
Improved Max-Sum Algorithm For DCOP with n-ary
Constraints

Yoonheui Kim
University of Massachusetts at Amherst, MA

01003, USA
ykim@cs.umass.edu

Victor Lesser
University of Massachusetts at Amherst, MA

01003, USA
lesser@cs.umass.edu

ABSTRACT

Many distributed constraint optimization (DCOP) algorithms
include nodes’ local maximization operation that searches
for the optimal variable assignment in a limited context.
When the variable domain is discrete, this operation is expo-
nential in the number of associated variables and thus com-
putationally challenging. McAuley’s recent work on efficient
inference implements this maximization operator such that
in most cases only a small set of values is examined with-
out loss of accuracy. We increase the applicability of such
approach to DCOP in the three following ways. First, we
extend it to non-pairwise graphs with better computational
expected complexity. Second, we remove the requirement for
offline sorting, which often is not realistic in many DCOP
domains, while keeping the same complexity. Third, we pro-
vide a correlation measure to determine dynamically the ap-
propriate cases to apply the technique since its efficiency is
sensitive to characteristics of the data sets. We combine
this technique with the Max-Sum algorithm and verify em-
pirically that our approach provides significant time savings
over the standard Max-Sum algorithm.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent systems, Coherence and coordination

General Terms
Performance, Algorithms

Keywords
Distributed Problem Solving, DCOP, Max-Sum

1 Introduction

Distributed constraint optimization (DCOP) [13] is a pop-
ular framework for cooperative multi-agent systems where
agents try to maximize the system utility given constraints.
When the system contains many constraints each of which
involves a subset of variables in the system, the agent deci-
sion making problem can be straightforwardly represented
as a DCOP. It has been applied to many real application do-

mains with such characteristics such as sensor networks [21,
5], meeting scheduling [10], and traffic control [6].

Despite its recent popularity, algorithms on DCOPs have
been focused mainly on problems with binary constraints [15,
13, 11]. Although problems with n-ary constraints can be
reformulated into the ones with binary constraints, an ex-
ponential number of binary constraints and many new vari-
ables need to be introduced as in [10]. Additionally, there is
an overhead associated with this mapping. Despite the im-
portance of n-ary constraints in real applications, existing
research on DCOP with n-ary constraints [14, 21, 3, 19] has
not directly tackled the computational difficulty in handling
n-ary constraints in DCOPs. We tackle this problem in this
paper in the context of the Max-Sum algorithm.

In the DCOP, each agent is responsible for setting its vari-
able value. Further, agents have a local view of the graph,
which includes only their immediate neighbors. Therefore,
message-passing approaches such as Max-Sum are ideally
suited for such multiagent coordination problems [3, 16].
Max-Sum performs repetitive maximization operations for
each constraint to select the locally best configuration of
the associated variables given the local function and a set of
incoming messages. The complexity of this step grows expo-
nentially as the number of associated variables (constraint
arity) grows. There have been approaches that try to reduce
the complexity in the context of Max-Sum. [16] reduces do-
main sizes of variables associated with constraint functions
for task allocation domains where agents’ action choices are
strictly divided into working on a task or not. [18] performs
a branch and bound search with constraint functions that
the upper and lower bound can be evaluated with a subset of
variable values. However, these techniques require domain
characteristics that limit their applicability.

Our main contributions lie in addressing the computa-
tional bottleneck without imposing any restriction on con-
straint characteristics and also in providing formal guaran-
tees regarding expected runtime improvement, which could
be very significant, achieving up to an exponential improve-
ment over the standard scheme. Reducing such computa-
tional overhead is particularly crucial in practical multiagent
settings, where agents are often assumed to be resource con-
strained such as mobile robots [18, 5].

McAuley et al. [12] recently provided an efficient technique
for finding the maximum sum of lists based on offline sorting.
Their technique, called Fast Belief Propagation (FBP), finds
the maximum sum of particular variable configurations in
two sorted lists of length N with an expected complexity of
O(

√
N). Assuming order statistics of variables on the lists

191

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito, Jonker,
Gini, and Shehory (eds.), May 6–10, 2013, Saint Paul, Minnesota, USA.
Copyright © 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

are independent, the technique achieves an expected time
of O(N

√
N) to compute a single Max-Sum message for a

binary constraint, which is smaller than O(N2) required by
the standard approach.

Although the FBP technique offers substantial computa-
tional benefit on DCOPs with binary constraints, it cannot
be directly used on graphs with n-ary constraints. Based on
their theoretical analysis on n-ary constraint functions, the
benefit decreases as the constraint arity increases. Addition-
ally, order statistics of lists summed in the scheme should
be positively correlated or independent for the theoretical
analysis to hold. However, this property easily gets violated
in domains where a variable’s value can affect multiple con-
straint function values in opposite ways. When order statis-
tics of these lists are negatively correlated, the technique
may perform worse than a simple technique using dynamic
programming. Lastly, the graph is required to be given of-
fline for computational savings. Often, a DCOP is a one-
shot problem in which an expensive preprocessing sorting
step that dominates the actual problem complexity is not
realistic.

