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ABSTRACT
Energy poverty at the household level is a serious hindrance to
economic and social development, especially in off-grid, remote
villages in the developing world. Some initiatives have sought to
provide these households with resources such as renewable gener-
ation units and electric batteries to enable access to electricity. At
present, these resources are operated in isolation, fulfilling individ-
ual home needs, which results in an inefficient and costly use of
resources, especially in the case of electric batteries which are ex-
pensive and have a limited number of charging cycles. To address
this problem, we investigate the exchange of energy between homes
in a community to reduce the overall battery usage, thus prolong-
ing the life of batteries. We take an agent-based approach to this
problem and show that agents (acting on the behalf of households)
can coordinate and regulate the exchange of energy between homes
which leads to two surpluses: reduction in the overall battery usage
and reduction in the energy losses. To ensure a fair distribution of
these surpluses among agents, we model this problem as a coali-
tional game where each agent’s contribution to both surpluses is
computed using the Shapley value. Using real world data, we em-
pirically evaluate our solution to show that energy exchange (i) can
reduce the need for battery charging (by close to 65%) in a com-
munity and (ii) can improve the efficient use of energy (by up to
80% under certain conditions). In addition, we show how approx-
imated Shapley values can be used to enable energy exchange in
large communities.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence, Dis-
tributed Artificial Intelligence.

General Terms
Agents, Multi-Agent Systems.

Keywords
Energy Exchange, Storage, Battery, Off-grid, Cooperative Exchange.

1. INTRODUCTION
Energy poverty at the household level is defined as the lack of ac-
cess to electricity and reliance on the traditional use of biomass for

cooking, and is a serious hindrance to economic and social develop-
ment [10, p.237]. It is estimated that 1.4 billion people live without
access to electricity and almost 2.7 billion people rely on biomass
for cooking [10, p.239], a majority of whom live in small commu-
nities scattered over vast areas of land (mostly in the Sub-Saharan
Africa and the developing Asia). Access to electricity is a serious
issue as a number of socio-economic factors, from health to educa-
tion, rely heavily on electricity [16, p.14]. Recent initiatives have
sought to provide these remote communities with off-grid renew-
able microgeneration infrastructure such as solar panels, and elec-
tric batteries.1 At present, these resources (i.e. microgeneration and
storage) are operated in isolation for individual home needs and we
envision that the interconnection and autonomous coordination of
such resources could not only result in the efficient of use of these
resource and energy, but can also help cut down the infrastructure
and maintenance cost.

As a first step towards this vision, we explore the possibility
of energy exchange between homes to reduce the overall usage of
electric batteries in a community. Electric batteries are expensive
(costing as high as 500 USD/kWh) along with a limited number
of charging cycles (3000 to 5000), requiring them to be replaced
more often, compared to other components in an off-grid system.
We believe that enabling households to exchange energy can help
them reduce the overall need for energy storage, thus prolonging
the life of their batteries and reducing the need for frequent replace-
ments. However, enabling energy exchange between homes poses
many issues that come from the very nature of these communities
and realities of life in developing countries, e.g., absence of bank-
ing/payment systems, low processing power at hand and individual
and communal power needs. Taking these issues into account, we
need an autonomous and tractable energy exchange solution, that
can operate without financial payments between homes, and bene-
fits all participants.

Against this background, we approach this problem by modeling
each home’s resources as being controlled by an intelligent agent
that acts on the behalf of a household to maximise its utility. We
consider the homes to be interconnected, forming a multiagent sys-
tem where agents can interact to exchange energy. Given that the
agents are self-interested, we propose an energy exchange solution
where it is individually rational for an agent to participate. Our so-
lution then identifies the mutual benefits of the exchange, in terms
of the overall reduction in battery usage and improvement in the
energy efficiency, and using the Shapley value computes the fair

1See the Rural Solar Homes in India
(www.tatabpsolar.com), the Solar Homes program in
Bangladesh (www.gshakti.org), the Solar Village program
in Ethiopia (www.solarsenegal.com) and the Folovhodwe
Village Project in South Africa (http://www.hedon.info).
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share for each agent’s participation. Our empirical evaluation of
this solutions show that energy exchange can help reduce the need
for storage while improving energy efficiency. In more detail, this
work advances the state-of-the-art in the following ways:

1. We present a novel Shapley value-based cooperative solution
that can be used for energy exchange in remote communities.

2. We show that it is individually rational for agents to partici-
pate in our energy exchange solution.

3. We empirically evaluate our solution and show that in this
instance:

• Overall battery usage can be reduced by nearly 65%
while maintaining the same utilities that agents get with
no exchange.

• Energy efficiency can be increased by up to 80% de-
pending on the overall battery usage and efficiency.

