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ABSTRACT
Supply Chain Formation is the process of determining the
participants in a supply chain, who will exchange what with
whom, and the terms of the exchanges. Decentralized sup-
ply chain formation appears as a highly intricate task be-
cause agents only possess local information and have limited
knowledge about the capabilities of other agents. The decen-
tralized supply chain formation problem has been recently
cast as an optimization problem that can be efficiently ap-
proximated using max-sum loopy belief propagation. This
mapping can be improved by encoding the problem into a bi-
nary factor graph (containing only binary variables) and de-
riving model-specific equations for max-sum. First, this pa-
per introduces the state-of-the art methods for decentralized
supply chain formation. Second, it presents future short-
term lines of research in this problem. Finally, it argues
that the binary model can be extended to other problems
than that of the supply chain formation.
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1. DECENTRALIZED SUPPLY CHAIN FOR-
MATION

Supply Chain Formation (SCF) is the process of deter-
mining the participants in a supply chain, who will exchange
what with whom, and the terms of the exchanges [12]. Un-
like traditional firms regulated by long-term contracts, to-
day’s companies are required to dynamically form and dis-
solve trading relationships at a speed and scale that is get-
ting unmanageable by humans, giving rise to the need for
automated SCF.

Automating SCF poses an intricate coordination problem
to firms that must simultaneously negotiate production re-
lationships at multiple levels of the supply chain, with inter-
dependencies between inputs and outputs holding at each
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level. The SCF problem has been already tackled by the
AI literature, mostly through auction-based approaches. In
particular, several contributions [13, 2, 1] have addressed the
problem by means of combinatorial auctions that compute
the optimal supply chain allocation in a centralized man-
ner. Unfortunately, since even finding any feasible supply
chain allocation is NP-Complete [12], sufficiently large SCF
problems will be intractable, hence hindering the scalability
of the global optimization performed by auction-based ap-
proaches. Furthermore, as argued in [12], even when the
computation is tractable, no one entity may have global
allocative authority to compute allocations over the entire
supply chain.

Walsh et al. [12] propose to solve the SCF problem in a
fully decentralized manner. Each good in the supply chain
is auctioned separately and all auctions run simultaneously
without direct coordination. Therefore, each auction al-
locates a single resource considering the offers to buy or
sell submitted by agents. However, the approach proposed
by Walsh et al. suffers from high communication require-
ments [11]. Later on, Winsper et al. [14] cast the decen-
tralized SCF problem as an optimization problem that can
be approximated using (max-sum) loopy belief propagation
[3]. Nonetheless, the problem representation employed by
Winsper et al. leads to exponential memory, computation,
and communication requirements that largely hinder its scal-
ability.

In [4] we described a novel approach to the decentralized
SCF problem, the so-called Reduced Binary Loopy Belief
Propagation (rb-lbp), which significantly outperforms the
approach in [14] in terms of scalability. Specifically, rb-
lbp’s communication, memory and computational require-
ments scale linearly, whereas Winsper’s scale exponentially
in markets with high degrees of competition. Moreover, rb-
lbp displays large savings in terms of communication, mem-
ory and computation time required to obtain a solution. rb-
lbp allows agents to form supply chains requiring only local
communication and limited knowledge of other participants.
The main contributions of rb-lbp are: (i) a novel encoding
of the SCF problem into a binary factor graph (containing
only binary variables); and (ii) a derivation of simplified mes-
sages that dramatically lowers the communication require-
ments of message passing. Unfortunately, as the number of
agents at trade increases, the value of the SC assessed by
both lbp and rb-lbp gets further from the optimal one [5].

Recently, in [5], we introduce chainme, a decentralized
method for SCF that builds on the idea of using mediators on
behalf of the goods. In chainme there is a mediator for each
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of the goods in the SC. Mediators facilitate the negotiations
between agents over the good they mediate. chainme is
able to assess SC of higher value than the other state-of-
the-art methods. Moreover, chainme finds the optimal SC
more often than the other methods. Furthermore, chainme
computation and communication requirements are from one
up to four orders of magnitude less than the competitors
while having similar memory requirements.

Previous work on decentralized SCF only applies to mar-
kets whose agents can produce at most a single good. Al-
though we have not tested chainme and rb-lbp in scenarios
were agents can produce more than one good, chainme and
rb-lbp can readily be applied to these scenarios. Currently,
we are working on evaluating our model in such scenarios
and over a variety of actual-world network structures. We
also plan to extend our current model to markets in which
goods are exchanged in multiple units and where produc-
ers are able to supply several units of each of their outputs.
Another open line of research is to study the behaviour of
chainme and rb-lbp in dynamic scenarios. That is, scenar-
ios where agents can join or leave the process at any given
time or change their valuation over their task they perform.

2. TOWARDS MULTI-AGENT COORDINA-
TION

Max-sum has been successfully applied to decentralized
coordination of multi-agent systems. In [10], Stranders et
al., propose a model that operates over max-sum to coordi-
nate a team of mobile sensor monitoring and predicting the
state of spatial phenomena. Moreover, in [3], Farinelli et al.,
use max-sum to solve the problem of efficiently coordinat-
ing teams of low-power embedded devices in environments
with lossy communication. Therefore, studying whether the
model we described in [4] can be applied to other areas of
research in the multi-agent coordination field appears to be
an interesting line of research.

Particularly, collaborative environments in which agents
share a common goal pose as ideal subjects for further study.
Problems not so distant from SCF such as task allocation ap-
pear as ideal candidates to test the suitability of chainme
and rb-lbp to be applied to other areas of multi-agent co-
ordination. For instance, Scerri et al. [9] describe the prob-
lem of allocating tasks to teams that operate in dynamic
environments such as large-scale service organizations and
disaster rescue scenarios. In a step forward to the gener-
alization of our method for agent coordination we find also
coalition formation problems. Coalition formation is a fun-
damental form of interaction that allows the creation of co-
herent groupings of distinct, autonomous agents in order
to efficiently achieve their individual or collective goals [6].
Efficiently assessing coalitions for problems with large num-
bers of agents and tasks remains an open problem [7, 8].
Therefore, we think that the high scalability of chainme
and rb-lbp a good candidate to tackle such problems.

To sum up, future work will go towards turning the meth-
ods described in [4, 5] into a general distributed optimiza-
tion technique to solve large-scale multi-agent coordination
problems.
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