To remedy these limitations, we have developed a variant
of McAuley’s technique, which we call Generalized Fast Be-
lief Propagation (G-FBP). Our approach is fundamentally
different from that of FBP in that it does not require the
offline and complete sorting of different data structures as in
FBP; rather it uses partially sorted lists. The key idea be-
hind our approach is that often, only a small, representative
sample of values from different message/value lists is needed
to efficiently perform the maximization procedure. Further,
our approach works for arbitrary arity graphs as opposed
to pairwise graphs required by the FBP algorithm [12]. We
also provide expected runtime complexity analysis for this
general case and show that we can indeed achieve O(N

√
N)

complexity for pairwise graphs with only partially sorted
lists. For m-ary graphs, this translates into an expected

complexity of O(mN
m+1

2) as opposed to the exhaustive ap-
proach’s complexity of O(mNm), which is a significant re-
duction. We also note that an advanced version of FBP is
presented in [2], which has a theoretical expected complexity

of O(mN
(m−1)2

m +1) for general m-ary graphs. Our approach
has strictly better expected complexity.

Additionally, we have devised a correlation measure which
decides whether the order statistics of items on the lists are
negatively correlated. We then use this measure to condi-
tionally apply the G-FBP scheme to a particular maximiza-
tion operation. Given the definition of correlation on order
statistics, we show that this measure correctly computes the
correlation.

Finally, we add another feature to our approach, which
leads to an extended version of G-FBP called GSC-FBP.
This approach reuses computation from the previous itera-
tions results. Its effectiveness lies in the fact that messages
become less likely to change in later stages of the algorithm.

This paper is structured as follows. In Section 2, we give
an overview of DCOPs and the Max-Sum algorithm and in
Section 3, an overview of FBP approach. Next, in Section 4,
we formulate the G-FBP approach and provides a condition
for the expected complexity. In Section 5, we propose a
correlation measure which determines the applicability of G-
FBP technique on certain data sets. Finally, we summarize
the key results and discuss future work in Section 6.

2 Distributed Constraint Optimization
and Max-Sum Algorithm

A distributed constraint optimization algorithm(DCOP) is
formally defined by the following parameters:

• A set of variables X = {X1, . . . , Xr}, where each variable
has a finite domain (maximum size N) of possible values
that it can be assigned.

• A set of constraint functions F = (F1, . . . , Fk), where
each constraint function, Fj : Xj → $, takes as input
any setting of the variables Xj ⊆ X and provides a real
valued utility.

In DCOP, we assume that each variable xi is owned by an
agent and that an agent only knows about the constraint
functions in which it is involved. The DCOP can be rep-
resented using a constraint network, where there is a node
corresponding to each variable xi. There is an edge (hyper-
edge) for each constraint Fj that connects all variables that
are involved in the function Fj .

The objective in the DCOP is to find the complete variable
configuration x that maximizes

∑
Fj∈F Fi(xi).

Max-Sum [3] is a message-passing DCOP algorithm be-
longing to the class known as Generalized Distributive Law
(GDL) [1]. Max-Sum is a simple variation of the Max-
Product algorithm where the global utility function is maxi-
mized. Max-Sum produces the optimal solution in an acyclic
graph or a good approximate solution in a cyclic graph. [20]

The Max-Sum algorithm iteratively performs message-
passing on the factor graph [8] corresponding to the DCOP.
In this representation, there is a variable node for each vari-
able and a factor node for each constraint function. A func-
tion node is connected to a variable node if the correspond-
ing constraint function contains that variable in its domain.
The messages exchanged in Max-Sum are of two types:

The message qi→j from Variable i to Function j :

qi→j(xi) = αij +
∑

k∈Mi\j

rk→i(xi) (1)

αij is a scalar set such that
∑

xi
qi→j(xi) = 0, and Mi

contains the indices of function nodes connected to variable
node i.

The message rj→i from Function j to Variable i:

rj→i(xi) = max
xj\i

[
Fj(xj) +

∑

k∈Nj\i
qk→j(xk)

]
, (2)

where Nj contains the indices of variable nodes connected
to the function node j in the factor graph.

The maximization operator in Eq. (2) is the most compu-
tationally expensive operation in the Max-Sum algorithm.
For an m-ary DCOP, where the constraint function Fj has
m variables in its domain, the complexity of computing the
above message r is O(Nm), where N is the maximal domain
size of any variable. Therefore, optimizing this maximiza-
tion operation is the focus of our work.

3 Fast Belief Propagation

The Fast Belief Propagation (FBP) [12] optimizes the max-
imization operator of Eq. (2) by using presorted constraint
functions. Given a binary constraint, it uses two lists–a list
of presorted constraint function values and a list of incom-
ing message values that are sorted online. This operation

192

amounts to maximizing the sum of two lists va and vb:

max
i

{
va[i] + vb[i]

}
(3)

The FBP algorithm performs the above operation with an
expected O(

√
N) time complexity, instead of the simple

O(N) time algorithm, where N is the list size.

