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ABSTRACT
In order to create realistic simulations,virtual agents need to
learn about their environment through perception. To date,
most multi-agent simulation systems that implement some
form of perception have focused heavily on a single sense,
vision. In this paper we discuss a multi-sense perception
system for virtual agents situated in large scale open envi-
ronments. The perception system consists of modules (i.e.,
sensors) for visual, audible and olfactory senses. It also in-
cludes a perception combination module that combines data
received from the multiple sensors into useful knowledge.

Categories and Subject Descriptors
I.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Ar-
tificial Intelligence—Intelligent agents, Multiagent systems

Keywords
Virtual Agent Perception; Multi Agent Simulation

1. INTRODUCTION
A perception system that accurately models the human sen-
sory system is critical for simulating virtual agents evolving
in open environments (i.e., inaccessible, non-deterministic,
dynamic, continuous) [12]. Most Multi-Agent Based Simu-
lation Systems (MABS) have tackled the challenge of per-
ception by providing agents with global or complete local
environmental knowledge. Even though this approach is
straightforward and easy to implement, it is unfit to simulate
realistic scenarios. Until recently, very few realistic percep-
tion techniques have been proposed. To date, most MABS
that implement some form of perception have focused heav-
ily on a single sense, vision. Since the integration of other
senses such as smell or hearing is almost non-existent within
MABS, the combination of perception data has drawn very
limited attention.

In this paper, we present a perception combination al-
gorithm. The algorithm has been fully implemented and
is a core part of DIVAs, a multi agent systems framework.
We discuss multiple case study scenarios and analyze the
results of our perception combination. We also run exper-
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iments regarding combination execution time and evaluate
these results.
In the remainder of this paper, we discuss related works in
Section 2. In Section 3, we review background information
on DIVAs. In Section 4, we introduce some fundamental
concepts required for perception combination. In Section 5,
we discuss the Combination Algorithm. In Section 6 we
present our results. In Section 7, we provide some con-
cluding comments and outline possible future work in our
research area.

2. RELATED WORK

2.1 Perception Combination in MABS
In most multi-agent simulation systems, virtual agents are
provided with global knowledge of the environment [5, 2,
20, 1] and therefore do not require perception mechanisms.
Of the systems that implement virtual agent perception,
most regulate the agents by a single sense, vision. In [10],
Pelechano et al. present a vision algorithm utilizing a “rect-
angle of influence.” [13] details a vision algorithm involving
agent attention and eye movement. In [11], a vision algo-
rithm utilizing “view volumes” is explained. And in [18],
Oijin and Dignum propose an interesting perception frame-
work for BDI-agents using the vision sense. Unfortunately,
no algorithms or results have been published yet.

In addition to vision, some attempts have been made to
address auditory perception. In [11], Piza et al simulate
agent hearing using 3D noise propagation waves, and in [3],
Herrero and Antonio discuss an auditory perceptual model
based on human auditory concepts such as the “focus of per-
ception” and the “nimbus of projection.” The model is de-
tailed, but unfortunately, the implementation is rather un-
derdeveloped and cannot be used to assess the accuracy and
efficiency of the work. Finally, even though some work has
been published on auditory perception, olfactory perception
seems to have been neglected by researchers.

With respect to perception combination, only Piza et al.
[11] discuss combination of sensory data, and the proposed
solution consists of simply creating a union of the percep-
tions. In addition, no work on building a cohesive framework
to integrate multiple senses together has been discussed in
the literature.

In this paper we discuss a perception combination algo-
rithm for virtual agents evolving in an open environment.
Our agents are not provided with global knowledge but ac-
quire environmental knowledge through their perception mod-
ule which integrates various sensors. The sensor parameters
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can be configured individually for each agent and can be
modified at execution time. The perception combination
algorithm combines vision, auditory and olfactory sensory
data to produce knowledge.

