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ABSTRACT
In a crisis management context, situation awareness is challeng-
ing due to the complexity of the environment and the limited re-
sources available to the security forces. The different emerging
threats are difficult to identify and the behavior of the crowd (sep-
arated in groups) is difficult to interpret and manage. In order to
solve this problem, the authors propose a method to detect threat
and understand the situation by analyzing the collective behavior of
groups inside the crowd and detecting their goals. This is done ac-
cording to a set of learned, goal-based, group behavior models and
observation sequences of the group. The proposed method com-
putes the group estimated state before using Hidden Markov Model
to recognize the goal by the group behavior. A realistic emergency
scenario is simulated to demonstrate the performance of the algo-
rithms, where a suicide-bomber wearing a concealed bomb enters
a busy urban street. The proposed algorithms achieve the detection
of the dangerous person in the crowd, in order to raise an alert and
also predict casualties by identifying which groups did not notice
the threat. Complex Event Processing is used to compare and eval-
uate the results. The algorithms were found more precise and more
tolerant to noisy observations.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Distributed Artificial Intelligence;
I.5 [Pattern Recognition]: Models, Design Methodology;
I.6 [Simulation and Modeling]

General Terms
Algorithms, Measurement, Security, Human Factors
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1. INTRODUCTION
In this paper, we present a part of a system which has been devel-

oped within the EUSAS (European Urban Simulation for Asymmet-
ric Scenarios) project. The project is financed by twenty nations
under the Joint Investment Program Force Protection of the Euro-
pean Defense Agency (EDA). Within this project, we aim to obtain
improved situation awareness by using new methods for detecting
high-level information from observed variables of the monitored
crowd. Previous work [21] developed methods to assess risks dur-
ing social gatherings in the case of emergency and panicked crowd
evacuation, by identifying problematic escape paths and possible
stampedes and points of crowd crushing. The first methods allow
training, recognition and anticipation, in real-time, of the recurrent
emerging collective movements of panicked agents (each agent cor-
responds to a person in the crowd). Then, in order to detect the
reasons of this type of behaviors, we developed methods for group
detection. This paper presents consequent work on the detection
of these groups’ behavior, their goals and intentions, and the
detection of the reasons that caused these behaviors. Group behav-
ior modeling methods were used, such as Hidden Markov Model
(HMM) by learning from observations of successive states of mem-
bers and which extract high-level facts of current behaviors as Com-
plex Event Processing (CEP).

Real-time detection of a multi-agent behavior is a highly com-
plex problem. Indeed, if the group state is defined based on the
states of its members, a model of group behavior will have a num-
ber of the variables |A|.|S|.t where A is the set of agents and S is
the number of variables for each agent state from the start of the
observation till the current time step t. Therefore, the size of the
behavior model becomes intractable, over time.

Our approach consists in defining a set of discrete relative (DR)
state sequences that model goal-based group behavior. The set of
DR states represents a discretization of the evolution between two
successive times concerning the difference between a goal state and
a centroid state of a group. This centroid of the group is computed
from local states of people of the group. By this way, the number
of agents/people in the group has no impact on the complexity of
the recognition problem of a collective behavior.

An important fact about the goals of a group is that they are all
entities of the environment (excluding the members of the current
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group, such as other people, other groups, locations, critical in-
frastructures). The action sequence of a group has been decided
according to these external goals/entities, for example: a group is
following this target or a group is fleeing from an identified threat.
The proposed method provides a probability value denoting the
likelihood that this group is executing this behavior according to
the specific goal, thus they are called goal-based group behaviors.

The algorithm is used to obtain the most likely groups and goals
among observed agents. The probability that such group executes
such collective behavior to reach a specific goal is established ac-
cording to an observation sequence and a goal-based group behav-
ior model. During the simulation, we used a highly realistic virtual
environment, as presented in the last section.

Section 2 and 3 present the background and previous work rel-
evant to our framework, followed by our contribution in section 4.
Finally, section 5 presents the results from the experiments in the
virtual environment.

2. BACKGROUND
In order to facilitate the comprehension of our model and the

suitability of our experiments, this section presents relevant back-
ground knowledge in the areas of teamwork analysis.

