
Benchmarking Communication in
Actor- and Agent-Based Languages

(Extended Abstract)
Rafael C. Cardoso

FACIN–PUCRS
Porto Alegre - RS, Brazil

rafael.caue@acad.pucrs.br

Jomi F. Hübner
DAS–UFSC

Florianópolis - SC, Brazil
jomi@das.ufsc.br

Rafael H. Bordini
FACIN–PUCRS

Porto Alegre - RS, Brazil
r.bordini@pucrs.br

ABSTRACT
This paper presents some results of communication benchmarks
used to compare the performance of one agent-oriented and two
actor-oriented programming languages. The experiments include
an existing benchmark for traditional programming languages as
well as two new variants of that benchmark. We selected Erlang
and Scala to represent actor languages, and Jason to represent agent
languages. We discuss here a summary of the result for those three
experimental scenarios for each of the three languages and the re-
spective result analysis in regards to time, memory, and core usage.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-
gence—Multiagent systems; D.2.8 [Software Engineering]: Met-
rics—performance measures; D.3.2 [Programming Languages]:
Language Classifications—Concurrent, distributed, and parallel
languages

General Terms
Experimentation, Languages, Performance

Keywords
communication benchmark; multi-agent programming; actor-based
programming

1. INTRODUCTION
There is no quantitative analysis, to the best of our knowledge,
of how well agent languages can perform compared to actor lan-
guages. Because the actor approach is by design lighter than agents
and because each language has a different runtime environment or
virtual machine, this comparison cannot be done directly. There-
fore, in this paper we make use of scale factors to compare these
languages.

Our motivation for this line of work is first because of the lack
of benchmarks for agent programming languages specifically. The
long-term goal is to arrive at benchmarks that cover the specific
features of programming languages for autonomous agents. The
reason for comparing agent languages to actor languages is that
actor languages have the same basic principles of agent languages

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito,
Jonker, Gini, and Shehory (eds.), May, 6–10, 2013, Saint Paul, Minnesota,
USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

but have been developed for longer and therefore have had more
time to have the underlying techniques improved. Future work on
this line of research might lead to ideas for improving the basic
mechanisms of agent languages.

Actor-oriented programming languages are based on the actor
model [1]; an actor is a lightweight process that does not share state
with other actors and communicates by asynchronous message
passing through mailboxes. We selected Erlang [2] and Scala [5] as
the actor language representatives. Agent-oriented programming
languages are based on the agent model, which is effectively an
extension of the actor model. While both agents and actors are
lightweight processes and reactive, agents are more complex enti-
ties and typically capable of “practical reasoning” (i.e., logic-based
reasoning about the best action to take at given circumstances) [3,
4]. Jason [4] is the agent language representative in this paper1.

We also considered including JACK as a second agent language
representative, but we refrained from doing all the experiments
with that language because of two main reasons: first, unlike the
other selected languages, JACK is commercial software; and sec-
ond, the results in the first two scenarios showed that it seems not
to take advantage of multiple cores, so it cannot be compared to the
other 3 languages used in these experiments.

2. COMMUNICATION BENCHMARKING
The Computer Language Benchmarks Game (http:
//shootout.alioth.debian.org/) provides perfor-
mance evaluation for approximately twenty four languages using
various benchmark problems. Although they evaluate the perfor-
mance on computers with multiple cores, the tasks and most of
the languages are not appropriate for concurrent programming. A
Python script is available in that website which performs repeated
measurements of elapsed time, resident memory usage, and CPU
load for each core.

The scenarios described below focus on the message passing as-
pect of communication, testing the support for asynchronous mes-
sage passing and concurrency of each language; both of these fea-
tures are essential for actor- and agent-based languages. The exper-
iments were run on an Intel R©CoreTMi5-2400 CPU @ 3.10GHz (4
physical cores, no HyperThreading) machine with 4GB of DDR3
RAM, running the operating system Ubuntu 12.04.1 64 bits, and
using Jason 1.3.9, Erlang R14B04 erts 5.8.5, and Scala 2.9.1.

The first scenario is a simple case of passing a token N times
through a ring of “workers” (i.e., agents, processes, or actors, de-
pending on the language). Each program in this scenario should:
create a ring of 500 linked workers (named 1 to 500); pass a to-
1The code for all experiment scenarios used in this paper is avail-
able at http://tinyurl.com/b5rjoc9.

1267

http://shootout.alioth.debian.org/
http://shootout.alioth.debian.org/
http://tinyurl.com/b5rjoc9


ken to worker 1; each worker passes the token to its neighbouring
worker; the program halts when the token has been passed (between
any two workers) N times.

In Scenario 2, we added more tokens and allowed them to be
passed concurrently. So rather than passing only one token, at the
start of a run 50 tokens are distributed around the ring using I ∗
(W/T ), where I is the number of the current token to be sent, W
is the total number of workers, and T is the total number of tokens.
All 50 tokens must have been passed N times each in order for a
run in Scenario 2 to end.

As a follow up to Scenario 2, in Scenario 3 N is fixed at 500 and
besides those 50 tokens from Scenario 2, now a new type of token
is introduced in the ring; we call the new tokens as “type 1”. The
50 tokens as in Scenario 2 are now referred to as “type 2” and they
work exactly the same way as in that scenario. We created 1,000
type 1 tokens, two per worker, to simulate the “mundane tasks”
that the workers would be doing normally while waiting for the
“special” type 2 tokens to arrive. When a worker receives a token
type 2, as soon as it realises it, the worker should pass that token
directly to the next worker in the ring. A run of Scenario 3 ends
when all 50 type 2 tokens have been passed 500 times each. This
scenario measures not only concurrency in communication but also
reaction time to higher priority messages.

