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ABSTRACT
Large heterogeneous teams in a variety of applications must make
joint decisions using large volumes of noisy and uncertain data. Of-
ten not all team members have access to a sensor, relying instead on
information shared by peers to make decisions. These sensors can
become permanently corrupted through hardware failure or as a re-
sult of the actions of a malicious adversary. Previous work showed
that when the trust between agents was tuned to a specific value the
resulting dynamics of the system had a property called scale invari-
ance which led to agents reaching highly accurate conclusion with
little communication. In this paper we show that these dynamics
also leave the system vulnerable to most agents coming to incorrect
conclusions as a result of small amounts of anomalous information
maliciously injected in the system. We conduct an analysis that
shows that the efficiency of scale invariant dynamics is due to the
fact that large number of agents can come to correct conclusions
when the difference between the percentage of agents holding con-
flicting opinions is relatively small. Although this allows the sys-
tem to come to correct conclusions quickly, it also means that it
would be easy for an attacker with specific knowledge to tip the
balance. We explore different methods for selecting which agents
are Byzantine and when attacks are launched informed by the anal-
ysis. Our study reveals global system properties that can be used to
predict when and where in the network the system is most vulnera-
ble to attack. We use the results of this study to design an algorithm
used by agents to effectively attack the network, informed by local
estimates of the global properties revealed by our investigation.
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1 In the near future, large heterogeneous teams of robots, agents,
and people will be utilized to solve problems in a variety of ap-
plications including search and rescue and the military. The sheer
size of such teams will mean that the amount of data collected by
the team will be overwhelming for its constituents. For this reason,
team members will need to share concise information abstractions
to maintain shared situational awareness.

The physics of communication, along with environmental con-
straints, will require team members to communicate via a point to
point associates network. This will in turn lead to complex infor-
mation dynamics and emergent phenomena, which in turn leads to
unpredictability.

This paper shows that small amounts of anomolous information
introduced to such a belief sharing system can cause errors on a
system-wide scale due to the intrinsic dynamics of the system. This
could potentially be exploited by a malicious agent attempting to
disrupt such a system. Both analytical and empirical evidence is
provided to support this assertion.

Previous attempts to describe the vulnerabilities of complex net-
worked system primarily focus on finding vulnerabilities in the net-
work topology without consideration of the dynamics of the pro-
cess taking place on the network [1]. In this work, the dynamics
on the network have a dramatic impact on the vulnerability of the
system. Studies which have considered how to influence network
dynamics of a complex system include [2]. These all focus on a
single type of information spread whereas here we can have con-
flicting data that fundamentally changes the dynamics and intro-
duces new vulnerabilities due to the way information is fused on
the network.

It was recently shown that a team of agents could tune their local
trust such that the frequency distribution of cascades of changes in
belief followed a power law [3]. When the team was tuned like
this, the team’s ability to rapidly reach correct conclusions despite
noisy data and limited communications was shown to be dramati-
cally higher. However, in this paper we show that when a system is
tuned like that, it also becomes extremely vulnerable to malicious
attack.

We conduct an analysis to show that for a system exhibiting scale
invariant dynamics, a single anomalous sensor reading could result
in a number of agents on the order of the size of the system com-
ing to the incorrect conclusion. The analysis compares the rate at
which the probability that an agent is on the edge of coming to a
correct conclusion, called the percolation probability, increases rel-
ative to the same probability for an incorrect conclusion. The anal-

1This research has been sponsored in part by AFOSR
FA95500810356.
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ysis reveals that these two numbers remain close until the agents
in the system converge. Although this difference is biased towards
correct conclusions, the analysis shows that this difference is small
enough for a few anomalous sensor readings to push large numbers
of agents towards incorrect conclusions.

To confirm the predictions of the analysis we empirically ex-
plore the effect of injecting a single incorrect sensor reading into
the system on the correctness of conclusions reached by agents in
the system. We show empirically by exhaustively searching tra-
jectories of system execution that there is always a point in that
trajectory where injecting a single sensor reading can lead to sys-
tem wide incorrect conclusions. We further show that an adversary
could mount an effective attack on the system if the adversary had
global knowledge of the distance of the system from the percolation
threshold for the incorrect conclusion.

