
Applying Distributed Optimization for QoS-Security
Tradeoff in a Distributed Information System∗

(Extended Abstract)
Hala Mostafa, Nathaniel Soule,

Nicholas Hoff, Partha Pal
Raytheon BBN Tecchnologies

Cambridge, MA 02138
{hmostafa,nsoule,nhoff,ppal}@bbn.com

Patrick Hurley
Air Force Research Laboratory

Rome, NY 13441
Patrick.Hurley@rl.af.mil

ABSTRACT
In a distributed information system, Quality of Service (QoS)
and Information Assurance (IA) compete for the same set
of resources. This tension increases in the presence of cyber
attacks. Previous work formulated the problem of trading
off QoS against IA as a DCOP whose solution sets the local
configuration at individual decision-making nodes to opti-
mize overall levels of QoS and IA delivered by the system.
In this paper, we report on the first implementation of max-
sum in a realistic distributed system running on multiple
machines. Sample results from mission-oriented scenarios
based on published documentation and run in an emulated
network show the advantage of tradeoff-driven adaptation
in meeting QoS and IA requirements.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI

Keywords
DCOP; Implementation; QoS

1. INTRODUCTION
Information Assurance (IA) mechanisms such as firewalls

and antivirus scanners use the same resources (e.g., CPU,
network bandwidth) as the services they defend, leading to
a tension between IA and Quality of Service (QoS). Cur-
rently, these tensions are resolved manually, with local de-
cisions that are oblivious to system-wide consequences. We
extend QIAAMU, a framework to continuously assess vari-
ous IA/QoS quantities [4], to perform distributed tradeoffs
between QoS and IA to best meet user requirements.

In QIAAMU, each node tries to meet the requirements of
its users by manipulating actuators (e.g. setting a firewall
policy, turning compression on/off). A QoS or IA attribute
is an aspect of system performance (e.g., Availability of a

∗Supported by US Air Force Research Laboratory contract
No. FA8750-08-C-0196. Approved for Public Release; Dis-
tribution Unlimited: 88ABW-2012-5734,26 Oct 2012.

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May, 6–10, 2013,
Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

service, Confidentiality of a link). Users specify the required
level for each attribute, with preferences specifying relative
interests in different attributes. For example, the system ad-
ministrator may care more about the Integrity of a database,
while a regular user cares more about the Timeliness of a
service. Attribute levels depend on actuator settings and
continuously monitored system conditions.

Nodes engage in distributed optimization to trade off QoS
and IA to bring delivered attribute levels close to require-
ments. The result of a tradeoff is a configuration for ac-
tuators on all nodes. We formulate each tradeoff as a Dis-
tributed Constraint Optimization Problem (DCOP) and solve
it using max-sum [2] and our value propagation scheme [4].

We report on deploying QIAAMU in an existing system
where the factor graph is distributed across nodes. To the
best of our knowledge, ours is the first application of dis-
tributed constraint optimization in the QoS/IA domain, and
the first deployment of max-sum and value propagation on
multiple machines (beyond the simple scenario in [3]).

Applying QIAAMU
Our distributed environment emulates a military scenario [1]
where 4 clients (JTAC, JFO, CAS and UAV) communicate
via a server accessible through a defensive layer consisting of
2 nodes, lime and grape, equipped with security mechanisms
like firewalls and single packet authorization. An adversary
launches cyber attacks affecting various system conditions.
The nodes’ responses to attacks depend on the state of the
system and user requirements in the current mission epoch.

A node’s configuration file specifies users, preferences, re-
quirements, actuators, system conditions to assess on this
node and how their values are obtained (e.g., from a SQL
query). It also specifies a cause-effect network (Figure 1)
describing how attributes on this node depend on actuators
and system conditions, including those residing on other
nodes. From these distributed cause-effect networks, the
nodes construct the distributed factor graph and set up in-
frastructure for message passing across machines.

2. SAMPLE RESULTS
We present an experiment using scenarios based on pub-

lished reports of close air support operations [1]. Figure 2
shows how the global penalty (differences between required
and delivered attribute levels, summed over attributes and
weighted by preferences) changes as the mission progresses
through 4 epochs and an attack is injected.

