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ABSTRACT
Game theory is fast becoming a vital tool for reasoning about com-
plex real-world security problems, including critical infrastructure
protection. The game models for these applications are constructed
using expert analysis and historical data to estimate the values of
key parameters, including the preferences and capabilities of terror-
ists. In many cases, it would be natural to represent uncertainty over
these parameters using continuous distributions (such as uniform
intervals or Gaussians). However, existing solution algorithms are
limited to considering a small, finite number of possible attacker
types with different payoffs. We introduce a general model of infi-
nite Bayesian Stackelberg security games that allows payoffs to be
represented using continuous payoff distributions. We then develop
several techniques for finding approximate solutions for this class
of games, and show empirically that our methods offer dramatic
improvements over the current state of the art, providing new ways
to improve the robustness of security game models.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—Dis-
tributed Artificial Intelligence

General Terms
Algorithms,Economics,Experimentation

Keywords
Game theory, Bayesian Stackelberg games, robustness, security,
uncertainty, risk analysis

1. INTRODUCTION
Stackelberg games are increasingly important for informing real-

world decision-making, including a growing body of work that ap-
plies these techniques in security domains such as critical infras-
tructure protection [22, 6], computer networks [3, 17], and robot
patrolling strategies [10, 2, 5]. Two software systems that use this
type of game modeling are in use by the the Los Angeles Inter-
national Airport (LAX) [20] and the Federal Air Marshals Service
(FAMS) [24] to assist with resource allocation decision. A key is-
sue that has arisen in these applications is whether the models can
Cite as: Approximation Methods for Infinite Bayesian Stackelberg
Games: Modeling Distributional Payoff Uncertainty, Christopher Kiek-
intveld, Janusz Marecki and Milind Tambe, Proc. of 10th Int. Conf. on
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1005-1012.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

accurately represent the uncertainty that domains experts have about
the inputs used to construct the game models, including the prefer-
ences and capabilities of terrorist adversaries.

To apply game-theoretic reasoning, the first step in the analysis
is to construct a precise game model. The typical approach (e.g.,
in the LAX and FAMS applications) is to construct a model using
a combination of the available data and expert opinions. Unfortu-
nately, the data is often limited or imprecise, especially in regards
to information about the terrorist adversaries. For example, it can
be difficult to predict precisely how attackers will weigh casualties,
economic consequences, media exposure, and other factors when
selecting targets. Our focus in this paper is on developing tech-
niques to more accurately model the uncertainty about the parame-
ters of the model to avoid poor decisions due to overconfidence.

Bayesian games [11] are the most common framework for rea-
soning about uncertainty in game-theoretic settings. Unfortunately,
it is known that finding equilibria of finite Bayesian Stackelberg
games is NP-hard [9]. The DOBSS algorithm [18] used in the AR-
MOR system at LAX is able to solve games with roughly 10 at-
tacker types and up to 5 actions for each player. Until very recently
with the development of HBGS [12], this was the fastest known al-
gorithm for finite Bayesian Stackelberg games. Both DOBSS and
HBGS are too slow to scale to domains such as FAMS with thou-
sands of actions, and we show in our experimental results that re-
stricting the model to a small number of attacker types generally
leads to poor solution quality.

In this work we introduce a general model of infinite Bayesian
Stackelberg security games that allows payoffs to be represented
using continuous payoff distributions (e.g., Gaussian or uniform
distributions). This model allows for a richer and more natural
expression of uncertainty about the input parameters, leading to
higher-quality and more robust solutions than finite Bayesian mod-
els. Our analysis of the model shows that finding exact analytic
solutions is infeasible (and efficient algorithms are unlikely in any
case, given the complexity results for the finite case). We focus
instead on developing approximate solution methods that employ
numerical methods, Monte-Carlo sampling, and approximate opti-
mization. Our experiments show that even approximate solutions
for the infinite case offer dramatic benefits in both solution quality
and scalability over the existing approaches based on perfect infor-
mation or small numbers of attacker types.

2. RELATED WORK
Stackelberg games have important applications in security do-

mains. These include fielded applications at the Los Angeles In-
ternational Airport [20] and the Federal Air Marshals Service [24],
work on patrolling strategies for robots and unmanned vehicles [10,
2, 5], applications of game theory in network security [3, 26, 17],
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and research that provides policy recommendations for allocation
of security resources at a national level [22, 6]. Bayesian games [11]
are a standard approach for modeling uncertainty, and there are
many specific examples of infinite Bayesian games that have been
solved analytically, including many types of auctions [14].

However, there is relatively little work on general algorithms for
solving large and infinite Bayesian games. Recent interest in this
class of games focuses on developing approximation algorithms [21,
4, 8]. Monte-Carlo sampling approaches similar to those we de-
scribe have been applied to some kinds of auctions [7]. In addition,
the literature on stochastic choice [15, 16] studies problems that
are simplified versions of the choice problem attackers face in our
model. Closed-form solutions exist only for special cases with spe-
cific types of uncertainty, even in the single-agent stochastic choice
literature. A alternative to Bayesian games that has been devel-
oped recently is robust equilibrium [1], which takes a worst-case
approach inspired by the robust optimization literature.