Figure 1: Belief sharing system exhibiting scale invariant dy-
namics is vulnerable to a small percentage of Byzantine agents.

Just as complex systems can be attacked from external sources,
it is also possible for attacks to originate from within. Thus it is
necessary to understand the potential vulnerabilities of such a sys-
tem to threats from within. To this end we study the vulnerability of
the agents within the system to reaching incorrect conclusions as a
result of the action of Byzantine agents within the system. Specifi-
cally, we study mechanisms for picking the most vulnerable points
in the network for attack by Byzantine agents. We explore Several
different mechanisms for selecting which nodes are Byzantine, us-
ing methods typically employed in the study of the vulnerabilities
in network topologies to network disintegration. The study reveals
that the most effective method is that which selects the nodes with
the maximum number of neighbors. Finally, our study shows that
as the number of Byzantine agents in the network increases, the
trust range between agents that results in a scale invariant distribu-
tion of cascades is no longer optimal. As the number of byzantine
agents increases the optimal value of trust is lowered slightly with
the agents becoming slightly more conservative to account for the
misinformation circulating in the system.

In a large distributed system it is unlikely that an adversary would
have access to the global network state or topology, thus it is de-
sirable to study whether an effective attack on the system could
be launched using only local knowledge of the network state and
topology. To investigate the feasibility of a practical attack we de-

veloped a local algorithm, inspired by [4], where Byzantine agents
use knowledge of the local connectivity and a local estimate of the
percolation threshold to decide when and where to focus an attack.
We found that such an attack is as effective, in reducing the number
of agents that come to a correct conclusion, as an attack mounted
with full knowledge of the system state and network topology.

The remainder of this paper is organized as follows: Section 2
gives an overview of the model of a belief sharing system used to
study emergent vulnerabilities. Section 3 presents an analysis that
reveals a vulnerability of such a system to small amounts of anoma-
lous information introduced by an adversary. Section 4 empirically
explores the vulnerability of the system to spoofed sensor readings
introduced by an adversary with global system knowledge. Section
5 empirically explores the vulnerability of the system to Byzantine
agents with detailed knowledge of the network topology and state.
Section 6 explores the feasibility of effective attacks based on par-
tial knowledge of the system. Section 7 presents the related work
and Section 8 presents conclusions and future work.

2. MODEL
In this section, we formally describe the underlying model used

in the remainder of the paper. A cooperative team of agents, A =
{a1, . . . , a|A|} are connected by a network, G = (A,E) where E
is the set of links in G which connect the agents in A. An agent
ai may only communicate directly with another agent aj ∈ Nai
if ∃ei,j ∈ E where we refer to the set Nai as its neighbors. The
average number of neighbors that the agents in G have is defined
as < d > where < d >=

P
i |Nai |
|A| .

Sensors, S = {s1, . . . , s|S|} provide noisy observations to the
team. Only one agent can directly see the output of each sensor.
The sensors return binary observations about some fact b from the
set {true, false}. We refer to the probability that a sensor s will
return a correct observation as its reliability rs. The reliability of a
sensor is known to the agent that receives observations from it.

In the remainder of this paper, unless otherwise specified, |A| =
1000 , |S| = |A|/20 and rs = 0.55∀s.

A key assumption of the model is that it is infeasible for agents
to communicate actual sensor observations to one another and that
they may only communicate whether they currently believe the fact
to be true, false or if they are undecided, unknown.

Each agent ai uses either an observation received from a sensor
or conclusions about b communicated by neighbors to form a belief
Pai(b → true) about b. A new observation is incorporated into
the current belief to form a new belief P ′ai(b → true) using an
expression of Bayes’ Rule with cp as the conditional probability
that the neighbors conclusion is correct. In this model cp acts as a
measure of the trust between agents.

