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ABSTRACT
Efficient algorithms exist for finding optimal policies in
extensive-form games. However, human-scale problems are
typically so large that this computation remains infeasible
with modern computing resources. State-space abstraction
techniques allow for the derivation of a smaller and strategi-
cally similar abstract domain, in which an optimal strategy
can be computed and then used as a suboptimal strategy in
the real domain. In this paper, we consider the task of evalu-
ating the quality of an abstraction, independent of a specific
abstract strategy. In particular, we use a recent metric for
abstraction quality and examine imperfect recall abstrac-
tions, in which agents “forget” previously observed informa-
tion to focus the abstraction effort on more recent and rele-
vant state information. We present experimental results in
the domain of Texas hold’em poker that validate the use of
distribution-aware abstractions over expectation-based ap-
proaches, demonstrate that the new metric better predicts
tournament performance, and show that abstractions built
using imperfect recall outperform those built using perfect
recall in terms of both exploitability and one-on-one play.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—Games

General Terms
Algorithms

Keywords
Economic paradigms::Game theory (cooperative and non-
cooperative); Learning and Adaptation::Multiagent Learn-
ing

1. INTRODUCTION
Realistic multiagent settings involve complex, sequential

interactions between agents with different perspectives re-
garding the underlying state of the world. A general model
for such settings is the extensive-form game with imper-
fect information. While state-of-the-art techniques for ap-
proximating Nash equilibria in extensive-form games [21,
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8] have made remarkable progress [15, 11], the size of
most real-world settings is beyond the capability of current
solvers. For example, a common benchmark of progress is
the domain of computer poker. Current solution techniques
have found approximate equilibria in poker-like games with
as many as 88 billion decision points [9], which is still
four orders of magnitude smaller than the smallest poker
game played by humans. The ubiquitous approach to han-
dling such human-scale domains is abstraction [2, 16, 5],
where strategically similar decision points for the players
are grouped to construct an abstract game that is tractably
sized for current solution techniques. The solution of the
abstract game is then employed in the original game.

While even simple abstraction techniques have been found
to be empirically effective [21], their success is not guaran-
teed. Waugh et al. [18] gave surprising examples of ab-
straction pathologies where strict refinements of abstrac-
tions can result in abstract strategy equilibria that are more
exploitable in the real game. While there is little theory
to guide the construction of abstractions, Gilpin and Sand-
holm [6] presented three methods for empirically comparing
abstraction methodologies: one-on-one comparison, versus-
equilibrium comparison, and versus-best-response compari-
son. While these remained the best-practice approach for
abstraction evaluation, each of these methods has concep-
tual drawbacks: possible intransitivities, infeasible compu-
tation, and not being well correlated with actual perfor-
mance (respectively). Johanson et al. [10] recently pre-
sented the CFR-BR algorithm, which computes the best
Nash approximation strategy that can be represented in a
given abstraction. This represents a new, fourth method for
evaluating abstraction methodologies: comparing the rep-
resentation power of an abstraction by how well it can ap-
proximate an unabstracted Nash equilibrium. In this pa-
per, we will examine the efficacy of this new approach for
evaluating abstractions, and use it to evaluate several ab-
straction methodologies in the poker domain. We show that
not only does it have many desirable conceptual properties
(e.g., transitivity and computational tractability), it is also
empirically well-correlated with the in-game performance of
abstract game equilibria. We demonstrate all of this through
a series of abstraction evaluation experiments. In particular,
we repeat the Gilpin and Sandholm experiments that con-
cluded that expectation-based abstractions are weaker than
distribution-aware abstractions1. We also use this technique

1Gilpin and Sandholm refer to their abstraction technique
as being potential-aware, as it is distribution-aware and can
also represent how quickly a hand may change over time.
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to validate the efficacy of imperfect recall abstractions,
in which an agent forgets information known in past deci-
sions to refine its representation of its current state. Such
abstractions are empirically effective [19, 12], but previous
research has not shown a conclusive advantage. Finally, we
present for the first time the abstraction methodology em-
ployed by Hyperborean, one of the top competitors in the
Annual Computer Poker Competition.

2. BACKGROUND
Extensive-form games. Extensive-form games are an in-
tuitive formalism for representing the interaction between
agents and their environment. These interactions are repre-
sented by a tree, in which nodes represent game states and
edges represent actions taken by one of the agents, i ∈ N , or
chance, c. The root of the tree represents the start of the
interaction, and actions are taken until a leaf, i.e., terminal
node is reached. Each terminal node z ∈ Z assigns a utility
to each player i, ui(z). In imperfect information games,
agents may not be able to observe some of the actions taken
by chance or the other agents. In the poker setting we use
the terms private and public to refer to actions visible to
only one agent or to all agents, although in general other
types of actions are possible. Each set of game states that
are indistinguishable by the acting agent is called an infor-
mation set. When some actions are not observed, an agent
perceives the game not as a tree of game states, but as a tree
of information sets. A perfect recall game has the natural
property that each agent remembers the exact sequence of
its past observations and actions leading to each decision.