• Energy exchange in larger communities is possible by
approximating the Shapley values.

• Exchange becomes more useful as batteries become less
efficient with usage over time.

The rest of the paper is structured as follows. We discuss the related
work in Section 2. We present our model of homes and commu-
nity in Section 3, followed by a discussion on coalition formation,
the characteristic functions, and the Shapley value calculation. We
then empirically evaluate our solution in Section 4 and discuss the
results. Finally, Section 5 concludes.

2. RELATED WORK
The idea of energy exchange is not new. There are several real
world examples where energy exchange is used to improve energy
management between countries (e.g., Finland and Sweden [14])
and between cities (e.g., Delhi and Madhya Pradesh, India). In-
deed, exchange of energy has already been shown to result in ef-
ficient use of energy and cost savings in utility companies [6, 14].
In this context, Ruusunen et al. [15] considered a group of utility
companies, each owning a generator, connected together to form a
power pool. The cost of energy generation was different for each
company and varied over the course of a day, allowing energy ex-
change to be beneficial to all. In their solution, energy genera-
tion and consumption is monitored by the pool operator who au-
dits the cost and utility functions of the participants and distributes
the cost savings among them. They show that energy exchange re-
sults in the efficient use of electricity. However, their approach is
not applicable in our case for three reasons. First, they only con-
sider controllable microgeneration (diesel generators) which can be
turned on/off on demand, unlike in our setting where microgener-
ation can be uncontrollable (solar panels or wind turbines are ex-
amples). Second, their analysis does not consider the possibility to
store energy. Third, their solution depends on monetary payments
which renders it useless when payments are not feasible.

In addition, Alam et. al [1] presented a negotiation protocol to fa-
cilitate bi-lateral negotiation between two smart homes. This proto-
col places restrictions on the type and number of offers that homes
can make to each other. The negotiation is dependent on the amount
of exchange and does not assume side payments. Under certain
circumstances, they show that this protocol results in a dominant-
strategy equilibrium and that energy exchange between homes can
help reduce the need for energy storage in homes by close to 40%.
However, their negotiation protocol is bi-lateral and only applicable
in two-home settings, thus is not scalable for a community.

In turn, ideas from cooperative game theory have been used in
the energy domain for more than a decade [18]. More recently, [4,
13] looked at the advantages of coordinating distributed energy re-
sources (DERs) and showed that their coordination leads to more
efficient use of energy. This improvement is measured in terms of
monetary payments and they present payment mechanisms for fair
division among agents. However, their focus is on coordinating re-
newable generation only and energy storage is not considered in
their work. In contrast, we investigate the coordination of micro-
generation resources and storage devices to reduce battery usage
and improve energy efficiency. This idea, to the best of our knowl-
edge, has remained unexplored so far.

3. THE ENERGY EXCHANGE PROBLEM
The problem of energy exchange can be viewed at two levels; indi-
vidual homes and community. We first present a model of an indi-
vidual home and describe the underlying components (e.g., gener-
ation and battery) along with their relationship (e.g. physical con-
straints) and the utility function. We then describe connecting these
homes together to form a community along with how to reduce the
overall battery charging. Finally, we present a coalitional model of
this community and discuss the characteristic functions along with
the calculation and approximation of the Shapley values.

3.1 Model of an Individual Home
In this section, we provide a model of an individual home in a
community which is similar to the home models presented in [1,
17]. We assume that each home has a renewable generation unit,
some loads and a battery to store electricity. Specifically, let a be
an agent representing a home, with a generation capability k =
(k1, ..., kt) ∈ R

t
≥0 representing the energy it can generate over t =

(1, ..., t) ∈ N
t time periods and a load h = (h1, ..., ht) ∈ R

t
≥0

representing its loads requirements. The battery is characterised
by four parameters: (i) a maximum storage capacity, s ∈ R≥0,
(ii) a maximum charging rate, cmax ∈ R≥0, (iii) a maximum dis-
charging rate, dmax ∈ R≥0, and (iv) an efficiency e ∈ R≥0. The
efficiency describes the loss of energy when the battery is charged.
We describe the dynamic state of the battery by: the energy flow
into the battery (charge) c = (c1, ..., ct) ∈ R

t
≥0, the flow going

out (discharge) d = (d1, ..., dt) ∈ R
t
≥0 and the amount of charge

stored in battery at any given time q = (q1, ..., qt) ∈ R
t
≥0.