2.2 Robotic Perception Combination:
There has been much work within the robotics community
on perception and robotic perception combination [9, 19,
14, 4, 15]. The overall approach has similarities to our re-
search. Within both robotic and virtual agent perception
combination, combination of sense information begins with
raw sensory data supplied by multiple sensors and utilizes
perception combination algorithms in order to combine this
raw data into useful knowledge. However, there are two key
differences in the objectives of our research and robotic per-
ception combination research: 1) robotic perception algo-
rithms are provided with real perceived data by the sensors
and the goal is to extract environmental information from
this data. Our virtual agent perception algorithms are pro-
vided with environmental information by the sensors and
the goal is to simulate perception. 2) Robotic perception
and perception combination algorithms are designed using
embedded processors with the goal to maximize accuracy
for use by the robot. Our algorithms, however, are designed
to maximize the efficiency of virtual software agents. Since
our work involves the simulation of thousands of software
agents in realtime, minimizing the execution time of per-
ception and perception combination algorithms is our main
goal. In robotic perception each processor has a one-to-one
relationship with its robotic agent, whereas in our research,
each processor has a one-to-thousands relationship with its
agents.

2.3 Human Perception Combination:
Any discussion of perception or perception combination has
background in biological beings. Schiffman [16] explains that
in humans, sensation refers to “certain immediate and di-
rect qualitative experiences - qualities or attributes such as
“hard”“warm”“red” and so on - produced by simple isolated
physical stimuli.” For agents, this would represent the raw
sensory data provided by each sensor. Schiffman explains
perception as “the psychological process whereby meaning,
past experiences, or memory and judgement are involved.”
This process closely resembles our perception module and
perception combination techniques which combine the indi-
vidual sensory data received by the sensors into meaningful
knowledge using memorized event knowledge available in the
agents knowledge base. The agent can make use of this new
knowledge while planning.

The next section gives a brief overview of DIVAs.

3. DIVAS OVERVIEW
DIVAs (Dynamic Information Visualization of Agent sys-
tems) is a large scale distributed multi-agent system frame-
work for the specification and execution of large scale dis-
tributed simulations where agents are situated in an open
environment. DIVAs is based upon two underlying concepts.
• In order to manage a large distributed environment

efficiently, it is necessary to partition the space into
smaller defined areas called cells.
• Each cell is assigned a special agent called a controller.

A cell controller is required to: 1) autonomously man-
age environmental information about its cell; and 2)

Figure 1: Conceptual View: DIVAs agent

Figure 2: Perception Module with combination

provide local virtual agents with information about
their surroundings.

In DIVAs, an agent consists of an interaction module, a
knowledge module, a task module, and a planning and control
module [8] (see Figure 1). The interaction module handles
an agent’s interaction with external entities and separates
agent-environment interaction from agent-to-agent interac-
tion. An agent communicates with other agents through
the agent communication module. It receives environmen-
tal data from the cell controllers through the environment
perception module. The environmental data includes agent
states, object states as well as external event information.
The processing of agent states, object states and simple
events is addressed in [17]. In this paper we discuss external
multi-sensory events and their perception by agents.

As shown in Figure 2, an agent perception module uses
various perception sensors. The event data given to the
agent includes information about the event as well as sen-
sor interfaces. For example, an explosion includes audible,
visible, olfactory, and tactile interfaces, whereas a siren only
includes an audible interface. Once a sensor receives event
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Figure 3: Perception Combination Data

data, it determines whether the information is perceivable by
examining the interfaces. Using the agent current state, the
sensor executes a specialized algorithm to determine what is
perceived by the agent. For example, if a perception mod-
ule receives an explosion message from the environment, it
passes this information onto the various sensors. The vision
sensor determines that the explosion implements the visi-
ble interface and therefore is a visible event. It extracts the
event location and uses the agent’s location, field of view
and visible range to determine what is seen by the agent.
The same applies to the other sensors. More information on
the perception module and its use for single-sensory events
is available in [17, 7].

The perception combination algorithm presented in this
paper uses the raw sensory data produced by the vision,
auditory and olfactory sensors. Before discussing the algo-
rithm, we present some fundamental concepts.