A behavioral strategy (or simply a strategy) for each
player i, σi, maps each of player i’s information sets to a
probability distribution over the legal actions. A strat-
egy profile σ is a tuple containing a strategy for each
player. Let σ−i refer to the strategies of player i’s oppo-
nents. Given a strategy profile σ, we denote each player’s
expected utility by ui(σ). Given the opponents’ strate-
gies σ−i, a best response for player i is the strategy that
maximizes utility against σ−i, where bi(σ−i) is the util-
ity of the best response strategy when played against σ−i.
A strategy profile σ is called an ε-Nash equilibrium if
∀i ∈ N, bi(σ−i) − ui(σi, σ−i) ≤ ε. When ε = 0, the pro-
file is called a Nash equilibrium. In two-player repeated
games where the agents alternate positions, each agent has
one strategy for each position and their exploitability is
their utility (averaged over all positions) against a worst-
case adversary who, in each position, uses a best-response
to the agent. In two-player zero-sum games, a Nash equi-
librium has an exploitability of 0 and thus cannot lose, on
expectation, to any adversary.

Poker is a canonical example of stochastic imperfect infor-
mation extensive-form games. In this paper we will focus on
two-player limit Texas hold’em, which is one of the variants
played in the Annual Computer Poker Competition. The
game begins with each player being given a hand of two
private cards that only they can see or use. The players’
actions are to bet or call, placing or matching wagers that
their hand will be the strongest at the end of the game, or
to fold to concede the game. This is followed by chance re-
vealing an additional three public cards that both players
can see and use, and an additional round of betting actions.
After two additional such rounds in which one public card is

revealed and the players act, the game is over and the player
with the strongest hand made of their private cards and the
public cards wins the wagers. Poker is a repeated game in
which two agents will play a long series of such games with
the overall goal of having the highest total winnings.

Counterfactual Regret Minimization. Counterfactual
Regret Minimization (CFR) is a state-of-the-art algorithm
for solving extensive-form games (i.e., approximating a
Nash equilibrium strategy) and has been widely used in the
poker domain [21, 9]. Although it is only proven to converge
to a Nash equilibrium in two-player zero-sum perfect recall
games, in practice it appears robust when these constraints
are violated as it has been successfully applied to multi-
player games [14], non-zero-sum games [12], and imperfect
recall games [19]. CFR is an iterative self-play algorithm.
Each player starts with an arbitrary strategy. On each it-
eration, the players examine every decision, and for each
possible action compare the observed value of their current
policy to the value they could have achieved by making that
action instead. This difference is the regret for playing an
action, and the accumulated regret is used to determine the
strategy used on the next iteration. In the limit, the aver-
age strategies used by the players will converge to a Nash
equilibrium. CFR is efficient in both time and memory, re-
quiring space which is linear in the number of actions across
all information sets. While it has been applied to games
with up to 8.8× 1010 information sets [9], the computation
remains intractable for domains as large as two-player limit
Texas hold’em, which has 3.2× 1014 information sets.

State-space abstraction. A state space abstraction is a
many-to-one mapping between the game’s information sets
and the information sets in a smaller, artificially constructed
abstract game. An agent using abstraction only observes
its abstract game information set, and its strategy for that
information set is used for all of the real information sets
mapped to it. The goal is to construct a game small enough
that an optimal strategy can be found through an algorithm
such as CFR, and the resulting strategy can be used to
choose actions in the original game, where it is hoped to
closely approximate a Nash equilibrium strategy. The suc-
cess of this approach relies on both the size of the abstract
game (a larger and finer-grained abstract game can lose less
information) and the domain features used to decide which
information sets can be mapped together.

The earliest uses of state-space abstraction in poker in-
volved the construction of abstract chance events, called
bins by Shi and Littman [16], buckets by Billings et al. [2],
and signals by Gilpin and Sandholm [5], by grouping to-
gether chance events that are similar according to a metric.
As the players’ actions were left unabstracted, the abstract
game resembles the real game except with a coarsened rep-
resentation of the chance events. A common metric used
in this early work is a player’s expected hand strength
(E[HS]). In the final round when all public cards have been
revealed, a player’s hand strength (HS) is the probability
that their hand is stronger than a uniform randomly sam-
pled opponent hand. In the earlier rounds, expected hand
strength (E[HS]) is the expectation of hand strength over
all possible rollouts of the remaining public cards. A related
metric, expected hand strength squared (E[HS2]),
computes the expectation of the squared hand strength val-
ues, and assigns a relatively higher value to hands with the
potential to improve such as flush-draws or straight-draws.
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These expectation-based metrics can be used to create
abstract chance events in a number of different ways, such as
bucketing based on expert-chosen ranges of E[HS] values [2],
bucketing based on E[HS] ranges chosen so as to contain an
equal number of hands (called percentile bucketing) [21],
or by merging hands whose E[HS] values differ by less than
a threshold [4]. Additionally, two abstraction techniques
can be nested by applying one and then subdividing by
the other. For example, an abstraction might split the pos-
sible hands into five buckets by percentile E[HS2] and fur-
ther split each into two percentile E[HS] buckets, giving ten
buckets overall. The Percentile nested E[HS2] / E[HS] ab-
straction technique has been well studied by researchers [12,
19] and was used by Hyperborean in the Annual Computer
Poker Competitions from 2007 to 2009.