The generation capability k denotes the energy that can be gen-
erated, however, an agent may reduce its generation if the energy
to be generated can neither be used immediately nor stored due to
the limited battery flow or capacity. To capture this possibility, we
denote the generation, g = (g1, ..., gt) ∈ R

t
≥0, as the actual en-

ergy generated and wasted energy, w = (w1, ..., wt) ∈ R
t
≥0, as

the energy that was not generated or wasted. Hence, k = g +w.
Using the battery, an agent can compute an energy allocation,

p = (p1, ..., pt) ∈ R
t
≥0, allocating the generated energy g to loads

h. The utility of agent a at time i is the ratio of load pi that is
powered at time i, to the total load required (hi) at time i. The
overall utility ua is the sum of these ratios, given by:

ua =

t∑
i=1

pi

hi

(1)

Thus, the goal of an agent is to power as much of its load as possible
to maximise its utility. The battery is useful here as it gives the
agent flexibility in deciding when to store and when to use energy
and thus, it enables the agent to find an optimal energy allocation,
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p∗, given by:

p
∗ = argmax

p

t∑
i=1

(
pi

hi

)
∀ i ∈ t

We assume that an agent prefers the use of its battery only as much
as needed to maximise its utility. To reflect this preference, we
include a very small penalty, x, to the above objective function:2

p
∗ = argmax

p

t∑
i=1

(
pi

hi

)
− x

(
t∑

i=1

ci

)
∀ i ∈ t (2)

This can be transformed to a linear programming model with the
following constraints:

Constraint 1: At any given time i, the allocated power pi ∈ p

depends on the generated power gi, battery charging flow ci and
discharging flow di:

pi = gi − ci + di (o1)
Constraint 2: The current battery state qi depends on the last bat-
tery state q(i−1), charge c(i−1) and discharge d(i−1). The charge
flow ci ∈ c is subjected to the battery efficiency e. Also, the first
state of the battery q1 must equal the last battery state of the battery
qt to ensure there is no net change of battery charge over the day so
that the utility remains dependent only on the energy generated in
t time periods:

qi =

{
q(i−1) + e× c(i−1) − d(i−1) if i > 1

qt + e× ct − dt if i = 1
(o2)

Constraint 3: Allocated power pi must not exceed load hi:
pi ≤ hi ∀ pi ∈ p, hi ∈ h (o3)

Constraint 4: The battery state qi must not exceed the maximum
capacity s. Also, the battery state cannot be negative, i.e., energy
must be stored before it is drawn:

0 ≤ qi ≤ s ∀ qi ∈ q (o4)

Constraint 5: At any time period i, the battery charge flow ci must
not exceed the maximum charge limit cmax. Also, the charge flow
is always positive:

0 ≤ ci ≤ cmax ∀ ci ∈ c (o5)

Constraint 6: At any time period i, the battery discharge flow di
must not exceed the maximum discharge limit dmax. Also, the
discharge flow is always positive:

0 ≤ di ≤ dmax ∀ di ∈ d (o6)

Constraint 7: Wasted energy wi is always positive and cannot ex-
ceed the energy ki that can be generated at time i:

0 < wi < ki ∀ wi ∈ w, ki ∈ k (o7)

Constraint 8: Battery efficiency must be between 0 to 1 (i.e., 0% to
100%).

0 ≤ e ≤ 1 (o8)
Now, an agent can compute an allocation p∗ which maximises its
utility via Equation 2 and constraints {o1, ..., o9}. Here, we are
also interested to know the battery charging needed for this optimal
allocation p∗ and, with a slight abuse of notation, we will use c to
denote the battery charging used to get the maximum utility.
2In our experiments, we have x = 0.001 to ensure an agent will
always will prefer the use of battery over its load.
3For example, an electric wire allows up to a certain electricity
flow. Also, we neglect the electrical resistance on this link.
4Although a widely-used assumption in cooperative games, this
may well be the case in a small and close-knit community.

3.2 A Coalitional Model of Community
In this section, we first describe how homes can be connected to-
gether, given the model in Section 3.1, to form a community. We
then transform this community model to a coalitional one.

Connecting Homes Together
A community can be perceived as a collection of connected agents.
Connecting any agent to a community requires a physical link flow
in between and the dynamics of this physical link can be captured
via the electricity flow on the link. Let l = (l1, ..., lt) ∈ R

t de-
scribe the total flow on the physical link for an agent. Now, at any
given time, the power available to the connected agent includes the
flow on this link (in short link flow) at this time. We can modify our
constraint o1 to capture this:

Constraint 9: At any given time i, the allocated power pi ∈ p

depends on the generated power gi, battery charging flow ci, dis-
charging flow di and link flow li.

pi = gi − ci + di + li (o9)

Also, we assume that the flow on the link is constrained by its phys-
ical properties:3

Constraint 10: At any time period i, the link flow li must not ex-
ceed the maximum link flow allowed on the physical link lmax.