The objective of the teamwork analysis [26] is to identify the
team’s goal, the executed actions of members to achieve the goal
and the coordination patterns between its members. Three gen-
eral classes of characteristics are then potentially valuable for the
team’s activity/plan recognition [26]: (1) spatial relationships be-
tween team members and/or physical landmarks that remain fixed
over a period of time; (2) temporal dependencies between behav-
iors in a plan or between actions in a team behavior; and (3) the
coordination constraints between agents and the actions that are
performed. Some properties of the observed interactions are in-
variant over all possible permutations of behavior, but the multi-
agent activity/plan recognition includes two difficulties [26] : (1)
the multi-agent behaviors are more variable in the observed spatio-
temporal traces than simple behavior; (2) the team composition can
change over time.

The observation sequence of agent behavior can be segmented to
obtain its state sequence. In real-time, this sequence is continuous
and thus must be tested at regular intervals. This requires additional
memory for the state space of observed data for the learning and
additional execution time for the methods that learn and recognize
the behavior models.

In our model, we use Hidden Markov Models (HMM) that allows
representing a behavior on a set of hidden states with a transition
probability distribution between these states. All observable state
sequences of this behavior allows us to obtain the transition proba-
bilities.

We adapt the HMM definition [23] by this 5-tuple 〈Q,A,O,B,Π〉:

Q is a finite set of hidden states, where qi is the ith hidden state;

A is a finite set of transition probabilities, where aij = Pr(st+1 =
qj |st = qi) is the transition probability that the hidden state will
be qj after qi ;

O is a finite set of observable states, where oi is the partially ob-
servable state of qi (as obtained from a monitored system after
using data fusion methods to reduce the noise);

B is a finite set of observation probabilities, where bik = Pr(ok|qi)
is the probability to observe ok in the state qi;

Π is a finite set of initial state probabilities, where πi = Pr(s0 =
qi) is the probability to be initially in the state qi.

Figure 1: An example of HMM with two hidden states and
three observable states

This system is kept under following constraints

∀i ∈ Q,
∑|Q|
j=0aij = 1;

∑|Q|
k=0bik = 1;

∑|Q|
m=0πm = 1;

and allows three main computations [23]:

1. The probability of the current state by the equation Pr(st =
qt|Ot) that gives the most likely hidden state qt at the time
t knowing an observation sequence Ot = {o1, ..., ot}. It is
solved by a dynamic programming algorithm such as Forward-
Backward [22];

2. The most likely hidden state sequence knowing an observation
sequence. It is solved by the Viterbi algorithm [22];

3. The HMM learning is able to give the maximum probability
when it estimates a sequence. It is solved by the Baum-Welch
algorithm [22] that uses the Expectation-Maximization method.

In our work, different levels of observations and modeling pro-
duce a stochastic representation of a group behavior: (1) the mi-
cro-level is about the roles of the agents impacting on their possi-
ble individual activities; (2) the meso-level is about the activities
executed in teamwork; (3) the macro-level is about the goals that
explain the interactions between each group and the environment.

To model a behavior of agents, the model must be canonical [27]
whatever the position, the speed, the orientation, the observation
scale, the number of agents and goals. For a canonical represen-
tation of the team state, the concept of centroid is used [27]. This
corresponds to a vector where each variable is the average value
of states variables of the team members. Thus, our team’s behav-
iors are defined on their relative movement and not on the absolute
variables of agents to be recognized in any monitored situations.
The extracted characteristics of the behavior models could be clas-
sified by minimal information and discrete according to their type
of agent, environment or team. Such examples are the Centroid-
Relative Position Vector [16] or the Role-Relative Position Vector
that change according to members’ roles during team behavior.

pcx,y,t =

∑|c|
i=1 p

ai

x,y,t

|c| (1)

At time t, the group position pcx,y,t of the centroid state sct is com-
puted by the average of positions pa

i

x,y,t of each agent ai of the
group c. The centroid state sct includes all required information of
the agents (such as position and speed).
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In conclusion, a centroid state formalizes a group state with an
unspecified number of members. The sequence of these states char-
acterizes team behavior, and the behavior can be learned and rec-
ognized using HMM methods, thus achieving detection of group
behavior. Our model presents the innovative points that consist of
a discrete relative state sequences which are used to formalize and
detect goal-based group behaviors. Before the proposed method
is explained in greater detail, previous related work is presented in
the following section.

3. RELATED WORK
There are several studies that investigated the requirements, ad-

vantages and limitations of methods on group behavior and goal
detection. This section describes the evolution of relevant technical
solutions to demonstrate the advantages achieved by the proposed
model.

The behavior planning and detection have a difference in the di-
rection of information propagation like in the Dynamic Bayesian
Networks [11] that propagates it in the two directions and model
time influence. The probabilistic plan/activity recognition [7, 25] of
Bayesian Network (representing links between events/actions with
a partial order constraint) is applied by an inference algorithm ex-
actly as the Viterbi algorithm on HMM (computing the posterior
probabilities of distribution on possible interpretations).

