
Multi-Objective Variable Elimination
for Collaborative Graphical Games

(Extended Abstract)
Diederik M. Roijers

Informatics Institute
University of Amsterdam

Amsterdam, the Netherlands
d.m.roijers@uva.nl

Shimon Whiteson
Informatics Institute

University of Amsterdam
Amsterdam, the Netherlands

s.a.whiteson@uva.nl

Frans A. Oliehoek
Maastricht University

Maastricht, the Netherlands
frans.oliehoek@

maastrichtuniversity.nl

ABSTRACT
In this paper we propose multi-objective variable elimination
(MOVE), an efficient solution method for multi-objective col-
laborative graphical games (MO-CoGGs), that exploits loose
couplings. MOVE computes the convex coverage set, which
can be much smaller than the Pareto front. In an empiri-
cal study, we show that MOVE can tackle multi-objective
problems much faster than methods that do not exploit loose
couplings.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: multi-agent
systems

Keywords
Multiple objectives, game theory, coordination graphs

1. INTRODUCTION
In cooperative multi-agent systems, teams of agents must

coordinate their behavior in order to maximize their com-
mon utility. Such systems are useful, not only for addressing
tasks that are inherently distributed, but also for decompos-
ing tasks that would otherwise be too complex to solve. Key
to making coordination efficient is exploiting the fact that
such tasks are typically loosely coupled, i.e., each agent’s ac-
tions directly affect only a subset of the other agents. This
independence can be captured in a graphical model and used
to efficiently compute coordinated behavior [2, 3].

In this paper, we consider how to address cooperative
multi-agent systems in which the agents have multiple ob-
jectives, i.e., the utility is vector-valued. Many real-world
problems require incorporating multiple objectives. For in-
stance, while recommending medical treatment, we need a
system that maximizes the effectiveness of the treatment
while minimizing the severity of the side effects [4].

If the vector-valued utility function can be scalarized, i.e.,
converted to a scalar function, then the original problem
may be solvable with existing single-objective methods. In
settings where this is impossible, e.g., because the weights
are unknown at the time of planning we need methods that

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May, 6–10, 2013,
Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

compute a set of solutions containing optimal solution for
any weight setting.

We propose an efficient solution method for a multi-object-
ive extension to a collaborative graphical game (also known
as a coordination graph [2]). Our method, called multi-
objective variable elimination (MOVE), extends variable elim-
ination (VE) [2, 3]. The main idea is to replace the maxi-
mization in VE by an operator that prunes away dominated
solutions (those not optimal for any weight setting).

In contrast to related methods for similar problems [5,
1], we prove correctness and give better complexity bounds.
Furthermore, we focus on a stricter solution set. In the
highly prevalent case that the scalarization is linear, this
enables the algorithm to compute only the convex cover in-
stead of the typically much larger Pareto front. We present
an empirical study that shows that this method can tackle
multi-objective problems much faster than those that do not
exploit loose couplings or compute the Pareto front instead
of the convex cover, and analyzes its scalability with respect
to the number of objectives and the number of agents.

2. MODEL
We formalize the problem as a multi-objective collabora-

tive graphical game (MO-CoGG), which is a tuple 〈D,A,U〉.
D = {1, ..., n} is the set of n agents. A = Ai× ...×An is the
joint action space: the Cartesian product of the finite action
spaces of all agents. A joint action is thus a tuple containing
an action for each agent a = 〈a1, ..., an〉. U =

{
u1, ...,uρ

}
is the set of ρ, d-dimensional local payoff functions, each
ue(ae) depends on a subset of agents. The total team pay-
off is the (vector) sum of local payoffs: u(a) =

∑ρ
e=1 ue(ae).

The game is collaborative because all agents share the payoff
function u(a). Where the local payoff functions are specified

We assume there exists a scalarization function that con-
verts u(a) to a scalar payoff function uw(a) parameterized
by a weight vector w, which is unknown when the game is
solved but known when the agents must actually select ac-
tions. Consequently, we want to find the coverage set (CS),
i.e., all solutions a that are optimal for some w:

A∗ =
{
a : ∃w∀a′ uw(a) ≥ uw(a′)

}
⊆ A. (1)

Solutions a that are not part of the CS (i.e., are not maximal
for any weight vector w), are dominated.

When the scalarized payoff is linear – a convex combina-
tion of individual objectives: uw(a) = w · u(a), we refer
to the CS given by (1) as the CS-C, which excludes all C-

1209

Algorithm 1: Agent elimination
fnew(ani) ← a new factor
foreach ani ∈ Ani do

fnew(ani)← prune
(⋃

ai

⊕
fe∈Fi

fe(ae)
)

end
F ← F \ Fi ∪ {fnew}

dominated joint actions. The CS-C is typically smaller than
the Pareto front, which is another solution concept [5].