−lmax ≤ li ≤ lmax ∀ li ∈ l (o10)

Coalition Formation
Now given this community of connected agents, we can use co-
operative game theory to perceive this community as the grand
coalition, in its entirety, and where the generation, consumption
and storage of agents is common knowledge.4 Agents in the com-
munity are declared self-interested in the sense that they will only
exchange energy if it benefits them (i.e., it must be individually
rational).

Energy exchange has many potential benefits (e.g., maximising
social welfare and managing uncertainty in generation) but we are
specifically interested to see if it can help reduce the use of electric
batteries as this may reduce the maintenance cost. The reduction in
storage usage, in our case, equates to reduction in battery charging.
As discussed in Section 1, the reduction in storage usage has two
advantages. First, since a battery has a limited number of charge
cycles, reduction in its usage prolongs its life.5 Second, the less
energy stored, the less energy is lost due to the battery inefficiency.
Given this, our objective is to minimise the overall battery charging
in a community. Now, let N be the set of agents in a commu-
nity and n = |N |. Let cj = (c(j,1), ..., c(j,t)) define the battery
charging needed for the optimal allocation of energy (as detailed
in Section 3.1) for agent j when it is not connected. Similarly, let
ĉj = (ĉ(j,1), ..., ĉ(j,t)) define the battery charging of j when it is
connected. In addition, let Ccom be the matrix of all charging of
all agents in the community so that:

C
com =

⎡
⎢⎣
ĉ(j,1) . . . ĉ(j,t)

...
...

...
ĉ(n,1) . . . ĉ(n,t)

⎤
⎥⎦

where each row cj represents the battery charging of agent j over
t time periods. Given this, the objective of the community optimi-
sation is to find the minimal battery charging for each agent i.e.,

5In Lithium-based batteries, one life cycle means a full charge of
the battery even when the charging is discrete.
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Ccom∗ as the following:

C
com∗ = argmin

Ccom

n∑
j=1

(
t∑

i=1

ĉ(j,i)

)
∀ j ∈ N ∀ i ∈ t

(3)
Now, Ccom∗ contains the minimum battery charging for each agent
in the community. We assume that the agents are self-interested so
to make it individually rational for them to participate in energy ex-
change, we include the following two constraints:

Constraint 11: Let uj is the utility that agent j gets when it is
disconnected and ûj is the utility while connected. Then:

uj = ûj ∀ j ∈ N (o11)

Constraint 12: Agents are also guaranteed that their battery usage
will not increase. Thus, for any agent j:

t∑
i=1

c(j,i) ≤
t∑

i=1

ĉ(j,i) ∀ i ∈ t (o12)

Now, given Equation 3 and constraints (o2, ..., o12) we can find
the minimum storage requirements of the community. However,
a by-product of reduction in storage is energy saving. This en-
ergy saving comes from two sources, either from the inability of
an agent to store the generated energy due to its limited battery
capacity or limited charging/discharging rate (i.e., wasted energy
w in Section 3.1), or from the energy storage loss due to the bat-
tery inefficiency (e in Section 3.1). In particular, we would like
to know how much overall energy is saved by using exchange. So
if, lj = (l(j,1), ..., l(j,t)) defines the link flow for agent j then let
Lcom represents all link flows in the community of n as follows:

L
com =

⎡
⎢⎣
l(j,1) . . . l(j,t)

...
...

...
l(n,1) . . . l(n,t)

⎤
⎥⎦

where each row lj represents the link flow of an agent j over t time
periods. To measure this saved energy, we introduce lsaved =
(l1, ..., lt) in our model as follows:

Constraint 13: Sum of link flows of all agent at time period i equals
the saved energy at i.

n∑
j=1

l(j,i) + l
saved
i = 0 ∀ i ∈ t ∀ j ∈ N (o13)

Constraint 14: lsaved is always positive.

l
saved
i ≥ 0 ∀ i ∈ t (o14)

Note, at any given time period i, some agents will have li > 0,
which means they have an outward flow on their physical link, li <
0 meaning inward flow, or li = 0 which means no flow for this time
period. The difference (between these outward and inward flows)
is the saved energy lsavedi in the community at time period i. Here,
we would like to stress that the objective of coalition formation is
to minimise the battery charging and lsaved is a just by-product of
this optimisation. Now, given that we can compute the minimum
battery charging required for a coalition and the energy saved in
that coalition, we now describe a function that, given any coalition,
gives us a measure of its importance.