3. BAYESIAN SECURITY GAMES
We define a new class of infinite Bayesian Security Games, ex-

tending the model in Kiekintveld et. al. [13] to include uncertainty
about the attacker’s payoffs. The key difference between our model
and existing approaches (such as in Paruchuri et. al [18]) is that we
allow the defender to have a continuous distribution over the pos-
sible payoffs of the attacker. Previous models have restricted this
uncertainty to a small, finite number of possible attacker types, lim-
iting the kinds of uncertainty that can be modeled.

A security game has two players, a defender, Θ, and an at-
tacker, Ψ, a set of targets T = {t1, . . . , tn} that the defender
wants to protect (the attacker wants to attack) and a set of resources
R = {r1, . . . , rm} (e.g., police officers) that the defender may
deploy to protect the targets. Resources are identical in that any
resource can be deployed to protect any target, and any resource
provides equivalent protection. A defender’s pure strategy, denoted
σΘ, is a subset of targets from T with size less than or equal to m
An attacker’s pure strategy, σΨ, is exactly one target from T . ΣΘ

denotes the set of all defender’s pure strategies and ΣΨ is the set
of all attacker’s pure strategies. We model the game as a Stackel-
berg game [25] which unfolds as follows: (1) the defender com-
mits to a mixed strategy δΘ that is a probability distribution over
the pure strategies from ΣΘ, (2) nature chooses a random attacker
type ω ∈ Ω with probability Pb(ω), (3) the attacker observes the
defender’s mixed strategy δΘ, and (4) the attacker responds to δΘ
with a best-response strategy from ΣΨ that provides the attacker
(of type ω) with the highest expected payoff given δΘ.

The payoffs for the defender depend on which target is attacked
and whether the target is protected (covered) or not. Specifically,
for an attack on target t, the defender receives a payoff UuΘ(t) if the
target is uncovered, and UcΘ(t) if the target is covered. The payoffs
for an attacker of type ω ∈ Ω is UuΨ(t, ω) for an attack on an un-
covered target, and UcΨ(t, ω) for an attack on a covered target.We
assume that both the defender and the attacker know the above pay-
off structure exactly. However, the defender is uncertain about the
attacker’s type, and can only estimate the expected payoffs for the
attacker. We do not to model uncertainty that the attacker has about
the defender’s payoffs because we assume that the attacker is able
to directly observe the defender’s strategy.

3.1 Bayesian Stackelberg Equilibrium
A Bayesian Stackelberg Equilibrium (BSE) for a security game

consists of a strategy profile in which every attacker type is playing
a best response to the defender strategy, and the defender is playing
a best response to the distribution of actions chosen by the attacker

types. We first define the equilibrium condition for the attacker and
for the defender. We represent the defender’s mixed strategy δΘ by
the compact coverage vector C = (ct)t∈T that gives the probabil-
ities ct that each target t ∈ T is covered by at least one resource.
Note that

P
t∈T ct ≤ m because the defender has m resources

available. In equilibrium each attacker type ω best-responds to the
coverage C with a pure strategy σ∗Ψ(C,ω) given by:

σ∗Ψ(C,ω) = arg max
t∈T

(ct · UcΨ(t, ω) + (1− ct) · UuΨ(t, ω)) (1)

To define the equilibrium condition for the defender we first de-
fine the attacker response function A(C) = (at(C))t∈T that re-
turns the probabilities at(C) that each target t ∈ T will be at-
tacked, given the distribution of attacker types and a coverage vec-
tor C. Specifically:

at(C) =

Z
ω∈Ω

Pb(ω)1t(σ
∗
Ψ(C,ω))dω (2)

where 1t(σ
∗
Ψ(C,ω)) is the indicator function that returns 0 if

t = σ∗Ψ(C,ω) and 0 otherwise. Given the attacker response func-
tion A(·) and a set of all possible defender coverage vectors C,
the equilibrium condition for the defender is to execute its best-
response mixed strategy δ∗Θ ≡ C∗ given by:

δ∗Θ = arg max
C

X
t∈T

at(C)(ct · UcΘ(t) + (1− ct) · UuΘ(t)). (3)

