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ABSTRACT
A promising direction in computational social choice is to
address open research problems using computer-aided prov-
ing techniques. In conjunction with SAT solving, this ap-
proach has been shown to be viable in the context of classic
impossibility theorems such as Arrow’s impossibility as well
as axiomatizations of preference extensions. In this paper,
we demonstrate that it can also be applied to the more com-
plex notion of strategyproofness for irresolute social choice
functions. These types of problems, however, require a more
evolved encoding as otherwise the search space rapidly be-
comes much too large. We present an efficient encoding for
translating such problems to SAT and leverage this encoding
to prove new results about strategyproofness with respect to
Kelly’s and Fishburn’s preference extensions. For example,
we show that no Pareto-optimal majoritarian social choice
function satisfies Fishburn-strategyproofness.

Categories and Subject Descriptors
[Applied computing]: Economics; [Computing
methodologies]: Artificial intelligence

General Terms
Economics, Theory, Verification, Algorithms

Keywords
Computer-aided theorem proving, strategyproofness, tour-
nament solutions, set extensions, SAT

1. INTRODUCTION
Ever since the famous Four Color Problem was solved us-

ing a computer-assisted approach, it is clear that computers
can contribute significantly to finding and proving formal
statements. Due to its rigorous axiomatic foundation, so-
cial choice theory appears to be a field in which computer-
aided theorem proving is a particularly promising line of
research. Perhaps the best known result in this context is
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due to Tang and Lin [19], who reduce well-known impos-
sibility results such as Arrow’s theorem to finite instances,
which can then be checked by a satisfiability (SAT) solver
[3]. Geist and Endriss [13] were able to extend this method
to a fully-automatic search algorithm for impossibility the-
orems in the context of preference relations over sets of al-
ternatives. In this paper, we apply these techniques to im-
prove our understanding of strategyproofness in the context
of set-valued (or so-called irresolute) social choice functions.
These types of problems, however, are more complex and
require an evolved encoding as otherwise the search space
rapidly becomes too large. Table 1 illustrates how quickly
the number of involved objects grows and that, therefore,
an exhaustive search is doomed to fail.

Formally, a social choice function (SCF) is defined as a
function that maps individual preferences over a set of al-
ternatives to a set of socially most preferred alternatives.
An SCF is strategyproof if no agent can obtain a more pre-
ferred outcome by misrepresenting her preferences. It is
well-known from the Gibbard-Satterthwaite theorem that,
when restricting attention to SCFs that always return a sin-
gle alternative, only trivial SCFs can be strategyproof.1 A
proper definition of strategyproofness for the more general
setting of irresolute SCFs requires the specification of pref-
erences over sets of alternatives. Rather than asking the
agents to specify their preferences over all sets (which would
be bound to various rationality constraints), it is typically
assumed that the preferences over single alternatives can
be extended to preferences over sets. Of course, there are
various ways how to extend preferences to sets (see, e.g.,
[12, 2, 20]), each of which leads to a different class of strat-
egyproof SCFs. A function that yields a preference relation
over subsets of alternatives when given a preference relation
over single alternatives is called a set extension or preference
extension. In this paper, we focus on two very natural set
extensions due to Kelly [14] and Fishburn [9]2.

1The assumption of single-valuedness has been criticized for
being restrictive and unreasonable (see, e.g., [11, 14, 20]).
2Gärdenfors [12] attributed this extension to Fishburn be-

Alternatives 4 5 6 7

Choice sets 15 31 63 127
Tournaments 64 1,024 32,768 ∼ 2 · 106

Canonical tourn. 4 12 56 456
Maj. SCFs 50,625 ∼ 1018 ∼ 10101 ∼ 10959

Table 1: Number of objects involved in problems
with irresolute majoritarian SCFs
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While strategyproofness for Kelly’s extension (henceforth
Kelly-strategyproofness) is known to be a rather restrictive
condition [14, 1, 18], some SCFs such as the Pareto rule,
the omninomination rule, the top cycle, the minimal cov-
ering set, and the bipartisan set were shown to be Kelly-
strategyproof [6]. Interestingly, the more discriminating of
these SCFs are majoritarian, i.e., they are based on the pair-
wise majority relation only, and, moreover, can be ordered
with respect to set inclusion. In particular, these results
suggest that the bipartisan set may be the finest Kelly-
strategyproof majoritarian SCF. In this paper, we show
that this not the case by automatically generating a Kelly-
strategyproof SCF which is strictly contained in the bipar-
tisan set.

For the more demanding notion of Fishburn-
strategyproofness, existing results suggested that it may
only be satisfied by rather indiscriminating SCFs such as
the top cycle [7, 8].3 Using our computer-aided proving
technique we were able to confirm this suspicion by proving
that, within the domain of majoritarian SCFs, Fishburn-
strategyproofness is incompatible with Pareto-optimality.
In order to achieve this impossibility, we manually proved
a novel characterization of Pareto-optimal majoritarian
SCFs and an induction step, which allows us to generalize
the computer-verified impossibility to larger numbers of
alternatives.