3. THE MOVE ALGORITHM
MOVE extends the VE algorithm, which operates by iter-

atively ‘eliminating’ agents. In order to eliminate an agent i,
all the payoff functions in which it participates are gathered
in a set Fi, which is then used to define its local payoff:
fi(ani , ai) =

∑
ue∈Fi

ue(ae). This in turn is used to com-
pute the agent’s best-response value:

f(ani) = max
(
∪ai {fi(ani , ai)}

)
(2)

Given this function f , we can remove all factors of Fi and
agent i from the problem, and introduce f as a new local
payoff function.

Like single-objective VE, MOVE eliminates agents in se-
quence. However, instead of computing a single optimal
joint action, it computes the entire CS-C. Therefore the so-
lution to a local subproblem is no longer a single action but
a local coverage set. This implies that we first need replace
the local payoff functions by vector set factors (VSFs), de-
noted fe, that map a joint action of the agent in scope to a
set of possible payoff vectors: fe(ae) , {ue(ae)}. Moreover,
the max from (2) must be replaced with a pruning operator
that calculates the CS-C. To do this, we define the ‘local
payoff set’ fi(ani , ai) = ⊕fe∈Fif

e(ae)
1, and use it to define

the multiobjective equivalent of best-response value:

f(ani) = prune
(
∪ai {fi(ani , ai)}

)
. (3)

The pruning operator for calculating the CS-C uses linear
programming, and requires O(sinsp + spP (sc)) time, where
sin, sp and sc are the sizes of the input set, the Pareto front
and the CS-C; P indicates the polynomial runtime of linear
programming.

In MOVE, first all local payoff functions are translated to
VSFs, then from the set of VSFs F we eliminate all agents
in sequence, using Algorithm 1. It can be shown that this
results in the CS-C when all agents are eliminated. MOVE
runs in O(n|Amax|w(s∗ins

∗
p + s∗pP (s∗c)) time, where w is the

induced width (like in VE), s∗in, s
∗
p and s∗c are the maxi-

mal input, local Pareto front and local CS-C sizes during
any agent elimination. By only pruning vectors that are
Pareto dominated, a variant of MOVE (“Pareto Move”) can
compute the Pareto Front. To discriminate, we refer to the
variant of MOVE introduced above as “Convex MOVE”.

4. RESULTS
In order to show the scalability of Convex MOVE and

compare it to a non-graphical approach (that loops over all
joint actions) and Pareto MOVE, we test the algorithms
on randomly generated MO-CoGGs and a benchmark we

1A⊕B = {a + b : a ∈ A ∧ b ∈ B} is the cross-sum.

Figure 1: Runtimes (ms) for random graphs (left), and

mining day (right)

propose called Mining Day. In this benchmark, different
amounts of gold and silver can be mined in mines that are
geographically distributed by different worker groups, with
a certain action radius.

The results for random graphs show that Convex MOVE
outperforms the non-graphical approach when the number of
agents increases (Figure 1 (left)). Generating MO-CoGGs
with a number of agents n, a number of factors ρ = 1.5n
and 5 objectives, we show that for 12 agents Convex MOVE
starts to outperform the non-graphical method. For 22 agents,
MOVE is 17.6 times faster. Convex MOVE starts doing bet-
ter than Pareto MOVE at 20 agents.

The most striking differences occurs when the problem is
highly structured, as in Mining Day. While the runtime
of a non-graphical approach increases exponentially in the
number of agents, Pareto MOVE seems to be quadratic and
Convex MOVE linear in number of agents (Figure 1 (right)).
While the non-graphical approach cannot tackle problems
when the number of agents is greater than 15 in less than
100s, Convex MOVE stays under ten seconds even at 100
agents.

5. CONCLUSIONS
We propose MOVE as a new method for multi-objective

multi-agent graphical games. We show the correctness of
MOVE and analyze its complexity. Our empirical study
shows that MOVE can tackle multi-objective problems much
faster than methods that do not exploit loose couplings. It
also shows that for larger numbers of agents Convex MOVE
is much faster than Pareto MOVE.

6. ACKNOWLEDGEMENTS
This research is supported by the NWO DTC-NCAP

(#612.001.109) and NWO CATCH (#640.005.003) projects.

7. REFERENCES
[1] F. Delle Fave, R. Stranders, A. Rogers, and N. Jennings.

Bounded decentralised coordination over multiple objectives.
In AAMAS, pages 371–378, 2011.

[2] C. Guestrin, D. Koller, and R. Parr. Multiagent planning
with factored MDPs. In NIPS, 2002.

[3] J. R. Kok and N. Vlassis. Collaborative multiagent
reinforcement learning by payoff propagation. J. Mach.
Learn. Res., 7:1789–1828, Dec. 2006.

[4] D. J. Lizotte, M. Bowling, and S. A. Murphy. Efficient
reinforcement learning with multiple reward functions for
randomized clinical trial analysis. In ICML, 2010.

[5] E. Rollón and J. Larrosa. Bucket elimination for
multiobjective optimization problems. J Heuristics,
12:307–328, 2006.

1210

