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ABSTRACT
The fastest known algorithm for solving General Bayesian Stackel-
berg games with a finite set of follower (adversary) types have seen
direct practical use at the LAX airport for over 3 years; and cur-
rently, an (albeit non-Bayesian) algorithm for solving these games
is also being used for scheduling air marshals on limited sectors
of international flights by the US Federal Air Marshals Service.
These algorithms find optimal randomized security schedules to al-
locate limited security resources to protect targets. As we scale up
to larger domains, including the full set of flights covered by the
Federal Air Marshals, it is critical to develop newer algorithms that
scale-up significantly beyond the limits of the current state-of-the-
art of Bayesian Stackelberg solvers. In this paper, we present a
novel technique based on a hierarchical decomposition and branch
and bound search over the follower type space, which may be ap-
plied to different Stackelberg game solvers. We have applied this
technique to different solvers, resulting in: (i) A new exact algo-
rithm called HBGS that is orders of magnitude faster than the best
known previous Bayesian solver for general Stackelberg games;
(ii) A new exact algorithm called HBSA which extends the fastest
known previous security game solver towards the Bayesian case;
and (iii) Approximation versions of HBGS and HBSA that show
significant improvements over these newer algorithms with only 1-
2% sacrifice in the practical solution quality.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms
Algorithms, Performance, Experimentation

Keywords
Game Theory, Bayesian Stackelberg Games, Hierarchical Decom-
position

1. INTRODUCTION
This paper focuses on Stackelberg games where a leader com-

mits to a mixed strategy, and then a follower selfishly optimizes
his own reward, with the knowledge of the mixed strategy chosen
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by the leader. These models are common for modeling attacker-
defender scenarios in security domains [15, 9], patrolling domains [1,
3], and are also being applied to network routing [11] and trans-
portation networks [16]. Indeed, these models have seen at least
two deployed applications at the Los Angeles International Airport
(LAX) and the Federal Air Marshals Service (FAMS) [8].

Uncertainty over player preferences, a key aspect of the real-
world, is modeled using a Bayesian extension to Stackelberg games.
Bayesian Stackelberg games allow us to explicitly model players
as types, where each type can have its own preferences. Indeed,
the application at LAX uses a Bayesian Stackelberg game. Un-
fortunately, the problem of finding the Stackelberg equilibrium for
Bayesian Stackelberg games has been shown to be NP-Hard [5].

The two chief techniques previously employed for identifying
Bayesian Stackelberg equilibrium are: (1) Multiple-LPs [5] that
uses the Harsanyi transformation [6] to convert the Bayesian game
into a perfect information game, and then analyzes each of the ex-
ponential number of combinations of the actions for all follower
types independently; (2) DOBSS [15] that analyzes the entire Baye-
sian game at once without using the Harsanyi transformation by us-
ing a mixed-integer linear program, which optimizes against each
adversary type independently while keeping the leader strategy fixed
across all types. However, these methods fail to scale up beyond
10 types even for 20 actions for the players, or beyond 30 actions
for just 5 follower types. Alternatively, sampling techniques have
been proposed for Bayesian Stackelberg games with infinite types,
but they only provide approximate solutions [10]. Thus, efficient
algorithms for Bayesian Stackelberg games need to be developed
for the application of game-theoretic techniques to more complex
real-world domains.

The focus of this paper is to present a new technique for solving
large Bayesian Stackelberg games that decomposes the entire game
into many hierarchically-organized, restricted Bayesian Stackel-
berg games; it then utilizes the solutions of these restricted games to
guide us to more efficiently solve the larger Bayesian Stackelberg
game. In particular, we use this overarching idea of hierarchical
structure to improve the performance of branch and bound search
for Bayesian Stackelberg games; the solutions obtained for the re-
stricted games at the ‘child’ nodes are used to provide: (i) prun-
ing rules, (ii) tighter bounds, and (iii) efficient branching heuristics
to solve the bigger game at the ‘parent’ node faster. Such hier-
archical techniques have seen little application towards obtaining
optimal solutions in Bayesian games (decompositions have been
proposed to obtain approximate Nash equilibrium for symmetric
games [17]), while Stackelberg settings have not seen any applica-
tion of such hierarchical decomposition.

We first present HBGS (Hierarchical Bayesian solver for Gen-
eral Stackelberg games), an algorithm that applies such decompo-
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sition techniques to general Bayesian Stackelberg games, and show
that we can scale up to 50 types for games where the state-of-the-art
algorithms cannot even solve for 10. Secondly, we present HBSA
(Hierarchical Bayesian Solver for Security games with Arbitrary
schedules), which uses the same key decomposition ideas to solve
large scale security domains with arbitrary scheduling constraints.
Finally, we show that these algorithms are naturally designed for
obtaining quality bounded approximations, and can provide a fur-
ther order of magnitude scale-up without significant loss in quality.

2. BACKGROUND AND NOTATION
We begin by defining a normal-form Stackelberg game. A generic

Stackelberg game is a two person bi-matrix game, between a leader
and a follower. These players need not represent individuals, but
could also be groups like the police force, that cooperate to exe-
cute a joint-strategy. Each player has a set of pure strategies, and
a mixed strategy allows the player to play a probability distribution
over these pure strategies. Payoffs for each player are defined over
all possible joint pure-strategy outcomes. In a Stackelberg game,
the follower acts with the full knowledge of the leader’s strategy.