Figure 1: Example of FBP technique. The largest item
15 of va that has index 6 is summed with 3 in vb with the
same index (which maps to specific value combination of
variables). Therefore, items with value smaller than 3
in vb can be ignored as any value smaller than 3 cannot
yield a value larger than (15+3). We also limit the items
smaller than 11 in va by applying the same idea. In this
example only 2 computations are required to compute
the maximum value using this technique.

Fig. 1 describes the main idea of the FBP algorithm. The
list pa and pb denote the permutation that sort va and vb.
For further details, please refer to [12].

As the expected computational complexity to find the
maximum of two such lists is O(

√
N), the FBP algorithm

achieves the total expected complexity of O(N1.5) for the
Max-Summaximization operation, that is better than O(N2)
time required by the standard implementation. The main
drawback of the FBP approach is that the FBP approach
requires the complete problem to be specified ahead of time
as it requires presorting of constraint functions. Further,
this approach is only applicable to pairwise graphs and the
runtime guarantees do not extend to arbitrary arity graphs.

4 G-FBP
We now present a new maximization operation, G-FBP that
uses two partially sorted lists, to find the maximum sum as
in Eq. (2), instead of completely sorted lists used in FBP.
This technique has the expected complexity of O(

√
N) for

lists of size N given the condition on the size of the sorted
parts of the lists. We begin with construction of partially
sorted lists, present the G-FBP technique and then discuss
the relation between the computational complexity and the
length of the sorted parts of these lists.

4.1 Partial List Construction

In this section, we describe the two partially sorted lists used
in our approach called the value list and the message list.

We select and sort only the top KN
m−1

2 items of both lists
where N is the domain size, m is the number of associated
variables and K is a constant.

The main intuition behind such a select-then-sort opera-

tion is that for the maximization operation, only topKN
m−1

2

items will be accessed most of the time; unsorted entries are
not accessed in most cases. Partial sorting and using a sin-
gle message list are keys to generalizing the approach to
n-ary constraints while keeping the same complexity. Using
a combined message list allows the algorithm to have the
same expected complexity of O(

√
N) as in FBP technique

on binary constraints where N is the total length of the list.

Figure 2: Example of Message List Generation. Each
value in boxes denotes individually sorted message val-
ues from the variable nodes to the function nodes. The
domain size is 2 for vb and it is 3 for va and vc thus
the message size. In order to compute the message to
va, messages from vb and vc (qb→1 and qc→1 respectively)
are summed to generate the partial message list [15, 11]
instead of the complete list [15, 11, 8, 8, 4, 1] with |La| = 2.

Partial sorting enables construction of this message list dur-
ing runtime without any condition on N and m. We discuss
the complexity of this operation later in this section.
Value list: Intuitively, the value list corresponds to a par-
tially sorted version of the constraint function Fj given the
specific value of a single variable in Eq. (2). There is one
value list defined for every constraint function Fj and every
value of variable xi that is in the scope of Fj . It contains
〈index-value〉 pairs as:

Lb(j, xi) =
{〈

xj , Fj(x
j)
〉
|xj(i) = xi

}
(4)

where xj is a complete assignment to all the variables in the
scope of function Fj ; the condition xj(i) = xi implies that
the variable xi is fixed to a particular value in every xj . If
the constraint function is m-ary (or involves m variables),
then the length of each value list is Nm−1. Instead of com-
pletely sorting this list, which is expensive, we select the

KN
m−1

2 largest values of Lb(j, xi), which are then sorted in
decreasing order and inserted back to the front of this list.

Note that, the selection of top l items from a list of size
N can be performed in O(N) time using the standard selec-
tion algorithm, followed by a pivoting operation. Therefore,

selecting and sorting KN
m−1

2 items never exceeds the com-
plexity of iterating over all values and is much cheaper than
sorting the complete list depending on the value of K. Fur-
ther, such partially sorted lists can be constructed once per
execution of the entire algorithm.
Message list: Intuitively, the message list represents a par-
tially sorted list corresponding to the sum of incoming mes-
sages q to a function node, as shown in the second term of
Eq. (2). There is one message list defined for every con-
straint function Fj and every variable xi(Not every value of
variable) that is in the scope of Fj . It contains 〈index-value〉
pairs as:

La(j,Xi) =
{〈

xj \xi,
∑

k∈Nj\i

qk→j(x
j(k))

〉}
(5)

where xj(k) denotes the assignment to the variable xk un-
der xj . The length of every complete list La is Nm−1 and
selecting the top most items requires iterating over all val-
ues. Fortunately, each message contains values on a single
neighboring variable and are independent of each other in
Max-Sum. Using the independency among messages, we

193

Algorithm 1 G-FBP(va, vb) : Find max(va[i] + vb[i])

Require: permutation array pa and pb that partially sort va and
vb in decreasing order(i.e pa[i] is the index of ith largest value
of va.