An agent will come to a conclusion about the truth of the fact
and communicate this conclusion to neighbors if its belief in that
conclusion exceeds a fixed threshold. The details of the belief up-
date calculation and thresholding were taken from [3]. When an
agent comes to a conclusion and communicates with neighbors, the
neighbors may then come to a conclusion and communicate. This
chain of conclusion formation is called a cascade. Previous work
showed that agent conclusions are most accurate when the prob-
ability P (c) that c agents change their belief during a cascade is
given by P (c) ∝ c−3/2. The most important metric used in this
paper is Ta, the number of agents in the network coming to the
correct conclusion. We define the system under study to be vulner-
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able if there are small sets of Byzantine agents â, subset â ⊂ |A|
such that Ta and |â| is greatly reduced. Another objective is to
find times at which the system is most vulnerable to the injection
of anomalous sensor readings and agent conclusions.

3. THEORY OF SCALE INVARIANT VUL-
NERABILITY

In this section we conduct an analysis that reveals a vulnerability
to attack in systems which exhibit scale invariant dynamics. Such
systems have been shown to enable very accurate and efficient be-
lief fusion using very little communication. We would like to lever-
age this efficiency to design practical information fusion systems.
However, first it is necessary to understand potential vulnerabilities
of such a system to adversarial action. To this end we analyze the
difference in the rate at which agents in the system reach correct
conclusion (called the percolation probability for that conclusion)
relative to the rate at which they approach incorrect conclusions.
Our, analysis reveals that although agents overwhelmingly reach
correct conclusions at a higher rate, the difference to the rate at
which they near incorrect conclusions is small. This suggest that
when the majority of agents are close to making a decision, a single
anomalous sensor reading could offset this balance causing a large
percentage of agents to reach the incorrect conclusion instead.

Previous work [5] showed that the probability of a large cascade
disseminating a conclusion system wide is given by:

X
k̂t

X
ŝt

β(k̂t, β(ĝt))P (k̂t | ŝt)P (ĝt | ŝt)β(ŝt) (1)

This occurs when the percolation probability for that conclusion
exceeds a threshold called the percolation threshold.

The vector k̂t = [k0, k1, . . . , kt] gives the sequence of the sizes
of avalanches that occurred over time. Similarly the vector ĝt gives
the sequence of false avalanches that occurred. (Note for the model
presented in this paper, only a single cascade per time step is pos-
sible). Finally the vector ŝt = [s0, s1, . . . , st] gives the sequence
of sensor readings input to the system up until time t. The terms in
Equation 1 are as follows: The term β(ŝt) gives the probability of a
specific sequence of sensor readings input to the system, P (k̂t | ŝt)
and P (ĝt | ŝt) give the probability of a resulting sequence of cas-
cade sizes of correct and incorrect conclusions respectively. Finally
β(ĝt, k̂t) gives the probability that a random agent in the network
will be touched by a net number of correct cascades such that it is
one correct communication from a neighbor away from reaching
the correct conclusion.

Starting with Equation 1 we show that the difference between
the probability of a large cascade of correct conclusions and a large
cascade of incorrect conclusions is small just before a large cas-
cade of correct conclusions occurs, revealing a vulnerability in the
system. To facilitate ease of computation we simplify Equation 1
by observing that the scale invariant distribution is heavy tailed,
meaning that the probability of a cascade of size 1 is close to 1.
It is then reasonable to assume that before a large cascade occurs,
all cascades are of size 1. Under this assumption, given a specific
sequence of sensor readings ŝt, all of the probability mass of the
cascade sequence distribution P (k̂t | ŝt) collapses to a single pos-
sible sequence of cascades. With this simplification Equation 1 is
reduced to Equation 2:

Figure 2: The percolation probability for incorrect informa-
tion stays near that for correct information until just before the
threshold is exceeded.

