
Optimal Internet Auctions with Costly Communication

Yuqian Li
Department of Computer Science

Duke University
Durham, NC 27708, USA
yuqian@cs.duke.edu

Vincent Conitzer
Department of Computer Science

Duke University
Durham, NC 27708, USA
conitzer@cs.duke.edu

ABSTRACT

Iterative auctions can reach an outcome before all bidders have re-
vealed all their preference information. This can decrease costs as-
sociated with communication, deliberation, and loss of privacy. We
propose an explicit cost model that is inspired by single-item Inter-
net auctions, such as those taking place on auction sites (eBay) or
via informal communication (craigslist, mailing lists). A nonzero
bid comes at a cost to both the seller and the bidder, and the seller
can send broadcast queries at a cost. Under this model, we study
auctions that maximize the seller’s profit (revenue minus seller cost).
We consider multi-round Vickrey auctions (MVAs), in which the
seller runs multiple Vickrey auctions, with decreasing reserve prices.
We prove that restricting attention to this class is without loss of
optimality, show how to compute an optimal MVA, and compare
experimentally to some other natural MVAs. Among our findings
are that (1) the expected total cost is bounded by a constant for ar-
bitrarily many bidders, and (2) the optimal MVA and profit remain
the same as long as the total bid cost is fixed, regardless of which
portion of it belongs to the seller and which to the buyer.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multi-agent systems; J.4 [Social and Behavioral Sciences]: Eco-
nomics

General Terms

Algorithms, Economics, Theory

Keywords

Auctions, mechanism design, communication costs

1. INTRODUCTION
Auctions constitute a favored method for allocating scarce re-

sources in multiagent systems. However, communication require-
ments can pose a bottleneck. Motivated by the revelation prin-
ciple, much of the theory of mechanism design considers direct-
revelation mechanisms, in which each agent declares its entire val-
uation function to the auctioneer. The corresponding overhead, not
only in terms of communication per se but also in terms of the agent

having to completely determine its valuation function, can be pro-
hibitive. All of this is well understood (for further discussion, see,
e.g., [2]), and a significant amount of research has been devoted to
the design of iterative auction mechanisms (e.g., [10]) and (roughly
equivalently) auctions with explicit elicitation of agents’ valuations
(e.g., [11]). Such auctions aim to avoid unnecessary communica-
tion. For example, in a Vickrey auction, if it is known that bidders
1 and 2 have valuations above $100 and bidder 3 has one below
$100, then there is no need to query bidder 3 any further.

How do we evaluate how effective a particular iterative auction
mechanism is in reducing communication? Perhaps the simplest
measure is the number of bits communicated (see, e.g., [9]). Within
a particular query model, it may also make sense to minimize the
total number of queries (see, e.g., [5]). However, in this paper, we
argue that such existing models fail to capture important aspects of
the cost of communication in certain types of Internet auctions. In
particular, in such auctions often the most costly communication
that takes place is the first time that a bidder gives a positive re-
sponse, indicating having a nonzero value for an item. This can be
the case for several reasons. One possibility is that the auction web-
site at this point may insist that the bidder provides payment (say,
credit card) information or places money in escrow. Otherwise, a
malicious user may steer the auction in a particular direction and
in the end refuse to pay. Alternatively, in other settings (such as
an item having been posted for sale on craigslist or a similar list),
at this point the bidder may wish to set up an appointment with
the seller to check the item. In both cases, these actions come at
costs for both the potential buyer and the seller, in terms of effort,
time, loss of privacy, and so on. While participation costs have been
studied before in auctions [14, 15], a distinguishing feature of our
model is that a bidder can observe the proceedings of the auction
at no cost, until the bidder decides to actively participate by indi-
cating a nonzero valuation and thereby changing the course of the
auction. This appears to us to be a more natural model of Internet
(or other highly anonymous) auctions of the type discussed above.

The rest of this paper is organized as follows. In Section 2, we
provide a formal model of communication cost motivated by the
observations just discussed. In Section 3, we study the special case
in which efficient allocation is a constraint and bidders experience
no cost from bidding. The characterization of the optimal mech-
anism in this special case turns out to be closely related to earlier
work on finding an optimal agent by iteratively relaxing the param-
eters of the search [13] (see the more detailed discussion at the end
of Section 3.3). In Section 4, we drop the assumptions of efficiency
and no bidder cost for communication. In both cases, the optimal
auctions are proved to be multi-round Vickrey auctions (MVAs),
which were previously studied in [6]. In that paper, there are no
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explicit communication costs, but going through multiple rounds is
costly for the agents because they discount the future.

2. COST MODEL AND SETTINGS
In this section, we formally define our cost model and explain its

motivation.

DEFINITION 1 (SETTING). One seller is selling one item to

n buyers (bidders) whose valuations vi (1 ≤ i ≤ n) are inde-

pendently and identically distributed (i.i.d.) over [0, 1) with PDF

f(x) and CDF F (x) which are assumed to have no gaps (F (x)
is strictly increasing everywhere). The seller can broadcast a mes-

sage to all bidders, at cost b to the seller. A bidder can reply to

that broadcast, or remain silent. If a bidder replies (does not stay

silent), this comes at a cost β1 to the seller and a cost β2 to that

bidder, for a total cost of c = β1 + β2.