Table 1: Bayesian Game Notation
Variable Definition

Θ Leader
Ψ Follower
Λ Set of follower types, iterated using λ

G(Θ,ΨΛ) Bayesian Game with Λ follower types.
Σ Set of pure strategies, iterated using σ
σΘ A pure strategy of the leader
σΨ A pure strategy of the follower, σΨ =< σλΨ >
pλ Probability of facing follower type λ

UλΘ(σΘ, σ
λ
Ψ) Payoff of leader against follower type λ

UλΨ(σΘ, σ
λ
Ψ) Payoff of follower type λ

δ Mixed strategy of the leader
δ(σΘ) Probability of leader playing pure strategy σΘ

VΘ(δ, σΨ) Expected utility of the leader
VΨ(δ, σΨ) Expected utility of the follower

The Bayesian extension to the Stackelberg game allows for mul-
tiple types of players, with each type associated with its own pay-
off values. For the games discussed in this paper, we assume that
there is only one leader type, although there may be multiple fol-
lower types. This is motivated by the real-world deployments: there
could be one security force which is facing many types of adver-
saries like local thieves as well as hard-lined terrorists. Each type is
represented by a different and possibly uncorrelated payoff matrix.
The leader does not know the follower’s exact type, however, the
probability distribution over follower types is known.

A Bayesian game between the leader and a set of follower types
is represented by G(Θ,ΨΛ) where Θ represents the leader, Λ rep-
resents the set of follower types and Ψ represents the follower. The
leader, Θ, for the Bayesian Stackelberg games in this paper is al-
ways the row player, while the follower Ψ is always the column
player. The follower could be of any type λi from the set of types Λ.
The pure strategies for each player are represented by σ, whereas
the set of these pure strategies is represented by Σ. Subscripts Θ
and Ψ are used to denote the player, e.g., σΘ represent the pure
strategies for the leader. The strategy space ΣΨ of the follower in
the Bayesian game is a cross product of the strategy spaces of all
the follower types, ΣΨ =

∏
λ∈Λ ΣλΨ, and so the pure strategy σΨ

of the follower is represented as a tuple of pure strategies for each

follower type, σΨ =< σλΨ >= [σ1
Ψ, . . . , σ

|Λ|
Ψ ]. The notation is

described in Table 1.
The solution concept of interest is a Strong Stackelberg Equi-

librium (SSE) [13], where the objective for the leader is to find
the mixed strategy δ, such that the expected leader utility is maxi-
mized given that the follower will choose its action with the com-
plete knowledge of the leader’s mixed strategy in its own interest.
We limit the follower to play only pure strategies, since their always
exists a pure strategy best response for the follower in such Stackel-
berg games [15]. The expected utility of the leader against follower
type λ for strategy profiles δ and σΨ is denoted as VλΘ(δ, σλΨ). The
expected utility of the leader, VΘ(δ, σΨ), is a weighted combina-
tion of the leader expected utility against all follower types:

VλΘ(δ, σΨ) =
∑

σΘ∈ΣΘ

δ(σΘ)UλΘ(σΘ, σ
λ
Ψ) (1)

VΘ(δ, σΨ) =
∑
λ∈Λ

pλVλΘ(δ, σλΨ) (2)

The expected utility of the follower is defined analogously. For-
mally, SSE is defined as follows:

1. The leader plays a best response:

VΘ(δ, σΨ) ≥ VΘ(δ′, σΨ)∀δ′ (3)

2. Every follower type plays a best response:

VλΨ(δ, σλΨ) ≥ VλΨ(δ, σ
′λ
Ψ )∀σ′λ

Ψ ∈ ΣλΨ,∀λ ∈ Λ (4)

3. The follower breaks ties in favor of the leader1:

VλΘ(δ, σλΨ) ≥ VλΘ(δ, σ
′λ
Ψ )∀σ′λ

Ψ ∈ Σ∗λΨ , ∀λ ∈ Λ (5)

where Σ∗λΨ is the set of pure strategy best responses, satisfy-
ing Equation (4).

2.1 Existing Approaches / Related Work
Two main approaches have been proposed in prior work to com-

pute the equilibrium in Bayesian Stackelberg games. DOBSS [15]
solves the Bayesian game by solving a mixed-integer linear pro-
gram that internally decomposes the problem by individual fol-
lower types. On the other hand, Multiple-LPs approach [5] works
on the Harsanyi transformed version of the game. Harsanyi trans-
formation converts the Bayesian game into a normal form repre-
sentation, however, with an exponential number of pure strategies.
Multiple-LPs thus computes an exponential number of linear pro-
grams to find the Stackelberg equilibrium [15].

The follower’s pure strategy space ΣΨ in the Bayesian Stackel-
berg game G(Θ,ΨΛ) can be represented using a tree, where each
branch corresponds to a pure strategy choice for a follower type.
Figure 1 shows an example of such a tree presentation ofG(Θ,ΨΛ),
where Λ = {λ1, λ2} with |ΣλΨ| = 2, λ ∈ Λ. Every leaf in this
tree represents a pure strategy of the follower; for example, the
pure strategy [σ1

2 , σ
2
1 ] is represented by the leaf [2, 1]. In a game

with |Λ| types and |ΣλΨ| pure strategies per type, the number of
leaves in this tree would be

∏
λ∈Λ |ΣλΨ|. The path from the root to

a leaf represents a distinct pure strategy σΨ of the follower. Thus,
there are exponentially many leaves in G(Θ,ΨΛ); for example, a
game with 10 follower types and just 5 actions per type would have
9, 765, 625 leaves.