3.2 Attacker Payoff Distributions
When the set of attacker types is infinite, calculating the attacker

response function directly from Equation (2) is impractical. For
this case we instead replace each payoff in the original model with
a continuous distribution over possible payoffs. Formally, for each
target t ∈ T we replace values UcΨ(t, ω), UuΨ(t, ω) over all ω ∈ Ω
with two continuous probability density functions:

fcΨ(t, r) =

Z
ω∈Ω

Pb(ω)UcΨ(t, ω)dω (4)

fuΨ(t, r) =

Z
ω∈Ω

Pb(ω)UuΨ(t, ω)dω (5)

that represent the defender’s beliefs about the attacker payoffs. For
example, the defender expects with probability fcΨ(t, r) that the at-
tacker receives payoff r for attacking target t when it is covered.
This provides a convenient and general way for domain experts to
express uncertainty about payoffs in the game model, whether due
to their own beliefs or based on uncertain evidence from intelli-
gence reports. Given this representation, we can now derive an
alternative formula for the attacker response function. For some
coverage vector C, let Xt(C) be a random variable that describes
the expected attacker payoffs for attacking target t, given C. It then
holds for each target t ∈ T that:

at(C) = Pb[Xt(C) > Xt′(C) for all t′ ∈ T \ t] (6)

because the attacker acts rationally. Equation 6 can be rewritten as:

at(C) =

r=+∞Z
r=−∞

Pb[Xt(C) = r] ·
Y

t′∈T\t
Pb[Xt′(C) < r]dr (7)

=

r=+∞Z
r=−∞

Pb[Xt(C) = r] ·
Y

t′∈T\t

r′=rZ
r′=−∞

Pb[Xt′(C) = r′]dr′ dr.
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Hence, we now show how to determine the random variablesXt(C)
used in Equation (7). That is, we provide a derivation of values
Pb[Xt(C) = r] for all t ∈ T and −∞ < r < +∞. To this end,
we represent eachXt(C) using two random variables,X−t (C) and
X+
t (C). X−t (C) describes the expected attacker payoffs for be-

ing caught when attacking target t while X+
t (C) describes the ex-

pected attacker payoffs for not being caught when attacking tar-
get t, given coverage vector C. It then holds that Xt(C) = r if
X−t (C) = x and X+

t (C) = r − x for some −∞ < x < +∞.
(Note, that in a trivial case where ct = 1 it holds thatPb[X+

t (C) =
0] = 1 and consequently X−t (C) = Xt(C). Similarly, if ct = 0
then Pb[X−t (C) = 0] = 1 and X+

t (C) = Xt(C).) We can hence
derive Pb[Xt(C) = r] as follows:

Pb[Xt(C) = r] =

x=+∞Z
x=−∞

Pb[X−t (C) = x] · Pb[X+
t (C) = r − x]dx

=

x=+∞Z
x=−∞

Pb[X−t (C) = x]dx · Pb[X+
t (C) = r − x]dx

dx

=

x=+∞Z
x=−∞

Pb[x ≤ X−t (C) ≤ x+ dx] · Pb[r − x ≤ X+
t (C) ≤ r − x+ dx]

dx

If a random event provides payoff y := x
ct

with probability ct,

the expected payoff of that event is y · ct = x. Therefore:

=

x=+∞Z
x=−∞

1

dx

y=
(x+dx)
ctZ

y= x
ct

fcψ(t, y)dy

y= r−x+dx
1−ctZ

y= r−x
1−ct

fuψ(t, y)dy

Substituting u := cty, v := (1− ct)y in the inner integrals we get:

=

x=+∞Z
x=−∞

1

dx

u=x+dxZ
u=x

fcψ

„
t,
u

ct

«
1

ct
du

v=r−x+dxZ
v=r−x

fuψ

„
t,

v

1− ct

«
1

1− ct
dv

=

x=+∞Z
x=−∞

1

dx
fcψ

„
t,
x

ct

«
1

ct
dx · fuψ

„
t,
r − x
1− ct

«
1

1− ct
dx

=

x=+∞Z
x=−∞

1

ct
fcψ

„
t,
x

ct

«
· 1

1− ct
fuφ

„
t,
r − x
1− ct

«
dx.

Using this derived formula for Pb[Xt(C) = r] in (7) we obtain:

at(C) =

r=+∞Z
r=−∞

x=+∞Z
x=−∞

1

ct
fcψ

„
t,
x

ct

«
· 1

1− ct
fuφ

„
t,
r − x
1− ct

«
dx dr

·
Y

t′∈T\t

r′=rZ
r′=−∞

x=+∞Z
x=−∞

1

ct′
fcψ

„
t′,

x

ct′

«
· 1

1− ct′
fuφ

„
t′,

r′ − x
1− ct′

«
dx dr′

Also written as at(C) =
R
gt
Q
t′∈T\tGt′ where Gt :=

R
gt and

gt(r) :=

x=+∞Z
x=−∞

1

ct
fcψ

„
t,
x

ct

«
· 1

1− ct
fuφ

„
t,
r − x
1− ct

«
dx

While a direct analytic solution of these equations is not tractable,
we can use numerical techniques to compute gt, Gt and at(C). In
our experiments we test two methods, one using straightforward
Monte-Carlo simulation and the second using piecewise-constant
functions to approximate fuφ and fuφ . The argument-wise multipli-
cation fuφ · fuφ still results in a piecewise constant function which,

after the integration operation, results in a piecewise linear func-
tion gt(r). We then re-approximate gt(r) with a piecewise con-
stant function, integrate gt(r) to obtain a piecewise linear function
Gt(r) and again re-approximate Gt(r) with a piecewise constant
function. Each product gt

Q
t′∈T\tGt′ is then a piecewise con-

stant function which after the integration operation is represented
as a piecewise linear function. The value of that last function ap-
proaches at(C) as the number of segments approaches infinity. By
varying the accuracy of these computations one can trade off opti-
mality for speed, as shown in our experiments.