The universality of our method and its ease of adaptation
suggests that it could be applied to similar open questions
in the future.

2. MATHEMATICAL FRAMEWORK OF
STRATEGYPROOFNESS

In this section, we provide the terminology and notation
required for our results and introduce notions of strate-
gyproofness for majoritarian SCFs that allow us to abstract
away any reference to preference profiles.

2.1 Social Choice Functions
Let N = {1, . . . , n} be a set of at least 3 voters with

preferences over a finite set A of m alternatives. For conve-
nience, we assume that n is odd.4 The preferences of each
voter i ∈ N are represented by a complete, anti-symmetric,
and transitive preference relation Ri ⊆ A × A. The inter-
pretation of (a, b) ∈ Ri, usually denoted by a Ri b, is that
voter i values alternative a at least as much as alternative b.
The set of all preference relations over A will be denoted
by R(A). The set of preference profiles, i.e., finite vectors of
preference relations, is then given by R∗(A). The typical ele-
ment of R∗(A) will be R = (R1, . . . , Rn). In accordance with
conventional notation, we write Pi for the strict part of Ri,
i.e., a Pi b if a Ri b but not b Ri a. In a preference profile, the
weight of an ordered pair of alternatives w(a, b) is defined as
the majority margin |{i ∈ N | a Ri b}| − |{i ∈ N | b Ri a}|.

Our central object of study are social choice functions, i.e.,
functions that map the individual preferences of the voters
to a nonempty set of socially preferred alternatives.

cause it is the weakest extension that satisfies a certain set
of axioms proposed by Fishburn [9].
3The negative result by Ching and Zhou [8] uses Fishburn’s
extension but a much stronger notion of strategyproofness.
4This ensures that the majority relation is anti-symmetric
and we can restrict our attention to tournament solutions.

Definition 1. A social choice function (SCF) is a func-
tion f : R∗(A)→ 2A \ ∅.

An SCF is resolute if |f(R)| = 1 for all R ∈ R∗(A), otherwise
it is irresolute.

We restrict our attention to majoritarian SCFs (or tour-
nament solutions), which are defined using the majority re-
lation. The majority relation (or: majority graph) RM of a
preference profile R is the relation on A×A defined by

(a, b) ∈ RM iff w(a, b) ≥ 0, for all alternatives a, b ∈ A.

An SCF f is said to be majoritarian if it is neutral5 and its
outcome only depends on the (unweighted) majority com-
parisons between pairs of alternatives, i.e., f(R) = f(R′)
whenever RM = R′M .

We will now introduce the majoritarian SCFs considered
in this paper (see [15, 5], for more information).

Top Cycle The top cycle rule TC (also known as weak
closure maximality, GETCHA, or the Smith set) returns the
maximal elements of RM .

Uncovered Set Let C denote the covering relation on
A × A, i.e., a C b (“a covers b”) if and only if b RM b and
b RM x implies a RM x for all x ∈ A. The uncovered set UC
returns the maximal elements of C, i.e., those alternatives
that are not covered by any other alternative.

Bipartisan Set Consider the symmetric two-player zero-
sum game in which the set of actions for both players is
given by A and payoffs are defined as follows. If the first
player chooses a and the second player chooses b, the payoff
for the first player is 1 if a RM b, −1 if b RM a, and 0 oth-
erwise. The bipartisan set BP contains all alternatives that
are played with positive probability in some Nash equilib-
rium of this game.

An SCF f is called a refinement of another SCF g if
f(R) ⊆ g(R) for all preference profiles R. In short, we
write f ⊆ g in this case. It can be shown for the above
that BP ⊆ UC ⊆ TC (see, e.g., Laslier [15]).

2.2 Strategyproofness
Even though our investigation of strategyproof SCFs is

universal in the sense that it can be applied to any set exten-
sion, in this paper we will concentrate on two well-known set
extensions due to Kelly [14] and Fishburn [9], respectively.
They are defined as follows: Let Ri be a preference relation
over A and X,Y ⊆ A two nonempty subsets of A.

X RK
i Y iff x Ri y for all x ∈ X and all y ∈ Y [14]

One interpretation of this extension is that voters are com-
pletely unaware of the mechanism (e.g., a lottery) that will
be used to pick the winning alternative [12].

