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ABSTRACT
For an interesting class of emerging applications, a large
robot team will need to distributedly allocate many more
tasks than there are robots, with dynamically appearing
tasks and a limited ability to communicate. The LA-DCOP
algorithm can conceptually handle both large-scale problems
and multiple tasks per robot, but has key limitations when
allocating spatially distributed tasks. In this paper, we ex-
tend LA-DCOP with several alternative acceptance rules for
robots to determine whether to take on an additional task,
given the interaction with the tasks it has already commit-
ted to. We show that these acceptance rules dramatically
outperform a naive LA-DCOP implementation. In addition,
we developed a technique that lets the robots use completely
local knowledge to adjust their task acceptance criteria to
get the best possible performance at a given communication
bandwidth level.
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1. OVERVIEW
A key problem for coordinated robot team is to allocate
tasks for best overall performance. For many domains, the
primary feature that distinguishes which robot should be
allocated which task is the location of the task, since overall
performance will be dominated by the time taken to reach
the task. For example, in a surveillance scenario where a
robot is simply taking images, the key is to get any robot to
the location. In an interesting class of emerging applications,
a large robot team will need to distributedly allocate
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many more tasks than there are robots, with dynamically
appearing tasks and a limited ability to communicate. Ex-
amples of such tasks include exploration, item delivery and
environment monitoring [1].
Task allocation when robots take on multiple tasks and
need to plan paths between those tasks is computationally
hard [2]. Most existing solutions require centralization, han-
dle only very simple tasks, or do not scale to large numbers
of robots [3, 4, 5]. The LA-DCOP algorithm [6] can concep-
tually handle both large-scale problems and multiple tasks
per robot, getting good allocations with low computational
and communications costs, but is not effective when allo-
cating spatially distributed tasks. The key to LA-DCOP
is that tasks are passed around the team on tokens, with
robots deciding to accept or reject responsibility for tasks
based on resource constraints and a threshold on a scalar
capability value that is assumed to be independent of other
tasks. This assumption is violated for spatially distributed
tasks where capability is primarily the time to get to a task,
because that time depends on the path the robot traverses
between tasks.
In this paper, we generalize LA-DCOP’s simple threshold
rule into different acceptance rules. LILO is the naive LA-
DCOP implementation that appends a new task to the path
if the length of the resulting path is less than an absolute
threshold. Once accepted, tasks are never removed from
a robot’s path. The other acceptance rules also use ab-
solute thresholds, but applies them to all tasks if a new
task is accepted (because the path to old tasks can change).
Marginal cost minimizes the change in path length by in-
serting a new task into the path where the resulting total
path length is minimized (optimal insertion), and accept-
ing only if the increase in length is less than a marginal cost
threshold. Myopic greedily replans paths for each new task,
with the maximum number of tasks limited by a path count
threshold. T-over-t tries to directly maximize task comple-
tion rate by optimally inserting and accepting only if the
number of tasks divided by the path length increases.
We evaluated the acceptance rules using an abstracted two-
dimensional simulation where robots and tasks were situated
in a 100-by-100 planar region without obstacles. Robots
communicated using a fully-connected multihop network. In
order to complete a task, a robot was required to move to the
location of a task and intentionally perform it; task execu-
tion was instantaneous and all robots were assumed to move
a constant speed. When a task was completed, new tasks
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Figure 1: Task completion rate for varying absolute
thresholds.

Figure 2: Communication rate for varying absolute
thresholds.

were randomly created nearby. There were 200 robots and
initially 2000 tasks. We measured two performance metrics:
task completion rate and communication rate. We compared
task completion rate to a baseline (global myopic) that was
an all-knowing greedy algorithm that allocated tasks to the
nearest robot without a task. (Because it is all-knowing, it
does not make sense to compare on communication rate.)
Figure 1 shows the task completion rate for varying ab-
solute thresholds. For very low thresholds, task comple-
tion rate was low because robots had difficulty finding suf-
ficiently close tasks, but at moderate thresholds, naive LA-
DCOP (LILO) was dramatically outperformed by the other
acceptance rules. Myopic (with a path count threshold of
2) plateaus to a good allocation because the path count
threshold becomes the limiting factor but robots are still
able to find nearby tasks. This good allocation comes at the
price of high communication, as shown in Figure 2, while
the other acceptance rules decrease communication as tasks
are “locked up” in robots’ paths.
LA-DCOP assumes that an appropriate threshold can be
set globally at the beginning of some mission and will be
appropriate for the entire mission. However, a single, global
threshold does not perform well when task creation fre-
quency and density varies. We developed a technique that
lets the robots use completely local knowledge to locally
adjust the path count threshold for the myopic acceptance
rule to get best possible global performance at a given level
communication bandwidth usage. Typically, lower thresh-
olds lead to higher quality allocations at the expense of
more communication. By monitoring their local commu-

Figure 3: Communication rate and task completion
rate with dynamically adjusted thresholds.

nication over time, robots estimate the likelihood of the de-
sired global, aggregate communication rate being met, and
stochastically update their local path count threshold. Fig-
ure 3 shows the message rate and task completion rate over
time, when the desired communication rate is changed twice:
from an initial value of 4 to 8 at timestep 30000, and then
from 8 to 2 at timestep 60000. The team reacts quickly and
accurately to the adjust to the initial value and the first
change, but has difficulty with the final change.

2. CONCLUSIONS
While we were able to realize dramatic performance gains
over a naive implementation of LA-DCOP, none of the ac-
ceptance rules dominated the others across all parameters.
A deeper understanding of what properties favor each rule
is a key area for future work, as is searching for alternative
rules that perform better under a wider set of circumstances.
In immediate future work, we will look at how other types
of information might be used by the agents. Examples in-
clude, noisy information about the locations of other robots,
knowledge that tasks are clustered around some areas, or
knowledge that the number of tasks to be performed is go-
ing to increase. We will also investigate network types where
communication is localized.
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