Two key aspects of this model are that (1) staying silent comes
at no cost and (2) replying comes at a positive cost, and this posi-

tive cost is the same no matter how complex the query and answer

are. This is motivated by the settings discussed in the introduction,
where a bidder can observe the process of the auction (or messages
posted on a board) silently at no cost, but once the bidder acts in
the auction, costs occur—e.g., the bidder has to submit credit card
information, the bidder and the seller have to arrange an in-person
meeting, etc.). A key aspect of such costs is that they tend to be
the same regardless of the level of detail in the bidder’s answer: for
example, if the bidder just reports having a valuation greater than
$10 without specifying what it is exactly (rather than reporting a
valuation of exactly $14), this is not likely to reduce any of the
above costs. In particular, the seller is likely to want to verify the
bidder’s authenticity at any point where the bidder’s reply affects
the course of the auction from then on. This leads to the following
easy proposition:

PROPOSITION 1. In the model defined in 1, without loss of op-

timality, we can restrict our attention to (broadcast) queries that

result in each bidder either staying silent, or immediately revealing

his exact valuation to the seller.

Another notable point is that we restrict communication from
the seller to broadcast queries. This is a common restriction: any
sealed-bid auction can be considered a broadcast auction with only
one broadcast: the reserve price. The bisection auction [4] is an
example auction with many rounds of broadcasts. In each round, it
broadcasts a price and asks bidders to reply whether their valuation
is above or below that price. Besides the broadcast model being
simple, natural, and common in existing auction mechanisms, it is
also naturally motivated in the Internet domains we consider: the
bidders are entirely anonymous until their first reply, so before this
point querying such bidders individually is not feasible and they
can only be reached by, say, posting on a public website; and after
they have replied, we will know their valuation exactly (by Propo-
sition 1) and we no longer need to query them. Of course, there are
offline cases where the set of bidders is small and explicit (e.g., the
government wants to sell land or spectrum to one of three known
companies); in such settings, it can indeed be helpful for the seller
to communicate with bidders individually [7, 12]. Such settings
do not fit our model; we explicitly focus on highly anonymous set-
tings, and the costs that the seller incurs from the broadcast query
correspond to the time, effort, and third-party charges associated
with posting a public message.

DEFINITION 2 (NO BLIND ALLOCATION). An item cannot be

awarded to a bidder who has remained silent to all queries.

DEFINITION 3. A mechanism in our setting consists of (1) a

full contingency plan for which query to broadcast at each point,

depending on answers given so far, and a termination condition;

and (2) an allocation and pricing rule that is defined on each ter-

minal state, satisfying no blind allocation. A mechanism is indi-
vidually rational if losing bidders never pay and winning bidders

never pay more than their valuations. We say an individually ratio-

nal mechanism is optimal if it has a Bayes-Nash equilibrium for the

bidders that maximizes the seller’s profit (among all Bayes-Nash

equilibria of all individually rational auction mechanisms). Here,

seller profit is revenue minus seller’s costs. A class of mechanisms

is optimal if it contains at least one optimal mechanism.

3. OPTIMAL MECHANISMS WITH EFFI-

CIENCY AND ONLY SELLER’S COST
In this section, we make two simplifying assumptions: (1) we re-

strict attention to mechanisms that allocate the item efficiently and
(2) we assume that the bidder cost for replying (β2) is zero.

1 For ex-
ample, someone who is moving and selling furniture on craigslist
is likely to have 0 valuation for the item and cannot commit to
withhold the item or prevent re-sale between bidders. Under such
circumstances, efficient mechanisms not only maximizes the so-
cial welfare but also maximizes the seller’s revenue [1] (though
this does not consider communication costs). In Section 4 we drop
these assumptions.

The rest of this section is organized as follows. First, we intro-
duce a class of mechanisms called multi-round Vickrey auctions
(MVA). Then, we prove that we can restrict attention to MVAs
without loss of optimality. After that, we find the specific MVA
that is optimal. Finally, we experimentally compare this optimal
MVA to some other natural mechanisms.

3.1 Multi-round Vickrey Auctions
In an MVA, the seller runs a Vickrey auction with a reserve price;

if nobody bids (above the reserve price), the seller runs another
Vickrey auction with a lower reserve price, etc., until the item is
sold. (In Section 4, we will also consider MVAs that can terminate
without having sold the item.) For example, consider a sequence of
eBay auctions (with proxy bidding) in which the seller is repeatedly
lowering the reserve price.

DEFINITION 4 (MULTI-ROUND VICKREY AUCTION (MVA)).
AnMVA is defined by a sequence of reserve prices r1, r2, . . . (which
may be finite or infinite) where ri > ri+1. In round i, a Vickrey

auction with reserve price ri is run (if the item has not been sold).

In an MVA, if a bidder decides to bid (above the reserve price), it
is optimal to bid truthfully since doing so is dominant in a Vickrey
auction. However, a bidder may choose strategically to stay silent
even with a valuation above the reserve price, in the belief that no-
body else will bid this round so that the price will decrease in the
next round. Thus, in our (symmetric) setting, Bayes-Nash Equilib-
ria (BNE) for MVAs can be described by a sequence of thresholds
a1, a2, . . . where ai > ai+1; in round i, a bidder bids if and only if
his valuation is at least ai.

We will be interested in the following question: given desired
thresholds ai, which reserve prices ri result in these thresholds?
Then, by the revelation principle, we can convert this to a mecha-
nism in which we query agents whether their valuations are above
ai and it is optimal for them to respond truthfully.

