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ABSTRACT
The Shapley value provides a fair method for the division
of value in coalitional games. Motivated by the application
of crowdsourcing for the collection of suitable labels and
features for regression and classification tasks, we develop
a method to approximate the Shapley value by identifying
a suitable decomposition into multiple issues, with the de-
composition computed by applying a graph partitioning to
a pairwise similarity graph induced by the coalitional value
function. The method is significantly faster and more accu-
rate than existing random-sampling based methods on both
synthetic data and data representing user contributions in a
real world application of crowdsourcing to elicit labels and
features for classification.

Keywords
Coalitional game theory, Shapley value, Machine learning,
Crowdsourcing

1. INTRODUCTION
There is a recent trend to use crowdsourcing tools for ma-

chine learning, such as crowd prediction [1] and machine-
learning markets [20]. An example is to use crowd workers
to label whether webpages contain recipes or not. These la-
bels, in conjunction with features of the webpage (e.g., the
presence or absence of specific words such as “ingredient”),
are used to train a classifier. An extension can allow work-
ers to recommend certain words (e.g., “recipe”, “teaspoon”
etc.) as features, to be used in determining whether or not
a webpage contains the recipe.

When considering methods to reward participants for the
value that they contribute to the system, it is useful to model
this as a cooperative problem, and understand what would
be a fair division of value, that is, a division that reflects
the contributions of individuals to the system. Indeed, the
performance of such a system may not be a simple function
of the inputs (e.g., labels, features) from individual partic-
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ipants. Rather, the performance will likely depend on the
interaction between the various inputs received from differ-
ent participants. For example, it may not be useful for two
participants to suggest the same feature or to provide dupli-
cate labels. In these cases, we would like the allocation of
value to reflect the effective contribution of each participant,
considering the way it interacts with other contributions.

Two questions naturally arise: (1) what is a good ap-
proach for assigning value to participants (e.g., in the form
of payments), and (2) what is the corresponding computa-
tional complexity of the approach?

In this paper, we provide answers to both questions using
coalitional game theory for modeling the multi-agent sys-
tem; this approach has been used, for instance, to address
the problem of feature selection in Cohen et al. [4]. A well-
studied solution concept for fair division in coalitional games
is the Shapley value [21]. The Shapley value is the unique
value function that satisfies a set of easily justifiable ax-
ioms. A challenge with the Shapley value, however, is that
it can be computationally hard to compute. Our focus is on
the development of an efficient method to approximate the
Shapley value, and in particular to take advantage of struc-
ture that exists in the value provided by the contributions
of different users in an application of crowdsourcing to elicit
labels and features used to train a classifer.

1.1 Our Contributions
We start by introducing a general similarity measure among

sets of agents for a given coalitional value function and, as is
done by Ieong and Shoham [11], we show how to represent
exactly the value function in terms of this measure through
inclusion-exclusion arguments.

Our main contribution is to formalize the problem of ap-
proximating the Shapley value in a graph-theoretic way by
focusing on pairwise similarity between individual partici-
pants. In particular, we construct a pairwise similarity graph
with agents as vertices, and undirected edges representing
the pairwise agent similarity. We use this graph to identify a
good decomposition of agents into groups, and we compute
the Shapley value exactly for the coalitional game associ-
ated with each group. Following the phrasing introduced by
Conitzer and Sandholm [5], who discussed exact multi-issue
decompositions, we view this as an approximate multi-issue
decomposition. In particular, we can adopt various algo-
rithms to find a good partition of agents; our experimen-
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tal results adopt a spectral clustering approach. When the
coalitional value function satisfies strong sub-additivity we
have a simple upper bound for the error introduced by a par-
ticular partition of agents, and the computational run time
of the approach can be tuned by deciding on the maximal
size of a coalitional game that is acceptable for computing
exact Shapley values.

We also present empirical results that demonstrate the ef-
fectiveness of our approximations, using both synthetic and
real-world data from the domain of crowdsourcing for solv-
ing classification problems.