Gilpin et al. showed that expectation-based metrics have
difficulty distinguishing between hands that have the poten-
tial to improve and those that do not, and that this dif-
ference is strategically important [7]. High potential hands
are called drawing hands, which might be weak initially
but have the possibility to become very strong given fortu-
nate chance outcomes later in the game. Expectation-based
abstraction techniques place these hands into buckets along
with hands that have a similar E[HS] values and no likeli-
hood of improving. Abstracting these strategically distinct
hands together loses information, as an abstracted agent
must choose one strategy to handle both cases. While the
E[HS2] metric was designed to address this fault, it was only
a partial solution. Gilpin et al. addressed this shortcom-
ing through a multi-pass k -means abstraction technique in
which the final round is clustered by E[HS] and each earlier
round was clustered by L2 distance over histograms showing
the probability of transitioning to the next round’s buck-
ets [7]. In later work, Gilpin and Sandholm compared these
distribution-aware abstractions to expectation-based ab-
stractions and found that expectation-based abstractions
yielded stronger strategies in small abstractions, but are sur-
passed as more buckets are made available [6].

Imperfect Recall. Imperfect recall is a relaxation of per-
fect recall in which agents may “forget” some of the informa-
tion that it has observed. It is not typically a property of a
real domain (as humans cannot be forced to forget their ob-
servations), but is instead an optional property that can be
used for abstract games. When creating an imperfect recall
abstraction agents can be forced to discard old observations
that are no longer strategically important, thus merging the
real information sets that differed in this observation. This
means that an agent may be able to distinguish two informa-
tion sets early in a game, but not distinguish their descen-
dant information sets later in the game. They will perceive
the game as a directed acyclic graph instead of as a tree.

An example of equal-sized perfect recall and imperfect re-
call abstractions in a poker-like game is shown in Figure 1.
This game starts with a chance event, C, which deals the
player a private card. Each abstraction coarsens that in-
formation and maps it to a bucket, 1 or 2, indicating that
the card is in the top or bottom half of all possible cards.
At the action node, A, the players take a sequence of ac-
tions, X, or Y, which is followed by a chance node at which
a public card is revealed. This is where the two abstractions
differ. In the perfect recall abstraction, the agent must re-
member its sequence of observations: 1 or 2, X or Y. The
new chance information is coarsened by the perfect recall
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A A

C C C C

1 2

X Y

1X1 1X2 1Y1 1Y2 2X1 2X1 2Y1 2Y2
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(a) Perfect Recall

(b) Imperfect Recall

Figure 1: Perfect recall and imperfect recall games.

abstraction, and the agent receives one of two new buckets
depending on their earlier observation. The sequences 1-1, 1-
2, 2-1, and 2-2 represent different sets of chance events, and
can have overlapping ranges according to metrics such as
E[HS]: a weak hand that becomes strong may score higher
than a strong hand that becomes weak. In the imperfect
recall abstraction, only the players’ action sequence, X or
Y, is remembered while the original chance bucket, 1 or 2,
is forgotten. The 1X and 2X paths merge, as do 1Y and 2Y.
The second chance node is coarsened to one of four buckets,
1 to 4, representing the strength of its private card com-
bined with the public card. These four buckets can be con-
structed to form non-overlapping ranges of E[HS]. If this
second chance event makes the first less significant (i.e. if
the agent’s previous strength is not very important, as is
the case in poker), then the imperfect recall representation
may provide more useful information.

The use of imperfect recall abstractions in the poker do-
main was first proposed by Waugh et al. [19]. As they noted,
imperfect recall presents several theoretical challenges: there
is no guarantee that a Nash equilibrium for an imperfect
recall game can be represented as a behavioral strategy
(Nash’s celebrated theorem only guarantees that a mixed
strategy equilibrium exists), and no proof that CFR (or
other efficient algorithms) will converge towards such a strat-
egy if one exists. Recent work by Lanctot et al. has shown
that CFR will converge in a class of imperfect recall games;
however, this class does not include the abstractions typi-
cally used in poker [13]. However, CFR remains well-defined
in imperfect recall abstractions and can be used to gener-
ate abstract strategies that can be used in the real game.
Waugh et al. [19] showed that a small improvement was pos-
sible in two-player limit Texas hold’em, as imperfect recall
discarded less relevant earlier observations and allowed new
domain features to be used along with E[HS].

3. EVALUATING ABSTRACTIONS
With many options available for constructing abstractions

and no theory to guide these choices, progress has only been
established through empirical evaluation. This involves cre-
ating abstract games, solving them, and evaluating the strat-
egy in the real game. Gilpin and Sandholm [6] codified
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the possibilities for evaluating the resulting strategy, and
thus evaluating the abstraction methodology itself. They
described three approaches: in-game performance against
other agents, in-game performance against an unabstracted
Nash equilibrium, and exploitability in the real game.