1Note that if (2) does not hold, then allocating efficiently may not
be possible without the seller compensating the bidders for their
bid costs.
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LEMMA 1. Consider a symmetric strategy profile in an MVA

where in the ith round, valuation ai is the threshold for bidding (so

that bidders with lower valuations stay silent and those with higher

valuations bid). Then this constitutes a Bayes-Nash equilibrium if:

P (ai)(ai − ri) =

∫ ai

ai+1

(ai − x)p(x)dx+ P (ai+1)(ai − ri+1)

(1)

(where P (x) := F (x)n−1 and p(x) := P ′(x) =
(n − 1)F (x)n−2f(x)) when i is not the last round, and either

ai = ri when i is the last round or limi→∞ ai = limi→∞ ri.

PROOF. Consider a bidder with valuation ai; we first show that
in round i, such a bidder is indifferent between bidding and staying
silent if the condition holds. If i is the last round, clearly he is
indifferent between bidding and not iff ai = ri. We now consider
the case where i is not the last round. If another bidder bids in round
i, that bidder will bid at least ai, and our bidder will have zero
utility. Therefore, the left-hand side of (1) represents the expected
utility to our bidder for bidding now. Corresponding to the right-
hand side, if our bidder stays silent, and there is a next round and
our bidder bids in that next round, then he will win in that round,
either with another bidder bidding (first term) or not (second term).

If we now consider a bidder with valuation above ai, a similar
analysis shows that this bidder strictly prefers bidding in round i
to waiting one more round; inductively, he will prefer it to waiting
any number k > 0 more rounds; and he will also prefer this to
never bidding because either aj = rj when j is the last round or
limj→∞ aj = limj→∞ rj . Finally, let us consider a bidder whose
valuation lies below all the ai. Because either aj = rj when j is
the last round or limj→∞ aj = limj→∞ rj , this bidder is best off
never bidding.

For a mechanism that allocates efficiently, we either have rk =
ak = 0 for some k, or limi→∞ ri = 0.

THEOREM 1. Given a decreasing sequence of ai ∈ [0, 1) that
ends at or converges to 0, let

ri =

(
∫ ai

0

x p(x)dx

)

/P (ai) (if ai > 0) (2)

and ri = 0 if ai = 0. The corresponding MVA has a pure strat-

egy Bayes-Nash equilibrium characterized by bidding thresholds

a1, a2, . . ..

PROOF. We show that the conditions of Lemma 1 hold. If i is
the last round, then ai = 0 = ri. Also,

lim
i→∞

ri ≤ lim
i→∞

(∫ ai

0

ai p(x)dx

)

/P (ai) = lim
i→∞

ai = 0

If i is not the last round, by (2) we have riP (ai) =
∫ ai

0
x p(x)dx

for all i (this clearly also holds if ai = 0). Thus the right-hand side
of Equation (1) is:

∫ ai

ai+1

aip(x)dx−

∫ ai

ai+1

x p(x)dx+ P (ai+1)(ai − ri+1)

= aiP (ai)−
✘
✘
✘

✘✘

aiP (ai+1)− riP (ai) +✭
✭
✭
✭
✭✭

ri+1P (ai+1)

+
✘
✘
✘
✘✘P (ai+1)ai −✭

✭
✭
✭
✭✭

P (ai+1)ri+1

which equals to left-hand side.

This tells us that a bidder will bid in a round of an MVA if and
only if the expected second-highest bid conditional on this bidder’s

valuation being the highest is greater than the reserve price of that
round. For example, if the distribution is uniform, ri =

n−1
n

ai.
A similar analysis to the one in this subsection appears in [6]. In

that paper, the seller is unable to commit to, when no bid exceeds
the reserve price, not put the item up for sale again in the next
round at a lower reserve price, but because of discounting some of
the value of the item is destroyed in this case. However, that paper
does not consider communication costs, and so we diverge from
that work in what follows.

3.2 Optimality of MVAs
Since the mechanism is required to be efficient and bidders’ com-

munications costs (β2) are zero, any mechanism that gives utility
zero to an agent with valuation zero results in the same revenue for
the seller, by the revenue equivalence theorem [8].2 Hence, maxi-
mizing profit is equivalent to minimizing the seller’s query costs.

By the revelation principle, we can restrict our attention to mech-
anisms in which agents always answer truthfully in equilibrium.3

By Proposition 1, we can assume that an agent reveals his entire
valuation when not staying silent. By the efficiency constraint, the
mechanism must at least discover a bidder with the highest valua-
tion. This optimization problem corresponds to Definition 5.

DEFINITION 5. A (direct-revelation) query is given by a subset
Q ⊆ [0, 1), such that if the agent’s valuation is in Q, he replies

with his exact valuation, and otherwise stays silent. A strategy for

asking queries can be represented by a function

S
(

f,m, V,Q = {Q1, Q2, . . . , Qi−1}
)

= Qi

which means: suppose that the set of queries asked previously isQ,

the set of values already reported is V , and there arem bidders left

who have not responded (whose valuations were drawn i.i.d. from

f ); then the strategy S will next ask Qi. We will use Qi = ∅ as

shorthand for terminating the algorithm. Cf,n(S) is the expected
cost of strategy S, and we wish to find C∗

f,n = infS Cf,n(S).

To find out the optimal query strategy, we first show that the
minimum cost is independent of the PDF f(x).

LEMMA 2. Consider the uniform PDF fu(x) = 1 and letC∗

n =
C∗

fu,n. For any other PDF f(x), we have C∗

f,n = C∗

n.