4. SOLUTION METHODS
To solve the model described in the previous section we need to

find a Bayesian Stackelberg equilibrium which gives and optimal
coverage strategy for the defender and optimal response for every
attacker type. If there are a finite number of attacker types, an op-
timal defender strategy can be found using DOBSS [18]. Unfor-
tunately, there are no known methods for finding exact equilibrium
solutions for infinite Bayesian Stackelberg games, and DOBSS only
scales to small numbers of types. Here we focus on methods for ap-
proximating solutions to infinite Bayesian Stackelberg games. The
problem can be broken down into two parts:

1. Computing/estimating the attacker response function (Eqn 7)

2. Optimizing over the space of defender strategies, given the
attacker response function

In the previous section we were able to derive the form of the
attacker response function, but we lack any means to compute this
function analytically. As described above, we explore both brute-
force Monte-Carlo sampling and a piecewise-constant function ap-
proximation method to approximate this function. In addition, we
explore a variety of different approaches for optimizing the de-
fender strategy. Overall, we describe five different approximate
solution methods.

4.1 Sampled Bayesian ERASER
Our first method combines Monte-Carlo sampling from the space

of attacker types with an exact optimization over the space of de-
fender strategies. This approach is based on the DOBSS solver [18]
for finite Bayesian Stackelberg games. However, we also incorpo-
rate several improvements from the ERASER solver [13] that offer
faster solutions for the restricted class of security games. The re-
sulting method can be encoded as a mixed-integer linear program
(MIP), which we call Bayesian ERASER (not presented here due to
space constraints).

To use Bayesian ERASER to approximate a solution for an infi-
nite game we draw a finite number of sample attacker types from
the type distribution, assuming that each occurs with equal proba-
bility. The payoffs for each type are determined by drawing from
the payoff distributions specified in Equations 4 and 5. This re-
sults in a constrained, finite version of the infinite game that can be
solved using the Bayesian ERASER MIP. We refer to this method
as Sampled Bayesian ERASER (SBE) and use SBE-x to denote this
method with x sample attacker types. Armantier et al. [4] develop
an approach for approximating general infinite Bayesian games that
relies on solving constrained versions of the original game. Given
certain technical conditions, a sequence of equilibria of constrained
games will converge to the equilibrium of the original game. Here,
increasing the number of sample types corresponds to such a se-
quence of constrained games, so in the limit as the number of sam-
ples goes to infinity the equilibrium of SBE-∞ will converge to the
true Bayesian Nash equilibrium.
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4.2 Sampled Replicator Dynamics
The second algorithm uses a local search method (replicator dy-

namics) to approximate the defender’s optimal strategy, given the
attacker response function. Given that we are already using numer-
ical techniques to estimate the attacker response, it is sensible to
explore approximations for the defender’s optimization problem as
well. This allows us to trade off whether to use additional compu-
tational resource to improve the attacker response estimation or the
defender strategy optimization.

Sampled Replicator Dynamics (SRD) is based on replicator dy-
namics [23]. Since this is a form of local search, all we require
is a black-box method to estimate the attacker response function.
We could use either Monte-Carlo sampling or piecewise-constant
approximation, but use Monte-Carlo in our experiments. As above,
we use SRD-x to denote SRD with x sample attacker types. SRD
proceeds in a sequence of iterations. At each step the current cov-
erage strategy Cn = (cnt )t∈T is used to estimate the attacker re-
sponse function, which in turn is used to estimate the expected pay-
offs for both players. A new coverage strategyCn+1 = (cn+1

t )t∈T
is computed according to the replicator equation:

cn+1
t ∝ cnt · (Et(C)− UminΘ ), (8)

where UminΘ represents the minimum possible payoff for the de-
fender, andEt(C) is the expected payoff the defender gets for cov-
ering target t with probability 1 and all other targets with proba-
bility 0, given the estimated attacker response to Cn. The search
runs for a fixed number of iterations, and returns the coverage vec-
tor with the highest expected payoff. We introduce a learning rate
parameter α that interpolates between Cn and Cn+1, with Cn+1

receiving weight α in the next population and Cn having weight
1 − α. Finally, we introduce random restarts to avoid becoming
stuck in local optima. After initial experiments, we settled on a
learning rate of α = 0.8 and random restarts every 15 iterations,
which generally yielded good results (though the solution quality
was not highly sensitive to these settings).