While these evaluation methods measure qualities we
want, each involves a potentially serious drawback. In one-
on-one play, it is possible to find intransitivities where strat-
egy A defeats B, which defeats C, which defeats A. A weaker
form of intransitivity occurs when A defeats B, but B defeats
C by more than A defeats C. It is not clear what to con-
clude in such cases. In one-on-one play against a Nash equi-
librium, many strategies of varying exploitability may tie.
Even more problematic is that generating an unabstracted
equilibrium strategy in human-scale domains is intractable.
Finally, while measuring the exploitability of abstract strate-
gies directly addresses the goal of approximating a Nash
equilibrium, recent research has shown that abstract game
equilibria may not be the abstract strategies with the lowest
real game exploitability [18, 12]. In addition, both Waugh
et al. [17, p.30 and p.52] (in a toy game) and Johanson et
al. [12] (in Texas Hold’em), found that exploitability does
not correlate well with one-on-one performance.

Johanson et al. recently presented CFR-BR: a CFR vari-
ant that, in perfect recall abstractions, converges towards
an abstract strategy with the lowest real game exploitabil-
ity [10]. These strategies are not abstract game equilibria,
as are found by CFR, but instead are the closest approxi-
mations to a real game equilibrium that can be represented
within an abstraction. In practice, the exploitability of these
CFR-BR strategies is as little as 1

3
of those found via CFR.

While CFR-BR’s convergence is only proven for perfect re-
call abstractions, in practice the same degree of improve-
ment is shown in imperfect recall games. CFR-BR requires
repeated traversals of the real game tree, and may not be
tractable in large domains where abstraction enables CFR.
However, calculating a strategy’s exploitability also requires
a real game tree traversal (although an efficient traversal
may be possible [12]), and in such large games one-on-one
performance may remain the only viable evaluation.

Johanson et al. also demonstrated that CFR-BR could be
used for evaluating abstractions by measuring the closest ap-
proximation to a Nash equilibrium that can be represented
by the abstraction [10]. In this paper, we will broadly apply
the CFR-BR technique for the first time to compare new
and existing abstraction techniques. Our experiments will
evaluate two abstraction choices that have been raised by re-
cent publications: the effectiveness of expectation-based as
opposed to distribution-aware abstractions, as proposed by
Gilpin and Sandholm [7], and the use of perfect recall as op-
posed to imperfect recall, as proposed by Waugh et al. [19].
We will also present for the first time the abstraction tech-
nique and distance metrics used by the Hyperborean agent
in the Annual Computer Poker Competition since 2010.

4. ABSTRACTION AS CLUSTERING
To eliminate the need for direct human expert knowledge

when creating an abstraction, the abstraction generation
problem will be considered as a clustering problem. Given
a target number of clusters (i.e. buckets) k and a distance
function between information sets, a clustering algorithm
can be used to partition the real information sets into the
buckets that form the information sets of the abstract game.
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Figure 2: (top) Hand Strength histograms for four poker
hands at the start of the game. (bottom) Earth mover’s
and E[HS] distances.

Using a clustering algorithm allows the abstraction designer
to focus on two aspects of the task: designing a distance
metric that represents the strategic similarity of two infor-
mation sets, and choosing the total number of clusters on
each round, ki, so that the total number of information sets
in the resulting abstract game is small enough to solve.

In practice, the number of information sets to be clus-
tered can be very large, making the use of many clustering
algorithms computationally intractable. In the poker do-
main, for example, the final round of Texas hold’em has
2,428,287,420 canonical combinations of public and private
cards to be grouped into between one thousand (a small
abstraction) and one million (a large abstraction) clusters
or more. To make this large clustering problem tractable,
we use a k -means implementation that uses the triangle in-
equality to reduce the number of distance function calls [3].
Multiple restarts and the k -means++ initialization [1] are
also used to improve the quality of the clustering.

As in previous work in the limit Texas hold’em poker do-
main, the abstractions used in our experiments will only
merge information sets on the basis of having similar chance
events. This approach leaves the players’ actions unab-
stracted and reduces the abstraction generation task to that
of finding clusters of similar private and public cards. In the
remainder of this section, we will present two new distance
metrics for the poker domain that capture strategic simi-
larities that were not handled by earlier expectation-based
approaches, and describe how imperfect recall can be used to
reallocate the distribution of buckets throughout the game.

Hand Strength Distributions. In Section 2, we described
the expected hand strength metric. In the final round of the
game, hand strength measures the probability of winning
against a randomly sampled opponent hand, given the pub-
lic cards. Earlier in the game, E[HS] measures the expecta-
tion of hand strength over all possibilities for the remaining
public cards. Thus, E[HS] summarizes the distribution over
possible end-game strengths into a single expected value.