X RF
i Y iff all of the following three conditions are satis-

fied [9]:

(i) x Ri y for all x ∈ X \ Y and y ∈ X ∩ Y

(ii) y Ri z for all y ∈ X ∩ Y and z ∈ Y \X

(iii) x Ri z for all x ∈ X \ Y and z ∈ Y \X
5Neutrality postulates that for any permutation π of the
alternatives A the choice function produces the “same” out-
come (modulo the permutation). See also Section 3.1.1.
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One interpretation of this extension is that the winning al-
ternative is picked by a lottery according to some underlying
a priori distribution and that voters are unaware of this dis-
tribution [8]. Alternatively, one may assume the existence
of a chairman who breaks ties according to a linear, but
unknown, preference relation.

It is easy to see that X RKi Y implies X RFi Y for any
pair of sets X,Y ⊆ A [12].

Based on these or any other set extension, we can now
define different notions of strategyproofness for irresolute
SCFs. Note that, in contrast to some related papers, we in-
terpret preference extensions as fully specified (incomplete)
preference relations rather than minimal conditions on set
preferences.

Again, we write PE
i for the asymmetric part of RE

i , for
any set extension E.

Definition 2. Let E be a set extension. An SCF f is
PE-manipulable by voter i if there exist preference profiles
R and R′ with Rj = R′j for all j 6= i such that

f(R′) PE
i f(R),

i.e., f(R′) is E-preferred to f(R) by voter i.
An SCF is called PE-strategyproof if it is not PE-

manipulable.

It follows from the observation on set extensions above
that PF -strategyproofness implies PK-strategyproofness.

Of the above SCFs, TC has been shown to be PF -
strategyproof, BP is only PK-strategyproof whereas UC
fails to satisfy a variant of PK-strategyproofness for weak
preferences [6, 7].6

2.3 Strategyproofness with Tournaments
For reasons of efficiency we would like to omit references

to preference profiles in our encodings and replace them by a
more succinct representation of the same expressive power.
As we will see, the notion of a tournament fulfills exactly
this requirement:

A tournament is an asymmetric and complete binary rela-
tion on the set of alternatives A. Since, for an odd number of
voters, tournaments correspond to majority graphs, we can
alternatively view majoritarian SCFs as functions defined on
tournaments rather than preference profiles, and write f(T )
instead of f(R) with T = RM being the majority graph of
the preference profile R.

For any two tournaments T and T ′ we denote the edge
difference T − T ′ := {e ∈ T : e /∈ T ′} by ∆T,T ′ .

Definition 3. A majoritarian SCF f is said to be PE-
tournament-manipulable if there exist tournaments T, T ′

and a preference relation Rµ ⊇ ∆T,T ′ such that

f(T ′) PE
µ f(T ).

A majoritarian SCF is called PE-tournament-strategyproof
if it is not PE-tournament-manipulable.

6Another natural and well-known set extension, called Gär-
denfors’ extension, leads to an even stronger notion of strat-
egyproofness, which cannot be satisfied by any interest-
ing majoritarian SCF [7]. Note that our negative result
for Fishburn-strategyproofness trivially carries over to such
stronger versions of strategyproofness.

As we show in the following theorem, for majoritarian
SCFs it suffices to check this alternative definition of strate-
gyproofness, and therefore any open problem involving strat-
egyproofness for majoritarian SCFs can be reduced to an
equivalent one involving tournament-strategyproofness only.
In our case, this enables the efficient encoding described in
the following section.

Theorem 1. A majoritarian SCF is PE-strategyproof iff
it is PE-tournament-strategyproof.

Proof. We show that a majoritarian SCF is PE-
manipulable iff it is PE-tournament-manipulable.

For the direction from left to right, let f be a PE-
manipulable majoritarian SCF. Then there exist preference
profiles R,R′ and an integer j with Ri = R′i for all i 6= j
such that f(R′) PE

j f(R). Define tournaments T := RM
and T ′ := R′M as the majority graphs of R and R′, respec-
tively. Since R and R′ only differ for voter j, it follows that
∆T,T ′ ⊆ Rj , i.e., all edges that are reversed from T to T ′

must have been in Rj . Thus, with Rµ := Rj , we get that f
is tournament-manipulable.

For the converse, let f be a PE-tournament-manipulable
majoritarian SCF. It then admits a manipulation instance,
i.e., there are two tournaments T, T ′ and a preference rela-
tion Rµ ⊇ ∆T,T ′ such that f(T ′) PE

µ f(T ). Using Debord’s
construction (see, e.g., [16]), we define a preference profile
R− = (R1, . . . , Rn−1) which has T as its majority graph
with weights

wR−(a, b) =

{
0 if (a, b) ∈ ∆T,T ′ ,

2 otherwise.

