
A Formal Framework for Reasoning about Goal Interactions

(Extended Abstract)
Michael Winikoff∗
University of Otago

New Zealand
michael.winikoff@otago.ac.nz

ABSTRACT
A defining characteristic of intelligent software agents is their abil-
ity to flexibly and reliably pursue goals, and many modern agent
platforms provide some form of goal construct. However, these
platforms are surprisingly naive in their handling of interactions
between goals. Whilst previous work has provided mechanisms to
identify and react appropriately to various sorts of interactions, it
has not provided a framework for reasoning about goal interactions
that is generic, extensible, formally described, and that covers a
range of interaction types.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Intelligent agents, languages and structures; I.2.5 [Artificial In-
telligence]: Programming Languages and Software; F.3.3 [Logics
and Meaning of Programs]: Studies of Program Constructs; D.3.3
[Programming Languages]: Language Constructs and Features

General Terms
Theory, Languages

Keywords
Agent Programming, Goals, Formal Semantics

1. INTRODUCTION
One of the defining characteristics of intelligent software agents

is their ability to flexibly and reliably pursue goals, and many mod-
ern agent platforms provide some form of goal construct. However,
these platforms are surprisingly naive in their handling of interac-
tions between goals. Platforms such as Jason, JACK, 2APL and
many others don’t make any attempt to detect interactions between
goals. There has been work on providing means for an agent to
detect various forms of interaction between its goals, such as re-
source contention [3], and interactions involving logical conditions
(e.g. [2]). However, this strand of work has not integrated the

∗This work was partly done while the author was employed by
RMIT University.

Cite as: A Formal Framework for Reasoning about Goal Interactions (Ex-
tended Abstract), Michael Winikoff, Proc. of 10th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011), Tumer,
Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp.
1107-1108.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

various forms of reasoning into a single framework: each form of
interaction is treated separately1.

This paper reports on a framework for extending BDI platforms
with the ability to reason about interactions between goals. The
framework improves on previous work by being generic, i.e. can
be customised to provide the reasoning that is needed for the ap-
plication at hand; presented formally, and hence precisely, avoid-
ing the ambiguity of natural language; and that integrates different
reasoning types into one framework. Due to length constraints, this
presentation will be informal and example-driven. Formal details
are available upon request.

Our running example is a (very!) simple Mars rover that per-
forms a range of experiments at different locations. The first plan
below for performing an experiment of type X at location L firstly
moves to the appropriate location L, then collects a sample (samp)
using the appropriate measuring apparatus.

trigger context condition plan body
exp(L,X) : ¬locn(L) ← goto(L) ; samp(X)
exp(L,X) : locn(L) ← samp(X)

We assume for simplicity of exposition that goto(L), and samp(X)
are primitive actions, but they could also be defined as events that
trigger further plans. The action goto(L) has precondition¬locn(L)
and add set {locn(L)} and delete set {locn(x)}where x is the cur-
rent location.

The sorts of interactions that we want to be able to reason about
include resource and condition interactions.

Goals may have resource requirements, including both reusable
resources such as communication channels, and consumable re-
sources such as fuel or money. Given a number of goals it is pos-
sible that their combined resource requirements exceed the avail-
able resources. In this case the agent should realise this, and only
commit to pursuing some of its goals or, for reusable resources,
schedule the goals so as to use the resources appropriately (if pos-
sible). Furthermore, should there be a change in either the available
resources or the estimated resource requirements of its goals, the
agent should be able to respond by reconsidering its commitments.
For example, if a Mars rover updates its estimate of the fuel re-
quired to visit a site of interest (it may have found a shorter route),
then the rover should consider whether any of its suspended goals
may be reactivated.

Goals affect the state of the agent and of its environment, and
may also at various points require certain properties of the agent
and/or its environment. An agent should be aware of interactions
between goals such as after moving to a location in order to perform

1Recent work [1] does integrate a range of interaction reasoning
mechanisms, but does so indirectly, by translation to Petri nets,
which has issues such as traceability.

1107



some experiment, avoid moving elsewhere until the experiment has
been completed; or if two goals involve being at the same location,
schedule them so as to avoid travelling to the location twice.

2. REASONING ABOUT INTERACTIONS
We provide reasoning about interactions between goals by:

1. Extending the language to allow goal requirements (resources,
conditions to be maintained etc.) to be specified (Section 2.1).

2. Providing a mechanism to aggregate and propagate these
requirements (Section 2.2).

3. Defining new conditions that can be used to respond to de-
tected goal interactions (Section 2.3).

2.1 Specifying Requirements
We extend the language with a construct τ(π,R) which indicates

that the plan π is tagged (“τ”) with requirements R, where R is a
pair of two sets, 〈L,U〉, representing a lower and upper bound (we
abbreviate 〈X,X〉 to X). Each set contains resource requirements
such as in(c) where c is a condition that must be true during the
whole of execution (including at the start); or re(e, t, n) where e
is either r or c, denoting a reusable or consumable resource, t is
a type (e.g. fuel), and n is the required amount of the resource.
Since in some cases the requirements of a goal or plan can only be
determined in context, we provide a mechanism for dynamic tag-
ging: τ(π, f, c) where f is a function that uses the agent’s beliefs
to compute the requirements, and c is a re-computation condition.