As noted by Gilpin and Sandholm [6], this single value
is unable to distinguish hands with differing potential to
improve. Consider Figure 2(top), which shows the distri-
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butions over the final round hand strength of four Texas
hold’em poker hands in the first round of the game. Each
distribution is discretized into a histogram with values rang-
ing from 0 (a guaranteed loss) to 1 (a guaranteed win). The
height of each bar indicates the probability of the remaining
public cards resulting in that hand strength, and the vertical
black line and label shows E[HS].

Note that the top and bottom histograms have different
distribution shapes: 4♠4♥ and 6♠6♥ have most of their
weight near their E[HS] values, while T♠J♠ and Q♠K♠
have almost no weight near E[HS] as the unrevealed cards
will make this hand either strong or weak. This difference
is an indication that the top and bottom rows are strategi-
cally distinct: the bottom row has high potential, while the
top row does not. However, when comparing the columns
of hands we find almost identical E[HS] values. As such,
expectation-based approaches would merge within each col-
umn, whereas merging along each row may be better.

This suggests the use of a distribution-aware similar-
ity metric such as earth mover’s distance [20] to compare
two hand strength distributions. Earth mover’s distance
measures the minimum work required to change one dis-
tribution into another by moving probability mass. In
one-dimensional discrete distributions such as these hand
strength distributions, it can be efficiently computed with
a single pass over the histogram bars. Unlike alternative
distance metrics such as L2 or Kolmogorov-Smirnov, earth
mover’s distance measures not only the difference in prob-
ability mass, but also how far that mass was moved. In
Figure 2(bottom), the earth mover’s distance and difference
in E[HS] for four hands are listed. In partitioning these
four hands into two clusters, earth mover’s distance would
merge the rows (similar distribution shapes) while E[HS]
would merge the columns (similar expected values).

In Texas hold’em poker, hand strength histograms can be
precomputed for every combination of private and public
cards in the first three rounds, and earth mover’s distance
provides a candidate distance function for comparing them.
After all of the public cards are revealed in the final round,
each histogram would be a single impulse at the correspond-
ing hand strength value, and earth mover’s distance and the
difference in hand strength values would be equivalent.

Opponent Cluster Hand Strength. Our second new dis-
tance metric addresses a different aspect of E[HS]. The
‘hand strength’ component of E[HS] measures the proba-
bility of winning against a uniform randomly sampled oppo-
nent hand at the end of the game, and this provides one sum-
mary feature. However, we can also consider our probability
of winning against multiple subsets or distributions of pos-
sible opponent hands, and thereby generate additional fea-
tures. While any number of overlapping or non-overlapping
subsets could be used, in this work we will partition the 169
starting hands into eight non-overlapping subsets, which we
call opponent clusters2. These were formed by clustering
the hands using the earth mover’s distance metric on the
first round, and are presented in Table 1.

Instead of using a single E[HS] value, we will now com-
pute eight values measuring the hand strength against
hands drawn uniform randomly from each opponent clus-
ter. For example, the eighth Opponent Cluster Hand

2Our use of these eight clusters was an engineering decision
to limit the memory required for the precomputed tables;
other choices may be even more effective.
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Table 1: Eight hand clusters used for the OCHS features.
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Figure 3: (top) OCHS values for four poker hands at the
start of the game. (bottom) OCHS L2 and E[HS] distances.

Strength (OCHS) feature measures the probability of win-
ning against an opponent hand sampled from the set of top
pairs. For each game round, we can precompute a vector of
OCHS features to describe a hand’s strength. The L2 dis-
tance between two vectors is then used as a distance met-
ric. Figure 3 shows an example with the four first-round
hands from Table 2 and the L2 distances between their vec-
tors. OCHS provides a richer representation of strength than
E[HS], which can itself be derived from the vector.

Perfect and Imperfect Recall. We will now describe how
clustering can be used to form abstractions with perfect and
imperfect recall. A perfect recall abstraction is created hi-
erarchically by solving many small clustering problems. To
start, the first round of the game is clustered into k1 clusters.
In the second round, perfect recall requires that information
sets may only be clustered together if they share the same
sequence of observations. This means that we must solve
k1 independent clustering problems, each of which only in-
cludes those chance events that are descendents of chance
events clustered together in the first round. Although each
of these independent clustering problems could assign a dif-
ferent number of clusters, in our experiments we use the
same constant k2 for each. The hierarchical abstraction gen-
eration continues until the final round in which we have to
solve k1 · . . . ·kn−1 clustering problems, into kn clusters each,
for a total of k1 · . . . · kn clusters in the final round.

When creating an imperfect recall abstraction, we simply
cluster all of the chance events without considering their
predecessors’ clusters on earlier rounds. Solving one large
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clustering problem is more computationally difficult than
solving many small ones. However, the larger number of
clusters may allow for a more accurate clustering, as there
will not be a need for clusters with similar features that
differ only by their history.