4.3 Greedy Monte Carlo
Our next algorithm combines a greedy heuristic for allocating

defender resources with a very fast method for updating the at-
tacker response function estimated using Monte-Carlo type sam-
pling. We call this algorithm Greedy Monte-Carlo (GMC). The
idea of the greedy heuristic is to start from a coverage vector that
assigns 0 probability to every target. At each iteration, the algo-
rithm evaluates the prospect of adding some small increment (∆)
of coverage probability to each target. The algorithm computes the
difference between the defender’s expected payoff for the current
coverage vector C and the new coverage vector that differs only in
the coverage for a single target t such that c′t = ct + ∆. The target
with the maximum payoff gain for the defender is selected, ∆ is
added to the coverage for that target, and the algorithm proceeds to
the next iteration. It terminates when all of the available resources
have been allocated.

The idea of using a greedy heuristic for allocating coverage prob-
ability is motivated in part by the ORIGAMI algorithm [13] that is
known to be optimal for the case without uncertainty about attacker
payoffs. That algorithm proceeds by sequentially allocating cover-
age probability to the set of targets that give the attacker the maxi-
mal expected payoff. In the Bayesian case there is no well-defined
set of targets with maximal payoff for the attacker since each type
may have a different optimal target to attack, so we choose instead
to base the allocation strategy on the defender’s payoff.

In principle, any method for estimating the attacker response

function could be used to implement this greedy algorithm. How-
ever, we take advantage of the fact that the algorithm only requires
adding coverage to a single target at a time to implement a very fast
method for estimating the attacker response function. We begin by
using Monte-Carlo sampling to generate a large number of sample
attacker types. For each target we maintain a list containing the in-
dividual attacker types that will attack that target, given the current
coverage vector. For each type ω we track the current expected pay-
off for each target, the best target to attack, and the second best tar-
get to attack. These can be used to calculate the minimum amount
of coverage δ that would need to be added to current coverage cbest
of the best target to induce type ω to switch to attacking the second
best target instead. Formally, the target switching condition:

(cbest + δ)UcΨ(best, ω) + (1− (cbest + δ))UuΨ(best, ω)

= (csecond)U
c
Ψ(second, ω) + (1− csecond)UuΨ(second, ω)

Allows us to derive:

δ =
(csecond)U

c
Ψ(second, ω) + (1− csecond)UuΨ(second, ω)

UcΨ(best, ω)− UuΨ(best, ω)

− (cbest)U
c
Ψ(best, ω)− (cbest)U

u
Ψ(best, ω)

UcΨ(best, ω)− UuΨ(best, ω)
. (9)

Using this data structure we can quickly compute the change in
the defender’s expected payoff for adding ∆ coverage to a target t.
There are three factors to account for:

1. The defender’s expected payoff for an attack on t increases

2. The probability that the attacker will choose t may decrease,
as some types may no longer have t as a best response

3. The probability that other targets are attacked may increase
if types that were attacking t choose different targets instead

For every type in the list for target t we determine whether or not
the type will change using Eqn. 9. If the type changes we update
the payoff against that type to be the expected defender payoff as-
sociated with the second best target for that type. If not, the payoff
against that type is the new defender expected payoff for target t
with coverage ct + ∆. After adjusting the payoffs for every type
that was attacking target t in this way we have the change in the
defender expected payoff for adding ∆ for target t.

After computing the potential change for each target we select
the target with the maximum gain for the defender and add the ∆
coverage units to that target. We update the data structure contain-
ing the types by updating the expected value for the changed target
for every type (regardless of which target it is currently attacking).
If the target updated was either the best or second best target for a
type, we recompute the best and second best targets and, if neces-
sary, move the type to the list for the new best target.

Based on our initial experiences with the GMC method we added
two modifications to prevent the algorithm from becoming stuck in
local optima in specific cases. First, we placed a lower bound of
1% on the ∆ used during the calculations to compute the value
of adding coverage to each target, even through the actual amount
of coverage added once the best target is selected may be much
smaller. In practice, this smoothes out the estimated impact of
types changing to attack different targets by averaging over a larger
number of types. Second, for cases with a very small numbers of
types we use an "optimistic" version of the heuristic in which we
assume that the new value for any type that changes to attacking a
new target gives the maximum of the current value or the value for
the new target (for the defender). The intuition for this heuristic is
that it assumes that additional coverage could later be added to the
second-best target to make the type to switch back.
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4.4 Worst-Case Interval Uncertainty
We also consider an approach based on minimizing the worst-

case outcome, assuming interval uncertainty over the attacker’s pay-
offs. The BRASS algorithm [19] was originally designed to model
bounded rationality in humans. Rather than the standard assump-
tion that attackers will choose an optimal response, BRASS as-
sumes that attackers will choose any response in the set of re-
sponses with expected value within ε units of the optimal response,
where ε is a parameter of the algorithm. The algorithm optimizes
the defender’s optimal payoff for the worst-case selection of the
attacker within the set of feasible responses defined by ε.

