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ABSTRACT
We investigate algorithms for playing multi-agent visibility-
based pursuit-evasion games. A team of pursuers attempts
to maintain visibility contact with an evader who actively
avoids tracking. We aim for applicability of the algorithms
in real-world scenarios; hence, we impose hard constraints
on the run-time of the algorithms and we evaluate them
in a simulation model based on a real-world urban area.
We compare Monte-Carlo tree search (MCTS) and iterative
deepening minimax algorithms running on the information-
set tree of the imperfect-information game. The experimen-
tal results demonstrate that both methods create compara-
ble good strategies for the pursuer, while the later performs
better in creating the evader’s strategy.
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I.2.8 [Artificial Intelligence]: Problem Solving, Control
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1. PROBLEM DEFINITION
The problem of visibility tracking is of particular inter-

est for defense or security domains in which the target ac-
tively avoids being seen by the tracking agents. Game the-
ory provides theoretic and algorithmic foundations for such
situations and a game modeling these scenarios is defined
as a visibility-based pursuit-evasion game with simultaneous
moves — a two-player zero-sum extensive-form game be-
tween the pursuer (that controls multiple pursuing agents)
and the evader. We focus on variants of these games played
in a Euclidean environment discretized as a graph. We as-
sume that both players have a full knowledge about the
topology of the environment, but do not know the position
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of the opponent’s agents unless one of their agents can see
them.

We adopt the definition of the visibility-based pursuit-
evasion game from [3], and we assume a single evading agents
and multiple centrally-controlled pursuing agents. The main
objective of the pursuers is to minimize the mean size of the
set of possible positions of the evader based on the shared
information of the pursuer’s agents (we denote this measure
MS). The objective of the evader is exactly the opposite;
however, the evader needs to approximate this value. The
exact value depends on trajectories of the pursuers which
may be unknown to the evader. Besides the mean size ob-
jective we evaluate two other performance measures. The
first is the number of times the evader has been spotted by
a pursuing agent (denoted NS). The second is the size of the
set of possible positions of the evader at the end of the game
(denoted ES), which is the objective used in [3].

2. ANYTIME ALGORITHMS
Both evaluated algorithms search in the same search space.

It is the information set tree[3], where plies of agent’s deci-
sions are interleaved with plies of possible observations.

Iterative deepening minimax.
The first algorithm (denoted MM) we use is based on the

state of the art technique presented in [3]. It is a depth-
limited minimax search with a heuristic evaluation function
and the paranoid opponent model. The empirical distribu-
tion of computation times of this method with fixed look-
ahead depth has a very long tail. In order to meet the any-
time requirement, we use iterative deepening and alpha-beta
pruning.

Monte-Carlo tree search.
The second algorithm (denoted MC) is MCTS with UCT

[2] selection on the same information set tree as in the MM
case. The performance of the algorithms was not signifi-
cantly influenced by the choice of the UCT parameter hence
we set it to two in the experiments. We run expansion in
each iteration of the algorithm and we select the first child
generated for simulation without preference ordering.

We have evaluated several simulation strategies with vary-
ing amounts of domain-specific knowledge and cut-off depths.
However, consistently with [1], we found that shorter simu-
lations perform better. We achieved the best results when
using evaluation functions instead of simulation and back-
propagating the returned value in the MCTS tree.
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Figure 1: The environment maps used for experimental eval-
uation. (a) full maze map used in [3]; (b) a detail of the
road-network map with agents visualized as the larger cir-
cles, the current set of possible positions of the evader as the
black circles, and the positions visible to the pursuer as the
white circles; (c) the complete road-network map.

Evaluation functions.
The experimental evaluation in [3] identifies the relaxed

lookahead heuristic (RLAp) as the most successful for the
pursuer. RLAp computes the mean number of positions
where the evader can be present after d steps of the game
(d = 10 in our experiments) and cannot be spotted under
any movement of the pursuers. The authors, however, do
not define any heuristics for the evader. They assume the
worst case behavior of the evader that knows the position
of the pursuers all the time in their experiments (E. Raboin
2011, pers. comm. 2 February). In this paper, we aim
to achieve realistic behavior of the evader as well. Hence
we define RLAe as the same heuristic computed from the
perspective of the evader, i.e., with certain evader’s position
and uncertain pursuer’s positions. We also use a modified
version of the evaluation function computed as a sum of the
objective value MS and RLA. For the case of evader, MS is
the mean of sum of possible positions set sizes of the evaders.

If the set of possible positions of a pursuer is too large
(e.g., all the currently unseen positions), it renders all the
strategies of the evader almost equally bad. The (paranoid)
evader always expects the pursuer to appear just in front
of it. Therefore in our implementations, the evader ignores
actions of any pursuer that can possibly be at more than a
certain number of positions (250 in our scenarios).

3. EXPERIMENTAL EVALUATION
In the experiments, two agents of the pursuer are track-

ing one evader. The implementation of each player uses only
one thread and its computation time is limited to one sec-
ond on Intel(R) i7 CPU @ 2.80GHz. Each scenario runs for
100 time steps and the results are mean of 100 runs. For
initial positions of the game, we follow [3]. We use random-
ized settings with the evader visible to at least one of the
pursuing agents, but far enough form the pursuers to make
the tracking difficult.

We use two maps in the experiments. The first is the
map from [3] for a fair comparison with the state-of-the-art

pursuers → MM(MS+RLA) MC(RLA)
evader ↓ NS↑ MS↓ ES↓ NS↑ MS↓ ES↓

Route-network Map
MM(MS+RLA) 56.5 89.1 146.3 58.1 88.2 132.8
MC(MS) 63.0 70.6 107.6 71.5 39.6 52.0

Maze Map
MM(MS+RLA) 58.5 60.3 111.0 56.3 67.0 120.0
MC(MS) 80.4 11.0 17.9 80.7 11.3 17.5

Figure 2: The best Monte-Carlo tree search and iterative
deepening minimax approaches. The pursuer maximizes and
the evader minimizes the measures marked by ↑.

algorithm. The topology of the map in form of 50x49 pixels
bitmap is presented in Figure 1a. White pixels represent
possible position of the agents, black pixels are obstacles
and agent can move to the up to four adjacent pixels in one
time step. Line-of-sight visibility with Euclidean distance
limitation of 10 pixels is assumed.

The second map is based on the topology of a small real-
world urban area. Figure 1b presents the overview of the
complete road network and Figure 1c is a detail from the
center of the map. The road network was discretized as
a graph with a node placed every 25 meters, creating 465
nodes. We assume symmetric visibility and the agents can
see each other if they are not further than 200 meters form
each other and there is no building in their line of sight.
An anytime solution is clearly needed with this map. The
information set search with fixed lookahead of 8 finishes in
less than one second in more than 50% of positions from
our experiments, but still takes more than 10 seconds in
approximately 3% of cases.

The results in Figure 2 demonstrate that both iterative
deepening minimax and MCTS can be used to create good
anytime algorithms for the pursuer. Each of them slightly
outperforms the other on one of the domains. This is not
true for the evader. The minimax-based player is much
stronger on the evader’s side in both domains. The main dif-
ference between the two players in the game is in the amount
of uncertainty about the world state and in the branching
factor. The decision nodes of the evader represent moves of
one player and the decision nodes of the evader represent
joint moves of two agents. Furthermore, the number of new
nodes that can be observed after a move is also larger for
the pursuer. This indicates that, as in perfect information
games, minimax-based approaches perform better on games
with smaller branching factors and MCTS on games with
larger branching factors.
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