3.3 The Characteristic Functions
In cooperative game theory, a characteristic function v is a function
such that v : 2N → R and v(∅) = 0 for a finite set of agents N . In
this sense, a characteristic function shows the worth or value of a
given coalition. In our case, agents form a coalition to reduce their
battery charging, so we define the worth of a coalition in terms of
the total battery charging. We already know that Equation 3 com-
putes the minimum battery charging for a community, therefore, in
order to know the overall battery charging of a coalition, we define
a characteristic function, vc, as follows:

vc =

n∑
j=1

(
t∑

i=1

C
com∗
(j,i)

)
j ∈ N i ∈ t (4)

where, vc is the sum of the matrix Ccom∗ and shows the total
amount of battery charging required in the community. Now, Equa-
tion 4 can map any coalition to a number which is the minimum
battery charging required in that coalition.

As discussed earlier, a by-product of the reduction in battery
charging is energy saving (i.e., lsaved). To know the worth of a
coalition in terms of energy saving, we can define another charac-
teristic function,6 ve, in a similar fashion to vc:

ve =
t∑

i=1

l
saved
i i ∈ t (5)

where ve is the sum of the vector lsaved, and shows the overall
saved energy in a community.

We make two notes here. First, the battery charging and saved
energy for an empty coalition is zero (i.e., vc(∅) = 0, ve(∅) = 0).
Second, the input arguments for both Equation 4 and Equation 5
are variables that are the result of optimising Equation 3. Thus,
to know both values for a given coalition, we just need to solve
Equation 3 to find the values of Ccom∗ and lsaved.

Now, We can know the worth of a coalition which brings up the
fundamental question of how to divide it among agents, which we
discuss next.

3.4 Fair Division:
For any given coalition, we have two surpluses; battery charging
and saved energy, each a transferable utility among agents. From an
agent’s point of view, it prefers less of the first part (battery charg-
ing) and more of the second (saved energy), and given that each
agent is self-interested, conflict is natural. The Shapley value is the
most widely used solution concept, in coalition formation theory,
that deals with dividing the surplus among self-interested agents in
a coalition. For a given coalition game (N, v), the Shapley value
of agent i is given by:

φi(N, v) =
∑

S⊆N\(i)

|S|!(|N | − |S| − 1)!

N !
[v(S ∪ i)− v(S)] (6)

where φi is the Shapley value of agent i, N is the set of all agents, v
is the characteristic function and S is a subset of N . Note that, the
6Note, we could assign weights to map both charging and energy
values of a coalition to a single value, say x ∈ R, to denote the
worth of a coalition with one value. However, this involves as-
sumptions over weights (i.e., essentially assuming how each agent
prefers their charging over their utility) which we avoid by keep-
ing the characteristic functions separated. Also, two characteristic
functions make it easier to understand what each agent contributes
separately to the overall charging and to overall energy saving,
which in turn, makes it easier to give it a fair share in both sur-
pluses.
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last part of Equation 6 [v(S ∪ i)− v(S)] is known as the marginal
contribution, of agent i to a coalition S, the difference that an agent
makes to the value of a given coalition.

It is obvious that by substituting vc for v, we can compute the
Shapley value for battery charging for an agent, which is what this
agent contributes on average to the total battery charging require-
ments of a community. Similarly, substituting ve will compute the
Shapley value for energy saving for an agent, that this agent con-
tributes on average to the total energy saving of a community. We
call these Shapley values as (i) charging Shapley value and (ii) en-
ergy Shapley value. We now discuss the computational aspects of
computing these Shapley values.

3.5 Approximating the Shapley Values
The Shapley value is known to be computationally complex (2n ×
2×O(v), where O(v) is the complexity of the characteristic func-
tion). Since both characteristic functions are dependent on Equa-
tion 3, O(v) is the complexity of solving a Linear Program (LP).
Although, the LP formulation of Equation 3 makes it easy to com-
pute the marginal contribution and scales up with the number of
agents (6 seconds for 100 agents), computing the Shapley value
for an agent becomes very challenging as we need to know the
marginal contribution of that agent to every subset of a given coali-
tion. Therefore, the sheer number of combinations as the num-
ber of agents increases, makes exhaustive search impossible (e.g.,
computing the Shapley values for 16 agents take 21 hours in our
case). Some studies focused on this class of problems suggest the
use of sampling methods to approximate Shapley value. In particu-
lar, Castro et. al. [2] have presented their ApproShapley algorithm
for the polynomial-time calculation of Shapley value based on sam-
pling. We choose their sampling algorithm for two reasons. First,
the complexity of their algorithm is polynomial (not considering
the complexity of the characteristic function, which is polynomial
in our case). Second, they provide a bound on the approximation of
the Shapley value. Also, they have shown their algorithm to be ap-
plicable and useful in many coalitional problems (e.g., voting and
airport games) which share some similarity with our problem.