1.2 Related Work
The Shapley value is commonly used in cooperative set-

tings [14, 9, 19, 10, 17, 9] to evaluate participants. There
are applications of the Shapley value in feature selection;
e.g., [4] where they use a randomized sub-sampling method
for approximating the Shapley value. Sometimes a domain
has specific structure that allows for the Shapley value to be
computed efficiently; e.g., Ma et al. [14] compute Shapley
value exactly for ISP games and Bachrach et al. [2] propose
an approximation of Shapley value for Reliability Games.
Fatima et al. [7] propose an approximation for Shapley value
in voting games.

Conitzer and Sandholm [5] propose an exact multi-issue
decomposition that, when available, can reduce the com-
plexity of computation. The idea is that the interaction
between agents may be limited to smaller groups of agents
that all care about the same issue. (E.g., in our setting they
might contribute to classifiers of cats but not dogs.) Ieong
and Shoham [11] propose an orthogonal decomposition ap-
proach that generalizes the weighted-graph model of Deng
and Papadimitriou [6] to allow for value that is generated
in a way that depends on more than pairs of agents being
present in a system. Grabisch et al. [8] proposes an inter-
action term among agents in a cooperative setting. Neither
of these works consider an approximation scheme, with de-
compositions or without, for computing Shapley values.

As far as we know, the only general approach for approxi-
mating Shapley value is based on taking random samples
of different orders on agents; e.g., [3]. This approach is
problematic, however, because of the very large number of
possible orders. In contrast, our approach identifies an ap-
proximate decomposition of the game into a set of smaller
coalitional games, keeping agents together (for the purpose
of Shapley value computation) where it matters for achiev-
ing good accuracy.

1.3 Outline
In the next section (§2) we give formal definitions for the

necessary terms from coalitional game theory. In §3 we de-
fine the K-group similarity metric that forms the basis of
the decomposition and provides the exact form of the de-
composition. In §4 we give the proof of our main theorem
characterizing the approximation obtained by partitioning
the agents. Following this idea we propose a pairwise simi-
larity graph in §5, and use min-cuts in this graph to provide
partitions for our approximation. We illustrate exact forms
for the Shapley value based on our decomposition using two
examples from machine learning, and introduce some details
of the crowd-learning setting in §6. Finally, in §7 we present
experiments with synthetic and real-world data.

2. PRELIMINARY DEFINITIONS
A coalitional game is defined for a set of agents N and

a coalitional value function v : 2N → R, which defines the
total value that can be achieved when a coalition of agents
S ⊆ N work together. If the agents are being used to train a
classifier, for example, the coalitional value function could be
any of the standard metrics (e.g., precision, recall, AUC, F1-
score, etc.) used to measure the performance of the classifier
trained using these labels. We call the coalition of all agents
(i.e., S = N) the grand coalition.

2.1 Shapley Value
Suppose we want to design a reward system ψi(v) for a

coalitional game defined by a set of agents N with coalitional
value function v. We start with the following desirable prop-
erties of the evaluation system:

• Efficiency: The total sum of reward is equal to the
coalitional value of the grand coalition.

∑
i ψi(v) =

v(N).

• Symmetry: For any coalitional value function v, if
for all S that i, j 6∈ S we have v(S ∪{i}) = v(S ∪{j}),
then ψi(v) = ψj(v).

• Dummy Player: For any coalitional value function
v, if for all S we have v(S ∪ {i}) = v(S) + v({i}), then
ψi(v) = v({i}).

• Strong Positivity: For any agent i and for two games
v and w, if for all S ∈ N we have v(S ∪ {i})− v(S) ≤
w(S ∪ {i})− w(S) then ψi(v) ≤ ψi(w).

Given the Efficiency property, such an evaluation system
can be considered a way to distribute the total value gener-
ated by the grand coalition among the participants; the first
three properties seem reasonable at face value.

The Strong Positivity property posits a meaningful rela-
tionship between performance and the value share assigned
to an agent (or payment): an agent who provides relatively
higher marginal value for a game will receive a corresponding
higher reward.