PROOF. For any strategy Sfu for the uniform distribution, we
can transform it into a strategy Sf for the distribution with PDF f
by querying at the equivalent percentiles. Specifically,

Sf

(

f,m, V,Q
)

= F−1
(

Sfu

(

fu,m, F (V ), F (Q)
)

)

The performance of Sf on f is the same as that of Sfu on fu.
Therefore, C∗

f,n ≤ C∗

fu,n. Conversely and similarly, for any strat-
egy Sf for PDF f , we can transform it into a strategy Sfu for uni-
form PDF fu. Specifically,

Sfu

(

fu, m, V,Q
)

= F
(

Sf

(

f,m,F−1(V ), F−1(Q)
)

)

Thus, C∗

fu,n ≤ C∗

f,n. Hence, we have C∗

f,n = C∗

fu,n = C∗

n.
Figure 1 illustrates those two constructions we used for this proof.

We next prove that descending query strategies, in which all bid-
ders are asked whether their valuations are above ai for a decreas-
ing sequence of ai, are optimal. (For a descending query strategy,
as soon as we get a positive reply, we are done, so the contingency
plan does not need to branch.)

2Moreover, by individual rationality we cannot give an agent with
valuation zero less than zero utility; we could give such an agent
more than zero utility (as in redistribution mechanisms), but this
would only hurt revenue.
3For example, for MVAs, we can directly query the agents whether
their valuations are above ai while still charging according to ri.
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Q

Sf

f, m

F-1(Q)

(a) Construct Sf from Sfu

Sf

f, m

Q F(Q)

(b) Constructing Sfu from Sf .

Figure 1: These two figures illustrate how to construct a strat-

egy for an arbitrary PDF f from one for the uniform distribu-

tion fu, and vice versa. Here, we depict a strategy as a box that

takes four inputs f,m, V,Q (PDF, number of unknown values,

reported values set, and set of asked queries) and returns Q
(the next query).

LEMMA 3. Every optimal strategy uses only descending queries
Q1 = [a1, 1), Q2 = [a2, a1), Q3 = [a3, a2) . . . (with the pos-

sible exception of strategies that differ only on a measure zero set

and are therefore equivalent to a descending-query strategy with

probability 1).

PROOF. Let us assume, for the sake of contradiction, that there
exists an optimal strategy that uses a non-descending query (mean-
ing, one that differs from a descending query on a non-measure-
zero set). In that strategy S, there must be a first non-descending
query Qi+1 = S

(

F,m,V,Q = {Q1, Q2, . . . , Qi}
)

Consider
an alternative descending query Q′

i+1 = [a′

i+1, ai) (presumably
a0 = 1) such that |Q′

i+1|f = |Qi+1|f where for any query Q,
|Q|f denotes the probability under f of the region queried by Q.

Because Q1 to Qi are all descending, we have m = n and V =
∅ (otherwise an optimal strategy should terminate without asking
Qi+1). Let C be the expected cost of using S from this point on
(starting with Qi+1), and let C′ be the expected cost of of using
Q′

i+1 and querying optimally after that. We have
C = b+

∑n
j=0 pj(j · c+Lj) and C

′ = b+
∑n

j=0 p
′

j(j · c+L′

j)

where pj (or p′j) is the probability that there are j reported values
withinQi+1 (orQ

′

i+1), and Lj (or L
′

j ) is the expected cost of later
queries given that j values have been found in Qi+1 (orQ′

i+1).
Because |Q′

i+1|f = |Qi+1|f , we have p′j = pj for all j. We
have Ln = L′

n = 0. By Lemma 2, L0 = L′

0 = C∗

n because
if we know that no value lies in Q1, Q2, . . . , Qi+1, the remaining
problem is equivalent to that with the revised PDF

fi+1(x) =

{

λf(x), x /∈ Q1 ∪Q2 ∪ . . . ∪Qi+1

0, x ∈ Q1 ∪Q2 ∪ . . . ∪Qi+1

where λ is a constant that makes
∫ 1

0
fi+1(x)dx = 1. Finally, since

Q′

i+1 is a descending query, for all 0 < j < n, L′

j = 0 but
Lj > 0 (because for these values of j, it is possible that all reported
values inQi+1 lie below some value that has not been queried yet).
Moreover, there exists some j with 0 < j < n and pj > 0 unless
(1) the probability of each agent’s reply to Qi+1 is 1—but in this
case it differs only on a measure zero set from the descending query
that asks for all the remaining values, contradicting our assumption;
(2) the probability of each agent’s reply to Qi+1 is 0—but such a
measure zero query is clearly suboptimal; or (3) n = 1—but in this
case any query that differs by more than a measure zero set from the
query that asks for all the remaining values is clearly suboptimal.
Hence, C′ < C, contradicting our initial assumption.

It follows that:

THEOREM 2. Among mechanisms that are required to allocate

efficiently, Multi-round Vickrey Auctions (MVAs) have minimum cost.

PROOF. By Lemma 3, we can restrict our attention to mecha-
nisms with descending query strategiesQ1 = [a1, 1), Q2 = [a2, a1),
Q3 = [a3, a2) . . .. For any such mechanism, Theorem 2 tells
us how to find reserve prices r1, r2, . . . such that the correspond-
ing MVA has a Bayes-Nash equilibrium that is equivalent to this
descending-query mechanism.