The number of samples needed to approximate the Shapley value
depends on three factors (i) the error (bound) of the approximation,
(ii) an upper bound on the variance of the marginal contributions
(iii) and the failure probability of this bound.7 ApproShapley re-
quires the samples from permutations (i.e., N ! if N is the set of
agents) but we save on the computational time by storing each eval-
uation of the characteristic function to make sure that the unique
coalition corresponding to any permutation is evaluated only once.

This concludes our theoretical part of discussion. In the next sec-
tion, we set-up an experiment to evaluate our solution based on real
world data. This will demonstrate the applicability and advantages
of our idea of energy exchange in communities.

4. EMPIRICAL EVALUATION
In this section, we first describe the origin and collection of our
data that we use to evaluate our model under general and specific
settings. We then discuss the results of our evaluation and demon-
strate the usefulness of exchange in communities. In particular, we
show how exchange can be useful in different scenarios (inspired

7We set these to (1.5, 2, 0.05) respectively, for the approximation
to be correct within ±1.5 of the actual Shapley values, 95% of
times. Thus, there is a 5% chance of an agent’s Shapley value being
off by more than 1.5. ApproShapley needed 112 samples per agent
to ensure these requirements in our case. See [2] for a detailed
discussion of ApproShapley and these parameters.
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Figure 1: Mean values for a day - generation from solar panel,
wind turbine and consumption from low-income UK homes.

by the ground-realities in remote communities) by varying different
parameters.

4.1 Experimental Setup
We begin by considering a community of agents where each agent
has a microgeneration unit, some load and storage as follows:

Renewable Generation: Each agent has a microgeneration unit,
either a 1.5kW wind turbine or a 1.75kW solar panel with equal
probability. The generation data for the wind turbine comes from a
wind farm near Lugo, Northwest Spain8 while the output of a solar
panel is estimated to be directly proportional to the daily radiance
for the same region9. We use data for July 2011, estimate the av-
erage wind and solar generation for a day and scale it to match the
output of a 1.5kW wind turbine and a 1.75kW solar panel. Figure
1 shows the scaled generation data for a day. The actual generation
for each agent comes from a distribution over the generation pro-
file. More specifically, we model generation in each time unit as an
independent Gaussian distribution (with scaled value as the mean
and the variance within 10% of it).

Consumption: Load requirements of homes in the remote com-
munities are more challenging as, at present, no such data is read-
ily available. Also, as the demand establishes, the load require-
ments will naturally increase. To overcome this, we use load data,
recorded and provided by a UK electric company in low-income
homes equipped with smart meters. Figure 1 shows the mean val-
ues for a day, in comparison with the generation data.

Storage: As discussed in Section 3.1, we characterise a battery
with 4 attributes, maximum capacity (s), maximum charging rate
(c), maximum discharging rate (d) and efficiency (e). In this case,
we have considered each agent with one the following batteries10

with equal probability.
• B1 (s = 10kWh, c = 5kW, d = 5kW and e = 90%)
• B2 (s = 8kWh , c = 4kW, d = 4kW and e = 90%)
• B3 (s = 6kWh , c = 3kW, d = 3kW and e = 90%)

Number of Agents: We initially run our experiments for a com-
munity of 10 agents to be able to compute the exact Shapley val-
ues and to discuss the comparative variation (and its causes) in the
Shapley values of agents. We then consider a community of 100
8Available at www.sotaventogalicia.com
9Available at www.re.jrc.ec.europa.eu/pvgis/apps/radday.php

10Such battery specifications have been used in the related work.
For example, see [17] .
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(a) Charging Shapley Value: Agents with smaller batteries con-
tribute less.
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(b) Energy Shapley Values: Agents with smaller batteries con-
tribute more.
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(c) Agents maintain the same utility with and
without exchange.
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(d) Agents reduce their battery charging via en-
ergy exchange.
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waste (when agents do not exchange energy).

Figure 2: Comparative analysis of variations and its causes in charging and energy Shapley values of agents.

agents (chosen to be close to the number of households (98) in an
average Indian village [8]) to show how exchange can be scaled up.

LP Solver: All linear models are solvable with a general-purpose
LP Solver and we use IBM ILOG CPLEX11, a powerful optimiser,
that provides easy and rich methods to model constraints, variables
and objective functions. All experiments were run on a 3GHz ma-
chine with 12GB RAM.

Benchmark: To the best of our knowledge, there is no study on en-
ergy exchange in cooperative communities that we could compare
our results with. The state-of-the-art in terms of existing off-grid
communities is just the isolated homes with some microgeneration
and storage. We consider this status-quo as the benchmark and
show the comparative improvements that our solutions offers.