4. SENSE COMBINATION CONCEPTS

4.1 Variable Definitions
Perception combination begins with the raw sensory data re-
ceived from the various sensors. The data is combined and
then converted into perceived events. Raw sensory data,
combination data and perceived events all share some com-
mon variables:

1. The Name (N ) of the event. (e.g., bomb)
2. The Sense (S) of the event. (e.g., vision)
3. The Type (Y) of the event. (e.g., fire)
4. The Intensity (I) of the event. This represents the

power of the event when received by the sensor.
5. The Origin point (O) of the event.
6. The Direction (D) of the event. It is important to note

that the vision sensor provides both O and D for an

Sample Event Knowledge

N Y S m− m+

Bomb Flash Vision 40 200
Fire Vision 20 40

Boom Auditory 50 160
Smoke Olfactory 20 100

Firework Flash Vision 20 80
Colors Vision 40 100
Boom Auditory 40 120
Smoke Olfactory 5 40

Grilling Food Grill Vision 0 0
Sizzle Auditory 5 20
Smoke Olfactory 3 45

Drums Drum Vision 0 0
Boom Auditory 10 105

Spotlight Flash Vision 20 80

Figure 4: Sample event knowledge in agent KB.

event, whereas auditory and olfactory sensors provide
only D.

7. The Minimum (m−) expected I of the event/data.
8. The Maximum (m+) expected I of the event/data.
9. The Certainty Percent (CP) of the event. This rep-

resents the degree of certainty of the agent percep-
tion. (e.g., an agent’s vision sensor reports seeing a
fire: S = V ision, Y = Fire, I = 30, O = (2, 2, 2) and
CP = 100).

4.2 Agent Event Knowledge Base
In order to successfully combine perception data, agents
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need to make use of event knowledge stored in their Event
Knowledge Base (EKB). EKB includes the following data
N , Y, S, m− and m+. Using the sample EKB given in
Figure 4, an event will be perceived as a bomb with a high
CP if the agent sees a flash with intensity between 40 and
200, sees a fire with intensity between 20 and 40, hears a
boom with intensity between 50 and 160 and smells smoke
with intensity between 20 and 100. Each agent has its own
EKB which is either populated by the simulation user or up-
dated by the agent during the simulation. This knowledge
may be incorrect, incomplete or non-existent. In addition,
each agent assigns a Trust Constant (ξ) to each of its sen-
sors. The trust constant allows the perception combination
algorithm to place a higher value on data provided by sen-
sors that the agent trusts more. Since each agent can have
different knowledge about their environment, the results of
perception combination can be completely different between
agents.

5. PERCEPTION COMBINATION

5.1 Combination Algorithm Overview

Algorithm 5.1: Perception Combination(L1 : ρList)

X ← EventEnumerator(L1)
(E2, L2)← SingleSenseHypothesisGenerator(L1)
L3 ← HypothesisCombiner(E2, L2)
L4 ← CombinationSelector(L3, X)
KnowledgeBase← L4

The perception combination algorithm starts when raw sen-
sory data is received from the sensors. Based on the sen-
sory data direction and origin, the algorithm first determines
whether the data is related to one or more events. This is
achieved by executing the EventEnumerator. In the ex-
ample given in Figure 3, smoke and boom have the same
direction. Therefore, the EventEnumerator deduces that
it is very likely that the two perceptions are related to the
same event.

Following this step, the agent’s Event Knowledge Base
(EKB) is queried to determine the likelihood that a single
raw sensory data is related to a known event. For example,
in Figure 3, (olfactory,smoke, I = 30), is matched against
the agent EKB given in Figure 4. This identifies the known
events that could be related to the raw sensory data and
creates single sense hypotheses: a bomb with CP of 23.3, a
grill with CP of 27.4 or a firework with CP of 26.1. This step
is implemented by the SingleSenseHypothesisGenerator
and is executed on all raw sensory data.