The LP employed by Multiple-LPs algorithm is described in
Equations (6) to (9). This LP is executed for all pure strategies
1The leader can always induce the follower to break ties in its fa-
vor [2].
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Figure 1: Example tree representing the pure strategy action
choices for the follower in a Bayesian Stackelberg game.

σΨ of the follower (i.e. for all the leaves of Figure 1). It takes σΨ

as input, and then maximizes the leader expected utility VΘ under
the constraint that the best response of the follower of type λwill be
σλΨ. The follower strategy σΨ is labeled infeasible if it can never be
the best response of the follower for any defender strategy δ. The
optimal leader strategy is one that gives the leader the maximum
expected utility across all these linear programs.

max
δ
VΘ(δ, σΨ) (6)

s.t. VλΨ(δ, σλΨ) ≥ VλΨ(δ, σ
′λ
Ψ ) ∀σ′λ

Ψ ∈ ΣλΨ, λ ∈ Λ (7)∑
σ∈ΣΘ

δ(σΘ) = 1 (8)

δ ∈ [0, 1] (9)

3. HBGS OVERVIEW
The exponential number of linear programs that are solved by

Multiple-LPs approach does not allow it to scale well with increas-
ing number of follower types. Indeed, if the optimal solution could
be obtained by solving only a few of these linear programs, the per-
formance could be improved significantly — even significantly bet-
ter than DOBSS. Specifically, if we could construct a smaller tree
of the follower’s action choices in the first place, or obtain bounds
on solution quality to perform branch and bound search, significant
speed-ups would be obtained. This is the intuition behind HB-
GS: HBGS reduces the number of linear programs that need to be
solved using two main insights: (1) Feasibility rules that help elim-
inate infeasible follower strategies in the Bayesian game; and (2)
Bounds that help prune the follower action space using branch and
bound search. HBGS constructs a hierarchical tree of restricted
games, the solutions of which provide such feasibility and bounds
information. We first discuss the hierarchical structure of HBGS,
and then describe the feasibility and bounding techniques.

3.1 Hierarchical Type Trees
As mentioned above, HBGS constructs a hierarchical structure

of restricted games to obtain the feasibility sets ΣλΨ per follower
type, and corresponding upper bounds Bλ for every pure strategy
for every follower type. For this purpose, the Bayesian Stackel-
berg game G(Θ,ΨΛ) is decomposed into many smaller restricted
games, G(Θ,ΨΛi) by partitioning the set of types, Λ, into subsets
Λi.2 Any partition of Λ into subsets Λi is applicable, such that:

∪iΛi = Λ (10)
Λi ∩ Λj = ∅ ∀i,∀j, j 6= i (11)

2The probability distribution over types, pΛ =< pλ >, is renor-
malized for each restricted sub-game.

These restricted games are smaller and are much easier to solve
(the number of follower pure strategies in these restricted games is
exponentially smaller as compared to the entire Bayesian game).

Once a partition has been established, a hierarchical type tree is
constructed where the root node corresponds to the entire Bayesian
gameG(Θ,ΨΛ), and its children correspond to the restricted games,
G(Θ,ΨΛi). While any partitioning is valid, we present and exper-
imentally evaluate two partitions in this paper: (1) a depth-one par-
tition, and (2) a fully branched binary tree (where children can then
be hierarchically decomposed into even more restricted games). An
example game of depth-one partitioning with 4 types is shown in
Figure 2(a). Here, each restricted game solves for exactly one type
such that the total depth of the tree is one. On the other hand, Fig-
ure 2(b) shows fully branched binary partitioning, where the en-
tire problem is broken down into two restricted games of two types
each, which are again broken down into two sub-games themselves.

All the nodes in the constructed hierarchical tree are visited such
that the children are evaluated before the parent. Every node is
evaluated using Algorithm 1 (discussed next), and the feasible pure
strategies ΣΛi

Ψ with corresponding bounds BΛi obtained at the ith

child are propagated up to the parent. These are then used when
the parent is evaluated, again using Algorithm 1. This process con-
tinues until the root node is solved and the optimal solution for the
entire game G(Θ,ΨΛ) is obtained.

3.2 Pruning a Bayesian Game
If a parent in the HBGS tree obtains feasibility and bounds infor-

mation from its children, how can it use it to improve its efficiency
of processing the Bayesian game?

(1) Feasibility: HBGS uses the following theorem to reduce the
strategy space ΣΛ

Ψ of the follower.

THEOREM 1. The follower’s pure strategy σΨ = [σλΨ] is infea-
sible in the Bayesian game G(Θ,ΨΛ) if the strategy σλΨ is infea-
sible for the follower of type λ in a restricted game, G(Θ,ΨΛ′

),
where the follower can only be of type λ (that is, Λ′ = {λ}).