Theorem 1. (Uniqueness of Shapley [16]) The unique re-
ward system that satisfies Efficiency, Symmetry, Dummy
Player and Strong Positivity is the Shapley value:

Shv(N, i) ≡ 1

|N |!
∑
S⊆N

|S|!(|N | − |S| − 1)!(v(S ∪ {i})− v(S))

A fifth property will prove useful:

• Additivity: For any agent i and for two coalitional
value functions v and w, if we define the addition of
games as (v + w)(S) = v(S) + w(S) then we have
ψi(v + w) = ψi(v) + ψi(w).

The following is well known:

Proposition 1. (Additivity of Shapley) The Shapley Value
satisfies the Additivity property.

Indeed, the Shapley value is also unique amongst methods
for value division that satisfy Efficiency, Symmetry, Dummy
and Additivity. One way to understand additivity is that the
Shapley value for an agent is the expectation, taken with
respect to the uniform distribution on ordered coalitions, of
the value increase brought by that agent to a coalition. Since
it is an expectation, the Shapley value is linear in the value
function.
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3. K-GROUP SIMILARITY METRIC
In this section, we define a similarity metric among two

or more sets of agents. In addition to leading to an exact
representation of any coalitional value function, the special
case of pairwise similarity on agents will be used in Section 4
for our main results.

Definition 1 (2-group similarity). For a coalitional
value function v, the 2-group similarity metric on sets of
agents, S1, S2 ⊆ N , is:

M2(S1, S2) = v(S1) + v(S2)− v(S1 ∪ S2).

More generally, K-group similarity metric for K sets of agents,
is:

MK(S1, .., SK) =
∑

I⊆{1,..,K}

(−1)|I|+1v(∪i∈ISi).

For example, for K = 3, the similarity metric is,

M3(S1, S2, S3) =v(S1) + v(S2) + v(S3)− v(S1 ∪ S2)

− v(S1 ∪ S3)− v(S3 ∪ S2)) + v(S1 ∪ S2 ∪ S3).

3.1 An Exact Decomposition
In this section, we propose an exact decomposition of a

coalitional value function, which leads by the additivity of
the Shapley value to a characterization of the Shapley value
in coalitional games.

Lemma 1. The following is an exact decomposition of any
coalitional value function:

v(S) =

|S|∑
K=1

(−1)K+1QK(S) (1)

Where, QK(S) = 0 for |S| < K and,

QK(S) =
∑

{i1,..,iK}⊆S

MK({i1}, .., {iK}) =
∑

I⊆S,|I|=K

M|I|(I)

andM|I|(I) is a compact form ofMK({i1}, .., {iK}). Equiv-
alently, we can write,

v(S) =
∑
i∈S

v({i})−
∑
i6=j∈S

M2({i}, {j})

+
∑

i6=j 6=k∈S

M3({i}, {j}, {k})− ...

Proof.

|S|∑
K=1

(−1)K+1QK(S) =

|S|∑
K=1

(−1)K+1
∑

I⊆S,|I|=K

MK({i1}, .., {iK})

=
∑
I⊆S

(−1)|I|+1M|I|(I) =
∑
I⊆S

(−1)|I|+1
∑
J⊆I

(−1)|J|+1v(∪j∈J{j})

=
∑
I⊆S

∑
J⊆I

(−1)|I|+|J|v(∪j∈J{j}) = v(∪j∈{1,2,..,|S|}{j}) = v(S)

The last step follows because if |J | < |S| then there is an
equal number of I’s with odd size and even size that contain
J , and they cancel out in the summation.

By the additivity of the Shapley value, we immediately
have:

Shv(N, i) =
∑
K

(−1)K+1ShQK (N, i).

Recognizing that the MK({i}, {j1}, .., {jK−1}) term is a
positive-literal rule in the language of MC-nets [11], we im-
mediately have that:

ShQK (N, i) =
1

K

∑
{j1,..,jK−1}⊆N\{i}

MK({i}, {j1}, .., {jK−1}),

Intuitively, the valueMK({i}, {j1}, .., {jK−1}) ∈ R is only
realized when a coalition S includes all of {i, j1, . . . , jK−1}
agents, and by the symmetry of the Shapley value this value
must accure evenly to the agents who participate. From
this, we immediately have the following by additivity:

Theorem 2. The Shapley-value in any coalitional game
can be exactly computed as:

Shv(N, i) =∑
K

(−1)K+1

K

∑
{j1,..,jK−1}⊆N\{i}

MK({i}, {j1}, .., {jK−1}).