X
k̂t

X
ŝt

β(k̂t, ĝt)β(ŝt) (2)

All three terms of this equation are binomially distributed. We
can further simplify computation using this expression by recog-
nizing that a binomial distribution can be approximated by a nor-
mal distribution. The first term in the equation which gives the
probability of the difference between the number of competing cas-
cades that reached the agent is then normally distributed with mean
µ = nT−nF

|A| and standard deviation σ = nT
|A|

1
1−|A| + nT

|A|
1

1−|A| .
Where nT and nF give the number of correct sensor readings and
incorrect sensor readings in the the sequence ŝt. The probability
of a net number of false cascades touching the agent is obtained by
simply switching the nT and the nF in the normal distribution.

With this substitution it is easy to numerically integrate Equation
2, to give the percolation probability for correct and incorrect cas-
cades. The result of this computation is shown in Figure 2. The
x-axis of this figure gives the timestep and the y-axis gives the per-
colation probability. For the random network the calculation was
conducted for, the percolation threshold that would result in a large
cascade is .33. In the figure it is evident that the percolation proba-
bility for a correct cascade reaches this threshold first. However, at
this point the percolation probability for the large incorrect cascade
is 0.25. This difference corresponds to less than 5% of the agents
in the system. For the system under study with |A| = 1000, this
is less than 50 agents. This estimate is a maximum because the
analysis was predicated on only avalanches of size 1 occuring and
the assumption of a loop free network. In practice relaxing either
of these conditions would reduce the number of agents necessary
to upset the balance and cause a large cascade of incorrect informa-
tion.

The conclusion is that relatively few sensor readings or a small
number of Byzantine agents could potentially cause a system on
the verge of large numbers of agents reaching the correct conclu-
sion to have the exact opposite occur. Furthermore, this result sug-
gests that the system is particularly vulnerable near the percolation
threshold. Although the curves in Figure 2 are even closer together
at lower percolation probabilities, additional Byzantine agents or
anomalous sensor readings would be required to drive the system
closer to the percolation threshold. For example at iteration 300
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an additional 150 agents would need to be influenced to drive the
system to the percolation probability for a cascade of incorrect con-
clusions. Figure 4 illustrates the vulnerability. As the agents in the
system near a correct conclusion, there is a smaller group of agents
on the edge of an incorrect conclusion. A single anomalous sensor
correction can set off a large cascade among such agents leading to
large numbers of agents coming to incorrect conclusions.

4. BYZANTINE SENSORS
In this section we investigate the vulnerability of a system ex-

hibiting scale invariant dynamics of belief exchange to small amounts
of anomalous sensor readings introduced to sensors by a malicious
attacker. The results of this section show that for all of the network
topologies with the exception of Small World, there was always a
point in time at which injecting a spurious sensor reading would re-
sult in large numbers of agents reaching the incorrect conclusions.
In addition, experiments reveal that an adversary with knowledge
of the number of agents in the system 1 communication from a
neighbor away from reaching a correct conclusion could use this
information to decide the best times to introduce spurious sensor
readings into the network for maximum impact on the conclusions
reached by agents with minimal intervention.

We conducted experiments to explore this potential system vul-
nerability. In the first experiment we test if an adversary with total
knowledge of the system, including all of the possible trajectories
of the system dynamics could cause the agents in the system to
adopt the wrong conclusions. In this experiment we exhaustively
search trajectories of the system simulation for points where intro-
ducing a single incorrect sensor reading will result in a cascade for
which greater than half of the agents in the system incorporate the
incorrect sensor reading into their belief. The exact procedure for
searching the system trajectories is as follows. First, a snapshot of
the system is taken where the current belief state of all of the agents
is recorded. Next, we exhaustively consider what would happen if
incorrect sensor readings were introduced to every permutation of
two sensors in the system. For each such permutation, the resulting
cascades, if any, are allowed to propagate until the system quiesces.
The agents are then restored to their states before the introduction
of the incorrect readings before the next permutation is explored.
If a large cascade does not result, the agents are returned to their
previous belief state and the system is allowed to evolve as if the
intervention did not occurr. The entire procedure is then repeated.