In order to model complex behaviors, the main idea has been
the decomposition of the parameter space to decrease their com-
plexity: in initial, accept, intermediate and reject states (Behavior
HMM [12]); or until each observed agent characteristic (Observa-
tion Decomposed HMM [14]); or for each distinct temporal granu-
larity level and each kind of information (Layered HMM [20]); or
(Switching Hidden Semi-Markov Model [9]) using a duration dis-
tribution for each state to consider that a state remains unchanged
for a certain duration before its state transition. Group behavior
can be executed by a variable number of agents, thus the decom-
position solution increases the complexity of the problem (because
each group behavior should be decomposed and learned for each
possible team size and roles members).

In order to detect team behaviors, the probabilistic recognition
of agent’s role can be executed before the team activity recogni-
tion to improve the detection quality. The Unique or Multiple Role
Assignment algorithm [16] selects agents for each identified valid
roles having the highest probabilities (travelling from the root to the
leafs of roles in a probabilistic decision tree). For the team activity
recognition, they represent an Idealized Team Action [16] after the
normalization of observations to deal with the noise. This method’s
limitation is that it must produce a library of the same team activity
for each member condition, as in the Multi-Agent Plan Recognition
[1]. In order to detect a team’s behavior, this method identifies the
structures of agent behaviors in the team by a matrix, where pij is
the expected action of the member of the line j at the step of the
column i and must be compare in each team plan P .

Recent works have been focused on Abstract HMM [5] models
which are used to recognize an agent policy on long term. Each
upper level abstract behavior includes lower level simple action se-
quences. Therefore to manage its explosion in the state space, a
hybrid inference method of Factored State-AHMM [29] is used to
remove the redundant probabilistic links of state transitions.

Each state of each level of a Hierachical HMM [4] can be itself
a HHMM. This hierarchical policy recognition of a team is based
on a multi-agent decision method called Hierarchical Multiagent
Markov Process [24] that coordinates actions of agents on a upper
level by a controller and without coordination on a lower level. An
end state for each level indicates when the activity is finished in
order to go to the upper level state.

Using the Joint Probabilistic Data Association Filters method,
HHMM-JPDAF [18] recognizes the behaviors of multiple persons
on its set of HHMM and the noisy observations. Its learning al-
gorithm discovers [17] the HHMM structure and estimates the link
probabilities by the Expectation-Maximization method.

For recognition on long term, a memory node of each level in
the Abstract Hidden Markov mEmory Model (AHMEM) [3] memo-
rizes the actions sequence that is executed according to the chosen
activity by the current policy of the upper level. Knowing a noisy
observation sequence, an approximate probabilistic inference com-
putes, in real-time, the probability of various possible behaviors of
AHMEM [19].

In addition to a real-time probabilistic behavior recognition of
observed multi-agent system, M(ulti-agent)-AHMEM [10] allows
a contextual, non-deterministic approach and a high level multi-
modal fusion of various sources using an ontology as library of
behaviors describing the possible relationships between entities and
the environment.

The learning of these last multi-agent behavior models is more
and more complex according to the multiple kinds of states. Fur-
thermore, the use of approximate inference methods for a real-time
detection decreases the quality of detection. This raises the ques-
tion whether there are alternative ways to HMM.

Techniques based on learning could be an alternative to HMM.
Hierarchical Conditional Random Field [13, 30] encodes relations
between observations including directly the conditional distribu-
tion, or Inverse Reinforcement Learning (IRL) [8] describes the in-
tention/goal/behavior of each agent by computing a reward func-
tion to reproduce the observed policy of the agent. However, these
techniques suffer from the need of significant data/time for learning
and are not suitable to detect goal-based group behaviors.

Like an alternative to the Bayesian inference, the Dempster-Shafer
theory is useful to assign any agent to a team and behavior for each
time step. The STABR (Simultaneous Team Assignment and Be-
havior Recognition) algorithm [28] creates a set of potential teams.
The formation recognition by the RANSAC (Random Sampling and
Consensus) algorithm generates assumptions of teams that explain
all the observed space-time traces of members. The advantages are
the quick behavior recognition in comparison with HMMs and the
team member reassignment. But it cannot guaranty obtaining the
best match between the observed data of the team behavior and the
selected behavior models among all assumptions.