4. MULTI-ISSUE DECOMPOSITION AND
APPROXIMATING SHAPLEY

In this section, we obtain an approximation to the Shap-
ley value by forming a partition of agents; we view this par-
tion as an approximate multi-issue decomposition. Whereas
Conitzer and Sandholm [5] study exact multi-issue represen-
tations, we study approximate decompositions. In a sense,
by forming a partition we identify implicit issues around
which to group agents for the purpose of approximating the
Shapley value.

In order to obtain a bound on the quality of the approx-
imation we will need to assume a subadditivity structure
to the coalitional game. The algorithmic approach is well
defined without these assumptions and we will see in the
experimental section that we obtain a very good approxi-
mation even when the property does not quite hold.

We start by defining the following properties for the coali-
tional value function.

Definition 2. For a valuation function v : 2N → R,

• v is sub-additive if for any S1, S2 ⊆ N we have:

v(S1 ∪ S2) ≤ v(S1) + v(S2)

• v is strongly sub-additive if it is sub-additive and for
any three sets S1, S2, S3 ⊆ N , we have:

v(S1 ∪ S2 ∪ S3) ≥v(S1 ∪ S2) + v(S1 ∪ S3) + v(S3 ∪ S2)

− v(S1)− v(S2)− v(S3)

The above definitions can be seen as an imposition of the
Benferroni inequalities on the value function [15].

For a sub-additive coalitional value function, we imme-
diately have M2(S1, S2) ≥ 0. Similarly, for a strongly sub-
additive coalitional value function, we haveM3(S1, S2, S3) ≥
0.

Definition 3. The vector of coalitional value functions
(v1, v2, ..vK), with each vi : 2N → R is an ε-approximate
decomposition for coalitional value function v, if:

v(S) = ε(S) +

K∑
k=1

vk(S),

where ε(S) ∈ R for every S ⊆ N .
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The following is immediate from the additivity of the
Shapley value:

Lemma 2. For ε-approximate decomposition v = ε+
∑
k vk

we have:

Shv(N, i) = Shε(N, i) +
∑
k

Shvk (N, i)

Definition 4. [5] Coalitional value function vk concerns
only Ck ⊆ N if vk(S1) = vk(S2) whenever Ck∩S1 = Ck∩S2.
In this case vk can be defined only over 2Ck .

Lemma 3. [5] If vk concerns only Ck ⊆ N , then:

Shvk (N, i) = Shvk (Ck, i)

In the following lemma, we derive upper bounds for the
2-group similarity metric between two coalitions in terms
of the 2-group similarity between the agents in the coali-
tions. This leads to the concept of a pairwise similarity
graph, which is used for partitioning agents for the purpose
of approximating the Shapley value.

Lemma 4. For a strongly sub-additive coalitional valua-
tion function v, we have:

M2(S1, S2) ≤
∑

i∈S1,j∈S2

M2({i}, {j}) (2)

WhereM2 is the 2−group similarity for the coalitional value
function v.

Proof. We use induction on the size of both S1 and S2.
For the base case of |S1| = 1 and |S2| = 1 we have:

M2({i}, {j}) =M2({i}, {j}).

Now, suppose we haveM2(S1, S2) ≤
∑
i∈S1,j∈S2

M2({i}, {j})
for any |S1| ≤ s1 and |S2| ≤ s2, and due to symmetry, we
only need to show (2) holds for |S1| = s1 + 1 and |S2| = s2.
Suppose k ∈ S1 then define S3 = S1\{k} , |S3| = s1, and
from the definition of M2, we have:

M2(S1, S2) = v(S1) + v(S2)− v(S1 ∪ S2)

= v(S3 ∪ {k}) + v(S2)− v(S3 ∪ {k} ∪ S2).