1: {Initialization}
2: Smiss

b ← φ, Smiss
a ← φ, valmax ← −∞

3: enda ← len(pa), endb ← len(pb)
4: itra ← 0, boundfound ← false
5: if (pa[1] ∈ pb) ∧ (pb[1] ∈ pa) then
6: indexmax ← argmaxi∈{pa[1],pb[1]}{va[i] + vb[i]}
7: valmax ← va[indexmax] + vb[indexmax]
8: enda ← p−1

a [pb[1]], endb ← p−1
b [pa[1]]

9: boundfound ← true
10: end if
11: while itra < enda {Until bounding items are found} do
12: itra ← itra + 1
13: if pa[itra] /∈ pb then
14: Smiss

b ← Smiss
b ∨ {pa[itra]}

15: else
16: boundfound ← true
17: if va[pa[itra]] + vb[pa[itra]] > valmax then
18: indexmax ← pa[itra]
19: valmax ← va[indexmax] + vb[indexmax]
20: end if
21: if p−1

b [pa[itra]] < endb then

22: endb ← p−1
b [pa[itra]]

23: end if
24: end if
25: end while
26: repeat 11-25 while interchanging a and b
27: {Process unmatched items by directly calculating from the

constraint function and messages}
28: for all i ∈ Smiss

a ∨ Smiss
b do

29: compute the value va[i] + vb[i] by going through the value
table and messages and update valmax.

30: end for
31: {failure case}
32: if boundfound == false then
33: process unsorted part of the list and update valmax

34: end if
35: return valmax

Algorithm 2 compute rj→i in Eq. (2) with G-FBP

1: messagechanged = false
2: if cycle==0 then
3: for all xi ∈ Xi do
4: construct Lb(j, xi)
5: end for
6: end if
7: for all k ∈ Nj \ i do
8: if qk→j has changed then
9: messagechanged = true
10: end if
11: end for
12: if messagechanged == true then
13: construct La(j,Xi)
14: end if
15: for all xi ∈ Xi do
16: rj→i(xi) = G− FBP (Lb(j, xi), La(j,Xi))
17: end for
18: return rj→i

do not iterate the items in the list La completely in order
to select the top elements. In our implementation, we in-
crementally construct each message list partially that only

contains the top KN
m−1

2 items sorted in descending order,
without ever generating the complete Nm−1 sized lists. Al-
though these message lists are constructed per iteration un-
like value lists, there are only m such lists for each m-ary
constraint in constrast to (m × N) value lists. The over-
head of constructing message lists for a single message is

O(logmK×N
m−1

2) and this does not dominate the expected

complexity O(N×N
m−1

2) of computing a message for an m-
ary constraint for a reasonable K. Fig. 2 shows an example
of a partial message list.

4.2 The G-FBP Algorithm With Partial Lists

We now describe the complete steps of the G-FBP maxi-
mization procedure that operates using such partial value
and message lists where the ranks of items in unsorted part
are not known. For ease of exposition, we describe the Alg. 1
in terms of the maximization problem in Eq. (3). The main
difference between G-FBP and FBP is that G-FBP uses par-
tially sorted lists va and vb are partially sorted. Thus, we
need to process items whose matching items are not found
in the other list. In Alg. 1 lines 13–15 save the missing items
for later processing in lines 27–30. Also, we need to detect
cases when the maximization cannot be performed using the
sorted components of lists (lines 32–34). In these cases, we
compute sums for all variable value combinations to find the
maximum. The example of applying this modified technique
is shown in Fig. 3. Alg. 2 describes the steps of computing
Eq. (2) in Max-Sum using G-FBP in Alg. 1.

4.3 Time Complexity and Selection of K

The main intuition behind G-FBP is the fact that the proba-
bility of finding the maximum value within the sorted section
is very high with an appropriate K given the independence
assumption of two lists. [12] uses enumerative combina-
torics to construct the analysis on the probability of items
with the same index not existing in M topmost items in the
lists of size N . Under the assumption that the order statis-
tics of two sorted lists are independent, this probability is
computed as the probability of getting M red-colored balls
where we randomly select M balls out of the box in which
there are (N − M) red-colored balls and M blue-colored
balls.

Using the same notion, the probability of not finding the
matching items within K

√
N items in the lists of size N is

P (X > K
√
N ;N) =

(N −K
√
N)!(N −K

√
N)!

(N − 2K
√
N)!N !

(6)

≤
(
(N −K

√
N)

N

)K
√

N

, (7)

where Eq. 7 can be derived by simply expanding Eq. 6 and

using the relation N−K
√

N−i
N−i < N−K

√
N

N to replace the inter-

mediate terms. For the case of list size N = 10000, K
√
N =

200, the probability bound is as small as 0.0176. In other
words, when there are two lists of length 10000 and 200 items
are selected and sorted, the probability of finding matching
items in 200 items on two lists is as large as 0.9824.

In Alg. 1, the algorithm iterates over all items if any set
of items with the same index (that is, same variable con-
figuration) is not found in the sorted part of the lists (see

194

We are given a message list La of length 2 from Figure 2 and a value list Lb

of only 2 items sorted as in Section 4.1 where the length of sorted parts is 2.
Note that the part of the list La beyond 2 items is not computed and shaded
part of Lb is not sorted.