Another possible solution is the Complex Event Processing (CEP)
[15] that includes an inference engine that uses the forward- and/or
backward-chaining on its rules to detect the behaviors and situa-
tions requiring a reaction. CEP can be represented using levels of
the JDL Data Fusion model [2]: (1) the standardization rules on
various sources, (2) the filter rules and the simple rules execution
on Complex Events (CEs), (3) the aggregation rules for new CEs
and the detection rules for significant items in an events cloud, (4)
a feedback loop. But the inference engine has difficulties to deal
with a great volume of facts with regular updates by many CEs and
production rules. We have already implemented and often used
this technique and it will be used as the comparison method with
our model during experimentation.

In conclusion, three main approaches are presented in this state
of the art section: probabilistic, grammatical and statistical / fuzzy
methods. All these approaches are unable to detect in the same
way the collective behavior and the target goal. The follow-
ing section presents the proposed approach based on an aggregated
state (centroid) of the group allowing the recognition of the behav-
ior and the goal of the group, in real-time.
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4. THE MODEL OF GOAL-BASED GROUP
BEHAVIOR

In the framework of the EUSAS project, an algorithm, similar
to the one presented in [6], detects groups of agents. This study
advances the previous work in order to achieve goal-based group
behavior detection. In this section, we present how to compute
a discrete relative (DR) state, how to model a collective behavior
according to a goal and how to detect goal-based group behavior.
In the study, the state of an agent contains only its position p and
its speed v.

4.1 Discrete Relative states
To compute a DR state as in Figure 2, we get observations {oa

i

t , o
gj

t }
on the hidden states {sa

i

t , s
gj

t } for each agent ai of the group c and
each goal gj /∈ c (which could be mobile) from the time 0 to t.
Each ot and st contains the position and the speed 〈pt, vt〉.

1. We compute {sct−1, s
c
t} the centroid states at time t−1 and t of

a group c using equation 1.

2. We compute relative states {∆sc,gt−1,∆s
c,g
t } on the difference

between centroid states {sct−1, s
c
t} and goal states {sgt−1, s

g
t }.

The relative variable ∆rc,gt ∈ ∆sc,gt is given by:

∆rc,gt =
√
|rcx,t − r

g
x,t|2 + |rcy,t − r

g
y,t|2 (2)

where rx,y,t is a spatial variable (as px,y,t of the equation 1).

3. We discretize the relative states {∆sc,gt−1,∆s
c,g
t } on their differ-

ence from t − 1 and t for each variable ∆rc,g ∈ ∆sc,g . The
discrete relative variables {drn, drd, drc, dri} are introduced
to represent any DR state which are, in our case, the DR posi-
tions {pn, pd, pc, pi} and the DR speeds {vn, vd, vc, vi}. These
DR variables are given by:

drn (is null) ∆rc,gt < δrmin

drd (decrease) if ∆rc,gt < ∆rc,gt−1 − δrmin
dri (increase) ∆rc,gt > ∆rc,gt−1 + δrmin
drc (is constant) |∆rc,gt −∆rc,gt−1| < δrmin

The value δrmin indicates a minimal state transition between two
successive times according to the variable r ∈ s, thus it is directly
proportional with the number of obtained observations per seconds.
If we take the relative position p and speed v between a group and
a goal from t− 1 to t, the computed set of DR states represents:

QDR =


〈pn, vn〉 〈pn, vd〉 〈pn, vi〉 〈pn, vc〉
〈pd, vn〉 〈pd, vd〉 〈pd, vi〉 〈pd, vc〉
〈pi, vn〉 〈pi, vd〉 〈pi, vi〉 〈pi, vc〉
〈pc, vn〉 〈pc, vd〉 〈pc, vi〉 〈pc, vc〉


The advantage of this discretized state space is to facilitate the
HMM learning and this kind of discretized state is human-readable.
The DR state 〈pn, vn〉 represents a null discrete relative position pn
and a null discrete relative speed vn (the group position and speed
is equivalent to the goal position and speed) from t− 1 to t.

In a sequence of DR states, we can show the relative movement
over time between a group and a goal. For example, the three fol-
lowing DR state sequences show three different goal-based group
behaviors:

∆Sc,g0,4 = {〈pn, vn〉, 〈pn, vi〉, 〈pi, vi〉, 〈pi, vc〉, 〈pi, vc〉}
∆Sc,g5,9 = {〈pc, vd〉, 〈pc, vi〉, 〈pc, vc〉, 〈pc, vc〉, 〈pc, vd〉}
∆Sc,g10,14 = {〈pd, vc〉, 〈pd, vc〉, 〈pd, vd〉, 〈pn, vd〉, 〈pn, vn〉}
First during ∆Sc,g0,4 , the group c quitted the goal g and has moved

away from it, second during ∆Sc,g5,9 , c has moved around g at the
same distance, and last during ∆Sc,g8,12, c has moved towards g and
is now close to it.

