
SR-APL: A Model for a Programming Language for
Rational BDI Agents with Prioritized Goals

(Extended Abstract)

Shakil M. Khan
Dept. of Computer Science and Engineering

York University, Toronto, Canada
skhan@cse.yorku.ca

Yves Lespérance
Dept. of Computer Science and Engineering

York University, Toronto, Canada
lesperan@cse.yorku.ca

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence—
Intelligent agents, languages and structures

General Terms
Theory, Languages

Keywords
Agent programming languages with declarative goals, rationality,
prioritized goals, reasoning about goals and goal dynamics

1. MOTIVATION
Recently, there has been much work on incorporatingdeclarative

goals in Belief-Desire-Intention Agent Programming Languages
(e.g. [3]). In a BDI APL with declarative goals (APLwDG), declar-
ative goals are used essentially for monitoring goal achievement
and performing recovery when a plan has failed, performing ratio-
nal deliberation, and reacting in a rational way to changes in goals
that result from communication. While APLwDGs have evolved
over the past few years, to keep them tractable and practical, they
sacrifice some principles of rationality. In particular, while select-
ing plans to achieve a declarative goal, they ignore other concurrent
intentions of the agent. As a consequence, the selected plans may
be inconsistent with other intentions. Also, these APLwDGs typ-
ically rely on syntactic formalizations of declarative goals, whose
properties are often not well understood.

An Example Consider a blocks world domain, where there are
four blocks, one of each color, blue, yellow, red, and green. There
is only a stacking actionstack(b, b′): b can be stacked onb′ in
states if b 6= b′, bothb andb′ areclear, andb is on the tablein
s. Assume that the agent initially has the following two goals:φ1,
i.e. to eventually have a 2 blocks tower with a green block on top
and a non-yellow block underneath, andφ2, i.e. to have a 2 blocks
tower with a blue block on top and a non-red block underneath.
Also, her plan library has only two rules: if she has the goal thatφ1

and knows about a green blockb and a distinct non-yellow blockb′

that are clear and are on the table, then she should adopt the plan of
stackingb on b′, and similarly for the goal thatφ2. Thus according
to this library, one way of building a green non-yellow (and a blue
non-red) tower is to construct a green-blue (a blue-green, resp.)
tower. While these two plans are individually reasonable, they are

Cite as: SR-APL: A Model for a Programming Language for Rational
BDI Agents with Prioritized Goals (Extended Abstract), Shakil M. Khan
and Yves Lespérance,Proc. of 10th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonenberg
and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 1251-1252.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

inconsistent with each other, since the agent has only one block of
each color. Thus a rational agent should not adopt these two plans.
However, it can be shown that a typical APLwDG agent (that does
not consider the overall consistency of her intentions) may adopt
these two plans together, and may make the other goal impossi-
ble by executing one of them. The problem arises in part because
actions are not reversible in this domain, a common occurrence.

In this paper, we develop logical foundations for a rational BDI
agent programming framework with prioritized declarative goals
that addresses these deficiencies of previous APLwDGs.

2. A SIMPLE RATIONAL APL (SR-APL)
Our Formal BDI Framework We use a variant of our logical
framework for modeling prioritized goals, subgoals, and their dy-
namics [2], that is built on top of the situation calculus, and incor-
porates a (possible-worlds) model of knowledge. Here, an agent
can have multipletemporally extended goalsor desiresat differ-
ent priority levels. We have a possible-worlds semantics for these
goals. We specify how goals evolve when actions/events occur and
the agent’s knowledge changes. We also define the agent’sinten-
tions, i.e. the goals that she is actively pursuing, in terms of this
goal hierarchy. The framework in [2] is modified so that the agents
are more committed to their intentions. They will only drop an
intention when it is achieved, or when it becomes impossible or in-
consistent with other higher priority intentions. We also model the
relationship between goals and subgoals by ensuring that ifψ is a
subgoal ofφ, thenψ (along withψ’s subgoals, and theirs, etc.) is
dropped when the parent goalφ is dropped or becomes impossible.