PROOF. Suppose that the pure strategy σΨ containing σλΨ is fea-
sible in the Bayesian game with δ being the corresponding defender
mixed strategy. Thus, the best response of the follower of type λ
to the leader strategy δ is σλΨ, as stated in Equation (4). Therefore,
the pure strategy σλΨ is feasible in the restricted game G′(Θ,ΨΛ′

),
which is a contradiction.

Theorem 1 states that if σλΨ can never be the best response of
follower type λ in the restricted game G(Θ,ΨΛ′

),Λ′ = {λ} (that
is, a game with only the follower of type λ), then a pure strategy
containing σλΨ can never be the best-response of the follower in any
Bayesian game G(Θ,ΨΛ),Λ = {λ1, λ2, . . .}. In other words, if
some branches in the follower action tree (Figure 1) are infeasi-
ble, no leaves in the subtree connected by that branch need to be
evaluated. The theorem can easily be extended to restricted games
with Λ′ ⊆ Λ by considering Λ′ as one hyper-type. This implies
that a pure strategy σΨ can be removed from the Bayesian game
if any of its components σλΨ is infeasible in the corresponding re-
stricted game. Thus, such pure strategies need not be reasoned over,
thereby reducing the computational burden significantly.

As an example of the gain in performance, consider a sample
problem with five follower types (|Λ| = 5), such that there are ten
pure strategies for follower of each type (|ΣλΨ| = 10, λ ∈ Λ). Thus,
the total number of pure strategies for the follower in the Bayesian
Stackelberg game are 105. If an oracle could inform us a-priori
that two particular pure strategies can be discarded for every type of
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(a) Depth-One Partitioning.
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(b) Full Binary Partitioning.

Figure 2: Examples of possible hierarchical type trees generated in HBGS. Each node is a restricted Bayesian game in itself.

the follower, the strategy space would reduce to 85 pure strategies,
which is approximately only 33% of the initial problem.

HBGS identifies the infeasible strategies of the restricted games,
and then applies Theorem 1 to prune out infeasible strategies from
G(Θ,ΨΛ). This process is applied recursively in the hierarchical
tree (refer Figure 2) to obtain effective pruning at the root node.

(2) Bounds: A pure strategy for the follower needs not be eval-
uated if the upper bound on the maximum leader expected utility
for the corresponding pure strategy is available, and if this upper
bound is not better than the best solution known so far. A naïve
upper bound is + inf which leads to no pruning, and would lead
to the conventional Multiple-LPs approach. However, HBGS uses
novel techniques for obtaining tighter upper bounds on the maxi-
mum leader expected utility, which are based on Theorem 2.

THEOREM 2. The maximal leader payoff is upper bounded by∑
λ∈Λ p

λB(σλΨ) when the follower chooses a pure strategy σΨ =<

σλΨ >, where B(σλΨ) is the upper bound on the leader utility in the
restricted gameG′(Θ,ΨΛ′

)|Λ′ = {λ} when the follower of type λ
is induced to choose pure strategy σλΨ.

PROOF. B(σλΨ) upper-bounds the maximum utility of the leader
for any strategy that induces the follower of type λ to choose σλΨ as
the best response. Thus, the leader utility against follower of type λ
for any strategy δ is no more than B(σλΨ). Therefore, VλΘ(δ, σλΨ) ≤
B(σλΨ). Applying Equation (2),

VΘ(δ, σΨ) ≤
∑
λ∈Λ

pλB(σλΨ) ∀δ (12)

which proves the theorem.3

These bounds are generated for all children and then propagated up
the hierarchical tree (Figure 2), where they are used by the parent
to prune out branches from its own Bayesian game (Figure 1).

3.3 HBGS Description
HBGS solves each node of the hierarchical tree using Algo-

rithm 1. A tree representing the follower actions, as in Figure 1,
is constructed which is then solved using an efficient branch-and-
bound search. Only the pure strategies in the cross-product of the
feasible set of strategies of individual types need to be evaluated
for the follower (Theorem 1). Σ∗ represents this maximal set, as
3This theorem can also be generalized to restricted games where
Λ′ ⊆ Λ, just like Theorem 1.

given in Line number 2 (and updated later in Line 10). B∗ repre-
sents the bounds for all these strategies, and is obtained in Line 3
(and updated later in Line 9). Lines 2 to 5 are initialization; ΣλΨ(i)
represents the ith pure strategy in the set ΣλΨ. The main loop of
the algorithm starts after Line 6, where one pure strategy (leaf ) is
evaluated after another. The function solve (Line 7) in HBGS

Algorithm 1 HBGS(Λ,ΣΘ,Σ
Λ
Ψ,BΛ, UΘ, UΨ)

// initialize
// ΣΛ

Ψ: pruned feasible pure strategy set for all follower types
// BΛ: bounds for all pure strategies for all follower types
1. FT := construct-Follower-Action-Tree(ΣΛ

Ψ)
2. Σ∗ := leaves-of(FT) //feasible pure strategies of Ψ
3. B∗(σΨ) := getBounds(σΨ,BΛ) ∀σΨ ∈∏

λ ΣλΨ
4. sort(Σ∗,B∗(σΨ)) // sort σΨ in descending order of B∗(σΨ)