Using the following equality to expand the last term,

−M3(S3, {k}, S2) =− v(S3 ∪ {k} ∪ S2) + v(S3 ∪ {k})
+ v(S3 ∪ S2) + v({k} ∪ S2)

− v(S3)− v(S2)− v({k}),

we get,

M2(S1, S2) = v(S3) + v(S2)− v(S3 ∪ S2) + v({k}) + v(S2)

− v({k} ∪ S2)−M3(S3, {k}, S2)

=M2(S3, S2) +M2({k}, S2)−M3(S3, {k}, S2).

Given thatM3(S3, {k}, S2) ≥ 0 (due to strong sub-additivity),
we have:

M2(S1, S2) =M2(S3, S2) +M2({k}, S2)−M3(S3, {k}, S2)

≤M2(S3, S2) +M2({k}, S2)

≤
∑

i∈S3,j∈S2

M2({i}, {j}) +
∑
j∈S2

M2({k}, {j})

=
∑

i∈S1,j∈S2

M2({i}, {j}).

The induction hypothesis is used in deriving the inequality
in the third step above.

We use Lemma 4 to derive upper bounds on errors ob-
tained by having an ε-approximate decomposition of the
value function.

Theorem 3. For ε-approximate decomposition, v = ε +∑
k vk, where v is strongly sub-additive and vk concerns a set

Ck ⊆ N , given that Cks for k ∈ {1, ..,K} form a partition
of N , we have:

ε(S) ≤
∑

1≤ 6̀=k≤K

∑
i∈Ck∩S,j∈Cl∩S

M2({i}, {j})

Proof. The proof is by induction on the size of the de-
composition K. Let Sk = S ∩Ck, and Sk’s form a partition
of S. First, note that:

v(S) = ε(S) +

K∑
k=1

vk(S) = ε(S) +

K∑
k=1

v(S ∩ Ck)

= ε(S) +

K∑
k=1

v(Sk).

Now, suppose K = 2, then we have:

ε(S) = v(S)− v(S1)− v(S2).

Applying Lemma 4, we have,

ε(S) = v(S)− v(S1)− v(S2) =M2(S1, S2)

≤
∑

i∈S1,j∈S2

M2({i}, {j}).

Suppose the bound holds for K. Then, we show that it
holds for K + 1. For this, we let C′K = CK ∪ CK+1. Hence
we have S′K = SK ∪ SK+1, and:

ε(S) = v(S)− v(S1)− ..− v(SK−1)− v(SK)− v(SK+1)

= v(S)− v(S1)− ..− v(SK−1)− v(S′K) + v(S′K)

− v(SK)− v(SK+1).

We apply the induction hypothesis to the K partition, C′K :

ε(S) = [v(S)− v(S1)− ..− v(SK−1)− v(S′K)]

+ [v(S′K)− v(SK)− v(SK+1)]

≤ [
∑

1≤ 6̀=k≤K−1

∑
i∈Sk,j∈Sl

M2({i}, {j})

+
∑

1≤`≤K−1

∑
i∈S′

K
,j∈Sl

M2({i}, {j})]

+ [
∑

i∈SK ,j∈SK+1

M2({i}, {j})]

Combining the last two terms, and using,∑
1≤`≤K

∑
i∈S′

K
,j∈Sl

M2({i}, {j}) =

∑
l≤`≤K−1

∑
i∈SK ,j∈Sl

M2({i}, {j}) +
∑

i∈SK+1,j∈Sl

M2({i}, {j}),

we conclude that,

ε(S) ≤
∑

1≤`6=k≤K

∑
i∈Sk,j∈Sl

M2({i}, {j}).
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Based on this, the following result bounds the effect that
weights on edges between groups in the partition have on
the approximation to Shapley value.

Corollary 1. For ε-approximate decomposition, v = ε+∑
k vk, where v is strongly sub-additive and vk concerns a

set Ck ⊆ N , and k ∈ {1, ..,K}, we have:

|Sh(N, i)−
∑
k

Shvk (Ck, i)| = |Shε(N, i)|

≤ 2
∑

1≤ 6̀=k≤K

∑
i∈Ck,j∈Cl

M2({i}, {j})

This result follows by using Theorem 3, with which we
can bound the marginal contributions using |ε(S′)− ε(S)| ≤
2
∑

1≤`6=k≤K
∑
i∈Ck,j∈Cl

M2({i}, {j}).