By the revenue equivalence theorem, we obtain

COROLLARY 1. If the bidders have no cost for bidding (β2 =
0), MVAs that minimize cost for the seller are optimal among mech-

anisms that allocate efficiently.

3.3 MVAs with Minimum Cost
The above analysis still leaves open what the optimal parameters

(thresholds ai, or equivalently, reserve prices ri) of the optimal
MVA are for a given setting f, n, b, c (valuation PDF, number of
bidders, broadcast cost, bid cost). According to Lemma 2, the cost
does not depend on f and it suffices to restrict our attention to the
uniform distribution. Let ρ = b/c (for cases where c > 0).

DEFINITION 6. Given f , we define theα-MVA to be the MVA in

which, the expected number of nonsilent bids in each round (condi-

tional on having reached that round) is (1−α)n. In the case where
f is uniform, the α-MVA is characterized by ai = αi.

PROPOSITION 2. For the purpose of minimizing total cost when
β2 = 0 under the constraint of efficient allocation: If c = 0, the
Vickrey auction (the 0-MVA) is optimal. If ρ = b = 0, the Dutch
auction (which is approximated by the (1 − ǫ)-MVA) is optimal.

Otherwise, it is optimal to use an α-MVA where α satisfies

αn−1(ρ+ (1− α)n) − (1− αn) = 0 (3)

PROOF. If c = 0, the Vickrey auction has cost b, which is op-
timal. If ρ = b = 0, the expected total cost of the Dutch auction
is c (since with probability 1 only one agent will reply), which is
optimal. For the remaining case, we first argue that there must be
some α-MVA that is optimal. By Lemma 2, we can assume f is
uniform. By Theorem 2, some MVA must be optimal. For this
MVA, consider a1. If a1 = 0, this is the 0-MVA. If a1 > 0, then
if at least one bidder is above a1, we finish after the first query;
otherwise, the resulting conditional distribution for each bidder is
f |[0,a1). According to Lemma 2, we can rescale this conditional
distribution to the uniform distribution over [0, 1) to arrive back
at our original problem; and an optimal mechanism for that is the
same MVA that starts with query a1 (which translates to a2

1 with-
out rescaling). Repeated application of this reasoning results in the
α-MVA with α = a1.

All that remains to show is the characterization of this α. If Cα

is the expected overall cost for the α-MVA, then we have Cα =

b + (1 − α)nc + αnCα, or equivalently Cα = b+(1−α)nc
1−αn . If we

optimize this with respect to α, we must either have

∂Cα

∂α
=

αn−1 n (b+ (1− α) nc)

(1− αn)2
−

nc

1− αn
= 0

m

αn−1(ρ+ (1− α)n)− (1− αn) = 0

or have α at a boundary value (0 or 1). However, α = 1 (or ap-
proaching 1) is clearly suboptimal unless b = 0, a case that we have
already covered; α = 0 can be ruled out as ∂Cα

∂α
|α=0 < 0.

By Proposition 2, the optimal α can be computed instantly using
any numerical solver. This result is analogous to a result by Sarne
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Figure 2: Comparisons for the optimal α and its approximations. The first approximation is α = 1 − 1/n, the second is α =

(−W (e−1−ρ))−1/n. (c = 0.1, b = ρc. Recall that ρ = b/c for cases where c > 0.)

et al. [13]; translating4 their result into our setting also gives a proof
that α-MVAs are optimal among MVAs and also characterizes the
optimal value of α. However, they do not provide a proof that
MVAs are optimal among all mechanisms; their setup implicitly
restricts attention to MVAs (when translated to our setting).

3.4 Approximating the Optimal α
As we are not able to obtain a closed form for the optimal α from

Equation (3), we here give some formulas to approximate it.

THEOREM 3. Setting α = 1− 1/n results in a 1/(1− e−1) ≈
1.582 approximation of the cost of the optimal α-MVA. Also, the

total expected cost of this mechanism is at most (b+ c)/(1− e−1)
(and hence constant in the number of agents).

PROOF. We have Cα=1−1/n = (b+ c)/(1− (1− 1/n)n). Be-

cause (1−1/n)n ≤ e−1, we haveCα=1−1/n ≤ (b+c)/(1−e−1).
On the other hand, any mechanism requires at least one broadcast
and one bid to terminate and hence C∗

n ≥ b+ c.

We now present a different approximation whose expected cost
is guaranteed to converge to the optimal one as n grows. The proof
(in the full paper online) is omitted due to the space constraint.

THEOREM 4. Let W denote the lower branch of Lambert W

function defined byW (x)eW (x) = x. Letα = (−W (e−1−ρ))−1/n.

Then limn→∞ C∗

n = limn→∞ Cα=(−W (e−1−ρ))−1/n

3.5 Experiments
Without loss of generality, all our experiments concern the uni-

form distribution of valuations over [0, 1). The experiments in Fig-
ure 2 compare the MVAs with (1) the optimal α (solved numeri-
cally), (2) the approximation α = 1− 1/n, and (3) the approxima-

tion α = (−W (e−1−ρ))−1/n, all for c = 1 and ρ = b = 0.2, 1, 5.
Both approximations perform well for ρ = 1, but the second per-
forms much better for other values.

