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1. GAME DESCRIPTION AND NOTATION
We consider games with the following characteristics. The

scene is visible to all players. Each player has a set of ac-
tions, which have an effect on the state of the scene. The
players act concurrently, and the joint effect of the two ac-
tions may be non-deterministic. Each player is assigned a
score, which is a function of the state of the scene, and it
does not change during the game. This assignment is known
only to the player. We assume everything to be finite, and
we consider games with only two players. We shall call this
kind of games a Simple Sequential Bayesian Game (SSBG).

Formally, an SSBG consists of two players ♥, ♠ and a
world W with a finite set of states. We assume ♥ to be
female and ♠ to be male. The players have finite sets of
moves, M♥ and M♠, which affect W . The transition be-
tween world states at time t to time t + 1 is determined by
a probabilistic function τ , τ : W × M♥ × M♠ × W → R,
where τ (w1,m♥, m♠, w2) is the probability of Wt+1 being
in state w2 given that Wt was in state w1 and the two play-
ers make the moves m♥ and m♠, respectively. Furthermore,
each player draws an assignment from a finite set A. The
assignment is a particular score function reflected in utility
numbers over states of the world. We shall assume that ♥
has received the assignment a1. The structure of the game
and the world state is always known by both players, but
the actual assignment of the other player remains hidden.

When both players have decided their moves, the game
continues with the next time step. There is no prefixed limit
on the number of moves, but the time for playing the game
is so short that discounting is not relevant. That is, the
players aim for maximizing the sum of the utilities gained
during the game.

2. RECURSIVE INFLUENCE DIAGRAMS
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Figure 1: An ID framework for opponent modeling

which contains a set of nested models. This one has

nesting level 3 and time horizon 2

An RID ([6]) is a dynamic influence diagram [7] that mod-
els the agent’s subjective decision-theoretic reasoning and its
reasoning about other agent’s reasoning. Figure 1 shows an
RID modeling an SSBG as seen in the eyes of ♥. The model
consists of 3 influence diagrams, namely the A-Model, B-
Model and the λ-Model, representing ♥’s model, ♥’s model
of ♠ and ♥’s model of ♠’s model of ♥ respectively.

RIDs follow the same notations and conventions as influ-
ence diagrams [2]. The nodes labeled A♥and A♠ represent
the assignments; the nodes labeled with M represent moves;
the U -labeled nodes represent score functions, and the Ws
represent the world states. The transition function is repre-
sented by the conditional probability P (W1|W0,M

♥,M♠).
The connection between the A-Model, the B-Model and

the λ-Model is as follows: in the A-Model, ♥’s own deci-
sions are represented as decision nodes while she represents
♠ decisions as chance nodes. That means that the policy for
♠ in each of his decisions must be represented as a condi-
tional probability distribution. To find these, ♥ consults the
B-Model - which in this case is another RID but this time
representing the game in the eyes of ♠. In the B-Model, ♠’s
decisions are represented as decision nodes and ♥’s decisions
as chance nodes. The models can be solved using standard
algorithms for solving IDs (see for instance [3, 4, 5]).

Probabilistic Graphical Models (PGMs) have previously
been applied in opponent modeling frameworks [1, 8]. As
opposed to those, RIDs have proven particularly effective in
solving SSBGs [6].
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Figure 2: The tree representing the level 3 initial

type for ♥. ♥ knows her own assignment a1. From

the root there is a branch to a sub tree for each

possible ♠ assignment. The edges are labeled with

the probability assigned to each subtree.

2.1 The Player Representation
RIDs have inherent assumptions about how many future

time steps♥ is considering, how many future time steps ♥
thinks ♠ is considering and finally how many future time
steps ♥ thinks♠ thinks ♥ is considering. Furthermore, RIDs
have inherent assumptions about how deep♥’s nesting level
is. In Figure 1 the A-Model, the B-Model and the λ-Model
takes 2, 2 and 1 future time steps into account respectively,
and the nesting level of the A-Model is 3.

3. TYPE TREES
To model the uncertainty of the opponent’s assigment we

use type trees. A type tree is a data structure that can
be used to represent ♥’s probability distribution over ♠’s
assignment. It can also represent ♥’s beliefs of ♠’s belief of
♥’s assignment etc (see Figure 2).

Each internal node in a type tree represents an acting
agent, and we have to find the policy for each of them. So,
we attach an influence diagram to each internal node.

3.1 Solving the type tree with IDs
The tree is solved from the leaves and up to the root.

Taking the type tree in Figure 2, we first calculate the nine
optimal policies in the leaves. They are used to determine
the conditional probability table for M♥ in the parents.

Next, the 3 IDs under the root are solved to provide the
appropriate ♠-policies, which finally are used for solving the
ID in the root. When the tree is solved, ♥ uses the recom-
mendation from the model to decide for a move. ♠ also
makes a move and both observe a new state of W. ♥ uses
the new information to update the parameters of the model,
and the updated model is used to determine the next move.
That is, when deciding the next move, she uses the same
time horizon and nesting depth as the first move.

3.2 Updating the type tree
When both players have taken a move and the resulting

world state is observed, they shall use the new information
to update their beliefs in order to determine their next move.
This means that ♥ has to update her type tree. If the moves
are public, standard Bayesian network (BN) algorithms are

used for the updating. In the case of private moves, the
private information grows during play, and the type tree
grows exponentially. We address this problem in a separate
paper.

4. MIXTURE MODELS FOR ADAPTATION
Formally, let Γ1, . . . ,Γk be models. Then a mixture model

can be denoted as

Γ =
⊕

i

µiΓi, (1)

where µi are positive reals for which
∑

i
µi = 1. We treat

them as probabilities reflecting ♥’s belief in the various mod-
els. When calculating the policies in Γ, you combine the ap-
propriate policies from the Γi-models as the sum weighted
by the beliefs. Now, when information e has been collected,
the probabilities for the various models change. Let P (e|Γi)
denote the probability of the evidence e if ♠ plays in ac-
cordance with Γi. Bayesian conversion yields P (Γi|e) ≃
P (e|Γi)P (Γi), and standard BN algorithms provide P (e|Γi)
for all i, and we can use the collected information about ♠’s
moves to adapt the mixture to his actual reasoning.

Over time inconsistency may emerge in the models. At
time step t, ♥ receives observations and needs to update her
type tree Tt. If the observations are inconsistent with Tt

(i.e. the joint observations have probability 0 according to
her model), Bayesian updating becomes invalid and ♥ will
have no way of assessing the probabilities of Tt+1. This is a
general problem in opponent modeling techniques. When ♥
has a model of ♠, it will inevitably contain a wrong model
of ♥ (otherwise the model would be infinite) and inconsis-
tent observations will eventually emerge. We have resolved
the conflict by adding a baseline model, Γ0 = NIL, that
prescribes random behavior. As Γ0 hypothesizes all possible
actions, updating is always possible.
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