4.2 Empirical Results
In this section, we first evaluate our model for a community of 10
agents. We compute the exact charging and energy Shapley values
for all agents. Agents get different Shapley values as per their con-
tribution and we discuss the properties (i.e., battery capacity and
efficiency) that this contribution is dependent on. We then evaluate
two alternate scenarios with regards to the usefulness of exchange:
one to examine the effect of diversity in the generation type and
the other with the reduced battery efficiency. Finally, we consider a

11IBM CPLEX is available free of cost to academia - http://www-
01.ibm.com/software/integration/optimization/cplex-optimizer/

community of 100 agents and compute the approximated Shapley
values to demonstrate the scalability of our solution.

Figure 2(a) shows the exact charging Shapley values for each
agent in a community of 10 agents. This is the average marginal
contribution of an agent to the overall battery charging in a commu-
nity. For example, agent 1 has a marginal contribution of 4.9kWh
battery charging, which is the average marginal increase in the
overall charging that this agent’s presence causes in the community.
In other words, the more the charging Shapley value of an agent,
the more charging burden it is asked to take in a community. We
make two important observations here. First, the charging Shap-
ley values of agents with the same battery specification, are very
similar (Figure 2(a)). Second, agents who use their batteries com-
paratively less (i.e., the sum of their charging is low) when they are
disconnected, have a lower impact on the overall community charg-
ing and thus their batteries are used less. This may seem slightly
counter-intuitive because one may think that an agent with a bigger
battery can be more useful to a coalition. However, having a larger
battery does not mean that an agent will be sharing more of its bat-
tery as constraint o12 guarantees them that their battery charging
will not increase as a result of energy exchange. This means that
the charging Shapley value of an agent is not dependent on the size
of their battery. In fact, Figure 2(d) shows that an agent’s charging
Shapley value is dependent on its actual battery charging before
joining the coalition. So if an agent charges its battery more when
it is disconnected, compared with other agents, it will have a higher
charging Shapley value in the community.
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(a) More Diversity in the generation mix means more opportu-
nities for energy exchange.
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(b) As battery efficiency decreases, energy exchange becomes
more useful.

Figure 3: Alternate Scenarios: Energy exchange with regards to diversity in generation and battery efficiency.
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(b) Charging Shapley value for 100 agents.
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(c) Energy Shapley value for 100 agents.

Figure 4: Using approximated Shapley values for large communities.

Figure 2(b) shows the exact energy Shapley values for each agent,
which is the average marginal contribution to the overall energy
saving that an agent’s presence in a community results in. Again,
we make two observations here. First, we observe that agents with
similar battery capacity have similar energy Shapley values. Sec-
ond, the agents with smaller batteries contribute more towards the
overall energy savings. This is because the agents with smaller bat-
teries may have more wasted energy and with exchange this energy
may be saved. Figure 2(e) confirms this case by showing the wasted
energy and energy storage loss when agents are not connected. We
can see that the agents with smaller batteries (e.g., agents 4 and 7)
have more wasted energy compared to the agents with bigger bat-
teries (agent 1 and 2) and therefore, agents 4 and 7 are the biggest
contributor to the saved energy in the community. It is important to
note that even when no agent has any wasted energy, the reduction
in their battery charging when they exchange energy, will always
yield some energy savings, unless their storage is 100% efficient.

Figure 2(c) shows the utility of agents with and without exchange.
It is obvious that agents retain their utility as guaranteed by our
constraint o11. Figure 2(d) shows the sum of battery charging with
and without exchange for each agent. We note that none of the
agents are required to use more of their battery (constraint o12).
Put together, o11 and o12 guarantee that it is individually rational
for them to participate in energy exchange.

Figure 2(d) shows the sum of battery charging with and with-
out exchange for each agent and we note that the sum of battery
charging of all agents without exchange is 93.8kWh which drops to
33.2kWh with energy exchange. This means via energy exchange,
the community reduces its overall battery charging by 64.4%.

One important aspect of energy exchange is the fact that more
diversity in generation and consumption opens up more ways to
exchange energy. Although, consumption can be considerably di-

verse among the urban consumers depending on many factors (e.g.,
their appliances, income, family size) it can be argued whether such
diversity would exist in remote communities. For example, many
families in remote Indian villages own very similar electrical ap-
pliances[8] (e.g., lighting apparatus, radio). This leaves little pos-
sibility of significant diversity in consumption. However, on the
generation side, this pattern can be very different, depending on the
renewable generation means. For example, two homes may have
similar consumption but one may have a wind turbine while the
other has a solar panel. Here, we consider two extremes, one where
all homes are equipped only with solar panels (no wind turbines)
and one where they all have wind turbines only. Figure 3(a) shows
the percentage reduction in battery charging, compared with the
total battery charging with no exchange, and the percentage of en-
ergy saved, compared with the total energy usage with no exchange,
when energy is exchanged. It can be seen that as the diversity in
generation means increases, the agents have more opportunities to
exchange energy and to reduce their battery usage, with the max-
imum reduction in battery charging with the most diversity. Here,
we only show the saved energy that comes directly from the re-
duction in battery charging, to show that improvement in energy
efficiency is possible even when there is no wasted energy in the
community.