Note that with this construction the number of voters n− 1
so far is even. By adding Rµ as the n-th voter, we get to
a profile R := (R−, Rµ) with an odd number of voters as
required. Then wR(a, b) = 1 for all edges (a, b) ∈ ∆T,T ′ and
the weights of all other edges are greater than or equal to 1.
The second profile R′ can be defined to contain the same
first n− 1 voters from R and the reversed preference Rµ as
the n-th voter. The profile R′ then has T ′ as its majority
graph (since w(b, a) = 1 for all edges (a, b) ∈ ∆T,T ′ and the
weights of all other edges in the original tournament T are at
least 1 again), which completes the manipulation instance.
I.e., we have found preference profiles R,R′ which only differ
for voter n (who has“truthful”preferences Rµ) and for which
it holds that f(R′) = f(T ′) PE

µ f(T ) = f(R).

3. METHODOLOGY
The method applied here to solve open problems in social

choice theory is similar to, and yet more powerful than the
one presented in Tang and Lin [19] and Geist and Endriss
[13]. Rather than translating the whole problem näıvely
to SAT, a more evolved approach is used, which resolves a
large degree of freedom already during the encoding of the
problem. It is comparable to the way SMT (satisfiability
modulo theories) solving works: at the core there is also
a SAT solver; certain aspects of the problem, however, are
dealt with in a separate theory solving unit which accepts a
richer language and makes use of specific domain knowledge
(Chapter 26, [3]). The general idea, however, remains: to
encode the problem into a language suitable for SAT solving
and to apply a SAT solver as a highly efficient, universal
problem solving machine.
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Figure 1: High-level system architecture

Using existing tools for higher-order formalizations di-
rectly rather than our specific approach, unfortunately, is
not an option. For instance, a formalization of strategyproof
majoritarian SCFs in higher-order logic as accepted by Nit-
pick [4] is straightforward, highly flexible, and well-readable,
but only successful for proofs and counterexamples involv-
ing up to 3 alternatives before the search space is exceeded.7

An optimized formalization, which we derived together with
the author of Nitpick (at the cost of reduced readability and
flexibility), extends the performance to 4 alternatives, which
is still below the requirements for our results.

In more detail, our approach is the following: for a given
domain size n we want to check whether there exists a ma-
joritarian SCF f which satisfies a set of properties (e.g., PF -
strategyproofness and Pareto-optimality). For this specific
domain size, we then encode the requirements of the majori-
tarian SCF f as a propositional formula and let a SAT solver
decide whether this formula has a satisfying assignment. If
it has, we can translate the satisfying assignment back to
a concrete instance of a majoritarian SCF f which satisfies
the required properties. If the formula is unsatisfiable, we
know that no such function f exists.

The high-level architecture of our implementation is de-
picted in Figure 1. The user selects the setting and the
axioms, which are then encoded as a SAT instance. De-
pending on the problem, some preparatory tasks have to be
solved before the actual encoding:

• sets, tournaments, and preference relations are enu-
merated,

• tournament isomorphisms are determined using the
tool nauty [17], and

• choice sets for specific SCFs are computed (e.g.,
through matrix multiplication for UC and linear pro-
gramming for BP).

After the SAT solver has found a solution for the generated
SAT instance, this solution is decoded back into a human-
readable format.

In the following, we are going to describe in more detail
how the general setting of majoritarian SCFs as well as their

7On the other hand, the strict formalization required for
Nitpick helped identifying a formally inaccurate definition of
Fishburn-strategyproofness by Gärdenfors [12] (which had
later been repeated by several authors).

properties like strategyproofness can be encoded into CNF
(conjunctive normal form). Firstly, we describe our initial
encoding, which is expressive enough to encode all required
properties, but allows for small domain sizes of (depending
on the axioms) at most 4 to 5 alternatives only. Secondly,
we explain how this encoding can be optimized to increase
the overall performance by orders of magnitude such that
larger instances of up to 7 alternatives are solvable.

3.1 Initial Encoding
By design SAT solvers operate on propositional logic.

A direct and näıve propositional encoding of the problem
would, however, require a huge number of propositional vari-
ables since many higher-order concepts are involved (e.g.,
sets of alternatives, preference relations on sets and alterna-
tives, and functions from tuples of such relations to sets). In
our approach, only one type of variable is required, which we
use to encode SCFs. The variables are of the form cT,X with
T being a tournament and X being a set of alternatives.8

The semantics of these variables are that cT,X if and only
if f(T ) = X, i.e., the majoritarian SCF f selects the set of
alternatives X as the choice set for any preference profile
with majority graph T . In total, this gives us a high but

manageable number of 2
m(m−1)

2 · 2m = 2
m(m+1)

2 variables in
the initial encoding.

The following two subsections demonstrate the initial en-
coding of both contextual as well as explicit axioms to CNF.

3.1.1 Context Axioms
Apart from the explicit axioms, which we are going to de-

scribe in the next subsection, there are further axioms that
need to be considered in order to fully model the context
of majoritarian SCFs. For this purpose, an arbitrary func-
tion that maps tournaments to non-empty sets of its vertices
will be called a choice function. Using our initial encoding
three axioms are introduced, which will ensure that func-
tionality of the choice function and neutrality are respected:
(1) functionality, (2) canonical isomorphism equality, and
(3) the orbit condition.