We now compare the α-MVA (with the optimal α calculated
numerically) to some other MVAs, each of which uses at most k
rounds. An advantage of such MVAs is that they can be used when
there is a hard deadline (such as in a moving sale). They are:

• uniform k-MVA: the uniform k-MVA has its k thresholds at
0, 1/k, 2/k, . . . , (k − 1)/k, and the optimal uniform MVA

4A detail that needs to be accounted for is that Sarne et al. motivate
their model as performing increasingly broad searches for an opti-
mal agent and thereby focus on increasing threshold search to find
a minimum, rather than decreasing queries to find a maximum.
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Figure 3: Comparing the expected costs of differentMVAs over

the number of bidders n. (b = 0.2, c = 0.1)

corresponds to the optimal k (computed by brute force search).
(Compare the fixed-step search strategy in [13, 3].)

• optimal k-MVA: the optimal MVA using at most k rounds.
(These are computed using techniques that we will discuss
in Section 4.3.)

• α-cutoff-k-MVA: proceeds as the α-MVA, except its kth (and
final) query is at 0.

The results of our experiments are shown in Figure 3.

• The optimal uniform-MVA’s cost is very close to that of the
optimal α-MVA, especially when n is large. This makes
sense because when n grows large, the optimal α approaches
1, so the first few queries of the optimal α-MVA are at similar
distances from each other.

• The optimal k-MVA’s cost decreases and approaches the op-
timal cost quickly as k grows.

• When k is fixed to a small value, the uniform k-MVA has
significant higher cost than both the optimal k-MVA and the
α-cutoff-k-MVA.

• The α-cutoff-3-MVA works well (close to optimal 3-MVA).

4. THE GENERAL CASE
In this section, we drop the constraints that (1) the mechanism

must allocate efficiently and (2) bidders have no cost for bidding
(β2 = 0), and prove that MVAs are optimal even without these
constraints (i.e., in the fully general model). We also study methods
for finding the specific optimal MVA, though we do not manage to
obtain a characterization that is as elegant as in the restricted case.
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An interesting effect of β2 > 0 is that it gives bidders an incen-
tive not to bid when they expect many others to bid, because if they
do not win they still pay β2 for bidding. (Also, we note that their
probability of winning with a fixed value is exponentially small in
the number of bidders, so that even small bidding costs, such as the
effort needed to send an e-mail, can be significant.) This effect is
rather opposite to the effect observed in earlier parts of this paper
that bidders are less inclined to wait for later rounds when there are
many bidders.

4.1 Spending Equivalence Theorem
Another effect of β2 > 0 is that the revenue equivalence theo-

rem (straightforwardly interpreted) is no longer applicable, because
this theorem assumes that the utility is equal to valuation minus
payment, which is no longer true because cost also plays a role.
Intuitively, we can fold this cost into the payment to make the theo-
rem applicable again, though we have to keep in mind that this cost
does not benefit the seller, unlike (true) payments. This is how we
proceed.

THEOREM 5 (SPENDING EQUIVALENCE). The bidders’ total

spending (expected payment + bidding costs) is completely deter-

mined by (1) the expected utility of lowest-type bidders and (2) the

allocation probability function

p : (v1, v2, . . . , vn) → (p1, p2, . . . , pn)

where pi is the probability that bidder i will get the item.

PROOF. Any mechanism in our domain (with bidding costs) can
also be used in a domain without costs, letting the seller collect
the bidding costs (as well as the payments) instead. The bidders’
incentives will be identical in this mechanism, and so the result
follows from applying the standard revenue equivalence theorem
to these transformed mechanisms.

This greatly simplifies our profit maximization problem:

COROLLARY 2. To maximize profit for a fixed allocation rule

p : (v1, v2, . . . , vn) → (p1, p2, . . . , pn), it suffices to minimize

total cost (including both seller’s cost and bidders’ cost).

PROOF. The seller’s profit is revenue − seller’s cost =
(bidders’ spending − bidders’ cost)− seller’s cost = bidders’
spending−total cost, and bidders’ spending is fixed by Theorem 5.

4.2 MVAs’ Optimality in General
It is important to note that when β2 > 0, the bidders’ incen-

tives have changed, and if we wish to achieve given thresholds
a1, a2, . . . using an MVA, just setting the reserve prices r1, r2, . . .
according to Lemma 1 will not suffice. For example, if we set the
reserve prices in this way, it may be the case that β2 > ai − ri,
in which case it would be clearly suboptimal for a bidder with val-
uation ai + ǫ to bid in round i. Rather than adjust the reserve
prices, we can employ a simpler trick: for every bid that is placed,
the seller can pay that bidder β2, thereby absorbing the cost of the
query. By doing so, the bidders’ incentives are as they were before,
and by Theorem 5 this will lead to the same profit as any other
mechanism with the same query costs and allocation probabilities.
We will still consider a mechanism with such refunds an MVA.

By Myerson’s result, to maximize expected total bidder spend-
ing, we need to maximize the expected virtual value of the winning
bidder. Because we are considering cases with symmetric priors,
this results in a Vickrey auction with a reserve price that corre-
sponds to a virtual valuation of zero. However, we are interested
in profit, not spending. Not only does this mean that we need to
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Figure 4: Optimal first-query-length x (= 1− a1) as a function

of l. (ρ = 2, n = 10, and [0, 1) is discretized into 1000 pieces.)

plan our queries carefully, but it can also affect the allocation rule.
For example, increasing the final reserve price (below which we do
not allocate) slightly above Myerson’s reserve price may increase
profit, because it will reduce communication costs. Still, we can
build on Myerson’s result to show that MVAs (generally with a fi-
nal reserve price above 0) are optimal.