In this experiment we recorded the number of large cascades that
occurred as a result of malicious intervention during 10 rounds of
the above procedure, where each round consists of 100 steps, where
each step consists of the permutation search discussed above. The
parameter values used during this experiment were |A| = 1000,
|S| = 1/20|A|, sr = 0.55, and < d >= 4. The results of the ex-
periment are given by Figure 3. The x-axis gives cp and the y-axis
gives the number of rounds out of 10 in which greater than 50% of
the agents incorporated the incorrect information artificially intro-
duced to the sensors.

The plot shows that during almost every round, there is a point
in the system trajectory where introducing incorrect information at
the sensors would have resulted in a large cascade, propagating this
incorrect information to more than half the agents in the system.
This only occurs for rounds when the value of cp approaches the
value which results in scale invariant dynamics. This suggests that
an omniscient agent could almost always cause the agents in the
system to come to the incorrect conclusion. This of course is not

Figure 3: Cascades resulting from malicious intervention at
sensors.

practical and in the next experiment we investigate what informa-
tion could be used by a malicious actor to mount a practical attack
on the system.

The preceding experiment showed us that there is almost always
a point in the trajectory of the system where the system is extremely
vulnerable to malicious intervention using a small amount of misin-
formation. However, the experiment did not tell us anything about
when the system is most vulnerable. Specifically, the experiment
did not reveal what properties of the system could be used by a
malicious actor to decide when to inject misinformation at the sen-
sors. We hypothesize, due to the results of Section 3 that the sys-
tem would be most vulnerable to such an attack when the system
is on the edge of making a decision. That is when the agents are
approaching a percolation threshold for a large correct avalanche.

The percolation threshold in this case is a network specific prob-
ability that a randomly selected agent requires a single communi-
cation from a neighbor to come to a conclusion. We conducted an
experiment to test this hypothesis. In this experiment we simulated
1000 runs of the system and injected a single incorrect reading at a
randomly chosen sensor using two methods to decide when to in-
ject the reading. In the first method we simply randomly selected
the time-step at which to inject the incorrect sensor reading. In the
second method the reading was injected when the percolation prob-
ability was at the percolation threshold. We repeated this for each
network topology under study. The results are given in Table 5.

Network Random success rate Percolation success rate
SF 0% 95%
R 0% 63%

SW 0.03% 83%

Figure 5: The effect of using the percolation probability of the
network to decide when to attack the network compared to ran-
dom attack.

5. BYZANTINE AGENTS
In this section we investigate the vulnerability of a belief sharing

system exhibiting scale invariant dynamics to attacks on, or mal-
function of the agents that exchange fused information within the
system. We experiment with three methods for selecting Byzantine
nodes, all based on global knowledge of the network topology.
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Figure 4: A single incorrect sensor reading introduced by an adversary can percolate through the network causing widespread
incorrect conclusions.

The analysis of Section 3 revealed that changing the decisions
of a relatively small number of agents in the system could dramat-
ically reduce the number of agents reaching the correct conlusion.
This suggests that a small number of Byzantine agents could influ-
ence the conclusions of the majority of the agents in the system by
sharing incorrect information or noise.

In this section we analyze this assertion by empirically exploring
the vulnerability of the system to the action of malicious or mal-
functioning agents. Specifically we analyze the effect of malicious
agents in the system on the performance of the system as measured
by the the number of agents in the system that reach the correct
conclusion. We investigated two types of Byzantine agents. The
first type of Byzantine agents we investigated pathologically share
incorrect information. The second type shares random information.
Both types of agent simply ignore any information received from
neighbors or sensors.

One of the key results of this section is that a relatively small
number of Byzantine agents dramatically reduces the number of
agents that reach a correct conclusion over all network types. In
addition, we find that the trust value that results in scale invariant
dynamics is no longer optimal when a small number of Byzantine
agents are present.