While this technique was originally motivated as a way to cap-
ture deviations from perfect rationality in human decision-making,
here we reinterpret the method as a worst-case approach for payoff
uncertainty. Suppose that the defender does not know the attacker’s
payoffs with certainty, but knows only that each payoff is within an
interval of mean ± ε

2
. Then an attacker playing optimally could

attack any target within ε of the target with the best expected value
based on the means (since the "best" value could be up to ε

2
too

high, and the value for another target could be up to ε
2

too low).

4.5 Decoupled Target Sets
Our last method for solving Infinite Bayesian Stackelberg Games

is called Decoupled Target Sets (DTS). DTS is an approximate
solver, for it assumes that the attacker preference as to which target
t ∈ D ⊂ {1, 2, ..., T} to attack depends on the probabilities ct of
targets t ∈ D being covered, but does not depend on the probabili-
ties ct of targets t ∈ D := {1, 2, ..., T}\D being covered. For ex-
ample, let D = {1, 2} ⊂ {1, 2, 3}. Here, DTS assumes that when
the attacker evaluates whether it is more profitable to attack target
1 than to attack target 2, the attacker needs to know the probabil-
ities c1, c2 but does not have to reason about the probability c3 of
target 3 being covered. While this attacker strategy appears sound
(after all, “Why should the attacker bother about target 3 when it
debates whether it is better to attack target 1 than to attack target
2?”), it can be shown that it is not always optimal. In general then,
DTS assumes that for any two coverage vectors C = (ct)t∈D∪D ,
C′ = (c′t)t∈D∪D such that ct = c′t for all t ∈ D, it holds that

at(C)

at′(C)
=

at(C
′)

at′(C′)
for any t, t′ ∈ D. (10)

The immediate consequence of this assumption is that a sys-
tematic search for the optimal coverage vector can be performed
incrementally, considering larger and larger sets of targets D ⊂
{1, 2, . . . T} (by adding to D a target from {1, 2, . . . , T} \ D in
each algorithm iteration). In particular, to find an optimal coverage
vector for targets {1, 2, . . . d}, DTS reuses the optimal coverage
vectors (for coverage probability sums c1 +c2 + . . .+cd−1 ranging
from 0 to 1) for targets {1, 2, . . . , d − 1} alone (found at previous
algorithm iteration) while ignoring the targets {d+1, d+2, . . . , T}.
Assuming that a probability of covering a target is a multiple of ε,
DTS’s search for the optimal—modulo assumption (10)—coverage
vector can be performed in time O(ε · T ). Our implementation of
DTS uses the piecewise-constant attacker response approximation
method.

5. EXPERIMENTAL EVALUATION
We present experimental results comparing the solution quality

and computational requirements of the different classes of approx-
imation methods introduced previously.

5.1 Experimental Setup

Our experiments span three classes of security games, each with
a different method for selecting the distributions for attacker pay-
offs. In every case we first draw both penalty and reward payoffs for
both the attacker and defender. All rewards are drawn from U [6, 8]
and penalties are drawn from U [2, 4]. We then generate payoff dis-
tributions for the attacker’s payoffs using the values drawn above
as the mean for the distribution. In uniform games the attacker’s
payoff is a uniform distribution around the mean, and we vary the
length of the intervals to increase or decrease uncertainty. For
Gaussian games the distributions are Gaussian around the mean
payoff, with varying standard deviation. In both cases, all distribu-
tions for a particular game have the same interval size or standard
deviation. The final class of games, Gaussian Variable, models
a situation where some payoffs are more or less certain by using
Gaussian distributions with different standard deviations for each
payoff. The standard deviations themselves are drawn from either
U [0, 0.5] or U [0.2, 1.5] to generate classes with "low" or "high"
uncertainty on average.

Our solution methods generate coverage strategies that must be
evaluated based on the attacker response. Since we do not have a
way to compute this exactly, we compute the expected payoffs for
any particular strategy by finding an extremely accurate estimate
of the attacker response using 100000 Monte-Carlo samples. We
employ two baseline methods in our experiments. The first simply
plays a uniform random coverage strategy, such that each target is
covered with equal probability using all available resources. The
second uses the mean of each attacker distribution as a point esti-
mate of the payoff. This is a proxy for models in which experts
are forced to specify a specific value for each payoff, rather than
directly modeling any uncertainty about the payoff. This can be
solved using the SBE method, using the mean payoffs to define a
single attacker type.

5.2 Attacker Response Estimation
We implemented two different methods for estimating the at-

tacker response function. The first uses Monte-Carlo sampling to
generate a finite set of attacker types. To estimate the response
probabilities we calculate the best response for each sample type
and use the observed distribution of targets attacked as the esti-
mated probabilities. The second method approximates each dis-
tribution using a piecewise constant (PWC) function and directly
computes the result of Equation 7 for these functions.