In the Mars rover example we have the following requirements.
Firstly, goto(L) computes its requirements based on the distance
between the destination and current location: τ(goto(L), f(L), c)
where f(L) looks up the current location locn in the belief base,
and then computes the distance between it andL. Secondly, samp(X)
requires that the rover remains at the desired location, hence its
requirement is {in(locn(L))}. We thus provide requirements by
specifying the following plan body (for the first plan):
τ(goto(L), f(L), c); τ(samp(X), {in(locn(L))})

2.2 Propagating Requirements
We define a function Σ that takes a plan body and tags it with re-

quirements by propagating and aggregating the given requirements.
Returning to the Mars rover, let π = τ(goto(L), f, c); τ(samp(X),
{in(locn(L))}) then the following requirements are computed2 (if
we assume that f returns 20 for the fuel requirement of reaching L
from the starting location):

Σ(π) = T (π2;π3, {re(c, fuel , 20),

ins(locn(L)), ins(¬locn(L))})
π2 = T (goto(L), {re(c, fuel , 20), pr(¬locn(L))}, f, c)
π3 = T (samp(X), {in(locn(L))})

2.3 Responding to Interactions
The language of conditions is extended with new conditions: rok

(“resources are ok”), interfere , and culprit . The new condition
rok(G) means that there are enough resources for all of the goals
in G. The new condition interfere(g) is true if g is about to do
something that interferes with another goal. Informally, this is the

2T (π,R) denotes that R is the aggregated requirements of π. We
use ins(c) to indicate that condition c is required at some unspec-
ified period during execution, and pr(c) denotes that c is a pre-
condition, i.e. required to be true at the start of execution.

case if one of the actions that g may do next has an effect that is in-
consistent with another (active) goal’s in-condition. The condition
culprit(g) is true iff the goal g is responsible for a lack of sufficient
resources, i.e. if removing g from G makes things better.

The language of responses is extended with new responses: !π
and PICKME. The former simply executes π (we can define syn-
chronous and asynchronous variants of this). The latter specifies
that this goal should be given priority when selecting which goal
to execute and can be used to prioritise other experiments to be
performed at the current location on Mars (details omitted).

We are now in a position to define a new goal type which uses
the conditions and responses defined, along with the underlying
infrastructure for specifying and propagating requirements, in or-
der to deal with interactions as part of the agent’s goal reasoning
process. We extend goals into interaction-aware goals by sim-
ply adding to their set of condition-response pairs the following
condition-response pairs3:

I = {〈culprit , SUSPENDED〉, 〈notculprit ,ACTIVE〉,
〈interfere, SUSPENDED〉, 〈¬interfere,ACTIVE〉}

We now consider how the different forms of reasoning discussed
at the outset can be supported by interaction-aware goals.

Scenario 1: A lack of resources causes a goal to be suspended,
and, when resources are sufficient, resumed. Since the goals are
interaction-aware, suspension and resumption will occur as a result
of the conditions-responses in I. Since updates are performed one
at a time, this will only suspend as many goals as are needed to
resolve the resource issue. If further resources are obtained, then
the suspended goals will be re-activated by 〈notculprit ,ACTIVE〉.

Scenario 2: Once the Mars rover has moved to a location to
perform an experiment, the requirement of the plan (see π3 in Sec-
tion 2.2) is in(locn(L)), and therefore it avoids moving again until
the sampling at L has completed. Should another goal g′ get to the
point of being about to goto(L′), then this next action interferes
with the in-condition, and g′ will then be suspended, preventing
the execution of goto(L′). Once the first goal has concluded the
experiment, then it no longer has locn(L) as an in-condition, and
at this point g′ will be re-activated (〈¬interfere, ACTIVE〉).

3. REFERENCES
[1] P. H. Shaw and R. H. Bordini. Towards alternative approaches

to reasoning about goals. In M. Baldoni, T. C. Son, M. B. van
Riemsdijk, and M. Winikoff, editors, Declarative Agent
Languages and Technologies (DALT), pages 164–181, 2007.

[2] J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and
avoiding interference between goals in intelligent agents. In
Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI), pages 721–726, 2003.

[3] J. Thangarajah, M. Winikoff, L. Padgham, and K. Fischer.
Avoiding resource conflicts in intelligent agents. In F. van
Harmelen, editor, Proceedings of the 15th European
Conference on Artificial Intelligence, pages 18–22. IOS Press,
2002.

[4] M. B. van Riemsdijk, M. Dastani, and M. Winikoff. Goals in
agent systems: A unifying framework. In Proceedings of the
Seventh International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 713–720, 2008.

3Our framework specifies the semantics of goals in terms of
condition-response pairs [4]. culprit is short for culprit(g) with
g being the current goal, and similarly for interfere . notculprit
differs from ¬culprit in that it includes the current goal g in the
computation of resources, whereas culprit treats it as not having
any resource requirements, since it is suspended.

1108


