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ABSTRACT

This paper presents a novel formulation for the problem of
finding objects in a known environment while minimizing
the search cost. Our approach consists in formalizing this
class of problems as Stochastic Shortest Path (SSP) prob-
lems, a decision-theoretic framework for probabilistic envi-
ronments. The obtained problems are solved by using off-
the-shelf domain-independent probabilistic planners. The
advantages of this approach includes: (i) a well defined op-
timization problem in which the probability of finding the
object is maximized while minimizing the cost of searching
for the object; and (ii) being able to take advantage, without
any modifications to our model, of any (future) technique in
the field of domain-independent probabilistic planners, such
as better algorithms and better heuristics. We also con-
tribute by empirically comparing three probabilistic plan-
ners algorithms, namely FF-Replan, UCT and SSiPP, using
our proposed class of problems.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Plan execution, formation,
and generation

General Terms

Algorithms

Keywords

Planning, replanning, Stochastic Shortest Path Problems

1. INTRODUCTION
The problem of an autonomous agent moving in an en-

vironment to find objects while minimizing the search cost
is ubiquitous in the real world, e.g., a taxi driver looking
for passengers and minimizing the usage of gas, a software
agent finding information about a product in the web while
minimizing the bandwidth usage, a service robot bringing
objects to users minimizing distance traversed, and a robot
collecting rocks for experiments while minimizing its bat-
tery consumption. In all these problems, we assume that
the agent does not know where the exact objects are, and

has some probabilistic model of the location of the objects.
In this work, we present how to model this class of problems
as probabilistic planning problems.

For this paper, our concrete motivation is the mobile ser-
vice robot that moves in a building to find an object, e.g.,
coffee, and to deliver it to a location, e.g., office #171. We
assume that the agent is given a map of the environment
and that the object can be in more than one location. Also,
we consider that the probability of the object being at a
location type, e.g., offices, is given. Such prior distribution
can be designed by an expert or automatically obtained, for
example by querying the web (e.g., [16]). In this paper, we
focus on the problem of finding the object, since the delivery
problem can be cast as finding an object that is determinis-
tically present only in the delivery location.

Given the probabilistic nature of the finding object prob-
lems, one of the contributions of this work is the formulation
of the considered class of problems as Stochastic Shortest
Path problems (SSPs) [3]. Therefore, the objective function
of the obtained problems is to maximize the probability of
finding the object while minimizing the cost of searching for
the object in the environment.

We show how to encode the obtained SSPs in a stan-
dard probabilistic planning language, which allows any off-
the-shelf domain-independent probabilistic planners to solve
them. The advantages of this approach include: (i) the us-
age of a well understood optimization problem, namely the
SSPs; and (ii) being able to take advantage, without any
modifications to our model, of future improvements in the
field of domain-independent probabilistic planners, such as
better algorithms and better heuristics. We also contribute
by empirically comparing three probabilistic planners algo-
rithms, namely FF-Replan [20], UCT [11] and SSiPP [17],
using our proposed class of problems for different object
prior distributions.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews the related work. Section 3 formally defines
SSPs. Section 4 presents our model for finding an object
in the environment. Section 5 reviews domain-independent
probabilistic planning algorithms and Section 6 empirically
evaluates them using our modeled problems. Section 7 con-
cludes the paper.

2. RELATED WORK
The problem of finding an object using a camera is ex-

plored by [1]. Their approach consists in decoupling the
route planning problem from the object finding problem and
the latter is modeled as an MDP over the belief space. In
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their proposed model for object finding, a state is a belief
over the relational descriptions for the object location in the
current location, e.g., “book on table in living room”. Due
to the intractability of belief space MDPs, they use greedy
search over a finite horizon to find an object search strategy.

Mapping objects while moving through a known environ-
ment is the task considered by [18]. They assume a de-
terministic motion model for the robot and a probabilistic
model for the object sensors, in which the object being de-
tected depends on the robot location. Sampling over a fixed
action horizon is employed to find a path that minimizes the
traveled distance and an expected loss over false positive and
false negative detections of objects.

A different approach for finding objects in an environment
is given by [12]. Their approach does not assume a prior dis-
tribution for the location of the desired object and this prior
is inferred using data extracted from the web about the co-
occurrence between the desired object and objects which the
prior is known. A deterministic motion model is assumed
and the proposed objective function is the expected length
of the plan to reach the object, where the expectation is over
the a posteriori probability of finding the object given the
known objects observed so far. Breadth-first search with ad-
ditional constraints to avoid undesired paths, e.g., traverse
each location at most twice, over a finite horizon is applied
to solve the obtained problems.

Another approach that uses the web to obtain the proba-
bility distribution of an object being in a given location type
is ObjectEval [16]. ObjectEval also computes a sequence of
locations to be visited in order to find the desired object.
This is done by maximizing an ad hoc utility function based
on the probability of finding the object, the distance trav-
elled, the cost to obtain the object and the feedback about
the object, i.e., if the object is known to (not) be in an spe-
cific location. Beam search is used for finding an exploration
route. Therefore ObjectEval is not complete, i.e., it might
fail to find the object before all locations are explored.