In the next step, the single sense hypotheses related to
the same event are grouped, and the total CP for that event
is computed. This is referred to as combined knowledge. For
example, in Figure 3, hypotheses (bomb,smoke, CP = 23.3)
and (bomb,boom, CP = 52.8) related to bomb are grouped,
and the total CP for bomb (CP=76.1) is computed. The list
of combined knowledge for all possible events is sorted in
decreasing order using the total CP . This step is executed
by the HypothesisCombiner.

Finally, based on the EventEnumerator’s output value,
the top events from the ordered list are selected and be-
come the agent’s perceived events. In Figure 3, since the

EventEnumerator determined that the perceived raw sen-
sory data are likely to be related to one event, the first event
in the list is selected. In this case the agent’s perceived event
is a firework. This information is stored in the agent’s En-
vironment State Knowledge Base and used for planning and
decision making. The perception combination algorithm is
shown in Algorithm 5.1.

Algorithm 5.2: Step 1 Procedures

procedure Event Enumerator(L1 : ρList)
if L1.size > 0
then diff.add(L1[0])

for i = 0 to L1.size

new ← true
for j = 0 to diff.size{
if SourceComparison(L1[i], diff [j]))
then new ← false

if new = true
then diff.add(L1[i])

r ← diff.size
return (r)

procedure SourceComparison(o1 : ρ, o2 : ρ)
if HasOrigin(o1) and HasOrigin(o2)

then

if o1.origin ≈ o2.origin
then return ( true )
else return ( false )

else if HasDirection(o1) and HasDirection(o2)

then

if o1.direction ≈ o2.direction
then return ( true )
else return ( false )

else if HasDirection(o1) and HasOrigin(o2)

then

if o1.direction ≈ GetDirection(o2.origin)
then return ( true )
else return ( false )

else if HasOrigin(o1) and HasDirection(o2)

then

if GetDirection(o1.origin) ≈ o2.direction
then return ( true )
else return ( false )

else return ( false )

5.2 Perception Data
As mentioned earlier, the perception combination algorithm
uses four types of data: Raw Sensory Data (ρ), Single Sense
Hypothesizes (η), Combined Knowledge (σ) and Perceived
Events (F) (see Figure 3).
• Raw Sensory Data (ρ): This is the perception data

provided directly by each sensor. Since this is concrete
data, we assign CP to 100. Each raw sensory data ρ
contains: S, Y, I, CP and either O or D depending on
the sensor that sensed it.
• Single Sense Hypothesis (η): This is a hypothesis

that a particular known event may be related to a raw
sensory data. Each η contains: N , Y, CP and either
O or D.
• Combined Knowledge (σ): This is the knowledge

resulting from the grouping of Single Sense Hypothe-
sizes. Each σ contains: N , CP and either O or D.
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• Perceived Event (F): This corresponds to the event
that an agent perceived as a result of the perception
combination algorithm. Each F contains: N , CP and
either O or D.

Algorithm 5.3: Step 2 Procedures

procedure SingleSenseHypothesisGenerator(
L1 : ρList)
for each ρ ∈ L1

do



EK ← EKB.getEventKnowledgeByType(ρ)
for each e ∈ EK

do



if e.S = ρ.S and if e.Y = ρ.Y
then

α← (m− +m+)/2
< ← |m− −m+|
ε← </2
v ← ρ.I
if |α− v| ≥ <
then

{
CP ← 0

if |α− v| ≥ ε
then

{
CP ← 70− (|α− v| − ε)/ε · 70

if |α− v| < ε
then

{
CP ← 100− |α− v|/ε · 30

if CP > 0

then



CP ← CP · ρ.ξ
η.CP ← CP
η.N ← e.N
η.Y ← e.Y
η.O ← ρ.O
η.D ← ρ.D
r ← KB.getEvent(η.N )
r.O ← η.O
r.D ← η.D
if r /∈ E2

then
{
E2.add(r)

L2.add(η)
return(E2, L2)

In the next section, we discuss the perception combination
algorithm in further detail.