Figures 1(a) and 1(b) compare the estimation accuracy for these
two methods. Results are averaged over 100 sample games, each
with 10 targets and 1 defender resource. For each game we draw
a random coverage vector uniformly from the space of defender
strategies to evaluate. For the uniform case, mean attacker payoffs
are drawn from U[5,15] for the covered case and U[25,35] for the
uncovered case, and every distribution has a range of 10 centered
on the mean. For the Gaussian case, mean payoffs are drawn from
U[2.5,3.5] for the covered case and U[5,6] for the uncovered case,
with standard deviations for each distribution drawn from U[0,0.5].
Each method has a parameter controlling the tradeoff between solu-
tion quality and computation time. For Monte-Carlo sampling this
is the number of sample types, and for the PWC approximation it
is the absolute difference in function values between two adjacent
constant intervals. To enable easy comparison, we plot the solution
time on the x-axis, and the solution quality for each method on the
y-axis (rather than the raw parameter settings). Solution quality is
measured based on the root mean squared error from an estimate
of the true distribution based on 100000 sample attacker types. We
see that in the uniform case, PWC approximation generally offers
a better tradeoff between solution time and quality. However, for
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Figure 1: Comparison of Monte-Carlo and piecewise-constant
estimation methods for the attacker response function.

the more complex Gaussian distributions the Monte-Carlo method
gives better performance.

5.3 Approximation Algorithms
We next compare the performance of the full approximation al-

gorithms, evaluating both the quality of the solutions they produce
and the computational properties of the algorithms. The first set of
experiments compares all of the algorithms and the two baseline
methods (uniform and mean) on small game instances with 5 tar-
gets and 1 defender resource. We generated random instances from
each of the three classes of games described in Section 5.1: Uni-
form, Gaussian, and Gaussian Variable, varying the level of payoff
uncertainty using the parameters described above. We used 100
games instances for every different level of payoff uncertainty in
each class of games. The tests are paired, so every algorithm is run
on the same set of game instances to improve the reliability of the
comparisons.1

The first three plots, Figures 2(a), 2(b), and 2(c) show a com-
parison of the best solution quality achieved by each algorithm in
the three classes of games. The y-axis shows the average expected
defender reward for the computed strategies, and the x-axis repre-
sents the degree of uncertainty about the attacker’s payoffs. Each
algorithm has parameters that can affect the solution quality and
computational costs of generating a solution. We tested a variety of
parameter settings for each algorithm, which are listed in Table 1.
For cases with more than one parameter we tested all combina-
tions of the parameter settings shown in the table. The first set of
results reports the maximum solution quality achieved by each al-
gorithm over any of the parameter settings to show the potential

1In general, there is substantial variance in the overall payoffs due
to large differences in the payoffs for each game instance (i.e., some
games are inherently more favorable than others). However, the dif-
ferences in performance between the algorithms on each individual
instance are much smaller and very consistent.

Table 1: Parameter settings for the algorithms tested in the first
experiment.

Parameter Values
SBE num types 1, 3, 5, 7
BRASS epsilon 0.1, 0.2, 0.3, 0.5, 1.0
SRD num types 10, 50, 100, 1000
SRD num iterations 1000, 10000
GMC num types 100, 1000, 10000
GMC coverage increment 0.01, 0.001, 0.0001
DTS max error 0.02, 0.002
DTS step size 0.05, 0.02
DTS coverage increment 0.05, 0.02

quality given under ideal settings. The settings that yield the best
performance may differ in the different types of games and level of
uncertainty.

The results are remarkably consistent in all of the conditions
included in our experiment. First, we observe that the baseline
method "mean" that uses point estimates of payoff distributions
performs extremely poorly in these games–in many cases it is actu-
ally worse than playing a uniform random strategy! SBE performs
somewhat better, but is severely limited by an exponential growth
in solution time required to find an exact optimal defender strategy
as the number of sample attacker types increases. The maximum
number of types we were able to run in this experiment was only
seven (many orders of magnitude smaller than the number of sam-
ple types used for the other methods).

All four of the remaining methods (SRD, BRASS, GMC, and
DTS) give much higher solutions quality than either of the base-
lines or the SBE method in all cases. These methods are similar in
that all four rely on approximation when computing the defender’s
strategy, but they use very different approaches. It is therefore
quite surprising that the expected payoffs for all four methods are
so close for these small games. This is true when we look at the
data for individual game instances as well as in aggregate. On any
individual instance, the difference between the best and worst solu-
tion generated by one of these four is almost always less than 0.05
units. This suggests that the strategies generated by all of these
algorithms are very close to optimal in these games. Overall, the
GMC method does outperform the others by a very small margin.
This is also consistent on a game-by-game basis, with GMC gener-
ating the best strategy in over 90% of the game instances.