Components of SR-APL First of all, we have atheoryD spec-
ifying actions that can be done, the initial knowledge and (both
declarative and procedural) goals of the agent, and their dynamics,
as discussed above. Moreover, we have aplan library Π with rules
of the form: if the agent has the intention thatφ and knows thatΨ,
then she should consider adopting the plan thatσ. Theplan lan-
guagefor σ is a simplified version of ConGolog [1] and includes
primitive actions, waiting for a condition, sequence, and the special
action for subgoal adoption,adoptRT (3Φ, σ); here3Φ is a sub-
goal to be adopted andσ is the planrelative towhich it is adopted.
While our BDI theory can handle arbitrary temporally extended
goals, we focus on achievement and procedural goals exclusively.

Semantics of SR-APL We use a subset of ConGolog to spec-
ify the semantics of plans. Here, Do(σ) means that there is a ter-
minating execution of programσ starting in the current situation,
(σ1‖σ2) denotes the concurrent composition of plansσ1 andσ2,
andΓ‖ refers to the concurrent composition of the plans in listΓ.

Specifying such a language raises some fundamental questions
about rational agency, for instance:what does it mean for a BDI

1251



agent to be committed to concurrently execute a set of plans next
while keeping the option of further commitments to other plans
open, in a way that does not allow procrastination?An SR-APL
agent can work on multiple goals at the same time, and thus can
have multiple intended plans. One way of specifying an agent’s
commitment to execute a planσ next is to say that she has the in-
tention that Do(σ).However, this does not allow for the interleaved
execution of several plans, since Do requires thatσ be executed be-
fore any other actions/plans. A better alternative is for the agent to
have the intention that DoAL(σ), i.e. to executeat leastthe pro-
gramσ next, and possibly more. DoAL(σ) holds if there is a ter-
minating execution of programσ, possibly interleaved with other
actionsby the agent herself. However, a new problem with this ap-
proach is that it allows the agent to procrastinate, i.e. to perform
actions that are unnecessary. To deal with this, we include an ad-
ditional component, aprocedural intention-baseΓ, to an SR-APL
agent. Γ is a list of plans that the agent is currently actively pur-
suing. To avoid procrastination, we require that any action that the
agent actually performs comes fromΓ.

We have a two-tier transition system:plan-level transition rules
specify how a plan may evolve, whileagent-level transition rules
specify how an SR-APL agent may evolve. The former are simply
a subset of the ConGolog transition rules. Below, we discuss the
latter. First of all, we have a rule Asel for selecting and adopting a
plan from the plan libraryΠ for some realistic (i.e. consistent with
knowledge) goal3Φ in the theoryD. It allows the agent to adopt a
planσ as a subgoal of3Φ (i.e. executeadoptRT (DoAL(σ),3Φ)),
provided thatD entails that the agent does not intend not to adopt
DoAL(σ) w.r.t. 3Φ next; our BDI theory ensures that if this is the
case, then DoAL(σ) is indeed consistent with DoAL(Γ‖), and the
agent intends to execute DoAL(σ ‖ Γ‖) afterwards.

Secondly, we have a transition rule Astep for executing an in-
tended actionfrom Γ. If a programσ in Γ can make a program-
level transition ins by performing a primitive actiona with pro-
gramσ′ remaining indo(a, s), andD entails that DoAL(σ) is a
realistic goal at some priority level ins, then the agent may execute
a, updatingΓ ands accordingly, provided that the transition is con-
sistent with the agent’s intentions in the theoryD in the sense that
she does not have the intention not to executea in s.

Thirdly, we have a rule Aexo for accommodating exogenous ac-
tions, i.e. actions occurring in the agent’s environment that are not
under her control. Fourthly, we have a rule Aclean for dropping
adopted plans from the procedural goal-baseΓ that are no longer
intended in the theoryD . This might be required when the occur-
rence of an exogenous action forces the agent to drop a procedural
goal fromD by making it impossible to execute or inconsistent
with her higher priority realistic goals/plans. Our theory automati-
cally drops such plans from the agent’s goal-hierarchy specified by
D. Finally, we have a rule Arep for repairing an agent’s plans in
case she gets stuck, i.e. when for all programsσ in Γ, the agent
has the realistic goal that DoAL(σ) at some leveln (and thus all
of these DoAL(σ) are still individually executable and collectively
consistent), but together they are not concurrently executable with-
out some non-σ actions, i.e.Γ‖ has no program-level transition in
s. This could happen as a result of an exogenous action. We can
show that when the agent has complete information, there must be
a repair plan available to the agent if her goals are consistent.