Our work differs from all the above approaches by con-
sidering the route planning problem and the object finding
problem as a single probabilistic planning problem. Because
of this unified formulation, we don’t need to assume a deter-
ministic motion model and we can use domain-independent
probabilistic planners to compute a policy that maximizes
the probability of finding the object while minimizing the
cost of searching for the object. Moreover, if an optimal
(complete) probabilistic planner is used, then our approach
is optimal (complete).

3. STOCHASTIC SHORTEST PATH PROB-

LEMS
A Stochastic Shortest Path Problem (SSP) [3] is defined as

the tuple S = 〈S, s0,G,A, P, C〉. An SSP describes a control
problem where S is the finite set of states of the system,
s0 ∈ S is the initial state and G ⊆ S is the set of (absorving)
goal states. Actions a ∈ A control transitions from one
state s to another state s′ and these transitions happen with
probability P (s′|s, a). When a state s′ is reached after action
a is applied on state s, the agent pays the cost C(s, a, s′) ∈
(0,+∞). An example of SSP is depicted in Figure 1.

Markov Decision Processes (MDPs) [14] and SSPs are sim-
ilar models and they differ in their horizon, i.e., how many
actions the agent is allowed to execute. While MDPs have
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Figure 1: Example of an SSP. The initial state is s0,
the goal set G = {s3} and C(s, a, s′) = 1 ∀s ∈ S, a ∈
A, s′ ∈ S. This SSP can be represented as a factored
SSP with two binary state variables, x and y, such
that the state 〈x, y〉 equals the state si for i = x+ 2y.

either a finite or infinite horizon, SSPs have an indefinite
horizon, that is, the agent is allowed to perform as many
actions as needed in order reach a goal state sG ∈ G. There-
fore, if a goal state is reachable from every state s ∈ S for an
SSP S, then a finite and unknown number of action will be
applied until a goal state is reached in S. Since the length of
this action sequence is finite, the total action cost accumu-
lated is also finite. Both finite and infinite horizon MDPs
can be represented as SSPs [2].

A solution for an SSP is a policy π, i.e., a mapping from
S to A. An optimal policy π∗ for an SSP is any policy
that always reaches a goal state when followed from s0 and
also minimizes the expected accumulated cost to do so. The
optimal expected cost to reach a goal state from a state s,
represented by V ∗(s), is the unique solution to the fixed
point equations defined by (1) for all s ∈ S. Once V ∗ is
known, any optimal policy π∗ can be extracted from V ∗ by
substituting the operator min by argmin in equation (1).

V (s) =







0, if s ∈ G

min
a∈A

∑

s′∈S

P (s′|s, a)
[

C(s, a, s′) + V (s′)
]

, otherwise

(1)
The enumerative specification of S can be burdensome

for large problems, specially the encoding of P (·|·, a) as a
matrix S × S for each action a. To compactly represent
S, we can use state variables, i.e., properties whose value
changes over the time [6]. In this factored representation,
a set F = {f1, · · · , fk} of states variables is given and Di is
the domain of fi ∈ F. The state space S is the cross product

×
|F|
i=1Di and a state s ∈ S is the tuple 〈v0, · · · , v|F|〉 where

vi ∈ Di. For example, the SSP in Figure 1 can be factored
using two binary state variables, x and y, such that state
〈x, y〉 equals the state si for i = x+ 2y. For the rest of this
paper, we assume the domain of each state variable f ∈ F

to be binary, thus |S| = 2|F|.
Another benefit of using state variables is a compact rep-

resentation of P (·|·, a) [6]. Consider action a0 of the SSP
depicted in Figure 1. The enumerative representation of
P (·|·, a0) is a 4-by-4 stochastic matrix, which is encoded with
4×3 = 12 numbers. For this example, a factored representa-
tion is P (〈x′, y′〉|〈x, y〉, a0) = P (x′|x, a0)×P (y′|y, a0) where
P (x′ = 1|x = 0, a0) = 0.25, P (x′ = 1|x = 1, a0) = 1 and
P (y′ = 1|y = 0, a0) = P (y′ = 1|y = 1, a0) = 1, which can be
encoded with only 4 numbers.

The Probabilistic Planning Domain Description Language
(PPDDL) [19] is a standard language to represent factored
SSPs that is used in the international probabilistic planning
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(:action a0
:effect (and (y) (prob 0.25 (x) 0.75 (not (x))))
)
(:action a1
:precondition (not (x))
:effect (x)
)

Figure 2: PPDDL code for the actions in the SSP
depicted in Figure 1. Note that only action a1 has a
precondition.

competitions (IPPC) [5, 7, 21]. PPDDL syntax is based on
LISP and an action a consists of a precondition, that is,
a formula over the state variables characterizing the states
in which a is applicable, and an effect. The effect describes
how the states variables change when a is applied. Any state
variable not explicitly modified by a remains unchanged af-
ter executing a (frame assumption). Figure 2 contains the
PPDDL representation of the actions a0 and a1 of the SSP
represented in Figure 1.