5. σΨ := [Σ1
Ψ(1),Σ2

Ψ(1), . . . ,Σ
|Λ|
Ψ (1)] // left-most leaf

6. r∗ := − inf //r∗: current best known solution
// start
repeat

7. (feasible, δ, r) := solve(ΣΘ, σΨ) // Equations 6-9
if feasible then

if r > r∗ then
// update current best solution
8a. r∗ := r
8b. δ∗ := δ

9. B∗(σΨ) := r //update bound
else

10. Σ∗ := Σ∗ − σΨ //remove infeasible strategy
11. σΨ := getNextStrategy(σΨ, r∗, ΣΛ

Ψ,BΛ)
until σΨ <> NULL
return (δ∗, r∗,Σ∗,B∗)

solves the LP given in Equations (6) to (9). The follower pure strat-
egy σΨ is feasible if this LP has a feasible solution. The maximal
leader reward r and the corresponding leader mixed strategy δ are
also obtained from the LP (Line 7). If the pure strategy is feasible,
the bounds B∗ are updated (Line 9). Otherwise, the strategy σΨ is
removed from the pure strategy set Σ∗ of the follower (Line 10).

The function getNextStrategy()moves from one leaf (pure
strategy) to another of this follower action tree: it is the branching
heuristic (Line 11). For example, it would iterate through all the
4 leaves in Figure 1 one by one if no leaf was pruned. The leader
strategy δ∗ to the maximal corresponding leader reward r∗ is the
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optimal leader strategy for this Bayesian game. Additionally, Al-
gorithm 1 also returns the set of feasible pure strategies, Σ∗, and the
corresponding bounds, B∗. This feasible strategy set Σ∗ is a subset
of the cross-product of ΣλΨ, the feasible strategies per type, since it
does not contain the strategies that were computed and found to be
infeasible.4 Σ∗ and B∗ are the feasibility sets and bounds that are
propagated up the hierarchical tree; however, we first discuss the
branch and bound heuristic used in Algorithm 1.

Branch and Bound Heuristics: HBGS sorts σλΨ ∈ ΣλΨ, the
pure strategies per type, in decreasing order of their bounds B(σλΨ)
before the tree in Figure 1 is constructed. The branching heuristic
is that the leaf which can generate the higher leader expected util-
ity is preferred. The bounds on each leaf are a direct application
of Theorem 2. The function getBounds computes the weighted
sum of the bounds per follower type B(σλΨ)5 to generate the bound
B(σΨ) for this leaf.

Tree Traversal and Pruning: Algorithm 2 formally defines
the tree-traversal strategy. The algorithm traverses the leaves of the
follower action tree from left to right (lexicographic order) with the
objective to find the first leaf (pure strategy) whose bound is higher
than the current best solution r∗. If no such leaf exists, the optimal
solution has been achieved and HBGS can be successfully termi-
nated. This tree is constructed keeping the child nodes sorted in
descending order from left to right in every sub-tree. For exam-
ple, in Figure 1, B(Σ1

Ψ(1)) ≥ B(Σ1
Ψ(2)) (children of root) and

B(Σ2
Ψ(1)) ≥ B(Σ2

Ψ(2)) where ΣλΨ(i) represents the ith pure strat-
egy for follower type λ. The leaves are evaluated from left to right,
that is, the leaf [1, 1] is evaluated first and leaf [2, 2] last.

If the bound B for any leaf σΨ is smaller than the best solution
obtained thus far, that leaf need not be evaluated. Additionally,
right siblings of this leaf σΨ need not be evaluated either, given the
sorted nature of every sub-tree. For example, in Figure 1, if the
bound of leaf [2, 1] is worse than the solution at [1, 2], then the leaf
[2, 2] does not need to evaluated as well. Algorithm 2 accomplishes
this type of pruning of branches as well.

Algorithm 2 getNextStrategy(σΨ, r∗,ΣΛ,BΛ)
for λ = |Λ| to 1 Step −1 do
j := index-of(ΣλΨ, σ

λ
Ψ)

// Fix the pure strategies of parents: σiΨ, i < λ
// Update the pure strategy of type λ: ΣλΨ(j + 1)
// Children choose their best pure strategy: ΣiΨ(1), i > λ

σΨ := [σ1
Ψ, . . . , σ

λ−1
Ψ ,ΣλΨ(j + 1),Σλ+1

Ψ (1), . . . ,Σ
|Λ|
Ψ (1)]

if r∗ < getBounds(σΨ,BΛ) then
return σΨ

return NULL

HBGS Summary: The leaves of the hierarchical type tree are
solved to identify infeasible strategies and obtain upper bounds on
every follower strategy. This information is propagated up the tree,
and the procedure repeated for every node until the optimal solution
is obtained at the root. While HBGS does incur the overhead of
solving many smaller restricted games, it outperforms all existing
techniques in the overall performance, as shown in Section 6.

4. HBSA OVERVIEW
Applications with complex scheduling constraints have inspired

new algorithms to take advantage of structure in domains with ex-
tremely large strategy spaces for the leader. One example of such
4Some of the strategies in Σ∗ that were not computed may still be
infeasible; Algorithm 1 ensures no feasible strategy is removed.
5The bounds are weighted by the distribution pλ over types.

a domain is the scheduling problem faced by FAMS where the air
marshals (defender) need to cover flights (targets) from a terror-
ist (adversary). Scheduling even 10 air marshals over 100 flights
leads to approximately 1.7e13 joint schedules for the defender, so
new algorithms like ASPEN [7] based on large scale optimization
techniques like column generation have been proposed. However,
no Bayesian extensions exist.

