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ABSTRACT

Supply Chain Formation (SCF) is the process of determining
the participants in a supply chain, who will exchange what
with whom, and the terms of the exchanges. Decentralized
SCF appears as a highly intricate task because agents only
possess local information, have limited knowledge about the
capabilities of other agents, and prefer to preserve privacy.
Very recently, the decentralized SCF problem has been cast
as an optimization problem that can be efficiently approx-
imated using max-sum loopy belief propagation. Unfortu-
nately, the memory and communication requirements of this
approach largely hinder its scalability. This paper presents
a novel encoding of the problem into a binary factor graph
(containing only binary variables) along with an alternative
algorithm. These allow to scale up to form supply chains in
markets with higher degrees of competition.
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1. INTRODUCTION

According to [4], “Supply Chain Formation (SCF) is the
process of determining the participants in a supply chain,
who will exchange what with whom, and the terms of the
exchanges”. Although intractable [3], the SCF problem has
been widely tackled by the multi-agent systems (MAS) liter-
ature, mainly through centralized auction-based approaches
[5, 1]. Furthermore, as argued in [4], even when the compu-
tation is tractable, no single entity may have global alloca-
tive authority to compute allocations over the entire supply
chain (SC). To overcome these limitations, a decentralized
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manner to solve the problem is proposed in [4]. More re-
cently, Winsper et al. [6] cast the decentralized SCF prob-
lem into an optimization problem that can be approximated
using max-sum loopy belief propagation (LBP)'. Unfortu-
nately, the memory and communication requirements of this
approach hinder its scalability.

In this paper we propose a novel approach to the decen-
tralized SCF problem, the so-called Reduced Binary Loopy
Belief Propagation (RB-LBP), that significantly outperforms
LBP in terms of scalability.

2. SCF PROBLEMS AS FACTOR GRAPHS

In LBP the SCF problem is casted into a factor graph com-
posed of variables and factors. A single variable is created
for each participant in the SC. The values (states) of each
participant’s variable encode the individual decisions that
the agent needs to make regarding her exchange relation-
ships plus an inactive state. For example, say that an agent
needs to purchase a good to produce another one. Consider
also that there are three possible producers for the requested
good and three possible consumers for the produced good.
Therefore, the agent’s variable will have 10 states. That is,
one for each of the producer-consumer combinations plus an
inactive state. Notice that the number of states of an agent’s
variable grows exponentially with the number of agents and
goods.

Agents’ buying and selling prices are introduced by means
of activation factors. Each agent has an activation fac-
tor that stores a value of zero whenever the agent is inac-
tive and the agent’s buying or selling price otherwise. Fur-
thermore, in the factor graph, variables corresponding to
potential partners are connected through a compatibility
factor. Each of these factors encodes the compatibility be-
tween the decisions of the two agents involved. Two agents’
decisions are incompatible whenever one of them is willing
to trade with the other, but the other does not. Notice that
the size of the compatibility factors is the product of the
sizes of the variables it connects. Therefore, the memory
needed by an agent to store factors grows exponentially to
the number of agents and goods. Moreover, the messages
exchanged between two agents encode their preferences over
each other states. As a consequence, the communication
requirements of LBP are also exponential to the number of
goods and agents.

!We address the reader to [2] for a description of max-sum.



Measure LBP RB-LBP
Memory needed per agent to

store the preferences over her O(A%) OG- A)
state

Size of largest factor O(A?F) O(1)
Maximum memory needed per

agent (to store both preferences | O(G - A2G+1) OG- A)
and factors)

Maximum message size O(AY) O(1)
Maximum banfiwith‘ consumed oG- AG+1) O(G - A)
per agent and iteration

Overall consumed bandwith On-G-ATH) 1 O(n-G- A)

Table 1: Required resources: LBP vs. RB-LBP.

2.1 Scaling up supply chain formation

In order to cope with the scalability issues of LBP, we
model the SCF problem as a binary factor graph containing
only binary variables.

In this new model, each agent is aware of two sets of vari-
ables that encode her decisions to collaborate with potential
partners. On the one hand, each agent encodes whether she
is active (part of the SC) or not by means of an activa-
tion variable. On the other hand, each agent encodes her
decision to trade a particular good with a particular pro-
ducer/consumer using an option variable. Notice that the
number of variables an agent needs to encode her decisions
is linear to the number of possible exchanges she is involved
in.

First, to guarantee that only one of the providers of a
given good is selected, we make use of a selection fac-
tor. A selection factor links the activation variable from
the agent with the option variables for that good. Second,
we need to guarantee that the decisions from different agents
are coherent among them. Thus, we add an equality fac-
tor constraining the seller’s option variable and the buyer’s
option variable to be either both 1 or both 0. Notice that
there is no need to store selection and activation factors in
memory since they can be encoded as logical expressions.

Then, we show that, since we only employ binary variables
and hard constraints, we can greatly reduce the computa-
tion required to assess messages. First, we only consider
the configurations of variables that satisfy equality and se-
lection factors. Second, instead of sending messages with
a value for each of the two states of each variable, in RB-
LBP messages contain the difference between these two val-
ues. Both changes together severely reduce the computation
needed to assess messages. Moreover, since each agent only
exchanges a single value with each of her neighbours, band-
width requirements in RB-LBP scale linearly with the number
of goods and agents.

Worst case memory and bandwidth requirements for both
RB-LBP and LBP are summarized in table 1. A denotes the
maximum number of agents connected to a good, G denotes
the maximum number of goods an agent is interested in, and
n stands for the total number of agents in the network.

3. EVALUATION

We benchmarked RB-LBP against LBP in the networks de-
scribed by Walsh et al. in [4] and in larger networks with
higher degrees of competition (in terms of number of providers
offering each good). In the networks described by Walsh
et al., RB-LBP requires from 2 up to 13 times less memory
than LBP depending on the network structure. Moreover,

the bandwidth consumed by an agent during an LBP itera-
tion is up to 5 times larger than RB-LBP’s.

For larger networks (up to 500 agents and 50 goods),
LBP memory requirements are up to 5 orders of magnitude
greater than for RB-LBP. Bandwidth usage for LBP is up
to 787 times larger than for RB-LBP and, regarding com-
putational time, RB-LBP is up to 20 times faster than LBP.
Finally, the median SC value obtained by RB-LBP is up to 2
times greater than those obtained by LBP.

4. CONCLUSIONS AND FUTURE WORK

In this paper we have described RB-LBP, a novel approach
for decentralized SCF. We have shown both theoretically
and experimentally that RB-LBP scales nicely to market sce-
narios with larger number of participants and increasing
competition. Qur experimental results show that RB-LBP
can significantly reduce the usage of memory and commu-
nication several orders of magnitude with respect to LBP.
Furthermore, RB-LBP produces up to two times higher value
supply chains and has smaller time complexity. Therefore,
RB-LBP allows to tackle large-scale decentralized SCF prob-
lems.

Up to date approaches for decentralized SCF [4, 6] can
only be applied to networks where agents can produce at
most a single good. In order to compare with previously
existing approaches, all the experimental results in this pa-
per are over this kind of networks. However, RB-LBP can
readily be applied to scenarios where producers can deliver
more than one good. Experimentally evaluating RB-LBP in
these scenarios and over a variety of actual-world network
structures is left as future work.
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