PPDDL also features predicates and action schemas. These
extensions use the concept of domain variables, i.e., class of
finite objects. A predicate is mapping from a value assign-
ment of one or more domain variables to a state variables.
For instance, we can model a graph G = 〈N,E〉 by us-
ing a domain variable called node in which its domain is N

and edges of the graph as the predicate edge(i, j) where i

and j are domain variables of the type node; in this case,
each possible instantiation of edge(i, j) represents one bi-
nary state variable. Therefore, if the planning problem de-
fines three objects of the type node, namely n1, n2, n3, then
six state variables are instantiated representing the edges
(n1, n2), (n1, n3), (n2, n1), . . . , (n3, n2). Similarly to predi-
cates, action schemas map value assignment of one or more
domain variables to an action.

4. USING SSPS TO FIND OBJECTS
In this section we present the PPDDL encoding for find-

ing an object in a building. For this encoding, we use one
domain variable, location, representing the locations the
agent is allowed to visit and the following predicates defined
over locations:

• connected(l1, l2): true when the agent can move from
location l1 to l2;

• at(l): to represent the agent’s current location;

• objAt(l): to denote that an instance of the object be-
ing search is at l;

• searched(l): to indicate that l has already being searched;

• and a set of predicates to denote the type of each loca-
tion, e.g., isOffice(l) for office locations and isKitchen(l)
for kitchens.

Also, we use the state variable hasObject to indicate that
the agent has the desired object.

For each location type t, we use the binary random vari-
able Xt to denote if the object is at the locations of type
t and we assume that a prior probability P̄ (Xt) is given.
Note that

∑

t
P̄ (Xt = true) is not required to sum up to

1. This feature is used for representing scenarios such as an
object that can be found deterministically in more than one
location type or an object that has a low probability to be

found in any location type. To simplify notation, we denote
P̄ (Xt = true) as pt for every location type t.

(:action Search
:parameters (?l - location)
:precondition (and (at ?l) (not (searched ?l)))
:effect (and

(searched ?l)
(when (isBathroom ?l) (prob 0.08 (objAt ?l)))
(when (isKitchen ?l) (prob 0.18 (objAt ?l)))
(when (isOffice ?l) (prob 0.02 (objAt ?l)))
(when (isPrinterR ?l) (prob 0.72 (objAt ?l))))

)

Figure 3: PPDDL code for the action Search(l). For
this action the prior used for the object being at a
location l is 8%, 18%, 2% and 72% if l is, respec-
tively, a bathroom, a kitchen, an office or a printer
room.

We model the object finding through a pair of action
schemas, Search and PickUp. The action Search(l), de-
picted in Figure 3, has the precondition that the agent is
at location l and l has not been searched before. Its effect
is searched(l), i.e., to mark l as searched, and, with prob-
ability pt, where t is the location type of l, the object is
found. With probability 1− pt, the object is not found at l.
Since searched(l) is true after the execution of Search(l),
the agent cannot search the same location l more than once.
This is enforced because (1− pt)

k → 0 as k → ∞ for pt > 0,
i.e., if the agent were allowed to search the same location
enough times it would always find the object there.

(:action PickUp
:parameters (?l - location)
:precondition (and (at ?l) (objAt ?l))
:effect (and

(not (objAt ?loc))
(hasObject))

)

Figure 4: PPDDL code for the action PickUp(l).

The action PickUp(l), depicted in Figure 4, represents the
agent obtaining the object at location l if the object is there.
This action can be easily extend to encompass more general
scenarios, e.g., a robotic agent with grippers that can fail
and the object might not be always obtained or a symbiotic
autonomous agent that might ask people for help to manip-
ulation the object [15]. Such extensions can be modeled by
converting PickUp(l) into a probabilistic action or a chain of
probabilistic actions.

We use the action schema Move to model the agent moving
in the map represented by the predicate connected(l1, l2).
The action Move(l1, l2) is probabilistic and with probability
p the agent moves from l1 to l2 and with probability 1 − p

the agent stays at l1. For all the examples and experiments
in the remaining of this paper we use p = 0.9.

Initially, the value of the state variable hasObject is false
and the goal of the agent is to reach any state in which
hasObject is true. For easy of presentation, we define the
cost of all actions to be 1, i.e., C(s, a, s′) = 1 ∀s ∈ S, a ∈ A,

s′ ∈ S. Therefore the average cost of reaching the goal equals
the average number of actions applied by the agent.

To illustrate our model, consider the map presented in
Figure 5.(a). In this map, the agent is at position 0 and
there are two hallways that can be explored: (i) the right
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Figure 5: (a) Example of map representing a building. The agent is initially at location 0. Gray cells represent
offices, the dark blue cell represents the kitchen and white cells represent the hallways. (b) Visualization
of the initial portion of the search space for the map on (a). Arrows depict actions: arrows with self-loop
represent the action Move, gray arrows represent either Search or PickUp. Due to the closed-world assumption,
any state variable not presented in (b) is considered false. State 〈at(4),searched(4),hasObj〉 is a goal state.

hallway of size k in which the last location is a kitchen;
and (ii) the left hallway with 2r offices. Notice that Figure
5.(a) represents only the map of the environment and not
the search space. A fraction of the search space is depicted
on Figure 5.(b).

In order to show the effects of each parameter in the solu-
tion of the problem, consider the policies πj , for j ∈ {0, . . . , r},
in which the agent explores the first j offices rows, then ex-
plores the kitchen and finally the remaining r−j offices row.
For all πj , the exploration stops once the object is found. For
instance, if poffice = 1, then the only policy that explores the
kitchen is π0 since no office is explored before the kitchen,
and all other policies stop exploring after the first office is
visited.