In step 1, we process the first item in La and cannot locate the matching item
in Lb with index 6 (We do not keep the location of unsorted items) and we
add this item to Smiss

b and continue
Smiss
b = {6}

In step 2, we try to process an item in Lb and we find matching item in La

with index 3 and thus we can find the temporary maximum of 18.
valmax ← 18
We set aend as we found the matching item aend ← 2

In step 3, we proceed in La and reached the second entry on La, we have
already reached aend and are done with lists.
We process Smiss and compute the item with index 6 using the constraint
function and received messages and find the value 18 and do not update valmax

as it is not larger than the current maximum. At this point, since there are
no more items in Smiss

b and Smiss
a the algorithm terminates.

Figure 3: Example of G-FBP technique as in Algorithm 1

line 31–34). Therefore, finding such items is critical to the
performance of the algorithm. In order to increase the prob-
ability of finding the matching items in sorted part of the
lists, we increase the size of sorted parts. More specifically,
with G-FBP that uses partially sorted lists, a specific con-
dition is required to hold for the expected complexity for
finding the maximum to be O(

√
N) given the lists of size N .

Theorem 1. The expected time complexity of O(
√
N) holds

with partial lists when (1− K√
N
)K

√
N < 1√

N
.

Proof: The expected running time is estimated based on
the number of summed items evaluated in order to find the
maximum. The expected number of summations E(Σ) is
given as

∑N−1
i=0 P (X > i;N). The probability P (X > i;N)

is the probability that the rank X of an item is not smaller
than i. In our setting with partial lists, the probability of
certain items to be in the unsorted part equals the proba-
bility of not finding the maximum within K

√
N . Thus,

P (X > i;N) = P (X > K
√
N) if i > K

√
N (8)

We re-write the expected number of summations as

E(Σ) =
K

√
N∑

i=0

P (X > i) +
N−1∑

i=K
√

N+1

P (X > K
√
N) (9)

=
K

√
N∑

i=0

P (X > i) +
N−1∑

i=K
√

N+1

(N −K
√
N)!(N −K

√
N)!

(N − 2K
√
N)!N !

(10)

≤
N−1∑

i=0

P (X > i) +
N−1∑

i=K
√

N+1

(
1−

K
√
N

N

)K
√

N

(11)

In Eq. 11,we already know from [2] that the first term is
O(

√
N). The second summation equates to (N−K

√
N)/

√
N

by the condition of the theorem and is dominated by
√
N .

Therefore, the expected time complexity is O(
√
N)!

Note that the condition holds for K = 2 for list size 10000
and K = 3 for 1000000. Therefore, the condition holds
for sufficiently small K for most cases. Also note that the
analogous results hold for m-ary constraints since we use

only two lists. The
√
N is replaced by N

m−1
2 .

5 Independence Assumption and
Correlation Measure

As a consequence of having partial lists, the algorithm may
compute all items on lists as in Alg. 1 line 31-34. The worst
case complexity of using G-FBP is O(mNm) in this case.
The Max-Sum with dynamic programming is O(Nm)(the
standard Max-Sum O(mNm)), so with G-FBP it may take
more time than an efficient implementation of Max-Sum.

Also, the guarantee of the expected complexity of the FBP
technique is constructed based on the assumption that the
ranks of the items on the two lists are independent. However,
the independence assumption of the FBP technique does
not hold generally. The correlation of two lists are domain-
dependent [12], and from our observations, it also varies for
each constraint function and messages received per cycle.

If the two lists are negatively correlated, the expected
complexity does not hold. It is likely that the G-FBP scheme
fails to find the maximum item using partial lists, thereby
increasing the time complexity of the algorithm. Consider
the case that the two lists are completely negatively corre-
lated such that rxi =N − ryi , where r is the rank of an item
with index i on lists involving variables x and y respectively.
The maximum value is not found until half of the lists are
processed. Therefore, if we can detect negative correlation,
then we should avoid applying the G-FBP approach.

195

5.1 Correlation Measure

We modify the Spearman’s rank correlation measure [17] to
measure the correlation among two partially sorted lists. It
has two limitations for a direct use in our approach. Firstly,
we only know the ranks of items in the sorted part. Second,
it is more important to be on the same side with respect to
K
√
Nth items (the smallest sorted item) than to the median

of the ranks in order to determine the likelihood of finding
the maximum item in the sorted part. Thus, we assume that
the items in the unsorted part have the same rank. We also
consider the items are positively correlated when they are
on the same side with respect to K

√
Nth item.

Therefore, we modify the measure in the following way.
The ranks of the items in the unsorted parts of lists are
considered to be the same and equal to the mean of them,

i.e. K
√

N+1+N
2 . Also, we consider K

√
N + 1

2 as the rank
of the imaginary median and consider the length of the lists
to be 2K

√
N . However, there are (N −K

√
N) items in the

unsorted part of the lists. Therefore, we weigh the values
related to these items with the ratio of number of items on
the two different parts, i.e. N−K

√
N

K
√

N
.