The first axiom ensures that the relational encoding of
f by variables cT,X indeed models a function rather than
an arbitrary relation, i.e., for each tournament T there is
exactly one set X such that the variable cT,X is set to true.
In formal terms this can be written as

(∀T ) ((∃X) cT,X ∧ (∀Y,Z) Y 6= Z → ¬(cT,Y ∧ cT,Z))

≡
∧
T

(∨
X

cT,X

)
∧
∧
Y 6=Z

(¬cT,Y ∨ ¬cT,Z)

 , (1)

which then translates to the pseudo code in Algorithm 1 for
generating the CNF file.

In all algorithms, the subroutine c(T,X) takes care of the
compact enumeration of variables.

The second and third axiom together constitute neutrality
of the choice function f , which, formally, can be written as

π(f(T )) = f(π(T )) for all tournaments T and

permutations π.

8An encoding with variables cT,x for alternatives x rather
than sets would require less variable symbols. It, however,
leads to much more complexity in the generated clauses,
which more than offsets these savings.
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foreach Tournament T do
foreach Set X do

variable(c(T,X));

newClause;
foreach Set Y do

foreach Set Z 6= Y do
variable not(c(T, Y ));
variable not(c(T,Z));
newClause;

Algorithm 1: Functionality of the choice function

A direct encoding of this neutrality axiom, however, would
be tedious (quantification over all permutations); in addi-
tion, our reformulation as canonical isomorphism equality
and orbit condition enables a substantial optimization of the
encoding as we will see in Section 3.2. In order to precisely
state these two axioms we require some further observations:

We are going to use the well-known fact that isomor-
phisms define an equivalence relation on the set of all tour-
naments. For each equivalence class, pick a representative
as the canonical tournament of this class. For any tour-
nament T , we then have a unique canonical representation
(denoted by TC). Furthermore, we can pick one of the po-
tentially many isomorphisms from TC to T as the canonical
isomorphism of T , and denote it by πT .9 A choice function
f satisfies canonical isomorphism equality if

f(T ) = πT (f(TC)) for all tournaments T . (2)

For the last of the three context axioms, the definition of
an orbit should be clarified. The orbits of a tournament T
are the equivalence classes of alternatives, where two alter-
natives a, b are considered equivalent iff there is an automor-
phism α : T → T which maps a to b, i.e., for which α(a) = b.
The set of orbits of a tournament T is denoted by OT .

A choice function f satisfies the orbit condition if

O ⊆ f(TC) or O ∩ f(TC) = ∅ (3)

for all canonical tournaments TC and their orbits O ∈ OTC
.

It can be shown that, for any choice function, neutrality
is equivalent to the conjunction of the orbit condition and
canonical isomorphism equality. The proof, however, had to
be omitted because of restricted space and is available from
the authors.

3.1.2 Explicit Axioms
Many axioms can be efficiently encoded in our proposed

encoding language. In this section we present the two main
conditions that were required to achieve the results in Sec-
tion 4. Clearly, the most important one is strategyproofness.
In formal terms, PE-tournament-strategyproofness can be
written as

(∀T, T ′, Rµ ⊇ ∆T,T ′) ¬
(
f(T ′) PE

µ f(T )
)

≡
∧
T

∧
T ′

∧
Rµ⊇∆T,T ′

∧
Y PE

µ X

(¬cT,X ∨ ¬cT,Y )

where T, T ′ are tournaments, Rµ is a preference relation, and
X,Y are non-empty subsets of A. The algorithmic encod-

9In practice, the tool nauty will automatically compute
canonical representations for both graphs and isomorphisms.

ing of strategyproofness is omitted here since an optimized
version is presented in Section 3.2.

Another property of SCFs that will play an important role
in our results is the one of being a refinement of another
SCF g. Fortunately, this can easily be encoded using our
framework:

(∀T )(∃X ⊆ g(T )) f(T ) = X

≡
∧
T

∨
X⊆g(T )

cT,X .

Since the size of problems we could treat with this ini-
tial encoding remains limited, a selection of optimization
techniques is described in the following section. These tech-
niques enable a significant speedup of the computation and
therefore make larger problem instances feasible.

3.2 Optimized Encoding for Improved Per-
formance

In order to efficiently encode instances of more than four
alternatives, we need to streamline our initial encoding with-
out losing its universality or weakening it. In this section,
we present the three optimization techniques we found most
effective:

Obvious redundancy elimination. A straightforward
first step is to reduce the obvious redundancy within the ax-
ioms. As an example consider the axiom of strategyproof-
ness, where—in order to determine whether an outcome
Y = f(T ′) is preferred to an outcome X = f(T )—we con-
sider all preference relations Rµ ⊇ ∆T,T ′ . It suffices, how-
ever, if we stop after finding the first such preference relation
with Y PE

µ X, because then we already know that not both
Y = f(T ′) and X = f(T ) can be true.