Figure 6 shows the average cost of following the policies
πj from the location 0 in map from Figure 5.(a). Each plot
of Figure 6 varies either k, r, pkitchen or poffice while fixing
the other parameters to k = 10, r = 10, pkitchen = 0.9,
poffice = 0.1. The top right plot shows that the average cost
of πj is exponential in r. This is due to the exponential effect
of the probability of not finding the object in a sequence of
i offices, i.e., (1− poffice)

i. Also, the optimal policy, i.e., the
lowest πj at any point of the plots, is either exploring the
kitchen first (π0) or all the offices first (πr) for this example.

5. PROBABILISTIC PLANNERS
One approach to solve SSPs is to directly find the V ∗ us-

ing dynamic programming to iteratively update the set of
equations (1). This approach, known as value iteration, is
optimal [3] and computes a closed policy, i.e., an universal
mapping function from every state in s ∈ S to the optimal
action π∗(s). Closed policies are extremely powerful as their
execution never “fails”, i.e., every probabilistic outcome of
the actions is taking into account, and the planner is never
re-invoked. Unfortunately the computation of closed poli-
cies is prohibitive in complexity as problems scale up. For
instance, in the example depicted in Figure 5, a closed policy
encompasses all the 22r+1 possible combination of explored
locations, what is infeasible for large values of r.

The efficiency of value iteration based probabilistic plan-
ners can be improved by combining asynchronous updates
and heuristic search (e.g., Labeled RTDP [4]). Although
these techniques allow planners to compute compact closed
policies, in the worst case these policies are still linear in the
size of the state space, which itself can be exponential in the
number of state variables or goals.

Another approach to solve SSPs is by replanning. Re-

planners do not invest the computational effort to generate
a closed policy, and instead, compute a partial policy, i.e., a
mapping from a subset of S to actions. Since a partial pol-
icy π does not address all the probabilistic possible reachable
states from s0, during its execution in the environment, a
state s in which π(s) is not defined can be reached. If and
when such state s is reached, the replanner is re-invoked to
compute a new partial policy starting from s.

A simple and powerful approach for replanning is deter-
minization, i.e., to relax the probabilistic problem into a
deterministic problem D and use a deterministic planner to
solve D. The winner of the first International Probabilis-
tic Planning Competition (IPPC) [21], FF-Replan [20], is
a replanner based on the all-outcomes determinization that
uses the deterministic planner FF [9] to solve D. The all-
outcomes determinization is obtained when A is replaced
by the set A′ = {s → s′|∃a ∈ A s.t. P (s′|s, a) > 0} of deter-
ministic actions. The drawback of determinizations is being
oblivious to the probability of each outcome of actions and
their correlation. To illustrate this drawback, consider the
example in Figure 5, for k = 5, r = 1000, pkitchen = 1.0
and poffice = 0.001, and its all-outcomes determinization D.
This deterministic problem D has two actions to represent
the probabilistic action Search: (i) a1 that always finds the
object in the current location; and (i) a2 that never finds
the object. Therefore the deterministic planner solves D

by moving the agent to the location 4 (Figure 5), i.e., the
closest location where the object can be found with positive
probability, and applying action a1 to deterministically find
the object. However, in the original problem, the object is
found in location 4 with probability 0.001 and if the object is
not there, this approach will visit all the other 2r− 1 offices
until the object is found. Notice that the optimal solution
in this case is to explore the kitchen first since the object is
found there with probability 1.

Sampling, another replanning approach, is employed by
the Upper Confidence bound for Trees (UCT) [11]. UCT is
an approximation of the t-look-ahead search [13] obtained by
using sparse sampling techniques. Formally, UCT iteratively
builds a policy tree by expanding the best node according
to a biased version of (1) to ensure that promising actions
are sampled more often. Notice that UCT, as t-look-ahead
search, builds a policy tree, i.e., a policy free of loop, since
the horizon of the problem is relaxed from indefinite to finite
of size t. While UCT does not require the parameter t,
it is governed by two other parameters: w the number of
samples per decision step and c the weight of the bias term
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Figure 6: Average cost of the policies πj in the map depicted in Figure 5.(a) for k = 10, r = 10, pkitchen = 0.9
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for choosing actions. UCT is the base of PROST [10], the
winner of IPPC 2011 [8].

An orthogonal direction from all other approaches men-
tioned so far is the short-sighted search employed by SSiPP
[17]. SSiPP consists in incrementally generating and solv-
ing subproblems of the original SSP. These subproblems,
known as (s, t)-short-sighted SSP, are SSPs in which: (i) ev-
ery state has positive probability of being reached from s

using at most t actions; and (ii) the states only reachable
using more than t action are approximated by an heuristic
that estimates their cost to reach a goal state. An off-the-
shelf optimal probabilistic planner is used for solving a given
(s, t)-short-sighted SSP and the obtained policy π̂ can be fol-
lowed from s for at least t actions without replanning. An
important difference between UCT (and t-look-ahead) and
SSiPP is that the former relaxes the original problem by
limiting its indefinite horizon to a fixed finite horizon while
SSiPP approximates the original problem by pruning the
state space without changing its horizon. Therefore, SSiPP
can perfectly represent loop of actions of size up to t, such
as the self-loop action Move. Alternatively, UCT only reason
about a fixed number of failures of the action Move, i.e., the
effect of staying in the same location with probability 0.1 is
considered to happen only a finite number of times in a row.

