csηs Worth V W
0 0.06 0.10 0.08 0.7472 0.5653 0.6656 0.1003 0 0 0.1036 0.7928 0.6893 0.6893

0.025 0.06 0.10 0.08 0.7472 0.5653 0.6238 0.0585 0.025 0.05 0.09 0.7712 0.6295 0.6295
0.05 0.061 0.09 0.08 0.7365 0.5637 0.5806 0.0169 0.05 0.09 0.08 0.7536 0.5824 0.5824

Table 1: The different components of social welfare with and without subsidy for cs = 0.01. “Worth” is the
expected value of the opportunity eventually picked. Initially the decrease in query cost contributes more to
the increase in social welfare, but as de increases, this contribution becomes less significant. Note that the
first two columns in the case without subsidy are similar because the profit-maximizing ce is the same and
the searcher’s cost depends only on value of selected ce, not de.
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Figure 4: Increase in social welfare vs subsidy. When there is no marginal cost (de = 0), it is better for the
market designer to make the service available for free but when there is some marginal cost involved, then
increase in social welfare is a concave peaked at marginal cost.

how do these affect two-sided search markets? From the
market designer’s point of view, new alternatives to sub-
sidization as a means for improving social welfare can be
explored, e.g., inducing competition, or provision of expert
services by the market designer herself (e.g., a government
takes over the role of providing expert services).
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