Figure 2: A discrete relative state computed from a set of ob-
servable states of n agents of a group c and a goal g

An observed sequence of this DR states can be seen as a low level
group behavior sequence of a recurrent high level group behavior.
Each group’s behavior has its own set of recurrent state sequences
and we use HMM to discover it.

4.2 Goal-based Group Behavior Assignment
To produce goal-based group behaviors detection, we consider

the tuple 〈Oc,Gt ,Λ, F 〉 where:

Oc,Gt = {{oa
1

0 , oa
2

0 , ..., oa
|c|

0 , og
1

0 , ..., og
|G|

0 }, ..., {oa
1

t , ..., o
g|G|

t }}
is an observation sequence of each agent of the group c and
each goal of G from 0 to t, where {oa

i

t , o
gj

t } is an obser-
vation of the ith agent and the jth possible goal that an ob-
served group c can seek to reach;

Λ is a set of HMMs, where λh ∈ Λ is the HMM modeling the
hth defined group behavior;

F is a set of functions, where fh is a function (i.e. section 4.1)
that computes the DR state sequence ∆Sht from an observa-
tion sequence according to HMM λh.

Pr(λ|Ot) is the probability that the behavior λ is executed dur-
ing the observation sequence Ot (computed by Forward-Backward
algorithm [22]). During the T last observations (in order to cap-
ture the recent behavior), the computation of observations sequence
Oc,g

j

t−T,t in DR states sequence ∆Sc,g
j

t−T,t is given by:

Mc
t (λh, gj) = Pr(λh|∆Sc,g

j

t−T,t = fh(Oc,g
j

t−T,t)) (3)

For each group behavior λh and each possible goal gj , we com-
pute the probability (3) that a group c is executing λh to reach gj .
The result gives us thus the following matrix:

Mc
t =


M(λ1, g1) · · · M(λ1, gj) · · · M(λ1, g|G|)...

. . .
...

. . .
...

M(λh, g1) · · · M(λh, gj) · · · M(λh, g|G|)...
. . .

...
. . .

...
M(λ|Λ|, g1) · · · M(λ|Λ|, gj) · · · M(λ|Λ|, g|G|)


We obtain the most likely tuple 〈λH , gL〉 by:

M(c, t) = argmax∀g
j∈G

∀λh∈Λ
{Mc

t (λh, gj)} (4)

Here, only one goal-based group behavior is selected for the
group by the best probability of Mc

t . But a group can execute dif-
ferent group behaviors for different goals at the same time. We
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obtain the most likely group behavior λH for each goal ∀gj ∈ G
by the result of:

M(c, gj , t) = argmax∀λh∈Λ{M
c
t (λh, gj)} (5)

In the same way, for another use case, for a group, we could
obtain M(c, λi, t) the most likely goal gh for each group behavior
λi on Mc

t .
To obtain a probability on the recent behavior of agents, we keep

only the T last observations. We will show in experiments the im-
pact on the detection quality by changing the observation sequence
length T for the learning and the recognition.

In order to understand, at this point, following the instructions of
this section, we model a goal-based group behavior using discrete
relative state sequences computed from observation sequence of
monitored groups of agents and their possible goals. The following
section presents our method to extract the specific goals that are
responsible of observed behavior sequences of groups.

4.3 Valued Goal-based Group Behavior
In a monitored situation with lots of possible goals for a group,

we detect its current goal-based group (GbG) behaviors. In order
to detect if the group is executing a sequence of GbG behaviors
according to a particular goal (its intention), we measure its value
using the following process that we call Valued Goal-based Group
Behavior Detection.

This value can be measured in different ways according to the
kind of intention that we want to detect. From the time t− T to t,
we use the following goal values in order to represent:
• V c

i,gj

t−T,t the intention of the group ci according to the goal gj ;

• V c
i,Gj

t−T,t the intention of the group ci according to a set of
goals Gj (∈ G, for example: all the security forces, the crit-
ical infrastructures, the safe areas or the dangerous areas...);

• V C
i,gj

t−T,t the intention of a set of groups Ci according to the
goal gj .