One advantage of UCT and SSiPP over FF-Replan is that
they do not over simplify the neighborhood of current state
in their search space. Therefore, there are values for the
parameters of UCT and SSiPP in which they can find better
solutions than FF-Replan while still being computationally
feasible. For instance, consider the example in Figure 5,
for the parameters k = 5, r = 1000, pkitchen = 1.0 and
poffice = 0.001, as before. For large values of w, at least
one sample of UCT will reach the kitchen and the policy of
exploring the kitchen first (π0) is selected. If t ≥ 7, SSiPP
returns π0 independently of the heuristic used.

6. EXPERIMENTS
We present five different experiments, each of them for a

different object over the same map. The objects considered
in the experiments are: coffee, cup, papers, pen and toner.

The prior distribution for the object location is obtained
using ObjectEval [16] and shown in Table 1. We consider
that the object is never in the hallways, i.e., phallway = 0.

Object
Location

Bathroom Kitchen Office Printer Room
coffee 0.08 0.72 0.18 0.02
cup 0.42 0.36 0.12 0.10
papers 0.00 0.13 0.70 0.17
pen 0.15 0.23 0.35 0.27
toner 0.05 0.02 0.06 0.87

Table 1: Prior probability obtained by ObjectEval
[16] for the object being in a given location type.
The mode of each prior is shown in bold.

For all the experiments, we consider the map depicted
in Figure 7. The graph representing this map contains 126
edges and 121 nodes, i.e., locations: 2 bathrooms, 2 kitchens,
59 offices, 1 printer room and 57 segments of hallway. Since
there is no location in which any of the considered objects
can be found with probability 1, then, with positive proba-
bility, the object might not be found after visiting all loca-
tions. This probability is approximately 5× 10−7, 6× 10−5,
9×10−32, 2×10−12 and 3×10−3 for coffee, cup, papers, pen
and toner, respectively. The simulations in which this low
probability event happens are ignored and rerun.

The planners considered in the experiments are FF-Replan,
UCT and SSiPP. For the latter two, we use the FF-heuristic
hff: for a given state s, hff(s) equals the number of ac-
tions in the plan returned by FF using s as initial state
and the all-outcomes determinization. For SSiPP, we use
Labeled RTDP as the underlying optimal probabilistic plan-
ner [4,17] and t ∈ {2, 4, 6, · · · , 20}. We consider 12 different
parametrizations for UCT obtained by using the bias param-
eter c ∈ {1, 2, 4, 8} and the number of samples per decision
w ∈ {10, 100, 1000}. The experiments are conducted in a
Linux machine with 4 cores running at 3.07GHz and plan-
ners have a 3Gb memory cut-off and 10 minutes cpu-time
cut-off.
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UCT w = 1000 SSiPP
l0 FF-Replan c = 2 c = 4 c = 8 t = 10 t = 12 t = 14 t = 16 t = 18 t = 20

c
o
ff
e
e

1 17.9 ±3 18.8 ±7 19.9 ±7 23.1 ±9 19.9 ±4 18.5 ±3 19.3 ±4 20.8 ±3 20.7 ±3 17.2 ±3
2 19.4 ±3 18.0 ±7 23.3 ±8 22.2 ±9 14.2 ±3 13.3 ±2 14.1 ±3 13.6 ±3 12.9 ±2 13.0 ±2
3 13.7 ±5 12.3 ±5 13.4 ±8 11.4 ±5 9.7 ±2 10.5 ±3 8.6 ±2 8.1 ±2 8.8 ±2 8.0 ±2
4 18.5 ±4 17.2 ±9 18.1 ±10 16.2 ±4 12.2 ±3 13.1 ±3 12.2 ±3 11.9 ±2 11.3 ±2 12.1 ±2
5 14.5 ±3 14.9 ±4 15.1 ±4 14.7 ±10 14.9 ±2 15.4 ±3 16.7 ±4 17.2 ±3 13.6 ±2 14.2 ±2
6 21.6 ±3 22.7 ±8 24.4 ±10 23.2 ±11 19.1 ±4 21.7 ±4 19.5 ±4 19.1 ±4 18.7 ±2 18.0 ±4
7 21.3 ±4 37.6 ±9 36.3 ±11 34.1 ±12 25.8 ±4 20.5 ±4 21.2 ±4 20.0 ±3 20.8 ±4 20.8 ±3
8 17.3 ±4 27.7 ±9 22.1 ±9 31.5 ±8 13.9 ±3 13.0 ±2 14.5 ±4 14.4 ±3 12.9 ±3 15.0 ±3
9 15.2 ±4 14.0 ±6 17.8 ±7 18.7 ±6 11.6 ±3 10.0 ±3 13.0 ±3 11.5 ±3 10.0 ±3 11.8 ±3
10 20.5 ±5 17.3 ±8 25.9 ±9 23.4 ±7 20.8 ±4 16.4 ±3 15.1 ±3 15.9 ±3 14.1 ±3 14.3 ±3