5.1 Byzantine agent selection
Three different methods of selecting which nodes in the simu-

lation would be Byzantine were used in experiments. In the first
method, nodes are simply drawn at random from a uniform dis-
tribution over all of the nodes in the system. The second method
which we call the maximum influence method is a modified version
of the method due to Kleinberg [6]. Using this method, a node is se-
lected by the number of nodes that would be infected by a cascade
starting at that node. We call this a nodes influence number. The
nodes with the highest influence numbers are selected. To calculate
the influence number of nodeQ each node is initially marked unin-
fected. Next nodeQ communicates with its neighbors. When these
neighbors receive this communication they draw a real number in
the range [0, 1] from a uniform distribution. If this number exceeds
a threshold, the node marks itself and communicates with neigh-
bors otherwise it does nothing. When all communication ceases,
the influence number of Q is the number of nodes in the network
marked infected.

The third method of Byzantine node selection picks the nodes
with the largest number of neighbors, this is called the max node
method. Figure 6 shows the node that would most likely be selected

Figure 6: Three methods used for selecting Byzantine nodes.

first in a particular graph structure. The max node method picks
the node that simply has the highest fanout while the max influence
method is biased towards the node with the most pathways to the
other nodes in the network.

5.2 Byzantine agent experiments
First we conducted an experiment to investigate the result on sys-

tem performance of Byzantine nodes which pathologically share
incorrect information with neighbors. In the experiment, we in-
vestigated how system performance as measured by the number of
agents reaching the correct conclusion, changed as the number of
Byzantine nodes in the system was varied. Experimental parame-
ters are as follows: The number of Byzantine nodes in the system
was varied from 0-10% of |A| in increments of 1%. All remaining
graphs in this section were produced using the parameter values
|A| = 1000, |S| = 50, rc = 0.2, and rs = 0.55, and < d >= 4.
We also varied the structure of the communication network used by
the agents. The results are given by Figures 7 and 8. In Figure 7 the
x-axis gives the number of Byzantine agents out of 1000. The y-
axis gives x the number of agents out of 1000 that come to the cor-
rect conclusion. Each curve represents a different network topology
including Random, Scale Free, and Small Worlds networks. The
leftmost plot shows the results when Byzantine nodes are selected
at random, the middle plot shows the results for nodes selected us-
ing the maximum influence method, and the leftmost plot shows
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the results when nodes that have the largest number of neighbors
are selected.

The first trend evident across all of the communication networks
is that with a relatively small percentage of Byzantine nodes, the
number of agents that comes to the correct conclusion drops dra-
matically. In fact with 10% of the nodes in the system, only the
Scale-Free network has greater than half the agents in the network
reaching the correct conclusion. The theoretical limit, due to Lam-
port [7], says that agents in a network can reach a correct consensus
with a maximum of 33% of the nodes as Byzantine. The system
under study requires less than 10% of the agents to be Byzantine,
to prevent a correct consensus in the truth of the fact being moni-
tored. Also all networks are most vulnerable when nodes with the
maximum number of neighbors are chosen.

For the ScaleFree network, the trend of the vulnerability of this
system with respect to the way nodes are selected for the injection
of misinformation, reflects the known results for the vulnerability
of the ScaleFree network to the removal of nodes. The ScaleFree
network proves most robust of all of the networks when Byzantine
nodes are selected at random, with 60% of the agents reaching the
correct conclusion with 10% of the nodes Byzantine. Conversely,
the ScaleFree network is most vulnerable when the nodes with the
largest number of neighbors are selected. In this case, with only
1% of the nodes Byzantine, less than 10% of the agents in the net-
work come to the correct conclusion. This can be explained by
the extremely skewed distribution of the number of neighbors that
each nodes has in a scale free network. A Scale Free network has
a long tailed distribution, with a few nodes, called hubs, having a
large number of neighbors and the remainder of the nodes having
relatively few neighbors. When nodes are selected at random, their
is a low likelihood that the hubs will be selected and the fused in-
formation originating at the hubs overwhelms that spread by the
Byzantine nodes. Conversely, the hubs have a disproportionately
large effect on the network spreading misinformation widely when
they are Byzantine.

The second trend evident across all of the networks is that for the
Random network topology, there is a distinct threshold in the num-
ber of Byzantine nodes beyond which the number of agents that
reach the correct conclusion drops suddenly and dramatically. This
threshold is 6% of the agents for both the random agent selection
and selection for agents with the maximum number of neighbors.
This threshold drops to 4% when the maximum influence method
is used for node selection.