In order to measure this goal value, we use a distribution where a
goal g and a GbG behavior λh of a group c give the value V (c, g, λh).
A distribution is created according to the intention φp (∈ Φ the set
of defined intentions) that we want to detect by the observed GbG
behavior sequence. The advantage of a distribution is that it can be
created or learned to detect each type of intentions that is needed.
So, the equation of the goal values are:

V φ
p,ci,gj

t−T,t =

t∑
tc=t−T

V φ
p

(ci, gj , λh = M(ci, gj , tc)) (6)

V φ
p,ci,Gj

t−T,t =
∑
gl∈Gj V

φp,ci,gl

t−T,t ; V φ
p,Ci,gj

t−T,t =
∑
cl∈Ci V

φp,cl,gj

t−T,t

For example, in order to detect the civilians with a dangerous
intention φp for themselves: the distribution gives a positive value
when civilians move towards a safe area and a negative value when
the groups move toward a dangerous area, and after all groups exe-
cuting φp will have a higher positive goal value. According to the
distribution of the intention φp ∈ Φ, the group c is moving toward
the specific long-term goal gφ

p,c is:

gφ
p,c
t−T,t = argmax∀gj∈GV

φp,c,gj

t−T,t (7)

According to the monitored situation and what we search to iden-
tify, a valued goal-based group behavior indicates the intention of
the group on the long-term on two levels of observation: firstly,
a general information about its specific goal, and secondly, if its
intention is normal (friend) or abnormal (foe). Thus the ability

to learn and recognize valued goal-based group behaviors using
HMM methods in real-time is shown during the following experi-
mentation section.

5. EXPERIMENTS
During the experiments, the proposed method of the relative

states in HMM is compared with CEP. Our implementation in java
communicates with Virtual Battle Space 2 (VBS2) 1 a highly real-
istic simulated environment and can manage HMMs and CEPs. For
the HMMs, it uses a jahmm 2 library available on-line (managing
states, observations and standard algorithms relating to HMMs). It
uses also Drools a CEP rule engine (leading java open source rule
engine federated in Jboss). During a scenario in this software, it ex-
tracts essential information of agents to apply the proposed model
of detection and it displays the results in real-time.

This section begins with the HMM learning of behaviors. The
following subsection presents the results from the experiments in
order to show how the proposed model can be used to help in a cri-
sis management situation. This section also includes an experiment
of a simulated crowd during a social gathering with an human car-
rying a bomb that moves toward a press reporter (in order to detect
the abnormal behavior of the crowd).

5.1 The HMM learning of behaviors
For the proposed use case, between a group and a goal, the prob-

ability of four different GbG behaviors needs to be determined in
real-time. These behaviors are: λc→g moving towards a goal, λc←g

moving away from a goal, λc�g moving around a goal and λc=g

not moving according to a goal.
In order to define HMM on a goal-based group behavior, a learn-

ing model on the observation data resulting from various scenarios
is created using the Baum-Welch algorithm [23]. This algorithm
enables us to maximize probabilities of each given observation se-
quence by updating the parameters A, B and Π (i.e. section 2).

During the simulated scenarios, the teams are composed of 4 to
16 civilians that move in group formation. There is some (mobile
or not) goals (defined by other agents or specific positions). The
environment has also few obstacles that the teams avoid. The ob-
servations of each position and speed of agents is obtained each
second to compute their DR state sequences (i.e. the process is
described in section 4.1).

(a) The team is moving
towards the goal.

(b) The team is moving
away from the goal.

Figure 3: Two HMM examples of goal-based group behaviors
that have been learned (and they have their own transition
probabilities between the discrete relative states).

Two learning results are shown on Figure 3. Each of 16 DR
states (based on the relative positions and the relative speeds) has a

1Bohemia Interactive Simulations, Australia, 2011,
http://vbs2.com
2J.M. Francois, Jahmm (Java Hidden Markov Model), 2006,
http://code.google.comp/jahmm/
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(a) A team has moved
through four critical in-
frastructures and a secu-
rity force followed it.

(b) Two teams have moved
toward two different goals.

(c) Two teams have avoided a danger-
ous area.

(d) A team is moving to-
ward a safe area while
avoiding two dangerous
goals.Figure 4: Examples of monitored experimentations.

transition probability not null to go to another DR state. Edges rep-
resent their transition probabilities (with a proportional size only if
they have a probability Aij > 1/|QDR| = 0.0625,∀i, j ∈ QDR).
Each double circle indicates us the possible initial states of the be-
havior. The GbG behavior of Figures 3(a) and 3(b) are completely
opposed and we can see that their initial and final DR state are al-
most at the opposite (as 〈pn, vn〉 that is the final DR state of 3(a)
and the initial state of 3(b)). According to each behavior, only a
subset of all relative states is used for learning and the transition
probabilities are different even if the two behaviors overlap. So, we
can learn various different GbG behaviors using our method.