5.3 Perception Combination in Detail
Step 1 - The Event Enumerator takes a list of raw sensory
data (ρ) and returns an integer, the estimated number of
events that occurred. It uses the ρ’s origin or direction to
determine the proximity of the sensed data. Events that
are in “close proximity” (e.g., less than three units apart)
are considered to come from the same event. The Event
Enumerator is shown in Algorithm 5.2.
Step 2 - The Single Sense Hypothesis Generator takes a
list of ρ and returns a list of single sense hypotheses (η). It
uses the agent’s Event Knowledge Base (EKB) to individu-
ally associate each ρ with the known event (e) most likely to
have caused that sensation. In order to create such hypoth-
esizes, the Single Sense Hypothesis Generator matches the
raw sensory data’s ρ.Y and ρ.S with known events’ e.Y and
e.S. If there is a match between (ρ.Y,ρ.S) and (e.Y,e.S),
it calculates the CP using a six segment linear distribution
defined by the average α, range < and extents ε. If CP is not
zero, a new η is created and added to L2. Next, an empty

record (r) of the event associated with η is added to E2. Af-
ter all raw data is processed, L2 and E2 are returned. The
algorithm for Single Sense Hypothesis Generator is shown
in Algorithm 5.3. The Single Sense Hypothesis Generator
worst case runtime is O(M ·n) time, where M is the number
of events in the EKB and n is the number of ρ in L1.

Algorithm 5.4: Step 3 Procedures

procedure HypothesisCombiner(E2 : rList, L2 : ηList)
for each r ∈ E2

do



CP ← 0
i← 0
EK ← r.getEventKnowledgeByName()
maxEvents← EK.size()
for each ek ∈ EK

do



for each η ∈ L2

do



if r.N = η.N and if ek.Y = η.Y
and if SourceComparison(r, η)
thenCP ← CP + η.CP
i← i+ 1
BREAK

if i < maxEvents
then

{
CP ← CP · i/maxEvents

σ.N ← r.N
σ.O ← r.O
σ.D ← r.D
σ.CP ← CP
L3.add(σ)

return(L3)

Step 3 - The Hypothesis Combiner takes lists L2 and E2

produced by the Single Sense Hypothesis Generator and re-
turns a list L3 of Combined Knowledge (σ). For each r in
E2, it finds all the hypotheses η that have the same name
(N ) and type (Y) as r’s. If these η are within a “close prox-
imity” of each other, they are combined to create a new σ.
This new σ is then added to L3. L3 is sorted by CP in
decreasing order. The algorithm for Hypothesis Combiner
is shown in Algorithm 5.4. Since event knowledge is con-
stant in size, the Hypothesis Combiner worst case runtime
is O(E ·n) time, where E is the number of events in E2 and
n is the number of η in L2.

Algorithm 5.5: Step 4 Procedures

procedure CombinationSelector(L3 : σList,X : int)
for 1 to X

do



σ ← L3.getGreatest()
F .N ← σ.N
F .O ← σ.O
F .D ← σ.D
F .CP ← σ.CP
L4.add(F )

return(L4)

Step 4 - The Combination Selector takes the list L3 pro-
duced by the Hypothesis Combiner and X produced by the
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Example Event Properties

N Y I S
Bomb Flash 90 Vision

Fire 30 Vision
Boom 95 Auditory
Smoke 50 Olfactory

Firework Flash 40 Vision
Colors 50 Vision
Boom 50 Auditory
Smoke 20 Olfactory

Drums Drums - Vision
Boom 25 Auditory

Grilling Food Grill - Vision
Sizzle 12 Auditory
Smoke 8 Olfactory

SpotLight Flash 50 Vision

Figure 5: Sample event properties in simulation.

Event Enumerator and returns a list L4 of perceived events
(F). It extracts the X combined knowledge records from L3

with the highest CP and creates X new F . The list L4 of
these perceived events is then passed onto the agent’s En-
vironment State Knowledge Base for use in planning and
decision making. The algorithm for Combination Selector is
given in Algorithm 5.5.