THEOREM 6. Under a regularity condition on the PDF (imply-

ing the virtual valuation is strictly increasing [8]), there exists an

optimal MVA.

PROOF. Consider any optimal mechanism given by a query strat-
egy S(f,m,V,Q) (see Definition 5) and an allocation function
based on V , the set of reported values. We then construct another
mechanism with query strategy S′(f,m,V ′,Q′) where Q′ con-
sists of descending queries and

|S′(f,m, ∅, {Q′

1, . . . , Q
′

i−1})|f = |S(f,m, ∅, {Q1, . . . , Qi−1})|f

If S(f,m, ∅, {Q1, . . . , Qi−1}) = ∅ (termination), then it also has
S′(f,m, ∅, {Q′

1, . . . , Q
′

i−1}) = ∅ and the item is not allocated
in this case. Under S′, once at least one bidder bids, we allocate
to the highest bidder (and payments are set to incentivize truthful
reporting, as discussed earlier). The querying costs of S′ are at
most those of S because in any given round, the probability of any
given number of bidders bidding is the same in both mechanisms
(cf. Lemma 3), and S cannot terminate (with allocation) before at
least one bidder has bid. Moreover, the expected virtual valuation
of the winning bidder is at least as high under S′ as it is under S.
Hence, by Myerson’s result, expected total bidder spending is at
least as high under S′ as it is under S. Therefore, ES′ [profit] =
ES′ [bidder spending] − ES′ [total cost] ≥ ES[bidder spending] −
ES[total cost] = ES[profit], so S

′ must also be optimal.

For a given MVA, let l = infi ai be the value below which we
do not allocate. It is easy to see that if l > 0 and b > 0, then the
sequence of ai will be finite (and the last one will be l). This is be-
cause if the sequence were infinite, there would be a nonzero prob-
ability of asking infinitely many broadcast queries. We next discuss
how to optimize, given l, the remaining ai. We note that when l is
fixed, this comes down to a query cost minimization problem simi-
lar to those studied earlier in this paper, and we can assume without
loss of generality that the distribution is uniform by an appropri-
ate transformation. To find the optimal l, we resort to brute-force
search over all (discretized) values above Myerson’s reserve value.

4.3 OptimalMVAsGiven a Positive LowValue
We now consider how to minimize cost for a given low value

l > 0 of the MVA, restricting our attention to uniform distributions
without loss of generality. A key observation is that if all bidders
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remain silent to a query, then we can renormalize the resulting con-
ditional distribution to be over [0, 1) as we did in the efficient case;
however, in this case, the resulting problem is not identical to the
original, but rather has a larger value of l. Using this insight, we
can solve a discretized version of the problem, using dynamic pro-
gramming to compute the optimal first query as a function of (a
discretized set) l, starting with large l and working our way down.
The result is plotted in Figure 4 and suggest that a result as elegant
as for the efficient case is out of the question. Nevertheless, some
sense can be made of it. The graph is almost piecewise linear. The
rightmost piece is linear and corresponds to asking a single query
at l. The second-to-rightmost piece is not exactly linear, but corre-
sponds to asking a query that, if unsuccessful, will result in being
on the rightmost piece.

We know that with l > 0, in an optimal query strategy, at most a
finite number k of queries will be asked. (k may depend on n and
l.) Let us first consider how to optimize the strategy for a given k
(which will remove the discontinuities). Leta = (a0, a1, a2, . . . , ak)
be the vector of thresholds in this optimal MVA (where a0 = 1 for
convenience, and ak = l). LetC(a, k, b, c, n) be the expected total
communication cost for the MVA query strategy k,a.

Let Ci denote the total communication cost that we incur in
round i and let v∗ = maxi vi. Then:

C(a, k, b, c, n) =

k
∑

i=1

E[Ci]

=
k

∑

i=1

Pr
(

v∗ < ai−1

)

E[Ci | v∗ < ai−1]

=

k
∑

i=1

an
i−1

an
0

(

b+
ai−1 − ai

ai−1
cn

)

(4)

Taking the derivative, we get

∂C

∂ai
=

n(nc+ b)an−1
i − n(n− 1)cai+1a

n−2
i − ncan−1

i−1

an
0

(5)

Setting this to zero for all i (1 ≤ i ≤ k−1) will give the optimal
solution (the boundary cases are clearly not optimal).

In special cases, we can solve this analytically: for example, for
k = 2, n = 3 we have: a1 = (

√

a2
2 (ρ+ 3) + a0

2+a0)/(ρ+3)
(where ρ = b/c), which indeed is close to linear (when a0 ≥ a2),
but not quite. In general, we use an R package called BB [16] to
solve these systems of equations. This requires us to first choose k
and an initial guess for a. We thus turn our attention to choosing k.
We need the following lemma:

LEMMA 4. Consider two vectors a = (a0, . . . , ak1
) and a

′ =
(a′

0, . . . , a
′

k2
) and suppose they are optimal for l = ak1

and l =
ak2

, respectively. Then it cannot be the case that p2 ≤ q2 < q1 <
p1 where p2 = ai, p1 = ai−1 are two consecutive thresholds in

the first sequence and q2 = a′

j , p1 = a′

j−1 in the second sequence.