5.2 HMM versus CEP
In order to compare the results of the proposed discrete relative

states on Hidden Markov Model, the Complex Event Processing
was used as an alternative method because it is often used for the
complex event detection [2, 15]. The following experimentations
of detection are produced on a set of scenarios where collective
movements are simulated by a multi-agent system in VBS2.

Drools was used to write rules that take observations of agents in
low level facts and extract high level facts of collective behaviors
and goals of groups. These rules compute the same function (as
explained in section 4.1 and 4.2) to create high level facts including
the same result of the centroids, the DR state sequences and Mc

t

(the most likely collective behavior for each goal for a group).
The illustrations of Figure 4 are examples of monitored situa-

tions used to test the precision of our detection method. The dot-
ted lines show the paths used by the teams (black for the cen-
troid of each team and grey for each member). Each group has
its own color and a red line links each member of the centroid. For
each group during the detection, note that the other entities (alone
agents, groups or important positions) compose the set of its possi-
ble goals and are presented by blue diamonds.

During the experimentations, the behavior detection quality is
measured by the percentages of the precision expressed by A/B:
whereA is a value that increases one by one point when a detection
corresponds correctly to the observation, and B is a value that in-
creases one by one point when the system obtain a new observation
that must be detected.

With the four GbG behaviors 〈λc→g , λc�g , λc←g , λc=g〉, we
added an inconsistent GbG behavior λc!g that is a HMM by de-
fault without learning. If λc!g has the highest probability then the
observation sequences used during the behavior learning require
further corrections.

Table 1 presents the tests for the GbG behavior learning and
recognition on different lengths of observations sequences from 2
to ∞ (by an iterated method). The table presents results up to a
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s 1 CEP 58,06 %
HMM Length of learned observation sequences

2 3 4 5 6 7 8
2 86.2% 84.0% 83.5% 83.5% 83.3% 83.6% 83.6%
3 86.2% 84.6% 84.2% 84.2% 83.7% 83.8% 83.8%
4 87.0% 85.4% 85.8% 86.2% 86.6% 85.3% 83.8%
5 88.1% 88.1% 85.8% 85.9% 85.9% 85.7% 86.1%
6 85.4% 85.1% 85.0% 85.0% 85.2% 82.7% 82.6%
7 81.8% 82.2% 81.3% 81.5% 82.2% 82.3% 82.3%
8 77.4% 78.7% 78.2% 78.3% 78.2% 78.6% 78.8%

Table 1: The precisions of Goal-based Group Behavior Assign-
ment on multiple scenarios (i.e. Figure 4) using CEP and HMM
(according to the observation sequences lengths used to learn
and recognize them).
sequence length of 8 as we found that for higher length the preci-
sion decreases. In order to obtain the best detection quality, the last
five observations (one per second) in the tested sequences (of these
scenarios) always give the highest precision. The decomposition of
sequences of GbG behaviors to learn them with only two observa-
tions give a better precision. The solutions with a short length of
observation sequences (as 2,2 in the table 1) detects more quickly
each new GbG behavior but each new noisy observation has more
impact (e.g., when the group avoids an obstacle during their ob-
served movements). The solution with a long length of observation
sequences (as 5,5) detects the current GbG behaviors even with
more noisy observations but each new GbG behavior takes longer
to be detected (after two new observations). The majority of er-
rors during the detection occurs when a group changes its current
GbG behavior. In order to increase the precision more than 92%,
we added each possible GbG behavior (GbGB) that overlaps the
evolution of an old GbGB toward a new GbGB. But by increasing
the size of the library of GbGB models, we add a difficulty for an
human user to understand what is happening.

CEP updates instantaneously the current state of the GbG behav-
ior but without taking account the uncertainty of observations. In
order to help in a crisis management situation, the poor precision
(58%) indicates that the behaviors of groups and their goals can
not be detected by CEP. On the opposite, the Goal-based Group
Behavior Assignment reduces the impact of observations under
uncertainty and always detects the nearest goal-based group be-
havior after two observations.