c
u
p

1 28.4 ±5 38.9 ±9 34.7 ±8 31.9 ±8 35.4 ±4 30.8 ±5 29.8 ±6 30.1 ±7 29.3 ±7 27.6 ±5
2 33.5 ±6 31.8 ±9 27.0 ±9 26.6 ±8 30.7 ±6 25.6 ±5 26.4 ±6 27.7 ±6 23.3 ±4 24.0 ±5
3 27.6 ±4 30.8 ±9 33.8 ±10 29.4 ±10 25.5 ±6 26.2 ±7 23.9 ±5 19.5 ±5 17.7 ±3 19.1 ±4
4 34.0 ±6 41.6 ±10 48.6 ±9 35.5 ±9 25.9 ±5 23.0 ±5 23.8 ±5 22.9 ±4 24.5 ±5 24.5 ±5
5 30.5 ±5 35.5 ±8 36.8 ±8 42.3 ±9 29.6 ±6 25.0 ±5 28.4 ±6 25.2 ±4 27.3 ±5 24.3 ±4
6 30.3 ±6 41.5 ±9 37.1 ±9 33.7 ±8 34.3 ±6 28.7 ±5 24.1 ±5 26.2 ±5 20.7 ±3 21.1 ±4
7 28.1 ±5 30.6 ±8 35.8 ±8 33.3 ±8 34.5 ±6 23.8 ±5 22.9 ±4 29.2 ±7 21.6 ±5 23.2 ±6
8 35.4 ±7 20.7 ±9 24.5 ±10 21.9 ±11 24.1 ±6 21.9 ±4 19.9 ±6 20.9 ±5 18.0 ±4 20.8 ±5
9 35.9 ±8 29.3 ±10 25.6 ±8 26.4 ±9 29.3 ±7 19.3 ±6 19.9 ±6 15.9 ±4 15.5 ±5 15.3 ±3
10 31.4 ±6 37.4 ±10 23.7 ±10 27.6 ±8 23.3 ±4 27.6 ±6 22.4 ±4 24.0 ±5 20.9 ±4 20.8 ±4

p
a
p
e
rs

1 3.3 ±1 3.2 ±1 3.9 ±1 3.9 ±2 3.2 ±0 3.6 ±1 3.2 ±0 3.8 ±1 3.3 ±0 3.6 ±1
2 3.7 ±1 3.7 ±1 3.1 ±1 4.4 ±1 4.0 ±1 3.7 ±1 4.2 ±1 3.5 ±1 3.8 ±1 3.4 ±1
3 4.4 ±1 4.9 ±1 4.4 ±1 4.8 ±1 3.7 ±1 3.5 ±1 3.8 ±1 3.8 ±1 3.5 ±1 3.6 ±1
4 4.4 ±1 4.3 ±1 4.7 ±1 4.9 ±3 3.6 ±1 3.7 ±1 3.5 ±1 3.5 ±1 3.6 ±1 3.7 ±1
5 3.5 ±1 3.4 ±1 3.9 ±1 3.3 ±1 3.7 ±1 3.9 ±1 3.4 ±1 3.9 ±1 3.5 ±1 3.4 ±1
6 3.6 ±1 3.7 ±1 3.9 ±1 3.8 ±1 3.5 ±1 3.5 ±1 3.9 ±1 3.6 ±1 3.4 ±1 3.6 ±1
7 5.9 ±1 6.4 ±1 6.2 ±1 6.0 ±1 6.0 ±1 6.1 ±1 6.0 ±1 5.8 ±1 6.2 ±1 5.8 ±1
8 4.7 ±1 3.9 ±1 3.5 ±1 3.8 ±1 4.4 ±1 3.5 ±1 3.9 ±1 3.6 ±1 3.6 ±1 3.7 ±1
9 4.8 ±1 3.5 ±1 3.7 ±1 4.0 ±1 4.0 ±1 3.5 ±1 3.9 ±1 3.8 ±1 3.8 ±1 3.8 ±1
10 3.4 ±0 3.3 ±1 4.1 ±2 3.5 ±1 3.2 ±1 3.3 ±0 3.5 ±1 3.4 ±1 3.7 ±1 3.5 ±1