The key constraint when making an abstraction is not the
number of buckets either in each round or overall, but the to-
tal number of information sets in the resulting game, as this
determines the memory required to solve it. In imperfect re-
call abstractions it is possible to change the distribution of
buckets throughout the game, dramatically increasing the
number of buckets in early rounds, without changing the
overall number of information sets. We demonstrate this
effect in Table 2. The ‘Action Sequences’ columns describe
only the players’ actions and not the chance events, and
shows the number of action sequences leading to a choice
inside the round and continuing to the next round. The
next three sections describe nearly equally sized abstrac-
tions. PR-10-10-10-10 uses perfect recall, while IR-10-100-
1,000-10,000 and IR-169-9,000-9,000-9,000 use imperfect re-
call. For each abstraction, the table lists the number of
buckets and the number of information sets (buckets times
decision points) in the abstraction in that round. The final
row shows the total number of information sets.

The PR-10-10-10-10 and IR-10-100-1,000-10,000 abstract
games are exactly the same size and use the same total
number of buckets on each round: either through multi-
ple small perfect recall clusterings, or in one large imperfect
recall clustering. The IR-169-9,000-9,000-9,000 abstraction
changes the distribution of buckets, shrinking the final round
to 9,000 buckets and removing 5.67 million final round in-
formation sets. Due to the multiplying effect of the number
of action sequences that reach the final round, removing one
fourth-round bucket allows for the addition of 9 third-round
buckets, 81 second-round buckets, or 567 first-round buck-
ets. In this way, we can decrease the number of fourth-round
buckets by 10% to get an abstraction that is lossless in the
first round (i.e. it has 169 buckets) and has 9,000 buckets in
the second and third rounds. Note that this type of redistri-
bution is not possible when using perfect recall, as the larger
number of buckets early in the game need to be remembered
until the final round: having 169 buckets in the first round
would allow only four buckets on each subsequent round.

5. RESULTS
We can now begin our empirical investigation of abstrac-

tion techniques, using the domain of two-player limit Texas
hold’em poker. In this paper, we have described three ab-
straction techniques that are applicable to the first three
rounds: Percentile Hand Strength (PHS), k -means earth
mover (KE), and k -means OCHS (KO). We have two choices
of abstraction techniques to use on the final round: Per-
centile Hand Strength (PHS) and k -means OCHS (KO).
Each combination of an early-game and end-game technique
can be used to form a different abstraction. Additionally,
we can consider abstractions that use Perfect Recall (PR)
and Imperfect Recall (IR), resulting in 2 × 3 × 2 = 12 ab-
stractions. An abstraction (or agent) named IR-KE-KO
uses imperfect recall, k -means earth mover to abstract the
first three rounds, and k -means OCHS to abstract the final
round. Each abstraction will be of the sizes listed in Ta-
ble 2: either Perfect Recall 10-10-10-10, or Imperfect Recall
169-9000-9000-9000 with a lossless first-round abstraction.

In the first three rounds, PHS abstractions will use nesting
to partition first by E[HS2] and then by E[HS]. Perfect
recall PHS will use 5× 2 = 10 buckets and imperfect recall
PHS will use 150 × 60 = 9000 buckets. On the final round
E[HS2] ranks hands in the same order as E[HS], and so
PHS uses a single partition into 10 or 9000 buckets.

We begin our evaluation of these abstraction styles and
distance metrics with the first evaluation technique sug-
gested by Gilpin and Sandholm: one-on-one performance
between abstract game Nash equilibrium strategies [6]. For
each abstraction, a parallel implementation of the Public
Chance Sampled CFR algorithm (PCS) [11] was run for 4
days on a 48-core 2.2 GHz AMD computer3. Each pair of
strategies was then played against each other for 10 million
hands of duplicate poker to obtain statistically significant
results with a 95% confidence interval of 1.1 mbb/g. The
crosstable of this match is shown in Table 3. We find that
every imperfect recall agent, regardless of abstraction tech-
nique, outperformed every perfect recall agent. Comparing
each imperfect recall agent against its perfect recall equiv-
alent (i.e., IR-KE-KO to PR-KE-KO) we find that the im-
perfect recall agent also had a higher expected value against
each opponent. Overall, the IR-KE-KO agent was unde-
feated and additionally scored the highest against each ad-
versary. Ranked by average performance, the IR-KO-KO
and IR-KE-PHS agents placed second and third.

Gilpin and Sandholm’s third abstraction evaluation tech-
nique is to calculate the real game exploitability of abstract
game Nash equilibrium strategies. In the CFR column of Ta-
ble 4, we present the exploitability of the same CFR strate-
gies used in the one-on-one crosstable. Note that the results
are inconsistent: neither perfect recall or imperfect recall
shows a clear advantage. Notably, the two KE-KO strategies
are almost exactly tied, despite the fact that IR-KE-KO was
considerably stronger in the crosstable. As described earlier,
recent work by Waugh et al. [18] and Johanson et al. [12]
has shown that abstract game Nash equilibria are rarely the
least exploitable strategies representable in an abstraction,
making this method of evaluating abstractions inconclusive.