1261



Figure 1: Cause-effect network distributed across
lime, grape and UAV

Figure 2: Global penalty over time

Initially, lime and grape’s firewalls are off and the clients
use no encryption, which incurs a penalty of 42 because IA
requirements are not met. The system performs a trade-
off (solves a DCOP) and the resulting configuration brings
down the penalty to 14 by turning both firewalls on and
turning on encryption on CAS.

In the second mission epoch, confidentiality requirements
on JTAC and JFO increase, incurring a penalty of 21 and
triggering a tradeoff which turns off the firewalls while turn-
ing on JTAC and JFO encryption. The adversary then com-
promises lime, which is picked up a system condition, trig-
gering a tradeoff that enforces a strict firewall policy for
grape to mitigate the security breach. Although this does
not restore the penalty to its pre-attack value, it ameliorates
most of the attack effects.

In the third epoch, this actuator configuration is still ad-
equate. The fourth epoch lowers the confidentiality require-
ments of JTAC and JFO. The penalty of the current configu-
ration is still 12, but a trade off reveals that the Availability
of JTAC/JFO can be improved if their encryption is turned
off, reducing the penalty to 6.

Handling bandwidth flood attack
In this scenario, the adversary floods the link between UAV
and lime, reducing available bandwidth (BW in Table 1).
Requirements place a strong emphasis on the Availability of
lime and grape which depends on the security mechanisms
they employ and the number of clients using them. Avail-
ability drops if more than 2 clients use the same node. The
level of threat perceived by grape is derived from logs of
various intrusion detection mechanisms.

Upon startup, all clients default to grape, firewall is off
and client encryptions are on. This doesn’t meet QoS and

Table 1: Snapshots from the flooding attack scenario
BW grape Pbef Client FW Nodes used Paft

Threat Encr. by clients

A Hi Lo 51 On Off lime:UAV,CAS 15
grape:JTAC,JFO

B Lo Hi 26 Off On grape:UAV 13
lime:CAS,JTAC,

JFO

IA requirements, resulting in a high penalty of 51 and trig-
gering tradeoff A in Table 1. The tradeoff evenly splits the
4 clients. Because grape’s threat level is low, its firewall re-
mains off, but the clients’ encryptions are on because each
client’s Confidentiality requirement is met when either its
encryption is on or grape’s firewall is on. The attack then
reduces the UAV-lime bandwidth. Separately, a system con-
dition on grape detects invalid login attempts and sets threat
level to High. This triggers another tradeoff which results
in UAV moving to grape to avoid the flooded link. Because
grape’s threat level is high, it turns its firewall on, which
would reduce its Availability if it continues to serve 2 clients.
Therefore the other clients switch to lime, with the desirable
side-effect that clients turn their encryption off and still meet
their Confidentiality requirements, which reduces their CPU
load and improves their Availability.

The above examples show how nodes in the distributed
system coordinate over their actuator configuration to opti-
mize QoS/IA attribute levels as system conditions change.

3. DISCUSSION AND FUTURE WORK
We presented an implemented framework for the runtime

assessment and adaptation in a distributed system to man-
age the tradeoff between QoS and IA. Each node in the
system is configured with a complex cause-effect network
describing the effects of system conditions and actuators
on QoS/IA levels. We formulate the tradeoff problem as
a DCOP and use message passing on the distributed fac-
tor graph to solve it. We provide the first implementation
of max-sum and value propagation in a realistic distributed
system running on multiple machines.

Areas of future work include improving knowledge elic-
itation from system users and administrators to build the
cause-effect networks. We will also try to maintain a con-
sistent user experience where nodes are discouraged from
frequently changing their actuators if doing so does not de-
crease the penalty significantly.

4. REFERENCES
[1] J. Cleveland, J. Loyall, and J. Hanna. Fault tolerance

requirements of tactical information management
systems. In Military Communications Conference, 2012.

[2] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings.
Decentralised coordination of low-power embedded
devices using the max-sum algorithm. In AAMAS,
pages 639–646, 2008.

[3] F. M. D. Fave, A. Rogers, Z. Xu, S. Sukkarieh, and
N. Jennings. Deploying the max-sum algorithm for
decentralised coordination and task allocation of
unmanned aerial vehicles for live aerial imagery
collection. In IEEE ICRA, 2012.

[4] H. Mostafa, P. Pal, and P. Hurley. Message passing for
distributed QoS-security tradeoffs. In Optimization in
Multi-Agent Systems Workshop, AAMAS 2012, 2012.

1262