p
e
n

1 9.4 ±2 9.1 ±3 8.7 ±3 9.3 ±4 9.0 ±2 10.2 ±2 8.7 ±2 8.5 ±2 9.1 ±2 8.4 ±1
2 8.8 ±2 8.9 ±4 9.0 ±2 8.7 ±3 9.8 ±2 9.2 ±2 9.8 ±2 8.5 ±1 8.9 ±2 8.9 ±2
3 8.5 ±1 10.8 ±3 10.8 ±3 12.0 ±3 9.5 ±2 8.2 ±2 9.5 ±2 8.9 ±2 8.7 ±2 7.8 ±1
4 8.2 ±2 9.6 ±3 10.4 ±3 9.1 ±3 9.2 ±2 8.3 ±2 9.0 ±2 8.7 ±3 9.0 ±2 8.5 ±2
5 8.7 ±2 9.6 ±3 8.6 ±2 9.7 ±5 9.6 ±1 9.9 ±2 8.8 ±2 9.0 ±2 9.4 ±2 9.1 ±2
6 11.1 ±3 11.0 ±3 11.7 ±2 10.8 ±3 11.0 ±2 10.7 ±1 10.6 ±2 10.0 ±2 10.1 ±2 10.0 ±2
7 10.9 ±2 11.7 ±3 11.9 ±3 11.4 ±4 11.4 ±2 11.1 ±2 11.2 ±2 11.3 ±2 11.2 ±2 11.5 ±2
8 10.7 ±2 10.4 ±3 10.9 ±2 10.5 ±3 10.1 ±2 11.8 ±2 8.6 ±2 10.8 ±2 10.4 ±2 10.2 ±2
9 11.3 ±2 10.4 ±3 10.6 ±3 10.9 ±4 10.2 ±2 10.9 ±2 10.8 ±2 10.9 ±2 10.0 ±2 10.9 ±2
10 9.7 ±2 9.3 ±2 9.9 ±2 9.7 ±2 9.4 ±2 9.8 ±2 9.5 ±2 9.6 ±2 9.9 ±2 9.5 ±2

to
n
e
r

1 54.1 ±9 43.2 ±10 41.9 ±11 41.3 ±11 42.8 ±7 29.5 ±7 27.2 ±5 37.9 ±7 27.1 ±6 27.9 ±6
2 56.8 ±9 41.9 ±10 45.7 ±12 40.3 ±11 41.5 ±5 19.0 ±5 18.3 ±5 18.7 ±5 18.5 ±6 18.3 ±6
3 50.1 ±9 56.6 ±12 55.3 ±11 53.1 ±13 38.5 ±5 33.1 ±6 25.3 ±6 22.4 ±4 23.4 ±9 21.2 ±5
4 61.3 ±9 59.3 ±10 58.0 ±12 42.2 ±11 30.2 ±9 20.7 ±6 20.5 ±6 19.1 ±7 21.3 ±7 19.3 ±7
5 39.3 ±6 38.9 ±10 31.5 ±10 36.5 ±12 30.2 ±7 31.8 ±8 23.9 ±5 23.2 ±6 25.0 ±7 23.6 ±7
6 53.3 ±6 37.5 ±11 29.8 ±7 23.1 ±6 18.6 ±6 19.6 ±4 19.0 ±5 18.9 ±6 18.4 ±4 18.6 ±6
7 45.5 ±7 26.4 ±10 20.7 ±8 21.2 ±7 18.3 ±5 17.9 ±5 18.0 ±6 18.4 ±7 17.6 ±7 17.9 ±5
8 33.9 ±8 21.5 ±10 19.8 ±12 18.7 ±9 23.4 ±10 19.7 ±9 18.8 ±6 16.7 ±8 16.2 ±8 17.1 ±7
9 36.8 ±8 29.9 ±10 25.9 ±10 23.6 ±9 18.5 ±8 17.6 ±6 18.8 ±7 18.3 ±9 16.6 ±6 16.2 ±5
10 54.5 ±8 31.5 ±9 29.5 ±7 27.6 ±10 27.8 ±6 25.1 ±6 23.0 ±6 24.1 ±7 22.6 ±7 22.1 ±6

Table 2: Average and 95% confidence interval of the number of actions applied to find the given object
starting at location l0 (Figure 7). The gray cells show the best performance for the given problem, i.e., the
combinations of objects and initial locations represented by each line of the table.
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Figure 7: Floor plant considered for the experi-
ments. The embedded graph represents the map
given to the planners. The initial location for the ex-
periments are represented by the numbers 1,. . . ,10.

The methodology for the experiments is as follows: each
planner solves the same problem, i.e., find a giving object
from a particular initial location, 100 times. Learning is not
allowed, that is, SSiPP and UCT cannot use the bounds
obtained in previous solutions of the same problem to im-
prove their performance. The average number of actions per-
formed in each problem is presented in Table 2. Due to space
limitations, we present only 3 parametrizations of UCT and
6 parametrizations of SSiPP. All the omitted parametriza-
tions perform consistently worst than the presented ones.

Overall, SSiPP performs better than the other planners in
55 problems out of 60 (approximately 92%) while the FF-
Replan and UCT are the best planner in 3 and 4 problems
respectively. Another clear trend is that as t increases for
SSiPP, the better is its performance. This is expected since
the behavior of SSiPP approaches the behavior of its under-
lying optimal planner, in this case LRTDP, as t increases.
However, this improvement in performance is obtained by in-
creasing the search space and consequently the running time
of SSiPP. This trade-off between performance and compu-
tational time is shown in Figure 8 where the run time of the
planners is presented.

Looking at specific objects and their priors, we can cate-
gorize the objects into: abundant, uniformly distributed and
rare. An example of abundant object in the experiments is
papers since its prior is 0.7 for office locations and offices
represent 48% of the locations. Thus, the probability of not
finding papers is the lowest between all the object consid-
ered: approximately 9×10−32. Therefore, finding objects of
this category is not a hard task and optimistic approaches,
such as FF-Replan, perform well. This effect is illustrated
by the results in third block of Table 2 in which the 95%
confidence interval of every planner considerably overlaps.
A similar phenomenon happens with uniformly distributed

objects, i.e., objects in which their prior is close to an uni-
form distribution, represented in the experiments by pen.