5. CONSTRUCTING THE PAIRWISE SIM-
ILARITY GRAPH

In this section, we define a graph based on the 2-similarity
metric among pairs of agents and, on the basis of this graph,
we identify a useful partition of agents into groups, with the
exact Shapley value computed for each group. We will call
the 2-similarity metric among pairs of agents the pairwise
similarity, and view the resulting partition as an approxi-
mate multi-issue decomposition.

The pairwise similarity graph associated with a set of
agents N in a coalitional game is a graph with n = |N |
vertices, and edges whose weights are given byM2({i}, {j})
for vertices 1 ≤ i, j ≤ n. Following the direction suggested
in Corollary 1, we have:

Corollary 2. Suppose we have a partitioning C1, C2, · · · , CK
of the pairwise similarity graph of a game and vk(S) =
v(S ∩ Ck) for all k. Let

F (C1, · · · , CK) =
∑

1≤ 6̀=k≤K

∑
i∈Ck,j∈Cl

M2({i}, {j})

be the weight of the inter-partition edges. We can compute
an approximation to the Shapley values with the following
error bound:

|Sh(N, i)−
∑
k

Shvk (Ck, i)| ≤ 2F (C1, .., CK),

in O(K2maxk |Ck|) time.

The claim on the running time follows because we com-
pute the Shapley value exactly for K smaller games with the
size at most maxk |Ck|.

Our goal, then, is to find a partition of agents that min-
imizes the inter-partition weights in the pairwise similarity
graph. There are multiple ways of partitioning the graph.
We describe an approach for finding a partition consisting
of two components, but smaller partitions can be obtained
by either recursively partitioning the graph or more direct
methods.

For partitioning the graph we use Spectral clustering [12].
This method partitions the graph in O(n3) time steps, by
computing the eigenvector of the adjacency matrix of the
graph corresponding to the second largest eigenvalue and
choosing the two partitions by separating the positively and
negatively signed elements.

Once we have such a split of agents into two sets, we can
apply the above corollary to conclude that:

Theorem 4. For partitioning the pairwise similarity graph
on a set N of agents (n = |N |) into two groups of agents
C1, C2 with min-cut flow ζ, meaning that:∑

i∈C1,j∈C2

M2({i}, {j}) = ζ,

then we have:

|Sh(N, i)−
2∑
k=1

Shvk (Ck, i)| ≤ 2ζ,

where v1(S) = v(S ∩ C1) and v2(S) = v(S ∩ C2) for all
S ⊆ N with corresponding complexity:

O(2max(|C1|,|C2|) + n3).

To further reduce the running time of computing Shapley
we can proceed by recursively sub-dividing the partitions,
and accumulate the error from the partitioning. This moti-
vates Algorithm 1, which partitions agents until maxk |Ck|
(the maximal cardinality of any group) is small enough that
exact Shapley value computation on each partition is feasi-
ble.

Algorithm 1 Recursive Partitioning for Approximating
Shapley (RPAS) for a game G with agents in NG with the
coalitional value function vG and with maximum acceptable
set cardinality set to Kmax.

Input: Coalitional game G = (NG, vG)
Variables:Kmax

RPAS(G):
if |NG| ≤ Kmax then

return Shapley(G)
end if
Compute M2 for vG
(G1, G2):=Partition(M2)
return Concatenate(RPAS(G1),RPAS(G2))

The pairwise similarity graph can be computed in O(n2)
time. The recursive clustering can be done in O(n4) time
and we can apply Corollary 2 to compute the approximation
to Shapley in O(K2maxk |Ck|+n4) time. The error in approx-
imating the Shapley value through the recursive algorithm
can be bounded by:

|Sh(N, i)−
∑
k

Shvk (Ck, i)| ≤ 2
∑
k

ζk

where vk(S) = v(S∩Ck) for all k and Ck is the kth partition
generated in RPAS algorithm. ζk corresponds to the cut
capacity for the clustering of the agents in the kth recursive
application of the algorithm.

6. A CROWD-LEARNING SETTING
Consider an application where a crowd of users is used

to help with a machine-learning task. We refer to this as a
crowd-learning setting.