This concludes the discussion of the DIVAs perception
combination algorithm. The next section discusses our ex-
perimental results.

6. RESULTS
In this section we first discuss the execution of our com-
bination algorithm on various test case scenarios, then we
present algorithm execution time results.

6.1 Test Case Scenario Results
For testing combination results, we have implemented five
basic environment events: bombs, fireworks, grills, drums
and spotlights. For each event, we have assigned the prop-
erties given in Figure 5. We notice that the events have very
similar raw sensory data. For example, bombs, fireworks and
drums all generate loud boom sounds.

We populate the agent’s event knowledge base with the
information shown earlier in Figure 4. The agent’s trust
constant values are set for each sensor as follows: Vision
= .95, Auditory = .7 and Smell = .3. We chose these values
since people usually tend to rely mostly on their vision.

In the remainder of this section, we present four scenar-
ios. More test case scenarios and results are available in
[6]. For each scenario, we first describe the event; then we
explain how we expect the algorithm to perform; next we ex-
ecute the scenario in DIVAs and present a simulated virtual
agent’s output. More precisely, we show the output pro-
duced by the Hypothesis Combiner and the Combination
Selector. Finally we give a brief analysis of the results.
Scenario 1
Event: A spotlight, drums and grilling food events are trig-
gered at different locations near an agent.
Expected Agent Reaction: The agent will perceive the follow-

Scenario 1

N CP
Step 3 Grilling Food 186.7428

Drums 150.6315
Spotlight 95.0000
Bomb 17.5156
Firework 16.6250
Firework 7.6562
Bomb 6.6819
Firework 5.6357
Bomb 3.6750

Step 4 Grilling Food 186.7428
Drums 150.6315
Spotlight 95.0000

Figure 6: Step 3-4 Results for Scenario 1

Scenario 2

N CP
Step 3 Grilling Food 186.7428

Drums 150.6315
Spotlight 95.0000
Firework 89.7508
Bomb 83.6173

Step 4 Grilling Food 186.7428

Figure 7: Step 3-4 Results for Scenario 2

ing raw sensory data: a flash, a boom, sizzle and smoke. The
three source locations are different. The perception combi-
nation system should able to correctly determine that there
are three distinct events and assign them appropriately.
Actual Agent Reaction: The Event Enumerator detected
three events. The full results from the Hypothesis Com-
biner and the Combination Selector are given in Figure 6.
The agent correctly sensed all three events.
Analysis: Perception combination can be used to success-
fully determine what events occurred in scenarios with mul-
tiple events. One can also notice that the perception combi-
nation module considered the possibility that all three events
could be bombs.
Scenario 2
Event: A spotlight, drums and grilling food events are trig-
gered at the same location in front of the agent.
Expected Agent Reaction: The agent perceives raw sensory
data similar to Scenario 1. Due to the close event proxim-
ity, the perception combination system should not be able
to correctly determine that there were three distinct events.
It will only detect one event.
Actual Agent Reaction: The Event Enumerator detected one
event. The full results from the Hypothesis Combiner and
the Combination Selector are given in Figure 7. Grilling
food was the most likely result.
Analysis: When many events occur at the same location,
the perception combination module may not be able to cor-
rectly determine the exact number of events that occurred.
In such cases the perception combination algorithm selects
the most likely events. It is also important to notice that
in comparison with Scenario 1, the likelihood of a bomb or
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Scenario 3