We first extend the ASPEN algorithm to handle arbitrary schedul-
ing constraints in the presence of multiple follower types. We then
present HBSA, which like HBGS, solves the Bayesian game hier-
archically. We show that the key ideas of hierarchical decomposi-
tion can also be applied to Bayesian games in such domains.

Security problems with arbitrary scheduling constraints (SPARS)
were first introduced by Jain et. al [7]. These problems are known
to be NP-Hard in general [12]. The defender in the SPARS prob-
lem needs to protect a set T of targets from the adversary. The pure
strategy of the defender is a joint schedule Pj, which is an allo-
cation of all its resources to a set of schedules S that agree with
the scheduling constraints given in the SPARS problem. The pure
strategy space of the adversary is the set of targets T ; the adver-
sary can choose to attack any target. The adversary succeeds if the
target being attacked is not covered by the defender. The payoffs
U are defined for both the players (refer Table 2). For example,
consider a SPARS game modeling FAMS with 5 targets (flights),
T = {t1, . . . , t5}, and two air marshals. Let the set of feasible
schedules be S = {{t1, t2}, {t2, t3}, {t3, t4}, {t4, t5}, {t1, t5}}.
The set of all feasible joint schedules is shown below (1 implies
that the target t is being covered by joint schedule Pj), where each
column represents a joint schedule:

P =

P1 P2 P3 P4 P5

t1 :
t2 :
t3 :
t4 :
t5 :


1 1 1 1 0
1 1 1 0 1
1 1 0 1 1
1 0 1 1 1
0 1 1 1 1


The pure strategy space of the defender in such domains is so

large that all the joint schedules cannot even be represented in mem-
ory all at once. ASPEN handles such large pure strategy spaces by
using column-generation, a technique for large scale optimization
where the “useful” joint schedules (or columns) are generated itera-
tively. The LP formulation of ASPEN is decomposed into a master
problem and a slave problem to facilitate the application of column
generation [7]. The master problem solves for the defender strat-
egy x, given a restricted set of columns (joint schedules) P. The
slave is designed to identify the best new column (i.e., joint sched-
ule) to add to the master problem, while ensuring that the proposed
joint schedule conforms to all the scheduling constraints of the do-
main. The objective function for the slave is updated based on the
solution of the master using reduced costs from the solution of the
master6. Column generation terminates if no column can improve
the defender expected utility. We now first introduce the Bayesian
extension to ASPEN.

4.1 Bayesian-ASPEN Column Generation
Bayesian-ASPEN also generates a tree of the pure strategies of

the follower, as in Figure 1. Every leaf of the tree is evaluated
using Bayesian-ASPEN. To that end, master and slave problems in
ASPEN are extended for the Bayesian case.

Master Problem for Bayesian-ASPEN: The defender and the
adversary optimization constraints from ASPEN need to be ex-
6Reduced costs, widely used in OR literature, measure the impact
of a column (or variable) on the objective.
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Table 2: SPARS Game Notation
Variable Definition

P Mapping between Targets T and Joint Schedules J
x Distribution over J (mixed strategy of the defender)
aλ Attack vector (pure strategy of the attacker type λ)
dλ Defender reward against type λ (analogous to VλΘ)
kλ Reward of adversary type λ (analogous to VλΨ)
dλ Column vector of dλ
kλ Column vector of kλ
Uuλ,Θ Utility for defender when target is uncovered
Ucλ,Θ Utility for defender when target is covered
Dλ Diag. matrix of Ucλ,Θ(t)− Uuλ,Θ(t)
Aλ Diag. matrix of Ucλ,Ψ(t)− Uuλ,Ψ(t)

Uu
λ,Θ Vector of values UuΘ(t), similarly for Ψ
M Huge Positive constant

tended over all adversary types, in accordance with Equation (4).
The master problem, given in Equations (13) to (17), solves for the
probability vector x that maximizes the defender reward.7 Equa-
tions (14) and (15) enforce the SSE conditions for the defender and
adversary of each type, such that the players choose mutual best-
responses to each other. The defender expected utility for protect-
ing target t against adversary type λ is given by the tth component
of the column vector DλPx + Uλ,u

Θ (the adversary payoff is de-
fined analogously). The notation is described in Table 2.

max
∑
λ∈Λ

dλpλ (13)

s.t. dλ − (DλPx + Uu
λ,Θ) ≤ (1− aλ)M ∀λ ∈ Λ (14)

0 ≤ kλ − (AλPx + Uu
λ,Ψ) ≤ (1− aλ)M ∀λ ∈ Λ (15)∑

j∈J
xj = 1 (16)

x,a ≥ 0 (17)

Slave Problem: The slave problem finds the best column to add
to the current columns in P. This is done using reduced cost, which
captures the total change in the defender payoff if a candidate col-
umn is added to P. The candidate column with minimum reduced
cost improves the objective value the most [4]. The reduced cost c̄j
of variable xj , associated with column Pj, calculated using stan-
dard techniques, is given in Equation (18), where wλ,yλ, zλ and
h are dual variables of master constraints (14),(15-rhs),(15-lhs) and
(16) respectively.

c̄j =
∑
λ∈Λ

(wT
λ (DλPj) + yTλ (AλPj)− zTλ (AλPj))− h (18)

Reduced costs c̄j are decomposed into ĉt, reduced costs per target:

ĉt =
∑
λ∈Λ

(wλ,tDλ,t + yλ,tAλ,t − zλ,tAλ,t) (19)

The column with the least reduced cost is identified using the same
minimum cost network flow slave formulation as presented in AS-
PEN [7], using the newly computed ĉt.