We consider three variants. First, users in the crowd are
tasked with providing item labels (e.g., topic labels for web
pages). Second, users in the crowd are tasked with pro-
viding features (e.g., unigram text features for web pages).
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Third, users are tasked with providing both item labels and
features.

6.1 Labels Game
In this section we illustrate a simple, stylized example,

where the exact Shapley value can be efficiently computed.
Suppose we define the following game for a set of items B,
where the items can be labeled by a set of agents N =
{1, .., n}.

• Each agent provides you a subset of the items Bi ⊆ B.

• The game is represented as a function v : 2N → R, and
for simplicity we imagine that this maps each coalition
(combination of items gathered by agents for agents in
S ∈ N) to the number of unique positive labeled items,
with

v(S) = | ∪i∈S Bi|.

The pairwise similarity metric for this game is simply,

M2({i}, {j}) = |Bi ∩Bj |.

Let’s apply the decomposition (1),

Q1(S) =
∑
i∈S

|Bi|, Q2(S) =
∑
i6=j∈S

|Bi ∩Bj |

QK(S) =
∑

i1,..,iK∈S,il 6=ik

|
⋂

l∈{1,..,K}

Bil |

Then we have the following decomposition,

v(S) =

|S|∑
K=1

(−1)K+1QK(S)

And using the result in Theorem 2, the Shapley value is,

Shv(N, i) =
∑
K

(−1)K+1

K

∑
j1,..,jK−1

|Bi ∩
⋂

l∈{1,..,K−1}

Bjl |

(3)

= |Bi| −
1

2

∑
i6=j

|Bi ∩Bj |+
1

3

∑
i6=j 6=k

|Bi ∩Bj ∩Bk| − ...

(4)

This game is equivalent to the recommendation game in
Kleinberg et al. [13], who derived the simplified expression
for the equation(3) above as:

Shv(N, i) =
∑
j∈Bi

1

|{k : j ∈ Bk}|

6.2 Features Game
In this section, we define a coalitional game where agents

correspond to features in a regression setting as follows.1

For a set of agents, N = {1, .., n}, we have:

• Each agent has a vector X{i} ∈ Rm

• For a vector Yv ∈ Rm and a set coefficients α ∈ Rn,
we have:

Yv = XNα

for XN = X{i|i∈N}.

1The setup is similar to the regression game framework pro-
posed by Pinter [18].

• The regression is used as a projection to find αS to
approximate Yv using a coalition S of features:

Ŷv = XSαS

αS = (XT
SXS)−1XT

S Yv

for XS = X{i|i∈S}.

• The game is represented as a function v : 2N → R
which maps each coalition (set of vectors) S ∈ N to a
real number,

v(S) = ‖Ŷv‖22
= ‖XSαS‖22 = αTSX

T
SXSαS = αTSΣSαS ,

where ΣS = XT
SXS and ΣN is an invertible matrix,

and ‖.‖2 is the L2 norm. v(S) represents the size of the
component of Yv which is explainable with the features
in the coalition S.

Theorem 5. For the regression game, the value:

ψi(v) = α2
Ni

+
∑
j 6=i

αNjαNiσij = αNi · < Yv, Xi >

is the Shapley value for v(S).

Where < Yv, Xi > is the inner product of the vectors Yv and
Xi. The proof establishes the four axioms for the proposed
value function. We skip the proof in the interest of the space.

6.3 Label and Feature Game
A more general crowd-learning problem involves eliciting

both labels and features from participants, and building a
classifier.

Suppose we have a set of agents N = {1, .., n}, where:

• Each agent has a set of labels and a set of features.

• We have a classifier, that adopts the following design
elements:

– A logistic regression is trained on the basis of the
labels and features suggested by a coalition S ⊆
N of agents.

– Regularization is accomplished through cross val-
idation.

– The performance is measured as the area-under-
the-curve (AUC), using a testing set selected from
combination of labels and features from all the
agents in N .

• The coalitional value function is v(S) = AUC(S), adopt-
ing the performance metric for the classifier.