All network topologies perform about the same for the maximum
influence method of selecting nodes to be Byzantine. This sug-
gests that the specific dynamics of this system have a large effect
on the which nodes are vulnerable within the system. Otherwise
the generic influence spreading, which is dependent on the static
topology of the network itself, would be much more effective at
means of picking Byzantine nodes to cause the maximum number
of nodes to come to the incorrect conclusion.

The network with the Small Worlds topology shows a linear drop
in the number of agents reaching the correct conclusion with in-
creasing numbers of Byzantine agents.

Over all for a system with these dynamics, the Scale Free net-
work topology would be the best choice. It is least vulnerable to all
attacks except attacks on the hubs. Since the hubs in the network
are relatively few, they would take a relatively small amount of
computational resources within a system to monitor for intrusion.
Furthermore, an attacker would need a large amount of information

about the topology of the network to select nodes for attack effec-
tively. Below its vulnerability threshold, the random network is the
least vulnerable, and would be the best choice of network topol-
ogy in a secure environment where an attacker could only select
relatively few nodes to attack.

Figure 8 shows how the value of cp which results in the largest
number of agents reaching the correct conclusion, and hence which
associated system dynamics as discussed in Section 2 are least vul-
nerable, as the number of Byzantine nodes in the system changes.
The x-axis of the figure gives the number of Byzantine agents out
of 1000 in the system. The y-axis gives the center of mass of cp.
The center of mass is the mean value of cp over simulation runs
weighted by the number of agents that reach the correct conclusion
for that value of cp. The center of mass is defined mathematically
as
P
i
cpi∗nTi
nTi

, where nTi is the number of agents that reached the
correct conclusion for simulation run i. The most notable trend in
Figure 8 is that for the network with the Random topology there is
a distinct shift of the trust value cp that gives the best performance,
away from the value that results in scale invariant dynamics.

The high level conclusion of this Section is that the scale invari-
ant dynamics that were previously showed to lead to high accuracy
in the conclusions of agents, leaves the system vulnerable to inter-
vention by a small number of Byzantine nodes. This means that a
system utilizing scale invariant dynamics, or that intrinsically had
such dynamics would either need to operate in a very secure envi-
ronment, or explicitly have a mechanism to detect the presence of
Byzantine nodes.

6. ATTACKS WITH LIMITED INFORMA-
TION

In previous sections experiments have shown that an adversary
could dramatically reduce the accuracy of agent’s conclusions us-
ing global system knowledge. However, in practice, it is more
likely that an adversary would have only partial knowledge of the
system. To investigate the vulnerability of the system to attacks
based on partial system knowledge, we developed an algorithm
used by Byzantine agents to attack the system using only local in-
formation about the system. In sections4 and 5 we found that the
system was most vulnerable at times when close to the percolation
threshold in agent decisions. We also found that most networks
exhibiting scale invariant dynamics were most vulnerable at nodes
with many neighbors. For this reason, the Byzantine agents ex-
ecuting our attack strategy use local estimates of the percolation
threshold in the network to decide when to attack and knowledge
of the local network topology to decide where to attack.

The details of the algorithm are as follows. The Byzantine agent
draws a random number in the range [1, |A|] from a uniform proba-
bility distribution. If this number falls below a threshold, which we
call the activity threshold, the agent continues to operate normally,
fusing conclusions of neighbors and communicating the resulting
conclusion. This threshold is intended to ensure that only a pre-
selected percentage of the Byzantine agents in the system are ac-
tive at any time. If the random number drawn by the agent exceeds
the activity threshold, the agent estimates the distance of the agent
and it’s neighbors from the percolation threshold. The knowledge
of the percolation threshold suggests that the attacker would have
knowledge of the high level topology of the network (e.g. Ran-
dom vs. Scale Free) but not specific details of the connectivity in
the network. If this estimate is within a given distance from the
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Figure 7: The effect of Byzantine nodes on the correctness of the conclusions of agents across the three methods for selecting Byzan-
tine nodes.