Let x and y be two lists of length N where rxi and ryi
are the ranks of the respective items with index i. Let rm =
K
√
N + 1

2 be the imaginary median rank. Our redefined
correlation measure is :

ρ′ =

∑
i(kxi)(kyi)√∑
i k

2
xi

∑
i k

2
yi

(12)

where the rank (for each list) is calculated as:

ki =

{
(N−K

√
N)

K
√

N
(ri − rm), if ri < rm

((K
√

N+1+2K
√

N)
2 − rm

)
, if ri > rm.

Definition 1. Given the item xi of list x, and rank of
two positions r1 and r2 on list y such that |r1 − rxi | <
|r2 − rxi |, the ranks of two lists x and y of equal length are
positively correlated when P (ryi= r1) > P (ryi = r2). They
are negatively correlated when P (ryi = r1) < P (ryi = r2).
They are independent when P (ryi=r1)=P (ryi=r2).

That is, if the lists are positively correlated, the items with
same index are likely to appear at nearby locations in two
lists. Using the above definition, we can state the following
result about our modified correlation measure:

Theorem 2. For any sample set s of the items with ranks
in the range 0 ≤ r ≤ 3

4 rm, the following holds. When the
ranks of the two lists are independent, then the expected value
of the correlation measure for a set s is E(ρ′s) = 0. When
the two lists are positively correlated, then E(ρ′s) ≥ 0 and
when the lists are negatively correlated, then E(ρ′s) ≤ 0.

Due to lack of space, we only provides a sketch of a proof
here. With the Def. 1, we can construct a relation of the
probabilities of an item being at specific ranks. We use this
relation to compute the sign of the expected value of ki of an
item in set s and also the sign of E(kxikyi) in the numerator
in Eq. 12. E(

∑
X) =

∑
E(X), so we can determine the sign

of the expected value of the correlation measure of set s.

5.2 GSC-FBP: Improving the Correlation of the
Message and the Value Lists

We now develop a technique that takes advantage of the
fact that messages change little near convergence. When

we detect such a situation, we do the following steps. We
merge the message list into the value list, creating a new
list Lsum. This step requires O(Nm) time for m-ary graphs.
However, this merging operation is done only once and the
results are reused for future iterations. We also create a
message list Lchange which denotes the changes in the in-
coming, new messages. As the algorithm proceeds, the list
Lchange’s rank distribution becomes uniform, which makes
it independent of Lsum. This improves the efficiency of our
approach, whose performance degrades with negative corre-
lation. Once, the list Lsum and Lchange are computed, the
GSC-FBP approach finds the maximum using Alg. 1.

6 Experiments
We evaluated the effectiveness of our approach against the
Max-Sum algorithm on two sets of problems with n-ary con-
straints. For fairness of comparison, we used an implemen-
tation of Max-Sum that uses dynamic programming with
the worst case complexity of O(Nm) for a single constraint
instead of the standard Max-Sum with O(mNm) where the
arity is m and the domain size is N . The two sets of DCOP
instances that are used in our experiments are:

• 50 instances of random graphs with 25 variables with
domain sizes from 10 to 30, and 15 constraints with the
maximum arity of 2,3,4 or 5 with different average con-
straint arities.

• 25 instances of graphs in the radar coordination domain
with 48 variables with domain size up to 15 and 96 con-
straints with the maximum arity 4.

We focus on the computational aspect of the algorithms
because our approach does not affect the solution quality.
Because the computational complexity of DCOPs is deter-
mined by the constraint arity among the parameters related
to graph topology as well as by the domain size, we experi-
ment on varying these two parameters .

6.1 Random Graphs

Our initial tests perform a comparison over randomly gen-
erated DCOPs with n-ary constraints. We characterize each
scenario by the maximum constraint arity (mmax), an av-
erage constraint arity (mavg) and the variable domain size
(N). We have explored scenarios with mmax from 2 to 5,
mavg from 1.6 to 4.4 with an increment of 0.4 and N from
10 to 30. From our knowledge, this problem set is one of the
most computationally expensive problems for a DCOP. For
the first problem set, we fixed the value K to 2 in regard to
the length of the sorted parts of lists. This value is chosen
based on the probability analysis from Section 4.3.

Fig. 4 shows the results for various arity settings and do-
main sizes. We observe that Max-Sum with G-FBP tech-
nique (MS+G-FBP) clearly outperforms Max-Sum (MS) for
higher arities and larger domain sizes. Concretely, with G-
FBP technique, the performance improved by 89% for an
arity setting of (5,3.6) and the domain size of 10 and the
performance improved by 82% for the domain size of 30 and
arity setting of (3, 2.8). As the constraint arity and domain
size increases, the number of entries that MS+G-FBP exam-
ines does not increase as much as the number of total entries.
This increases the gain of MS+G-FBP. For lower arities and
smaller domain size, MS performs better than MS+G-FBP
because the overhead of sorting partial lists dominates the
gain from finding the maximum value for shorter lists.