Similarly, in many axioms, we can exclude considering
symmetric pairs of objects (e.g., for functionality of the
choice function, there is no need to consider both pairs of
sets (X,Y ) and (Y,X)).

Canonical tournaments. The main efficiency gain can
be achieved by making use of the canonical isomorphism
equality (see Section 3.1.1) during encoding. Recall that
this condition states that for any tournament T the choice
set f(T ) can be determined from the choice set f(TC) of
the corresponding canonical tournament TC by applying the
respective canonical isomorphism πT . Therefore, it suffices
to formulate the axioms on a single representative of each
equivalence class of tournaments, in our case, the canonical
tournament. The magnitudes in Table 1 illustrate that this
dramatically reduces the required number of variables, the
size of the CNF formula and the time required for encoding
it.

In particular, in all axioms we can replace any outer quan-
tifier ∀T by a quantifier ∀TC that ranges over canonical tour-
naments only. In the case of strategyproofness, however,
there is a second tournament T ′ for which the restriction
to canonical tournaments is potentially not strong enough
anymore. We therefore keep it as an arbitrary tournament
but make sure that we only need variable symbols cT ′

C
,Y for

canonical tournaments in our CNF encoding. This can be
achieved through the canonical isomorphism πT ′ , since by
Condition (2), f(T ′) = Y if and only if f(T ′C) = π−1

T ′ (Y ).10

10The inverse canonical isomorphisms are computed during
preprocessing using nauty.

1197



foreach Canonical Tournament TC do
foreach Tournament T ′ do

∆TC,T
′ ← T \ T ′;

R∆TC,T
′ ← {Rµ |

Rµ is a preference relation and Rµ ⊇ ∆TC,T
′};

foreach Set X do
foreach Set Y do

boolean found ← false;
foreach Rµ ∈ R∆TC,T

′ do

p ← setExt(Rµ,E).prefers(Y ,X);
if ! found ∧ p then

variable not(c(TC, X));

variable not(c(T ′C, π
−1
T ′ (Y )));

newClause;
found ← true;

Algorithm 2: PE-tournament-strategyproofness (opti-
mized)

The optimized encoding is shown in Algorithm 2.
Furthermore, since within the CNF formula we no longer

make any statements about non-canonical tournaments,
the canonical isomorphism equality condition becomes an
“empty” condition and, thus, can be dropped from the en-
coding.

Approximation through logically related proper-
ties. Approximation is a standard tool in SAT/SMT which
can speed up the solving process. For instance, over-
approximation can help find unsatisfiable instances faster by
only solving on parts of the full problem description in CNF.
If then this partial CNF formula is found to be unsatisfiable,
any superset will trivially be unsatisfiable, too. Since we are
not aware of manipulation instances in the literature that re-
quire more than one edge in a tournament to be reversed, we,
for instance, use over-approximation in the form of single-
edge tournament-strategyproofness, a slightly weaker variant
of strategyproofness with |∆T,T ′ | = 1. If the solver returns
that there is no single-edge tournament-strategyproof SCF
that satisfies some properties Γ, we know immediately that
there is also no strategyproof SCF that satisfies Γ.

In a similar fashion we have applied various logi-
cally simpler conditions by Brandt and Brill [7] that
are slightly stronger (or weaker, respectively) than PE-
strategyproofness for specific set extensions E in order to
logically over- or under-approximate problems and thus re-
duce encoding and solving time.

3.3 Finding Refinements through Incremen-
tal Solving

Generally, since the task of a SAT solver is to generate
only one satisfying assignment, it does not necessarily out-
put the most refined SCF that satisfies a given set of proper-
ties. Through iterated or incremental solving, however, we
can force the SAT solver to generate finer and finer or simply
different SCFs that satisfy a set of desired properties.11 For
refinements, this can be achieved by adding clauses which

11Finding a refinement of an SCF is not equivalent to finding
a smaller/minimal model in the SAT sense; in our encoding
all assignments have the same number of satisfied variables.

encode that the desired SCF must be (strictly) finer than
previously found solution (see, e.g., the formulation in Sec-
tion 3.1.2). When the most refined SCF with the desired
properties has been found, adding these clauses leads to
an unsatisfiable formula, which the SAT solver detects and
therefore verifies the minimality of the solution.

With this final solving step, we have all the tools at hand
which were required for our results, the main ones of which
we describe in the next section.

4. RESULTS AND DISCUSSION
Because of the universality of the proof method, many

results can be generated in short time. Here we present our
two main findings:

• There exists a refinement of BP which is still PK-
strategyproof (Theorem 2).