Figure 8: The effect of Byzantine nodes on the cp that gives best performance.

percolation threshold for the network, the agent then sends several
incorrect conclusions to its neighbor that has the highest number of
network links.

We conducted an experiment to test the efficacy of this algo-
rithm over a range of networks. The parameters used are the same
as those for previous sections. The activity threshold is varied
between 0.05 and 0.30 (effectively varying the number of active
Byzantine agents between 5% and 30%. This is plotted against the
average number of agents that reach the correct conclusion. This
plot is shown in Figure 9. The plot shows that relatively few agents

Figure 9: The effect of Byzantine nodes using only local knowl-
edge of the system on the accuracy of the conclusions reached
by agents in the network.

using the algorithm, dramatically reduce the number of agents in
the system reaching correct conclusions over a range of network
topologies.

7. RELATED WORK

There have been several studies conducted to investigate models
whose dynamics are governed by cascades on complex networks.
These include models of fads[8, 9], rumors [10], gossip[11], forest
fires [12], and diseases[13, 14]. Common to all of these models
is that the dynamics are governed by the spreading of a single in-
fluence. In contrast, our model investigates competing influences
which significantly alters the dynamics of a system.

In [15], Parunak presents a model of the collective convergence
of agents to a cognitive state. This model is similar to ours in
that it does include multiple states that agents can converge to and
hence competition between states. Parunak focuses on studying the
macroscopic performance of the system. We build upon Parunak’s
investigation by analyzing the dynamics of the system directly and
investigating the relationship between the dynamics and the perfor-
mance of the system.

A number of studies have investigated the impact of Byzantine
nodes on the performance of a distributed system and mechanisms
for coping with their presence [16],[17],[18]. We extend these stud-
ies by investigating how the efficacy of Byzantine agents are im-
pacted by the dynamics of a system exhibiting scale invariance in
belief exchange.

Previous work has extensively explored methods for picking net-
work nodes that are most vulnerable to fracturing the structure of
the network [1], [19]. This paper considers the impact of many of
the metrics discussed in this body of work on information dynamics
on a network by using them for the placement of agents that spread
misinformation on a belief sharing network.

Recently there has been significant interest in social networks
[20], [21] and the impact of those networks on performance of a
group. For example, Xu looked at the impact of networks on rout-
ing information to a specific agent [22]. Kleinberg, looked at the
impact of the network on the performance of decentralized search
algorithms [6], when a single agent has information valuable to the
system. We build on both of these contributions by investigating
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the case when a large percentage of the agents in the team are both
sources and sinks for information, which fundamentally changes
the dynamics of information exchange in the system.

8. CONCLUSIONS AND FUTURE WORK
When information exchange between agents exhibits scale in-

variant dynamics, the speed and reliability with which the team can
converge to correct conclusions, despite noisy data and highly lim-
ited communication is dramatically increased. Before, this property
can be leveraged to design efficient information fusion, we need to
understand the vulnerability of the system to malicious interven-
tion. In this work we found that scale invariant dynamics make a
system susceptible to the presence of Byzantine agents and sensors.
We showed analytically that when the agents in the system are near
to a correct conclusion, they are simultaneously near to coming to
an incorrect conclusion. This leaves the system vulnerable to small
amounts of anomalous information and small number of Byzantine
agents. We found that Byzantine agents were most effective at re-
ducing the accuracy of the conclusions of other agents when placed
at high degree nodes in the network. We further found that attacks
were most effective when launched when the network is close to
a percolation threshold in the decisions of agents. In future work,
we propose to extend the model to capture additional features of
information sharing, including beliefs of several variables and a
richer communication model, while maintaining the mathematical
simplicity that allows the types of detailed analysis above. We also
intend to simulate features that are harder to model mathematically,
such as the ways mobile sensors might be redeployed based on
initial conclusions and how other coordination activities can influ-
ence belief convergence. Finally we intend to develop mechanisms
for detecting Byzantine or malfunctioning agents and mitigating
their impact on system performance informed by the algorithm de-
scribed in this work.
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