4.2 HBSA Description
HBSA also decomposes the Bayesian-SPARS problem into many

restricted Bayesian-SPARS games, constructing a hierarchical type
7The actual algorithm minimizes the negative of the defender re-
ward for correctness of reduced cost computation; we show maxi-
mization of defender reward for expository purposes.

tree, just like HBGS, and passing up infeasibility and bounds. How-
ever, HBSA uses Bayesian-ASPEN to solve each node of the fol-
lower action tree (refer Figure 1).

5. APPROXIMATIONS
The objective of these algorithms is to maximize the defender

expected utility. Thus, the best known solution at any time dur-
ing the execution of the algorithm is a lower bound to the optimal
leader utility in the Bayesian Stackelberg games. Additionally, the
upper bounds are determined using B (as described in Section 3.3)
and are also available at all times during the algorithm’s execution.
The bounds are used to obtain approximate solutions with quality
guarantees, the algorithm can be terminated as soon as the distance
between lower and upper bounds is smaller than pre-defined ap-
proximation ε. Allowing for even 1% approximation in these algo-
rithms can provide an order of magnitude speed-up in practice with-
out any significant loss in solution quality (refer Section 6), where
as no polynomial time algorithm can guarantee a factor-|Λ|1−ε ap-
proximation for any ε > 0 [14].

6. EXPERIMENTAL RESULTS
We provide three sets of experimental results. First, we compare

the performance of DOBSS, Multiple-LPs and HBGS for generic
Bayesian Stackelberg games. Second, we compare the scale-up
performance of HBSA for security games with scheduling con-
straints. Third, we show speedups via approximations. The payoffs
for both players for all test instances were randomly generated, and
were consistent with the definition of security games [9] for exper-
iments with HBSA. Results were obtained on a standard 2.8GHz
machine with 2GB main memory, and are averaged over 30 trials.

6.1 HBGS Scale-up
We compare the runtime of HBGS against the runtime of DOBSS

and Multiple-LPs, the two chief algorithms for general Bayesian
Stackelberg games. We use two variants of HBGS: (1) the first
variant, denoted HBGS-D constructed a hierarchical tree of a fixed
depth of one where as many restricted games were generated as the
number of follower types. (2) The second variant, HBGS-F, con-
structed maximally branched binary trees such that each Bayesian
game was decomposed into two restricted games with half as many
types, until the leaves solved a restricted game with exactly one
type. We compared the performance of these algorithms when the
number of targets and the number of types were increased. We also
show the speed ups obtained when approximation was allowed.

Scale-up of number of strategies: Figure 3(a) shows how the
performance of the four algorithms scales when the strategy spaces
are increased. These tests were done for 5 types. The x-axis shows
the number of pure strategies for both players, while the y-axis
shows the runtime in seconds on a log scale. For example, for
30 actions and 5 types, Multiple-LPs would solve 305 = 2.43e7
linear programs. The experiments had a time cut-off of 24 hours.

The figure shows that while both variants of HBGS can suc-
cessfully compute for 5 types and 30 pure strategies, DOBSS and
Multiple-LPs cannot. Furthermore, HBGS-F with its fully bal-
anced binary tree scales better than HBGS-D. This is because it
solves a much smaller problem at the root node, even though it
solves many more restricted problems. Each restricted game pro-
vides more pruning (infeasible combinations of follower actions
will not be propagated up the tree) and potentially tighter bounds.

Figure 3(b) shows an analysis of time required by HBGS-D and
HBGS-F in solving all the restricted Bayesian games before the
root node of hierarchical type tree is solved. The x-axis shows
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Figure 3: This plot shows the comparisons in performance of the four algorithms when the size of the input problem is scaled.

the number of pure strategies for both the players and the y-axis
shows the percentage of runtime. It shows that while HBGS-D
spends almost no time in initialization (‘Init’), HBGS-F spends
almost 40% of its runtime in solving the restricted games. On the
other hand, HBGS-F decomposes the problem more finely and thus
spends more time solving more of the restricted games. This is be-
cause the number of restricted games generated by HBGS-F are
more than the corresponding number in HBGS-D.However, the to-
tal time required by HBGS-F is considerably smaller (Figure 3(a))
which shows that hierarchical decompositions obtain more pruning
and generate better bounds than depth-one hierarchical trees.

Scale-up of number of types: For these experiments, both the
row and the column player had 30 pure strategies.The x-axis shows
the number of types, whereas the y-axis shows the runtime in sec-
onds. Again, the experiments were terminated after a cut-off time
of 24 hours. We can see that HBGS-F scales extremely well as
compared to the other algorithms; for example, HBGS-F solved a
problem with 6 types in an average 231 seconds whereas DOBSS
took an average of 12593.8 for the same problem instances. The
other two algorithms didn’t even finish their execution in 24 hours.
While DOBSS and Multiple-LPs do not scale beyond a few num-
ber of types, HBGS-F provides scale-up by an order of magnitude.
In Table 3, we present the runtime results of HBGS-F for up to
50 types. The experiments in this case had 5 pure strategies for
both players (the other algorithms can not solve any instance with
more than 20 types in 24 hours). This shows that DOBSS is no
longer the fastest Bayesian Stackelberg game solution algorithm,
and HBGS-F provides scale-up by an order of magnitude.