As a conclusion the precision of our proposed method can be
used to help in crisis management context, in particular with the
valued goal-based group behavior detection used as demonstrated
in the following experiment.
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5.3 Threat detection on complex dynamic en-
vironments

In the framework of the EUSAS project in VBS2, we simulated
a busy urban street. Two hundred people can be seen walking
peacefully in a road until they realise that there is a suicide bomber
among them. They can see a man wearing a concealed bomb under
his shirt. Then, the people in crowd start to flee in panic. However,
there are people that do not see the man, and without realising the
imminent danger they continue moving towards him. At the scene
there is also a reporter that observes the situation and tries to un-
derstand what is happening. A screenshot of the simulated street is
shown in Figure 5(a).

The proposed methods are applied to the simulated scenario. Ini-
tially, the crowd was separated into groups according to their ob-
served state of the group. Thus we applied the valued goal-based
group detection (i.e. section 4.3) in order to detect the intention
φ⇔g

j⇒ of groups run away from a specific entity (that is a non-
detectable threat) within the crowd and the intention φc

i 7−→gj of
a group than continue its movement along a long-term predefined
goal. The result of the group detection is shown in Figure 5(b).

In order to identify φ⇔g
j⇒, we verify for each goal, if its goal

value V φ
⇔gj⇒,Ci

t−T,t is not abnormaly high using a distribution that
gives a positive value when groups move around or away from the
goal, else it gives a negative value: V ({λC

i←gj , λC
i�gj , λC

i!gj ,

λC
i=gj , λC

i→gj}) = {1, 1
2
, 0,− 1

2
,−1}. And φc

i 7−→gj the long-
term goal gj of the group ci is identified by the highest goal value

V φ
ci 7−→gj

t−T,t using the distribution: V ({λc
i→gj , λc

i�gj , λc
i!gj ,

λc
i=gj , λc

i←gj}) = {1, 1
2
, 0,− 1

2
,−1}.

With these distributions, each non-searched goal value is near to
zero over time, and the searched goal value is quickly higher than
the T value (because of is computed from t−T to T ) and increased
by the number of goals or groups (when the goal value is the sum
of their goal values, i.e. Equation 6).

Figure 5(a) shows the panicked groups running away for the
threat. Note that not everyone realised the threat and some peo-
ple continue along their original path. Figure 5(c) shows the results
of the detections. It presents an overview of the situation for the
analyst. First the threat is detected based on the behavior of the
people towards this entity. Also the groups that did not detect the
threat and are in danger can also be detected. This enables the se-
curity forces to predict the groups in danger and from the group
members predict the number of casualties.

Another important aspect of the method is that if the suicide
bomber tries to hide within the group the system treats the entire
group as dangerous, rather than allowing the threat to be hidden
within the majority of an innocent group. Therefore the system can
continue tracking the danger even if he tries to conceal himself by
merging with another group. However, a difficulty that the method
faces is to create a correct distribution of goals values according to
the library of GbG behaviors because each abnormal intention ex-
ecutes specific behaviors that must be valued correctly in order to
avoid fake detections. This provides a powerful tool to the security
forces to understand the situation and predict threat in order to take
better informed decisions on the developing situation.

This could involve resource allocation to investigate further the
detected threat, or eliminating the threat once it is confirmed. Fur-
thermore, it could provide information about the member of public
in greater danger so that the security forces can focus on accessing
them and protecting them. Finally, in case there are critical infras-
tructures and vulnerable entities, the system can be used to assess

(a) People that realised the presence of the suicide bomber
can be seen running and fleeing the scene. The people that
did not see the bomber can be seen continuing their move-
ment or looking surprised at the panicked people.

(b) A 2D view of the situation. The marks denote the dif-
ferent group detected and their direction of movement.

(c) It is easier to follow each centroid movement of groups.
The valued goal-based group detection reveals that there
are groups that avoid and move away from a single agent
during its movement toward the player.

Figure 5: A situation with a high-level risk.

the intention of the target towards these assets, based on whether
he is moving towards them or not.

6. CONCLUSION
We have shown that the use of discrete relative states in Hidden

Markov Model may successfully detect, in real-time both multiple
collective behaviors and goals of groups based on observations.
We have compared the proposed approach with a different method
called Complex Event Processing, and found the results are supe-
rior in terms of precision and tolerance to noises.

In future work on asymmetric threat environments, we plan to
apply our approach on new abnormal collective behaviors such as
panic and violent crowd behavior by the fusion of new types of in-
formation. The automatic identification and learning of new collec-
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tive behaviors including agent roles is envisioned to obtain a fully
automatic collective behavior detection system. This last objective
could allow an analyst to make an informed decision in the case of
an asymmetric threat, taking into account the detected results.
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