A more challenging problem is posed by rare objects, i.e.,
objects in which their prior probability is concentrated in
very few locations. In this experiment, coffee, cup and toner
can be seen as rare objects. As expected, FF-Replan per-
forms poorly for rare objects and extra reasoning is nec-
essary in order to efficiently explore the state space. For
instance, consider finding the object cup starting at posi-
tion 7. Both a kitchen and an office are 3 steps away from
position 7. In the all-outcomes determinization used by FF-
Replan, the planner will have access to a deterministic ac-
tion that always finds cup in the office and in the kitchen,
therefore FF-Replan will randomly break the tie between
exploring the kitchen and the neighboring office from posi-
tion 7. If the office is explored, then FF-Replan will explore
all the other offices in the hallway between positions 7 and 3
because they will be the closest locations not explored yet.
Since the prior for cup is 0.12 for offices, a better policy is to
explore the kitchen (prior 0.36) and then the two bathrooms
(prior 0.42) that are at distance 4 and 5 of the kitchen.

The improvement in performance over FF-Replan is re-
markable for the rare object toner, which its prior has mode
0.87 in one single location, the printer room. For these prob-
lems, both UCT and SSiPP present better performances
than FF-Replan and the average number of actions applied
by SSiPP, for t ≥ 14, is approximately half of the average
number of actions applied by FF-Replan.

7. CONCLUSION
In this paper, we presented how to solve the problem of

a software or robotic agent moving in a known environment
in order to find an object using domain-independent prob-
abilistic planners. This is done by modeling the problem
as a Stochastic Shortest Path problem (SSP) encoded in a
standard probabilistic planning language and using a off-
the-shelf probabilistic planner to solve it. The advantages
this approach are two folds: (i) the usage of SSPs defines
a well understood optimization problem in which the prob-
ability of finding the object is maximized while minimizing
the cost of searching for the object; and (ii) improvements in
the field of domain-independent probabilistic planners, such
as better algorithms and better heuristics, can be directed
employed in our model without modifications. Our approach
also contributes by providing a new series of real-world in-
spired probabilistic planning problems.

We empirically compared three different replanning tech-
niques to solve the proposed problems: determinizations
(FF-Replan), sampling (UCT) and short-sighted planning
(SSiPP). The experiments showed that the simpler and opti-
mistic approach used by FF-Replan suffices if the object can
be found in most locations with high probability or nearly
uniform across over all locations. Alternatively, if the prob-
ability of finding the object is concentrated in few locations,
then SSiPP outperforms the other approaches and, for some
parametrizations, SSiPP executes on average less than half
of the actions executed by FF-Replan to find the desired
object.

Interesting extensions to explore as future work include:
(i) develop an heuristic for choosing a suitable probabilistic
planner for solving the current problem; and (ii) improve the
prior of the given object by learning through the experiences
of the agent.
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Figure 8: Average run time for the planners to find the objects papers and toner in milliseconds (y-axis in
log-scale). Error bars omitted for clarity. The plot for the other objects follows a similar pattern, with SSiPP
for t = 12 always faster than UCT planners for w = 1000.
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Monte-Carlo Planning. In Proc. of the European Conf.
on Machine Learning (ECML), 2006.

[12] T. Kollar and N. Roy. Utilizing object-object and

object-scene context when planning to find things. In
Int. Conf. on Robotics and Automation (ICRA), 2009.

[13] J. Pearl. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley, Menlo
Park, California, 1985.

[14] M. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley &
Sons, Inc., 1994.

[15] S. Rosenthal, J. Biswas, and M. Veloso. An effective
personal mobile robot agent through symbiotic
human-robot interaction. In Proc. of the 9th Int. Conf.
on Autonomous Agents and Multiagent Systems, 2010.

[16] M. Samadi, T. Kollar, and M. Veloso. Using the Web
to Interactively Learn to Find Objects. In Proc. of the
26th Conf. on Artificial Intelligence (AAAI), Toronto,
Canada, 2012.

[17] F. W. Trevizan and M. M. Veloso. Short-sighted
stochastic shortest path problems. In Proc. of the 22th
Int. Conf. on Automated Planning and Scheduling
(ICAPS), 2012.

[18] J. Velez, G. Hemann, A. Huang, I. Posner, and N. Roy.
Planning to perceive: Exploiting mobility for robust
object detection. In Proc. of the 21st Int. Conf. on
Automated Planning and Scheduling (ICAPS), 2011.

[19] H. L. S. Yones and M. L. Littman. PPDDL 1.0: An
extension to PDDL for expressing planning domains
with probabilistic effects. Technical Report
CMU-CS-04-167, Carnegie Mellon University, 2004.

[20] S. Yoon, A. Fern, and R. Givan. FF-Replan: A
baseline for probabilistic planning. In Proc. of the 17th
Int. Conf. on Automated Planning and Scheduling
(ICAPS), 2007.

[21] H. Younes, M. Littman, D. Weissman, and J. Asmuth.
The first probabilistic track of the international
planning competition. Journal of Artificial Intelligence
Research, 24(1):851–887, 2005.

554