The generality of the above setting does not allow for ana-
lytical or closed form solutions for Shapley. Rather, we will
approximate the Shapley value using our proposed pairwise
similarity graph and agent-partitioning method.

For example, suppose that we have a webpage classifica-
tion problem for the topic science-math. Participants search
among a set of webpages and find webpages that they are
comfortable with labeling and provide labels. Moreover,
they provide a set of features for the webpages. Then we
consider their labels and features in a setting similar to the
above label and feature game. We will describe this setting
in more detail in the experimental section.

1214



7. EXPERIMENTAL RESULTS
In this section, we compare the efficiency and accuracy

of our approximation method with random sampling ap-
proaches to estimating the Shapley value. We consider both
synthetic and real-world experiments.

7.1 Synthetic Experiments
In the first set of experiments, we generate synthetic data

for a feature game setting defined in Section 6.2 where we
have n features (Xi’s) with dimension m.

Features(Xi’s) are generated from a Dirichlet distribution
with uniform density on the simplex. The independent vari-
able (Y vector) is a score that is generated synthetically
by multiplying X vectors to the coefficients in the regres-
sion (which are randomly samples from Normal distribution
with mean 0 and variance 1). Y is normalized such that
‖Y ‖ = 1, and we set number of document to m = 1000 and
number of dictionaries to n = 16.

We compute the (approximate) Shapley values using four
different methods. The first method is the exact compu-
tation of Shapley, and is performed by enumerating over
all agent orders. The second and third methods approx-
imate Shapley values using the random-sample approach,
which samples either 1/2 or 1/4 of all possible agent orders
for the purpose of approximating the Shapley values. The
fourth method approximates Shapley values by clustering
the agents into two clusters, using the partitioning through
the eigenvector for the second largest eigenvalue of the pair-
wise similarity matrix, respectively using the spectral clus-
tering.

We illustrate the computational time and accuracy of the
methods for the mean squared error between the exact Shap-
ley and approximated Shapley in Figure 1. We further il-
lustrate the error in the ranking of agents using a Kendall
correlation metric between the exact ranking of agents from
exact Shapley and approximate rankings.

7.2 Real World Experiments
In real world studies we are considering a crowd-learning

classification problem as described in § 6.3, in which the
participants provide labels along with features for webpages,
and we use these inputs to train and evaluate a classifier.

We repeated the experiment for classification of webpages
for ten different topics such as (Science-Math, Home-Cooking,
Comics etc.). Each topic involved different number of agents
(because participants tend to provide different number of
features.). For each topic, we have the same set of four meth-

MSE MSE Top 3 Kendall
Clustering-2 .06(.01) .04(.02) .71(.54)
Random-2 .34(.17) .21(.23) .61(.44)

Table 1: Performance of different Approximation
methods for real world experiment

ods for computing Shapley as in the synthetic experiments.
The results for computational time versus the number of
agents are illustrated in Figure 2, showing the efficiency of
the proposed approximation. In Table 1 we have computed
the average of the mean squared errors between the exact
Shapley and approximated Shapley with different methods.
We look into the the same average for mean squared er-
ror for only top 3 and also to the error in the ranking us-
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Figure 1: Computational time and accuracy com-
parisons for synthetic experiments with n = 16
agents for vectors with dimension m = 1000

ing Kendall correlation (the more the better). All the error
metrics indicate that our method out performs the random
approximation by some margin.

0
50

0
15

00
20

00

Number of Agents

Ti
m

e 
(s

ec
on

ds
)

10
00

Exact
Rand−2
Rand−3
Clustering-2

5 10 15

Figure 2: Computation time for the classification
tasks versus the size of the agents in the tasks.

In addition, to show the underlying structure we display a
k-means clustering of the pairwise similarity graph of agents
for two topics (science-math and comics) in Figure 3. The
figures reveal that the similarity graph partitions into tight
clusters.

Though the AUC metric for a classifier built with these
labels and features is not strongly sub-additive, the empirical
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Figure 3: Similarity Matrix for two classification
tasks, upper panel is Science-Math with 11 agents
and lower panel is the Comics with 7 agents.

results still yield very good approximations. This indicates
that results obtained in this paper perhaps hold under more
lenient assumptions.
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