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ABSTRACT
Social conventions are important for establishing and main-
taining coordination in groups of agents, especially where
there is no centralised control. As individuals interact, learn,
and update their strategies, effective coordination can be
achieved through the emergence of suitable conventions. In
this paper we (i) show how the structure of a population
affects convention emergence, (ii) demonstrate how fixed
strategy agents can manipulate emergence, and (iii) eval-
uate strategies for inserting fixed strategy agents.
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I.2.11 [Artificial Intelligence]: Distributed Artificial In-
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1. INTRODUCTION
Social conventions are behaviours or strategies that are

generally accepted in a society as describing how to act in a
particular situation, and effective conventions can facilitate
effective coordinated action. Where centralised control is
lacking, conventions can emerge from the local interactions
and observations of self-interested individuals [1]. This is a
form of social learning in which individuals learn from re-
peated interactions with multiple agents in the population.
Many previous investigations assume that agents can per-
ceive the actions, strategy and payoffs of those with whom
they interact. Although sometimes possible, in general we
cannot make such an assumption, and so we limit an agent’s
perception to knowledge of its own payoff. There has been
little exploration of settings in which observations are re-
stricted in this way, with some notable exceptions such as
the work of Sen et al. [2, 3] and Villatoro et al. [4]. Previous
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work on convention emergence has also typically given lit-
tle consideration to the importance of the network topology
that constrains interactions, the size of the action space (i.e.
the number of possible actions, or candidate conventions),
the effect of previous interactions on the rewards received,
and the effect of fixed strategy non-learning agents.

Where agents in a population learn and adapt based on
interactions with others, inserting a small number of non-
learning individuals can influence the direction in which the
population evolves [2]. In this paper we investigate the effect
of fixed strategy (FS) agents on convention emergence, while
addressing some of the limitations of previous work.

2. THE SOCIAL LEARNING MODEL
We consider agents that are situated in a network topol-

ogy, with agents’ interactions being restricted to their neigh-
bours. Many previous investigations have considered com-
pletely connected or regular networks. However, in most
social networks the degree distribution of nodes is typically
highly skewed, with a few nodes having an unusually high
degree. In this paper we explore topologies that repre-
sent properties observed in real-world environments, namely
scale-free and small-world networks, along with random net-
works as a base case for comparison1.

We modify the interaction game defined by Villatoro et
al. [4] to support m actions (m > 2). The reward for an in-
teraction depends on the current and previous choices, mod-
elling the social pressure that arises from the history of in-
teractions. Each agent x has a fixed length FIFO memory
Mx recording the most recent l actions that it has selected.
Each time step each agent randomly selects one of its neigh-
bours, and both agents choose which of the m actions they
will take. If an agent selects the majority action, as rep-
resented in the combination of the two memories, then its
payoff is equal to the proportion of the majority actions that
it was responsible for, otherwise it receives nothing. Specif-
ically, when an agent x interacts with another y, the reward
rx it receives for action ax is given by:

rx =

{
Ma′

x

Ma′
x +Ma′

y

, if ax = a′

0, otherwise

where Ma′
x is the number of times action a′ appears in agent

x’s memory and a′ is the majority action. An agent’s per-

1We use the generator implementations provided by JUNG
(v2.0.1): http://jung.sourceforge.net/
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Figure 1: Time for convergence with random, scale-
free and small-world topologies using an action space
of size m = 2 and random placement of FS agents.

ception is restricted to the payoff received in an interaction;
agents cannot observe others’ actions, memories, or payoffs.

In order to select an action agents use a learning algo-
rithm to estimate the desirability of each possible action.
We adopt the approach taken by Villatoro et al. [4] of using
a simplified Q-Learning algorithm. For each action a ∈ A
each agent maintains an estimate of the utility of choos-
ing that action (a Q-value), which is updated according to:
Qt(a) = (1−α)×Qt−1(a) +α× reward where Qt(a) is the
estimated utility of action a after selecting it t times, α is
the learning rate, and reward is the payoff received from the
current interaction. With some probability pexplore an agent
will explore by selecting an action at random, otherwise it
selects the action that has the highest Q-value.

In this setting we consider the effect of non-learning fixed
strategy FS agents, which are each given one of the possible
actions as a fixed strategy. We explore two alternatives: (i)
all FS agents have the same strategy, with the motivation of
reducing the convergence time and (ii) each of the m-actions
are uniformly distributed among the FS agents, with the
motivation of slowing convergence and maintaining diversity.

3. EXPERIMENTAL RESULTS
In the simulations described below we use a learning rate

of α = 0.5 and an exploration probability of pexplore = 0.25.
The Q-values for each action are initialised to zero, and each
agent’s memory is of length l = 5 and is initially empty.
We use a population of N = 500 agents (we see similar
trends for N = {100, 1000}). Each topology was generated
to have approximately the same number of edges (1500), us-
ing the following parameters: (i) random-graph: p = 0.012,
(ii) scale-free: v = 25 and e = 3, and (iii) small-world: c = 1
and α = 2.0. We adopt Kittock’s convergence criteria [1],
considering the population to have converged when 90% of
the regular agents (non-FS agents), when not exploring, se-
lect the same action. Simulations are run for 10000 learning
steps, and results are averaged over 100 simulation runs.

Figure 1 shows the effect of the network topology on con-
vergence time as the number of fixed strategy agents in-
creases. In all cases, convergence time reduces as the num-
ber of fixed strategy agents increases. Interestingly agents in
a small-world network converge to a single convention at a
much slower rate than those in scale-free or random graphs.
While in the absence of fixed strategy agents the difference in
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Figure 2: Time for convergence using FS agents
placed according to random, degree, and bc with
m = 2 in a scale-free topology.

convergence time between small-world and other networks is
largest, the convergence times tend to become more similar
as the number of fixed strategy agents increases. The differ-
ence is insignificant once the number of fixed strategy agents
reaches 50, while in the absence of FS agents small-world
networks take approximately four times as long to converge
when compared with random and scale-free topologies.

Figure 2 shows the results, for a scale-free topology, of
placing FS agents by degree and betweenness centrality (bc),
along with the baseline random placement strategy as used
in Figure 1. As with random placement, increasing the num-
ber of fixed strategy agents decreases the convergence time
when using degree and bc for placement. Once the num-
ber of FS agents is greater than 5 or 6, the degree and bc
strategies outperform random placement. The difference in
performance between degree and bc is insignificant for ran-
dom and scale-free topologies, while for small-world degree
outperforms bc once the number of FS agents is greater than
5 (graphs for random and small-world topologies are omitted
due to space). This is explained by the values for Pearson’s
correlation between degree and bc for agents within ran-
dom, scale-free and small-world networks of 0.95, 0.95 and
0.79 respectively, meaning that the same agents are typically
selected by degree and bc in random and scale-free networks.

We have performed further experiments that show increas-
ing the size of the action space m increases the time for con-
vergence, and that this increase is fairly consistent across
topologies. We have also explored the impact of FS agents
having different fixed strategies, and our results show that
giving FS agents different strategies can be effective in de-
laying convergence, with scale-free and random topologies
being more manipulable than small-world.
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