PROOF. Let C(l) denote the optimal cost for finding the maxi-
mum value above low value l. Then by the optimality of the two
sequences we have

C(q1) + qn1 [ρ+ n(q1 − q2)] ≤ C(p1) + pn1 [ρ+ n(p1 − q2)]

C(p1) + pn1 [ρ+ n(p1 − p2)] ≤ C(q1) + qn1 [ρ+ n(q1 − p2)]

Adding these two inequalities and performing some cancellations
gives pn1 ≤ qn1 , which contradicts q1 < p1.

THEOREM 7. k+
α = ⌈logα (1/l)⌉ and k−

α ⌊logα (1/l)⌋ are up-
per and lower bounds for the optimal k. Here, α is the optimal α
from the α-MVA (when l = 0).
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Figure 5: The profit of the optimal MVA and the α-cutoff-MVA

are plotted as solid lines. (The optimal value of l is determined

by brute-force search.) α and l are plotted in dashed lines, to

illustrate that the the only cases where the α-cutoff-MVA per-

forms significantly more poorly are when α (or α2) are slightly

above l, because in this case the α-cutoff-MVA is often forced

to ask another query to get below l.

PROOF. For the sake of contradiction, assume k > k+
α for op-

timal thresholds (a∗

0, a
∗

1, a
∗

2, . . . , a
∗

k) (where a∗

0 = 1, a∗

k = l).

Points a0 = α0, a1 = α1, . . . , a
k+
α

= αk+
α constitute an optimal

sequence for low value l′ = αk+
α (if there were a better sequence,

we could improve on the α-MVA by starting with that sequence in-
stead). This sequence also splits interval [l′, 1) into k+

α subintervals
[ai, ai−1), which together contain k thresholds a∗

1, . . . , a
∗

k. Since
k > k+

α , at least one subinterval [ai, ai−1) contains two thresholds
a∗

j , a
∗

j−1, so we have ai ≤ a∗

j < a∗

j−1 < ai−1. This contradicts
with Lemma 4. The proof of k−

α is similar.

4.4 Experiments
We continue to evaluate on a uniform distribution over valua-

tions. By Theorem 7, we only need to try two values of k. For the
initial thresholds a, Lemma 4 suggests initializing ai = αi. We
refer to this initialization as the α-cutoff-MVA. Indeed, this initial-
ization allows the solver to converge to the optimal solution, unlike
simple heuristics such as spreading the ai uniformly. In fact, even
the α-cutoff-MVA by itself (without running the solver) already
performs close to optimality, as shown in Figure 5.

Finally, we compare the profit of our mechanisms to that of
mechanisms that use only a single round, such as Myerson’s mech-
anism.5 These experiments give insight into whether setting l cor-
rectly and not ignoring the communication costs are important. If
we ignore communication costs, the Myerson auction (a single-shot
Vickrey auction with reserve price 0.5) is optimal. But when com-
munication costs exist, this is not necessarily true. If β1 > 0 and
β2 = 0, one may benefit from setting a somewhat higher reserve
price to reduce the number of bids. On the other hand, if β1 = 0
and β2 > 0, bidders just barely above the reserve price will not
bid, and one may want to set the reserve price lower. Hence, we
also compute the optimal reserve price for a single-shot auction
(by brute force) and compare to it.

The results6 are shown in Figure 6. On the MVA side, the prof-
its for using the optimal l, l = 0, and l = 0.5 become close very

5We do not consider other, heuristic querying strategies here; in-
tuition about how these perform can be obtained from the experi-
ments in Section 3.5.
6We ran experiments for n up to 100; they are not substantially
different from n = 10
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Figure 6: The expected profit, as well as the value of l (the lowest valuation that may bid), for various mechanisms as a function of n.
We have broadcast cost b = 0.1 and seller and bidder bid costs β1 = β2 = 0.05 (thus c = β1 + β2 = 0.1).

quickly as n grows. Hence, the choice of l is relatively unimpor-
tant for large n. The single-shot mechanisms, on the other hand,
perform significantly worse, and the choice of reserve price is quite
important. If we set the reserve price low so that even bidders with
low valuations bid, the communication costs will get large. If we
set the reserve price high, only bidders with very high valuations
bid, and total spending is low. The results show that attempting
strike a balance and setting the reserve price in between is optimal,
but not very effective.

5. CONCLUSION
In this paper, we modeled Internet auctions in which the seller

communicates to the bidders with costly broadcast queries, and if
a bidder actively participates there is potentially a communication
cost to both that bidder and the seller. We focused primarily on
multi-round Vickrey auctions (MVAs). We first assumed that (1)
efficient allocation is required and (2) the bidders’ cost for bidding
is zero (β2 = 0). We proved that there is an MVA, which we call
an α-MVA, that has optimal profit for the seller among all mecha-
nisms. We gave two ways to compute an approximately optimal α.
The first obtains a 1.582-approximation and its expected communi-
cation cost is bounded by a value that is constant in the number of
bidders. The expected cost of the second is guaranteed to converge
to the optimal expected cost as the number of bidders grows.

We then dropped the two constraints and considered the general
case. We showed that bidders’ expected total spending is fixed by
the allocation rule (and the expected utility of bidders with value
0). Thus, for a fixed allocation rule, the profit is maximized when
expected total cost is minimized. We then proved that MVAs are
also optimal in the general case and focused on computing an opti-
mal MVA. The optimal MVA in the general case turns out to be not
as elegant and simple as an α-MVA. Nevertheless, we show that
by using a modification that we call an α-cutoff-MVA as an initial
guess, we can compute the optimal MVA easily.
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