N CP
Step 3 Bomb 184.1207

Spotlight 44.3333
Drums 26.7105
Firework 15.5312

Step 4 Bomb 184.1207

Figure 8: Step 3-4 Results for Scenario 3

Scenario 4

N CP
Step 3 Bomb 15.1136

Drums 11.6052
Firework 9.1875

Step 4 Bomb 15.1136

Figure 9: Step 3-4 Results for Scenario 4

firework exploding is far higher due to the close proximity
of the raw sensory data.
Scenario 3
Event: In an attempt to try to trick an agent,we trigger an
explosion, except the bomb produces no smoke.
Expected Agent Reaction: The agent will perceive a flash,
fire and a boom, but no smoke. The final result should not
change with just the lack of smoke.
Actual Agent Reaction: The Event Enumerator detected one
event. The full results from the Hypothesis Combiner and
the Combination Selector are given in Figure 8. The agent
detected a bomb.
Analysis: For comparison purposes, the CP of the final com-
bination of a normal bomb is 273.24. The lack of smoke low-
ered CP a bomb exploded, but the perception combination
module was still highly certain that an explosion occurred
based on the rest of the raw sensory data.
Scenario 4
Event: A large bookcase crashes over behind an agent. This
event is not in the agent’s event knowledge base. Assume a
bookcase crash event has a boom sound with intensity 100.
Expected Agent Reaction: The agent will perceive a very
loud boom. It should process all events that could generate
a loud boom and choose the most likely.
Actual Agent Reaction: The Event Enumerator detected one
event. The full results from Step 3-4 are in Figure 9. The
agent decided the most likely event was a bomb, but CP was
very low.
Analysis: Due to the lack of event knowledge a bookcase
crashing over, the agent was unable to determine what oc-
curred. It incorrectly predicted that a bomb exploded, but
assigned a low CP , since the hypothesis that a bomb ex-
ploded was based only on the auditory sense.

6.2 Algorithm Execution Time Results
All of the following tests were executed on a single system

using only a single core of an Intel i7 X980 CPU (3.33GHz).

6.2.1 Scalability in Number of Agents
We tested the effects of agent perception combination on

Figure 10: Scalability Results Graph for four events.

Figure 11: Scalability Results Graph for one agent.

the execution time of a simulation with a varying number
of agents. For this test set, each agent receives exactly four
events. The no-combination case receives four events that
are simply passed onto the Environment State Knowledge
Base, whereas the combination case must combine the four
events. Full results are shown in Figure 10. The result-
time is in milliseconds. The results clearly show that for
a small number of events (four in this case), combination
adds almost no time to non-combination agent perception
calculations. In addition, as the number of agents combin-
ing events was increased, the time required for all agents
to perceive and combine perception data was sub-linear. A
single system could comfortably simulate the perception and
combination of well over 1000 agents in simulated realtime.
Using the DIVAs simulation system’s decentralized struc-
ture, these results support that perception combination is
feasible in very large scale simulations involving 10,000s or
even 100,000s of agents.

6.2.2 Scalability in Number of Events - One Agent
We tested the effects of agent perception combination on
the time it takes for a single agent to execute. For this
set of tests, the number of agents (one) is held constant.
Full results are shown in Figure 11. The result-time is in
milliseconds. Up to 100 simultaneous events combined, the
algorithm performs extremely well. These results, are very
promising, since in our testing there are frequently less than
30 simultaneous events occurring in the same perceivable
area at the same time.

6.2.3 Scalability in Number of Events - 100 Agents
We tested the effects of agent perception combination on
the time it takes 100 agents to execute. Full results are
shown in Figure 12. The result-time is in milliseconds. One
agent requires 6ms in order to do perception combination
on 20 events. 100 agents only requires 42ms in order to do
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Figure 12: Scalability Results Graph for 100 agents.

perception combination on 20 events. Similar to the above
tests, these results are very promising for large scale multi-
agent based simulations.

7. CONCLUSION
In this paper we discussed Virtual Agent perception combi-
nation in large scale multi-agent based simulation systems.
We provided results displaying the performance of our per-
ception combination system in multiple scenarios and also
showed that the algorithm maintains good execution time
even with large numbers of agents. While we only pre-
sented results based on the vision, hearing and smell senses,
our perception combination algorithm can make use of any
number of senses. Future work includes implementing fur-
ther optimizations of our perception combination system.
We would also like to implement features that would allow
agents to rely more on highly trusted senses.

Combination of virtual agent perceptions remains a new
area of research, with great potential for new ideas. We plan
to continue to validate our combination algorithm on new
scenarios and improve upon our results.
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