We ran experiments for the three scenarios varying N from 500
to 50m with an order of magnitude increase between each configu-
ration (i.e., 6 variations on N ), and again with the number of work-
ers (W ) varying from 50 to 5k, this time with N fixed at 5m, for
measurements of resident memory. Erlang was the fastest language
in regards to elapsed time in all scenarios, followed by Scala in
Scenario 1. In Scenario 2, Scala lost performance and Jason seized
to second position. As an example, we show the values in seconds
for Scenarios 1 and 2 with N = 50m: in the first scenario Jason
took 572, Erlang 14, and Scala 211; in the second scenario Jason
took 3927, Erlang 252, and Scala 6066. Finally for Scenario 3,
N = 500, Jason took 12, Erlang 0.5 and Scala 4 seconds.

3. ANALYSIS OF THE RESULTS
Jason and Scala had an even distribution of core load, while Erlang
uses for the most part only one core. However we must consider
that Scenario 1 does not require concurrency, so it is acceptable
that mostly one of the cores is used. Moving to the CPU-load for
Scenario 2, we can see that Erlang starts to use all of the 4 cores
evenly, with both Erlang and Jason using a lot more of core load
than in Scenario 1, but Scala remains on the 30% mark, which ex-
plains some of its poor performance regarding elapsed time in Sce-
nario 2. This might have been caused by an inadequate underlying
runtime management of multi-core usage, unless there are relevant
configuration parameters that we failed to find out.

Where memory was considered, Jason and Erlang had the ex-
pected increase in used memory with the increase in the number
of workers. Jason has the highest memory usage of the three lan-
guages, which was predictable since each agent has a more com-
plex internal structure than an actor. Surprisingly, Erlang did not
show any difference regarding memory usage from Scenario 1 to
Scenario 2, and while Scala showed the expected results for Sce-
nario 1, when observing Scenario 2 the memory usage was all over
the place, again probably because of the poor core usage.

We use scale factors to compare the languages: scale factors rep-
resent the proportional increase in time when scaling up the exper-
iment configurations such as number of token passes, and denotes
the degradation of performance. For example, a scale factor of 9.12
was obtained for Scala in Scenario 1, when going from 5m to 50m
token passes; this was calculated by dividing 211.36s, its elapsed

time in 50m, by 23.184s, its elapsed time in 5m. Next, we show the
difference between the scale factor from N = 500k to 5m and the
scale factor from N = 5m to 50m in Scenario 1: Scala had the low-
est, 2.21 (i.e. the scale factor from configuration 5m to 50m, 9.12,
minus the scale factor from 500k to 5m, 6.91) compared to 2.5 for
Erlang and 2.38 for Jason. However when looking at the values for
Scenario 2, Erlang takes the lead with a difference between config-
urations of only 0.33 compared to 0.45 of Jason and 2.2 of Scala.
Regardless of the scenario being concurrent or not, Jason manages
to follow closely the performance of the actor languages, and even
surpasses them by a large margin when considering the scale fac-
tors for passing from a non-concurrent to a concurrent scenario,
having a scale factor 3 times lower than Erlang, and 5 times lower
than Scala. The scale factors for Scenario 3 shows Scala as the
most reactive language, followed by Jason and then Erlang.

Having its own virtual machine and runtime environment exe-
cution certainly helps Erlang to achieve the performance presented
in this paper, although we cannot attest to how far it may affect
its overall performance. Clearly there are advantages in using Java
and the JVM for Jason and Scala, but this poses a limit to the per-
formance that they can achieve.

Where scaling was considered, Scala made justice to its name
and did better in almost all the cases, while Erlang stood distant
as the one with significantly better performance than the other two
languages at both elapsed time and memory used in the current
scenarios, which is expected as it was created for industrial devel-
opment. Jason, as a representative from a “heavier” paradigm, did
not disappoint, following closely on both aspects, scalability and
performance, and even excelling at some aspects in comparison to
the two actor languages, showing that agent-oriented programming
languages can perform surprisingly close to its predecessors as far
as communication is concerned.

4. CONCLUSION
Future work includes running the experiments reported here on ma-
chines with a higher number of cores, and analysing new aspects
such as giving priority to some of the tasks assigned by communi-
cation. Furthermore, we intend to benchmark other agent program-
ming languages, and expect to work on a more qualitative compar-
ison based on the principles of programming languages. There has
been very little research on benchmarking for agent programming
languages, so we expect to report various other results and analyses
in the near future, and we also expect to see similar efforts for the
variety of existing agent programming languages.

5. ACKNOWLEDGEMENTS
We are grateful for the support given by CNPq (grant numbers
307924/2009-2 and 307350/2009-6) and by CAPES.

6. REFERENCES
[1] G. Agha. Actors: a model of concurrent computation in

distributed systems. MIT Press, Cambridge, MA, USA, 1986.
[2] J. Armstrong. Programming Erlang: Software for a

Concurrent World. Pragmatic Bookshelf, 2007.
[3] R. H. Bordini, M. Dastani, J. Dix, and

A. El Fallah Seghrouchni, editors. Multi-Agent Programming:
Languages, Tools and Applications. Springer, 2009.

[4] R. H. Bordini, J. F. Hübner, and M. Wooldridge.
Programming Multi-agent Systems in AgentSpeak Using
Jason. John Wiley & Sons, 2007.

[5] P. Haller and F. Sommers. Actors in Scala. Artima
Incorporation, USA, 2012.

1268


	Introduction
	Communication Benchmarking
	Analysis of the Results
	Conclusion
	Acknowledgements
	References