To this point we have focused on the the best solution quality
possible with each method. We now extend the analysis to include
the tradeoff of computational speed versus increased solution qual-
ity. This is particularly complex because of the large number of
potential parameter settings for each algorithm and the fact that
these parameters do not have the same interpretation. To analyze
this tradeoff, we plot the solution quality against the solution time
for each of the parameter settings of the different algorithms. The
data for Gaussian games with attacker standard deviations of 0.2
is presented in Figure 3. Other classes of games have similar re-
sults. Solution time (in ms) is given on the x-axis in a log scale,
and solution quality is reported on the y-axis as before.

The upper-left corner of the plot corresponds to high solution
quality and low computational efforts, so it is most desirable. Points
from the GMC and SRD methods dominate this part of the figure,
indicating that these methods are computationally scalable and give
high-quality solutions. In constrast, SBE scales very poorly; even
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Figure 2: Solution quality and computation time comparisons.

after 10000ms SBE still has a lower solution quality than any of
the data points for GMC, SRD, or DTS. DTS consistently has high
solution quality, but takes much longer than GMC or SRD even in
the best case. BRASS has a different pattern of performance than
the other methods. Every parameter setting takes roughly the same
amount of time, they vary dramatically in solution quality. This is
because the best setting for the ε parameter depends on the amount
of uncertainty in the game, and is not directly related to the quality
of approximation in the same way as the parameters for the other
algorithms. In practice this is a significant disadvantage, since it is
not obvious how to set the value of ε for any particular problem.
This can be determined empirically (as in our experiments), but it
requires running BRASS multiple times with different settings to
find a good value.

Our next experiment focuses on the quality of the approxima-
tions for SRD and GMC in a situation where an optimal solution
can be computed. For finite Bayesian Stackelberg games with a
small number of types we can compute an exact optimal response
using SBE. Since both SRD and GMC use Monte-Carlo sampling
to approximate the attacker type distribution for infinite games, we
can also apply these methods to finite games with known types. In
this experiment, we test SBE, SRD, and GMC on finite games with
exactly the same types. The games are generated from the Gaus-
sian infinite games with standard deviations of 0.2, but once the
types are drawn, these are interpreted as known finite games. Re-
sults are shown in Figure 2(d), with the number of attacker types on
the x-axis and solution quality on the y-axis. GMC1 is GMC with
the original greedy heuristic, and GMC2 uses the modified opti-
mistic greedy heuristic. We can see in this experiment that SRD
and GMC2 both achieve very close to the true optimal defender
strategy in these games, but GMC1 performs poorly. In general,
GMC1 performs very well in games with large numbers of types
(such as when we are approximating the infinite case), but GMC2
is preferable when there is a very small number of types.
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Figure 3: Comparison of the tradeoff in solution quality and
computational cost for each of the algorithms, exploring the
effects of different parameter settings.

The final experiment we report takes the three most scalable
methods (SRD, GMC, and BRASS) and tests them on much larger
game instances. We run this experiment on the Gaussian variable
class of games with standard deviations drawn U [0, 0.5]. The num-
ber of targets varies between 5 and 100 in this experiment, with the
number of resources set to 20% of the number of targets in each
case. Due to the increased computational time to run experiments,
we use only 30 sample games for each number of targets in this ex-
periment. For SRD and GMC we tested "low" and "high" computa-
tional effort parameter settings. Solution quality results are shown
in Figure 2(e), and timing results are presented in Figure 2(f).

The three approximate methods all clearly outperform both the
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uniform and mean baselines. As the number of targets increases,
the mean method shows some improvement over the uniform ran-
dom strategy. BRASS and the two variants of SRD both have sim-
ilar solution quality scores. The most striking result is that both the
low and high effort version of GMC significantly outperform all
of the other methods for larger games, while also having relatively
faster solution times.

6. CONCLUSION
Developing the capability to solve large game models with rich

representations of uncertainty is critical to expanding the reach of
game-theoretic solutions to more real-world problems. This cuts
to the central concern of ensuring that users have confidence that
their knowledge is accurately represented in the model. Our ex-
periments reinforce that experts and game theorists should not be
comfortable relying on perfect-information approximations when
there is uncertainty in the domain. Relying on a perfect informa-
tion approximation such as the mean baseline in our experiments
resulted in very poor decisions—closer in quality to the uniform
random baseline than to our approximate solvers that account for
distributional uncertainty.

In this work we developed and evaluated a wide variety of differ-
ent approximation techniques for solving infinite Bayesian Stack-
elberg games. These algorithms have very different properties, but
all show compelling improvements over existing methods. Of the
approximate methods, Greedy Monte-Carlo (GMC) has the best
performance in solution quality and scalability, and Sampled Repli-
cator Dynamics (SRD) also performs very well. As a group, the
approximate solvers introduced here constitute the only scalable
algorithms for solving a very challenging class of games with im-
portant real-world applications.
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