The recently developed CFR-BR algorithm provides a
more reliable metric [10]. In each abstraction, a parallel
implementation of CFR-BR was run for 8 days on the same
computer used to generate the CFR strategies4. The ex-
ploitability of these CFR-BR strategies is presented in Ta-
ble 4, and the results are much more consistent with the
one-on-one performance presented in Table 3. IR-KE-KO,
IR-KO-KO, and IR-KE-PHS are once again ranked first,
second and third. With the exception of PHS-PHS, the
imperfect recall agents are also less exploitable than their
perfect recall equivalents. Johanson et al. note that CFR-
BR strategies tend to lose slightly when played against their
more exploitable PCS equivalents [10, Fig. 8], and so the
CFR strategies’ one-on-one performance is of more interest.
The outcomes of playing the CFR-BR agents against each
other are very similar to those of the CFR agents in Table 3.

In Table 2, we showed that imperfect recall allows us to
decrease the number of buckets in later rounds of the game

3Johanson et al. found that applying PCS to 10-bucket PR-
PHS-PHS for 105 seconds was sufficient for near conver-
gence [11, Figure 3c].
4Johanson et al. found that this time, 3.3 × 107 seconds,
was sufficient for near convergence using PR-PHS-PHS and
IR-KE-KO [10, Figures 6 and 7].
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# Action Sequences PR 10-10-10-10 IR 10-100-1,000-10,000 IR 169-9,000-9,000-9,000
Round Inside Continuing # Buckets # Infosets # Buckets # Infosets # Buckets # Infosets

1 8 7 10 80 10 80 169 1,352
2 7*10 7*9 10*10 700 100 700 9,000 630,000
3 7*9*10 7*9*9 10*10*10 630,000 1,000 630,000 9,000 5,670,000
4 7*9*9*10 10*10*10*10 56,700,000 10,000 56,700,000 9,000 51,030,000

Total 57,330,780 57,330,780 57,331,352

Table 2: Computing the number of information sets in three nearly equally sized Texas hold’em abstractions.

Perfect Recall Imperfect Recall Mean
PHS-PHS PHS-KO KE-PHS KE-KO KO-PHS KO-KO PHS-PHS PHS-KO KE-PHS KE-KO KO-PHS KO-KO

PR

PHS-PHS -0.9 -1.9 -2.7 14.3 14.5 -8.8 -14.8 -21.1 -25.7 -19.1 -22.4 -8.1
PHS-KO 0.9 -0.3 -2.3 14.2 13.5 -8.7 -14.7 -21.0 -26.3 -17.6 -22.2 -7.7
KE-PHS 1.9 0.3 -2.4 15.2 14.5 -6.5 -13.0 -18.0 -24.2 -16.1 -21.6 -6.4
KE-KO 2.7 2.3 2.4 16.9 16.3 -6.6 -12.5 -18.6 -24.8 -15.8 -21.0 -5.3
KO-PHS -14.3 -14.2 -15.2 -16.9 -1.69 -25.7 -30.3 -34.9 -39.9 -32.6 -37.3 -23.9
KO-KO -14.5 -13.5 -14.5 -16.3 1.69 -25.1 -30.2 -34.8 -39.6 -31.8 -37.2 -23.3

IR

PHS-PHS 8.8 8.7 6.5 6.6 25.7 25.1 -5.5 -15.5 -18.9 -10.8 -15.0 1.4
PHS-KO 14.8 14.7 13.0 12.5 30.3 30.2 5.5 -9.6 -14.6 -6.0 -10.4 7.3
KE-PHS 21.1 21.0 18.0 18.6 34.9 34.8 15.5 9.6 -6.7 2.6 -3.8 15.1
KE-KO 25.7 26.3 24.2 24.8 39.9 39.6 18.9 14.6 6.7 9.3 2.8 21.2
KO-PHS 19.1 17.6 16.1 15.8 32.6 31.8 10.8 6.0 -2.6 -9.3 -7.2 11.9
KO-KO 22.4 22.2 21.6 21.0 37.3 37.2 15.0 10.4 3.8 -2.8 7.2 17.8

Table 3: Average performance in games between abstract strategies generated by Public Chance Sampled CFR. Results are
in milli-big-blinds/game (mbb/g) over a 10 million hand duplicate match with a 95% confidence interval of 1.1 mbb/g.

CFR CFR-BR
PR IR PR IR

PHS-PHS 288.942 358.188 89.632 94.841
PHS-KO 289.152 318.197 90.371 85.275
KE-PHS 281.63 339.872 90.720 80.557
KE-KO 282.856 282.395 84.039 64.820
KO-PHS 335.902 355.881 105.389 88.546
KO-KO 330.319 291.574 105.523 73.091

Table 4: Exploitability of CFR-BR and CFR strategies. Re-
sults are measured in milli-big-blinds/game and are exact.