The efficiency of an electric battery degrades with usage and
time. The actual dynamics of this degradation depends on a num-
ber of factors but all energy storage devices are bound to lose their
efficiency over multiple charging cycles. Figure 3(b) shows what
happens as the batteries (of all agents) in a community become less
efficient. We know that as the battery efficiency is reduced, the en-
ergy storage loss increases. Via exchange, this energy loss can be
avoided and Figure 3(b) shows that the percentage of energy saved
increases as the battery efficiency decreases. Also, we note that
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when the agents have very inefficient batteries (40% and less effi-
cient), exchange offers them 100% reduction in battery usage. This
is because with very inefficient batteries, the storage losses ramp
up and thus the agents’ utilities decrease significantly. With ex-
change, such low agent’ utilties are acheivable easily without using
any storage in the community.

Figure 4 shows how our solution can be scaled up to larger com-
munities. In particular, Figure 4(a) shows the comparison of com-
putational time required to compute the Shapley values along with
the approximated Shapley values. It is obvious that calculating
the Shapley values beyond 16 agents (10.1 hours for 15 agents as
shown in Figure 4(a) and it doubles for 16 agents, i.e. 21 hours)
is not feasible (in reasonable time) even when the exchange takes
place over a single day. In contrast, we can use the approximated
Shapley values for larger communities as it scales up decently with
the number of agents. Figure 4(b) and Figure 4(c) show the ap-
proximated charging and energy Shapley values for 100 agents.
As mentioned in Section 3.5, ApproShapley needed 112 samples
per agent to ensure that the approximated values are within ±1.5
range of the actual Shapley values with a 95% chance. We note that
our observations for Figure 2(a) and Figure 2(b) are valid here too.
In addition, the overall battery reduction for 100 agents is 69.2%
which is comparable to the community of 10 agents (64%).

5. CONCLUSION AND FUTUREWORK
Energy exchange has already been shown to be effective in the ef-
ficient use of energy and resources in some domains (e.g., utility
companies [14] and smart homes [1]). Using multiagent systems
and cooperative game theory, we extend this idea of exchange to
communities and show that a community can reduce the battery
usage (by 64%) while using energy more efficienctly (up to 80%
in some cases). We have also shown that the fair distribution of
the surplus can be acheived either by computing the exact Shapley
value or approximated Shapley values in large communities. Our
solution requires no monetary payments and thus is applicable in
remote communities with no financial systems in place.

Our work can also be useful in unit sizing [11, 7], a process
where engineers estimate the optimal size of a microgeneration unit
and storage for a home. Here, connecting the home to a neigh-
bour’s or community will enable energy exchange which can help
reduce the need for storage and improve the efficient use of elec-
tricity. Thus, where applicable, energy exchange can be useful unit
sizing. Furthermore, our work can be beneficial for organisations
(such as NGOs and governmental agencies) that are interested in
providing microgeneration units to the remote communities in de-
veloping world. In this case, energy exchange can cut down the
maintenance cost for such communities. Also, agent-based simu-
lations to coordinate these resources (as we demonstrated) can be
useful in finding the right mixture and combination of microgener-
ation units and storage to bring down the infrastructure cost.

There is also a growing interest in providing the off-grid com-
munities with used electric batteries [5, 3], in particular, used EV
batteries [9, 12].11 Such batteries have reduced storage efficiency
(e.g. an electric EV battery may have its storage shrunken by 20%
after some use of years) and we showed that energy efficiency can
be greatly improved by exchanging energy in such cases.

Energy generation from some renewable generation units (e.g.,
solar panels and wind turbines) is weather-dependent and thus it is

11See PHEV/EV Li-on Battery Second-Use Project
nrel.gov/vehiclesandfuels/energystorage and
Nissan’s 4R Energy project for its LEAF EV battery re-use
nissan-global.com/EN/NEWS/2011/1107.html

marked with uncertainty. In future, we will extend our model to
incorporate such uncertainty in generation. Furthermore, we have
not considered the fact that some loads can be deferrable and our
future work will include different type of loads (e.g. critical, de-
ferrable and non-deferrable) to investigate the possibility of energy
exchange in such scenarios.
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