Table 3: Scaling up types (30 pure strategies per type)

Types Follower Pure Strategy Combinations Runtime (secs)
10 9.7e7 0.41
20 9.5e13 16.33
30 9.3e20 239.97
40 9.1e27 577.49
50 8.9e34 3321.681

6.2 HBSA Scale-up
In this section, we compare the performance of HBSA for Baye-

sian-SPARS games. Since no previous algorithms existed to solve
such Bayesian security games with scheduling constraints, we com-
pare the performance of variants of HBSA. We tested three differ-
ent variants: (1) the first, HBSA-D, analogous to HBGS-D, uses a
hierarchical tree with a depth of one, such that each leaf solves
a restricted game with exactly one follower type. (2) The sec-

ond, HBSA-F, analogous to HBGS-F, uses a fully branched binary
tree. (3) The third, HBSA-O, also constructs a depth-one tree like
HBSA-D, but uses ORIGAMI-S [7] to obtain bounds and branch-
ing heuristic from the restricted games. ORIGAMI-S is used since
it is polynomial time, and has been shown to be an effective heuris-
tic to generate bounds and branching rules for SPARS games [7].

0	  

20000	  

40000	  

60000	  

80000	  

30	   40	   50	   60	   70	  

Ru
nT
im

e	  

Targets	  

HBSA-‐O	  

HBSA-‐D	  

HBSA-‐F	  

(a) Scaling Up Targets

0	  

20000	  

40000	  

60000	  

80000	  

2	   3	   4	   5	   6	  

Ru
nT
im

e	  

Types 

HBSA-‐O	  

HBSA-‐D	  

HBSA-‐F	  

(b) Scaling Up Types

Figure 5: This plot shows the comparisons in performance of
the three algorithms when the input problem is scaled.

Scale-up in number of targets: In these experiments, the num-
ber of targets was varied while keeping the number of adversary
types fixed to 5. The number of defender resources was set so
cover 10% of the total number of targets. The results are shown
in Figure 5(a) where the x-axis shows the number of targets and the
y-axis shows the runtime in seconds. The graph shows that HBSA-
F is fastest, and scales much better compared to the HBSA-O and
HBSA-D variants. The simulations were terminated if they didn’t
finish in 24 hours. For example, HBSA-D and HBSA-O did not
finish in 24 hours for the case with 70 targets, while HBSA-F was
able to solve the problem instance in less than 5 hours.

Scale-up in number of types: These experiments varied the
number of types, while keeping the number of targets fixed to 50.
The number of resources was set to 5, so as to cover 10% of the
total number of targets. The x-axis shows the number of types
whereas the y-axis shows the runtime in seconds. The graph again
shows that HBSA-F is the fastest algorithm. Again, the cut-off
time for the experiments was 24 hours, and for example, HBSA-D
and HBSA-O could not solve for 6 types in 24 hours.

6.3 Approximations
This section discusses the performance scale-ups that can be

achieved when the algorithm was allowed to return approxima-
tion solutions. Three parameter settings of approximations were
allowed: 1 unit, 5 unit and 10 units8. The approximations were
8The maximum reward in the matrix was 100 units, and these were
chosen as 1%, 5% and 10% of the maximum possible payoff.
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Figure 4: This plot shows the comparisons in solution of the HBGS and its approximation variants.

tried on HBGS-F (with fully branched binary trees) since that prior
experiments had shown it to be the fastest algorithm.

The number of types was fixed to 6 and the number of pure
strategies was varied for the results shown in Figure 4(a). The
number of targets here is shown on the x-axis, whereas the y-axis
shows the runtime in seconds. Similarly, Figure 4(b) shows the
results when the number of types was increased while fixing the
strategy space to 50 pure strategies for the leader and all follower
types. These figures show that the approximation variants of HB-
GS scale significantly better. For example, while HBGS-F took
43,727 seconds to solve a problem instance with 50 pure strategies
and 6 types, the 1,5 and 10 unit approximations were able to solve
the same problem in 10639, 3131 and 2409 seconds respectively,
which is up to 18 times faster.

We also analyzed the difference in solution quality when the ap-
proximations were allowed, which is shown in Figure 4(c). The y-
axis shows the percentage error in the actual solution quality of the
approximate solution while the x-axis shows the number of targets.
Lower bar implies lower error. For example, the maximum error in
all settings for HBGS with an allowed approximation of five units
was less than two percent. These results show that allowing for ap-
proximate solutions can dramatically increase the scalability of the
algorithms without significant loss in the solution quality.

7. CONCLUSIONS
Algorithms for Stackelberg games have already seen limited ap-

plications in real-world domains; the capability to handle uncer-
tainty using Bayesian models is an important avenue of research to
facilitate further deployments. We present a new hierarchical algo-
rithm that is able to provide scale-ups by orders of magnitude over
the state-of-the-art. We apply this algorithm not only to general
Bayesian Stackelberg games but also show how the key ideas can
be applied to the latest algorithms for security games.
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