Abstraction CFR-BR Exploitability
PR KE-KO 10-10-10-10 84.039

IR KE-KO 10-100-1000-10000 89.7975
IR KE-KO 169-9000-9000-9000 64.820

Table 5: Effect of redistributing buckets in an abstraction.

in return for many more buckets in earlier rounds, with-
out increasing the size of the game. In Table 5, we revisit
this decision and also consider an IR KE-KO 10-100-1,000-
10,000 abstraction. We find that the imperfect recall agent
is more exploitable than its perfect recall equivalent, while
the redistributed agent shows a significant decrease.

We can also measure the exploitability of CFR-BR strate-
gies as a response to abstraction size, to investigate if these
abstraction techniques improve at different rates. For this
experiment, we consider five sizes of four abstractions: PR-
PHS-PHS and IR-PHS-PHS, PR-KE-KO and IR-KE-KO.
The perfect recall abstractions branch to 5, 6, 8, 10 and
12 buckets on each round, and the imperfect recall abstrac-
tions have a lossless first round and 570, 1175, 3700, 9000
and 18630 buckets on later rounds.

The CFR-BR exploitability results for these abstractions
are presented in Figure 4 as a log-log plot. Comparing the
slope of each curve, we find that IR-KE-KO and PR-KE-KO
are steeper than PR-PHS-PHS and IR-PHS-PHS, indicating
that their advantage increases with the abstraction size. The
combination of abstraction techniques presented in this pa-
per, imperfect recall with redistribution and the KE and KO
techniques, is less exploitable at all tested abstraction sizes.
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Figure 4: Exploitability of CFR-BR strategies in four ab-
stractions as the abstraction size is varied.

6. DISCUSSION
Recent research towards state-space abstraction in the

poker domain has raised two issues: the effectiveness of
distribution-aware as compared to expectation-based ap-
proaches (as described by Gilpin and Sandholm [6]) and the
practical uses of imperfect recall (as described by Waugh et
al. [19]). The discovery that the exploitability of abstract
game Nash equilibrium strategies was not an accurate mea-
sure of an abstraction’s ability to represent a real Nash equi-
librium has left these issues unresolved. Our goal in these ex-
periments was to use the recently developed CFR-BR tech-
nique to survey these abstraction choices and evaluate them
more precisely.

Gilpin and Sandholm’s investigation showed that while
agents in expectation-based abstractions are more effec-
tive in small abstract games, the distribution-aware agents
match and surpass them as the number of buckets is in-
creased. Figure 4 shows that our experiment matches their
result: the steeper slope of the PR-KE-KO line as compared
to PR-PHS-PHS shows that the distribution-aware metric
makes better use of the available buckets as the abstrac-
tion size increases. In addition, the one-on-one crosstable
in Table 3 shows that the distribution-aware agents using
the k -means earth mover’s abstractions outperformed the
expectation-based agents.
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We now turn to imperfect recall. In one-on-one perfor-
mance, every imperfect recall agent, regardless of its ab-
straction features, outperformed every perfect recall agent.
In terms of exploitability, aside from IR-PHS-PHS, every
CFR-BR agent using imperfect recall except was found to
be less exploitable than its perfect recall equivalent. While
CFR-BR is not theoretically guaranteed to converge to a
least exploitable strategy in an imperfect recall game, our
results provide an upper bound: the least exploitable IR-
KE-KO strategy is exploitable for at most 64.820 mbb/g,
far less than the least exploitable perfect recall agent. While
Waugh et al. found that imperfect recall and additional fea-
tures provided a small advantage, we have shown a signifi-
cant improvement while using the same domain features.

Finally, the CFR and CFR-BR results presented in Ta-
ble 4 support Johanson et al.’s proposed use of CFR-BR
to evaluate strategies instead of measuring the exploitabil-
ity of abstract game Nash equilibria. The CFR results are
inconsistent, showing no clear advantage for perfect or im-
perfect recall, and ordering the agents differently than the
one-on-one crosstable. While there is no guarantee that the
one-on-one results and exploitability should agree, the CFR-
BR strategies are both far less exploitable in all cases, show
an advantage for imperfect recall, and rank the top three
agents in the same order as the one-on-one results. Using
CFR-BR to evaluate abstractions based on their ability to
approximate an unabstracted Nash equilibrium provides a
more consistent metric than the previous approaches.

7. CONCLUSION
Historically, state-space abstraction techniques in

extensive-form games have been evaluated by computing
optimal abstract strategies and comparing their one-on-one
performance and exploitability. A recently published
technique, CFR-BR, directly finds the abstract strategy
with the lowest real game exploitability, providing a more
consistent measure of an abstraction’s quality. Using this
technique, we evaluated two abstraction choices in the poker
domain: expectation-based as opposed to distribution-aware
distance metrics, and imperfect recall abstractions. Our
findings on distribution-aware techniques support those of
Gilpin and Sandholm: distribution-aware distance metrics
provide a clear advantage once the abstract game is large
enough. We also demonstrated a clear improvement in
one-on-one performance and exploitability through the use
of imperfect recall abstractions, and demonstrated that
imperfect recall abstractions can contain less exploitable
strategies than equal sized perfect recall strategies.
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