196

(2, 1.6) (2, 2.0) (3, 2.0) (3, 2.4) (3, 2.8) (4, 2.8) (4, 3.2) (4, 3.6) (4, 4.0)
0

5000

10000

15000

Constraint Arity (Maximum, Average)

T
im

e[
m

s]

MS
MS+G FBP
selective MS+G FBP

(a) Computation time as the constraint arity in-
creases

(b) Computation time as the domain size increases

Figure 4: The computation time of Max-Sum(MS),
Max-Sum with G-FBP(MS+G-FBP) and Max-Sum with
G-FBP with correlation measure(selective MS+G-FBP)
. For Fig.(a), the domain size of 10 was used. Datapoint
(5, 3.6) is omitted to see the general trend. The perfor-
mance of algorithms was (507178.5, 55070.6, 195056.9)
for MS, MS+G-FBP and selective MS+G-FBP respec-
tively. For Fig.(b) the arity setting of (3, 2.8) was used.

However, the use of the correlation measure in selective
MS+G-FBP is not beneficial in this problem sets. Because
the randomly generated constraint values leads the indepen-
dence explained in Section 5 to hold, and thus there is no
benefit in selectively applying G-FBP here and causes an
additional overhead of computing the correlation measure
as shown in Fig. 4.

6.2 Multiagent Radar Coordination Domain

Our next problem set is created from the abstracted radar
coordination and scheduling application based on the real-
time adaptive NetRad system [9]. Radars collect real-time
data on the location and importance of phenomena and
the system schedules the radars to focus their sensing on
scheduled weather phenomena. This scheduling step can be
thought of as a DCOP. See [7], for more details on the for-
mulation.

We developed a simulator in the Farm simulator frame-
work [4]. Although it is a simulation environment, the utility
functions are constructed based on the real scenario and the
same utility function is used in the deployed system [9]. Our
scenario involves 48 radars with a scenario of 96 phenomena
with random locations, size, and type. The radars are placed
in a grid with overlapping regions with other radars. This
scenario creates problem instances with 48 variables, 96 con-
straints with the maximum arity of 4. In this data set, we
do not directly control the constraint arity nor the domain

size. These numbers vary in the experiments, so we catego-
rized the computational difficulty of each problem instance
by the maximum factor size. The maximum factor size is
computed as the number of recorded entries in the constraint
functions totaling O(mNm) for an m-ary constraint, where
N is the maximal domain size of associated variables. We
report the average runtime of 25 runs.

As shown in Fig. 5(a), both MS+G-FBP and MS+GSC-
FBP outperform MS with an appropriate K as discussed in
Sec. 4.3. However, there is not a significant difference be-
tween them when a reasonable K is chosen for at least this
domain. As shown in Fig. 5(b), the time savings in later iter-
ations of MS+G-FBP dominate the sorting overhead in the
initial iteration, and leads to superior performance to MS.
MS+G-FBP takes 36% less computation time than MS for
the factor sizes in the range (10000, 40000] and K=11. The
performance improvement by MS+G-FBP is not so signifi-
cant as on the first dataset, because most constraints have
lower arity and some variables have smaller domain size than
the one related to the maximum factor size and also be-
cause of the data dependencies. Unlike randomly generated
data sets, here variables have more structured dependencies
through constraint functions and the independence assump-
tion in Sec. 5 does not hold in this domain and MS+G-FBP
performs poorly on instances of strongly negatively corre-
lated lists. Therefore, we examine the use of correlation
measure on this domain further.

(a) Time (b) Time Per Cycle

Figure 5: (a) The computation time ratio of MS+G-
FBP and MS+GSC-FBP to MS. K value is in brackets.
(b) Time taken at each cycle. K = 11.

(a) Time (b) Failing Probability

Figure 6: Performance improvement using correlation
measure. K = 11.

On Experiments in Fig.6, we selectively applied G-FBP
scheme (selective MS+G-FBP) when the correlation mea-

sure with the sample set of K
√

N
2 largest items in a value list

computed as in Eq. 12 is positive. Selective MS+G-FBP
takes 55% less computation time than MS in contrast to
36% for MS+G-FBP. As in Fig. 6(b), selective MS+G-FBP

197

almost always finds the maximum item in sorted parts of
lists and the failure rate becomes zero when K > 8. Note
that MS+G-FBP sometimes fails even with larger K values.

7 Conclusion
We presented a new approach, called generalized fast belief
propagation (G-FBP), which optimizes the key computa-
tional bottleneck of the maximization operator in the pop-
ular Max-Sum algorithm. Our approach is applicable to a
general setting in the context of arbitrary arity graphs as
opposed to some previous approaches which operate only
on pairwise graphs. We provide a significant reduction in
the time complexity of computing a single message in the

Max-Sum algorithm from O(Nm) to O(mN
m+1

2) for gen-
eral m-ary graphs. The key idea of our approach that dis-
tinguishes it from previous approaches is that only a small
number of values are accessed from partially sorted lists to
efficiently perform the maximization operation in Max-Sum,
rather than performing the complete sorting. We also pro-
vide theoretical results regarding the number of samples re-
quired and a proof of expected complexity.