• For majoritarian SCFs, PF -strategyproofness and
Pareto-optimality are incompatible for m ≥ 5 (Theo-
rem 3). For m < 5, UC satisfies PF -strategyproofness
and Pareto-optimality.

Where appropriate, further results are alluded to in the dis-
cussions proceeding the proofs. We start with our result on
PK-strategyproofness:

Theorem 2. There exists a refinement of BP which is
still PK-strategyproof. As a consequence, BP is not the
smallest majoritarian SCF satisfying PK-strategyproofness.

Proof. Within seconds our implementation finds a satis-
fying assignment for m = 5 and the encoding of the explicit
axioms refinement of BP and PK-strategyproofness. The
corresponding majoritarian SCF can be decoded from the
assignment and is defined like BP with the exception de-
picted in Figure 2.

a1 a2

a3

a4 a5

Figure 2: Tournament on which a PK-strategyproof
refinement of BP is possible. {a1, a2, a3} represents a
component and of all its elements dominate a4 and
are dominated by a5. While BP would choose the
whole set A, the refined solution selects {a1, a2, a3, a4}
only.

Using the technique described in Section 3.3, we could fur-
thermore confirm that this is the only refinement of BP on 5
alternatives which is still PK-strategyproof. Note, however,
that it does not satisfy the (strong, but natural) property of
composition-consistency (see, e.g., [15]), which is one of the
properties that one might want to address as future work
(see Section 5).

In order to prove our main result on the incompatibility
of Pareto-optimality and PF -strategyproofness we first show
the following important lemma, which establishes that, for
majoritarian SCFs, the notion of Pareto-optimality is equiv-
alent to being a refinement of the uncovered set (UC ).
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Lemma 1. A majoritarian SCF f is Pareto-optimal iff it
is a refinement of UC .

Proof. It is well-known (and was actually already ob-
served by Fishburn [10]) that UC is Pareto-optimal, from
which it trivially follows that all its refinements are Pareto-
optimal, too.

For the direction from left to right, let f be a Pareto-
optimal majoritarian SCF and T an arbitrary tournament.
It suffices to show that f(T ) can never contain a covered
alternative (since then f(T ) ⊆ UC (T ) contains uncovered
alternatives only). So let b be a covered alternative (say,
it is covered by alternative a). We are going to construct
a preference profile R which has T as its majority graph
and in which b is Pareto-dominated by a. Together with
the Pareto-optimality of f this implies that b /∈ f(T ). We
use a variant of the well-known construction by McGarvey,
but for triples rather than pairs of alternatives. Note that
for each voter we need to ensure that he strictly prefers a
to b in order to obtain the desired Pareto-dominance of a
over b. Starting with an empty profile, for each alternative
x /∈ {a, b} we add two voters Rx1 , Rx2 to the profile. These
two voters are defined depending on how x is ranked relative
to a and b in order to establish the edges between a, x and
b, x. Note that since x T a implies x T b (because of a C b),
edge (a, b) cannot be contained in a 3-cycle with x and, thus,
always forms a transitive triple with x.

• Case 1: x T a (implies x T b)
Rx1 : x, a, b, v1, . . . , vm−3

Rx2 : vm−3, . . . , v1, x, a, b

• Case 2a: a T x and x T b
Rx1 : a, x, b, v1, . . . , vm−3

Rx2 : vm−3, . . . , v1, a, x, b

• Case 2b: a T x and b T x
Rx1 : a, b, x, v1, . . . , vm−3

Rx2 : vm−3, . . . , v1, a, b, x

Here v1, . . . , vm−3 denotes an arbitrary enumeration of the
m − 3 alternatives in X \ {a, b, x}. The comma separated
lists above are a shorthand notation in the sense that Ri :
v1, v2, v3 stands for the preference relation v1 Ri v2 Ri v3.

In all cases, the two voters cancel out each other for all
pairwise comparisons other than (a, b), (x, a) and (x, b). For
each of the remaining edges (y, z) ∈ T (with {y, z}∩{a, b} =
∅) we further add two voters (now even closer to the con-
struction by McGarvey)

R(y,z)1 : y, z, a, b, v1, . . . , vm−4 and

R(y,z)2 : vm−4, . . . , v1, a, b, y, z,

which together establish edge (y, z), reinforce (a, b) and can-
cel otherwise. Note that in order to achieve an odd number
of voters, an arbitrary voter can be added without changing
the majority relation (as all edges had a weight of at least
2 so far). This completes the construction of a preference
profile R which has T as its majority graph and in which b
is Pareto-dominated by a.

To establish the full result (which does not admit a proof
by counterexample, like for Theorem 2) we—similarly to
previous approaches—make use of an inductive argument.