Another question that we face is:how to ensure consistency
between an agent’s adopted declarative goals and adopted plans,
given that some of the latter might be abstract, i.e. might be only
partially instantiated in the sense that they include subgoals for
which the agent has not yet adopted a (concrete) plan?We deal
with this using a weak notion of consistency that does not require

the agent to expand all adopted goals while checking for consis-
tency. For instance, Asel above does not guarantee that there is an
execution of the program(σ ‖ Γ‖) aloneafter theadoptRT action
happens, but rather ensures that this program possibly along with
additional actions by the agent is executable. Also, Astep requires
that when the agent executes an actiona from a plan inΓ, a must
be consistent with her intentions inD; but it does not require that
she be willing to execute the remainder ofΓ next without any ex-
tra actions. Such a requirement would be too strong, given thatΓ
may include abstract plans for which the agent has not yet adopted
a subgoal. While our weak consistency check does not perform
full lookahead overΓ‖, our semantics ensures that any action per-
formed by the agent must not make the concurrent execution of all
the adopted plans possibly with other actions impossible. A side
effect of our weak consistency check is that the agent might get
stuck, and trigger the Arep rule to repair her plans.

3. RATIONALITY OF SR-APL AGENTS
We have shown that some key rationality properties are satisfied

by SR-APL agents. We only consider the case where exogenous
actions are absent, as it’s not obvious what rational behavior means
in contexts where exogenous actions can occur.

For our blocks world example, we can show that our SR-APL
agent behaves rationally in this domain. In particular:
• There exists a complete trace for our blocks world agent.
• All traces of the agent are terminating and end with the agent

achieving all of her goals.
For any SR-APL agent (in the absence of exogenous actions), we

can prove the following general properties:
• D |= ∀s. ¬Know(false, s) ∧ ¬Int(false, s), i.e. an agent’s

knowledge and intentions as specified byD must be consistent.
• The plans inΓ and the declarative and procedural goals inD

remain consistent. More precisely, for any configuration in a com-
plete trace, either the goals inΓ and those inD are consistent, or
there is a future configuration along the trace where consistency is
restored (by a finite number of applications of the Aclean rule).
• Our agents evolve in a rational way w.r.t.D, i.e. if an SR-

APL agent performs the actiona in situations, then it must be the
case that she does not have the intention not to executea next ins;
moreover, ifa is performed via Astep, then she indeed intends to
executea possibly along with some other actions next; finally, ifa
is the action of adopting a (sub)goalφ, then she does not have the
intention ins not to bring aboutφ next.

4. CONCLUSION
Our framework combines ideas from the situation calculus-based

Golog family of APLs, our expressive semantic formalization of
prioritized goals, and work on BDI APLs. We ensure that an agent’s
intended declarative goals and adopted plans are consistent with
each other and with her knowledge. We try to bridge the gap be-
tween agent theories and practical APLs by providing a model and
specification of an idealized BDI agent whose behavior is closer
to what a rational agent does. As such, it allows us to under-
stand how compromises made during the development of a practi-
cal APLwDG affect the agent’s rationality. In the future, we would
like to investigate restricted versions of SR-APL that are practical.

5. REFERENCES
[1] G. De Giacomo, Y. Lespérance, and H.J. Levesque. ConGolog, a Concurrent

Programming Language Based on the Situation Calculus.Artificial Intelligence,
121:109–169, 2000.

[2] S.M. Khan and Y. Lespérance. A Logical Framework for Prioritized Goal
Change. InProc. AAMAS’10, pp. 283–290, 2010.

[3] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative and
Procedural Goals in Intelligent Agent Systems. InProc. KR’02, pp. 470–481,
2002.

1252