There are many interesting future research directions. Firstly,
both G-FBP and GSC-FBP take a significant time penalty
when they are unable to find the maximum item within the
sorted lists; this potentially can be handled more gracefully
if we semi-sort the items as we select top K

√
N items. Such

iterative processing will reduce the very high cost to com-
pute the entire lists. Secondly, this technique can be applied
in dynamic constraint optimization problems, when only a
limited number of constraints change, to save the computa-
tion time by only partially sorting the lists. Our approach
can therefore significantly increase the applicability of the
Max-Sum algorithm to the multiagent domain by substan-
tially reducing its computational overhead.

Acknowledgment
The authors would like to thank Dr. Akshat Kumar for
valuable comments and discussions.

8 References

[1] S. Aji and R. McEliece. The generalized distributive
law. Information Theory, IEEE Transactions on,
46(2):325–343, Mar 2000.

[2] T. S. Caetano and J. J. McAuley. Faster algorithms
for max-product message-passing. Journal of Machine
Learning Research, 12(4):1349–1388, 2011.

[3] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings.
Decentralised coordination of low-power embedded
devices using the max-sum algorithm. In AAMAS’08,
pages 639–646, 2008.

[4] B. Horling, R. Mailler, and V. Lesser. Farm: A
Scalable Environment for Multi-Agent Development
and Evaluation. In Advances in Software Engineering
for Multi-Agent Systems, pages 220–237. 2004.

[5] M. Jain, M. Taylor, M. Tambe, and M. Yokoo.
DCOPs meet the realworld: exploring unknown
reward matrices with applications to mobile sensor
networks. In IJCAI’09, pages 181–186, 2009.

[6] R. Junges and A. L. C. Bazzan. Evaluating the
performance of DCOP algorithms in a real world,
dynamic problem. In AAMAS’08, pages 599–606,
2008.

[7] Y. Kim, M. Krainin, and V. Lesser. Effective Variants
of the Max-Sum Algorithm for Radar Coordination
and Scheduling. In IAT’07, pages 357–364, October
2011.

[8] F. Kschischang, B. Frey, and H.-A. Loeliger. Factor
graphs and the sum-product algorithm. Information
Theory, IEEE Transactions on, 47(2):498 –519, feb
2001.

[9] J. F. Kurose, E. Lyons, D. McLaughlin, D. Pepyne,
B. Philips, D. Westbrook, and M. Zink. An
End-User-Responsive Sensor Network Architecture for
Hazardous Weather Detection, Prediction and
Response. In AINTEC, pages 1–15, 2006.

[10] R. T. Maheswaran, M. Tambe, E. Bowring, J. P.
Pearce, and P. Varakantham. Taking DCOP to the
real world: Efficient complete solutions for distributed
multi-event scheduling. In AAMAS’04, pages 310–317.
IEEE Computer Society, 2004.

[11] R. Mailler and V. Lesser. Solving distributed
constraint optimization problems using cooperative
mediation. In AAMAS’04, pages 438–445. IEEE
Computer Society, 2004.

[12] J. J. McAuley and T. S. Caetano. Exploiting
data-independence for fast belief-propagation. In
ICML, pages 767–774, 2010.

[13] P. Modi, W.-M. Shen, M. Tambe, and M. Yokoo.
ADOPT: Asynchronous distributed constraint
optimization with quality guarantees. Artificial
Intelligence, 161(1-2):149–180, 2005.

[14] F. Pecora, P. J. Modi, and P. Scerri. Reasoning about
and dynamically posting n-ary constraints in ADOPT.
In In Proceedings of 7th Int. Workshop on Distributed
Constraint Reasoning (DCR-06), at AAMAS’06, 2006.

[15] A. Petcu and B. Faltings. A scalable method for
multiagent constraint optimization. In IJCAI’05,
pages 266–271, 2005.

[16] S. D. Ramchurn, A. Farinelli, K. S. Macarthur, and
N. R. Jennings. Decentralized coordination in robocup
rescue. Comput. J., 53(9):1447–1461, 2010.

[17] C. Spearman. The proof and measurement of
association between two things. The American
Journal of Psychology, 100(3/4):441–471, 1987.

[18] R. Stranders, A. Farinelli, A. Rogers, and N. R.
Jennings. Decentralised coordination of mobile sensors
using the max-sum algorithm. In IJCAI’09, pages
299–304, 2009.

[19] M. Vinyals, J. A. Rodriguez-Aguilar, and
J. Cerquides. Constructing a unifying theory of
dynamic programming DCOP algorithms via the
generalized distributive law. Autonomous Agents and
Multi-Agent Systems, 22(3):439–464, May 2011.

[20] Y. Weiss and W. T. Freeman. On the optimality of
solutions of the max-product belief-propagation
algorithm in arbitrary graphs. IEEE Transactions on
Information Theory, 47(2):736–744, 2001.

[21] W. Zhang, G. Wang, Z. Xing, and L. Wittenburg.
Distributed stochastic search and distributed
breakout: properties, comparison and applications to
constraint optimization problems in sensor networks.
Artif. Intell., 161(1-2):55–87, Jan. 2005.

198