Lemma 2. If there exists a majoritarian SCF f for m+
1 alternatives that is PE-strategyproof and is a refinement

of UC , then there also exists a majoritarian SCF f ′ for just
m alternatives that satisfies these two properties.

Proof. Let f ⊆ UC be a majoritarian SCF for m+ 1 ≥
2 alternatives that is PE-strategyproof. Then we define fe
to be the restriction of f to m alternatives based on tour-
naments in which alternative e is a Condorcet loser, i.e., an
alternative that is dominated by all other alternatives. In
formal terms, define

fe(T ) := f(T+e),

where T+e is the tournament obtained from T by adding
an alternative e as a Condorcet loser (i.e., adding it be-
low all previous m alternatives). This restriction of f is a
well-defined choice function since alternative e cannot be
contained in f(T+e) ⊆ UC (T+e) = UC (T ), where the
last equation follows from the fact that UC is composition-
consistent, or, alternatively, by observing that the covering
relation is unaffected by deleting Condorcet losers.

We now need to show that for some alternative e the re-
striction fe is a majoritarian SCF that is PE-strategyproof
and a refinement of UC . Since this will hold for any e ∈ X,
we just pick one e arbitrarily.

Majoritarian: The fact that fe is a majoritarian SCF
carries over trivially from f .

PE-strategyproofness: Assume for a contradiction that
fe is not PE-strategyproof. Then there exist tournaments T
and T ′ on m alternatives such that fe(T

′) PE
µ fe(T ) with

Rµ ⊇ ∆T,T ′ . But since fe(T ) = f(T+e) and fe(T
′) =

f(T ′+e), we get

f(T ′+e) = fe(T
′) PE

µ fe(T ) = f(T+e),

which contradicts PE-strategyproofness of f (as the two
tournaments T ′+e and T+e form a manipulation instance).

Refinement of UC : Let T be an arbitrary tournament
on m alternatives and consider the following chain of set
inclusions, which proves that fe ⊆ UC :

fe(T ) = f(T+e) ⊆ UC (T+e) = UC (T ).

Note that the proofs of the individual properties within the
inductive proof above do only rely on the definition of fe and
stand independently of each other. Furthermore, it may be
noted that Lemma 2 can even be shown for refinements of
arbitrary SCFs g whose choice set g(T ) does not shrink when
all Condorcet losers are removed from T .

Finally, we are now in the position to state and prove this
paper’s main result regarding PF -strategyproofness.

Theorem 3. For any number of alternatives m ≥ 5 there
is no majoritarian SCF f that satisfies PF -strategyproofness
and Pareto-optimality.

Proof. By Lemma 1 we can replace Pareto-optimality
by the property of being a refinement of UC . With this in
mind, we inductively prove the statement.

The base case of m = 5 alternatives was verified us-
ing our computer-aided approach, i.e., we checked that
there is no satisfying assignment for an encoding of PF -
strategyproofness and being a refinement of UC with |A| = 5
alternatives, which the SAT solver confirmed within seconds.

For the induction step, we apply the contrapositive of
Lemma 2 with E := F , which yields the desired results.
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Note that this result does not form a contradiction to the
fact that TC is PF -strategyproof, as, for m ≥ 4 alterna-
tives, TC is strictly coarser than UC and therefore not
Pareto-optimal. Possibly, TC is even the smallest majori-
tarian SCF that satisfies PF -strategyproofness. We were
able to verify this for up to 7 alternatives using our com-
puter program, with the exception of 4 alternatives, where
UC is a strict refinement of TC and (as our method shows)
still PF -strategyproof.12

5. FUTURE WORK
Based on the ease of adaptation of our proposed method,

we anticipate many insights to spring from this approach in
the future. Apart from simply applying our system to fur-
ther investigate strategyproofness, we have identified three
streams of future research that could arise from our contri-
bution:

Transfer to general SCFs For reasons of reduced com-
plexity, here we have studied majoritarian SCFs only. The
framework, however, is applicable in the same way to gen-
eral SCFs, which “operate” on full preference profiles (rather
than majority graphs). The challenge then is to find a suit-
able representation of such preference profiles and poten-
tially corresponding inductive arguments on the number of
voters.

Apply to other properties of SCFs Some prelimi-
nary experiments suggest that our technique can easily be
applied to a range of properties other than strategyproof-
ness which deserve further investigation. In many cases it
suffices to just formalize and implement the additional ax-
ioms. Of particular interest could be such properties that
link the behavior of SCFs for different domain sizes, e.g.,
composition-consistency.

Generalize inductive argument It appears reasonable
to investigate whether the inductive argument of Lemma 2
can be generalized to a whole class of properties/axioms,
ideally based on their logical form. As in the work of Geist
and Endriss [13], this could then (together with the previ-
ous item) enable an automated search for further theorems
about SCFs.
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