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ABSTRACT
Supply Chain Formation involves determining the partici-
pants and the exchange of goods within a production net-
work. Today’s companies operate autonomously, making
local decisions, and coordinating with other companies to
buy and sell goods along their Supply Chains. Such tem-
poral interactions need to be formed rapidly and in a de-
centralized manner. For sufficiently large problems, current
state-of-the-art approaches for Decentralized Supply Chain
Formation are only capable of either (i) producing Supply
Chains of high value at the expense of high resource require-
ments; or (ii) require low resources at the expense of produc-
ing Supply Chains of low value. In this paper we describe
an algorithm that is able to produce Supply Chains of high
value while keeping a low resource usage profile. Moreover,
our method is able to produce near optimal Supply Chains
while using up to four orders of magnitude less resources
that the state-of-the-art.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

General Terms
Algorithms, Performance, Experimentation

Keywords
Teamwork, coordination, distributed problem solving

1. INTRODUCTION
Supply Chain Formation (SCF) is the process of deter-

mining the participants in a Supply Chain (SC), who will
exchange what with whom, and the terms of the exchanges
[15]. Today’s companies are required to dynamically form
and dissolve trading relationships at a speed and scale that
can be unmanageable by humans, giving rise to the need for
automated SCF. Automating SCF poses an intricate coordi-
nation problem to firms that must simultaneously negotiate
production relationships at multiple levels of the SC. This
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problem has been already tackled by the AI literature. Ini-
tial contributions [16, 5, 4] addressed the problem by means
of combinatorial auctions that compute the optimal SC al-
location in a centralized manner.

The decentralized assessment of SCs has been studied in
a number of works [15, 10, 21, 3]. Companies taking part in
the SCF operate autonomously making local decisions and
coordinating with each other, making SCF an inherently dis-
tributed process. Therefore, no single entity may have global
allocative authority over the entire SC. Moreover, since the
SCF problem is NP-Complete [17], sufficiently large SCF
problems will be intractable, hence hindering the scalability
of the global optimization performed by centralized, auction-
based approaches.

In [15], Walsh et al. proposed to solve the SCF problem
in a fully decentralized manner. Each good in the SC is auc-
tioned separately and all auctions run simultaneously with-
out direct coordination. Therefore, each auction allocates a
single good considering the offers to buy or sell submitted by
agents. Nevertheless, the approach proposed by Walsh et al.
suffers from high communication requirements, as discussed
in [14]. Later on, Burke et. al. [3], cast the SCF problem
into a Distributed Constraint Optimization (DCOP) prob-
lem. Unfortunately, their approach suffers from scalability
issues.

More recently, Winsper et al. [21] cast the decentralized
SCF problem as an optimization problem that can be ap-
proximated using (max-sum) loopy belief propagation [6].
Nonetheless, as shown in [10], the problem representation
employed by Winsper et al. leads to exponential memory
and communication requirements that largely hinder its scal-
ability. Thus, Penya-Alba et al. provide in [10] a scalable
approach to the decentralized SCF problem through a new
encoding of the SCF problem into a binary factor graph.
However, as we show in this paper, the algorithm in [10] is
unable to find SCs whose value is close to the optimal (i.e.
the one with maximal value) as the number of agents at
trade increases.

To summarize, state-of-the-art approaches fall into two
categories: those that provide higher-valued SCs at the ex-
pense of higher resource (memory, bandwidth, computation)
requirements; and those that reduce the resources required
at the expense of obtaining lower-valued SCs. Against this
background, in this paper we present chainme, a novel de-
centralized SCF algorithm. Our main contributions are: (i)
a novel encoding of the SCF problem into an unconstrained
binary linear program; (ii) an efficient max-sum implemen-
tation optimized to solve the unconstrained binary linear
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program with significantly less resources; and (iii) an empir-
ical evaluation of chainme, showing that chainme assesses
SCs with higher value while requiring from one up to four
orders of magnitude less resources than the state-of-the-art
methods.

The paper is organized as follows. Section 2 describes the
SCF problem. Section 3 reviews the max-sum algorithm.
Section 4 reviews the state-of-the-art approaches to decen-
tralized SCF. Section 5 details chainme’s encoding of the
SCF problem into an unconstrained binary linear program.
Section 6 describes the chainme algorithm. Section 7 bench-
marks chainme against previous algorithms for decentral-
ized SCF, and Section 8 draws conclusions and sets paths to
future research.

2. THE SUPPLY CHAIN FORMATION
PROBLEM

In this section we describe the SCF problem. Before de-
scribing the formal details, we illustrate an SC with an exam-
ple from a local lime juice industry. In our example, there
are three lime producers (Alice, Bob, and Carol), each of
them can produce a kilo of limes at a particular cost: Alice
and Carol ask for $5 each, whereas Bob asks for $7. Then
we have Dave, the lime squeezer, who given a kilo of limes
can produce a liter of juice for $10. Thus, Dave acts as a
buyer of limes and as a seller of juice. Finally, there are
three juice buyers (Eve, Frank, and Gaby), each aiming at
buying a liter of juice at a given price (Eve offers $20, Frank
$22, and Gaby $18).

Figure 1 depicts the Task Dependency Network (TDN)[15]
representing the scenario described above. In a TDN, par-
ticipants (lime producers, squeezers and juice consumers)
are represented by rectangles, goods (Lime and Juice) are
represented by circles, and links between participants and
goods represent potential flows of goods. The number be-
low each participant pi represents her activation cost (Cpi).
The activation cost of a participant can either be a positive
value (the participant is willing to pay in order to be part
of the SC) or a negative value (the participant requests to
be paid to be part of the SC). Notice that each participant
produces only one unit of each of her output goods, thus
potentially limiting the amount of goods in the SC. In the
example, the juice is a limited resource since Dave can only
produce one liter of it. Furthermore, SCs may grow in the
number of levels among which the goods are distributed, the
number of participants and the number of goods, and their
interdependencies.

An SC can have several feasible configurations. In a fea-
sible configuration, each active participant can buy her re-
quired goods and sell her produced goods. That is, for each
good, there must be the same number of active buyers and
sellers (i.e. the good must be at equilibrium). The example
in Figure 1 allows several feasible SC configurations. For
instance, configuration SC1 : Alice→ Dave→ Frank is fea-
sible, whereas SC2 : Dave→ Frank is not (nobody provides
lime to Dave).

In general, an SCF problem will have P = {p1, . . . , pn}
participants and G = {g1, . . . , gm} goods. An SC configu-
ration is denoted by SC and its value is assessed by adding
the activation costs of the active participants in SC. More

Carol

Bob

Alice

Dave

Eve

Frank

Gaby

Lime Juice

-7

-5

-5

-10

20

22

18

p1

p2

p3

p4

p5

p6

p7

g1 g2

Figure 1: Example of a SCF scenario.

formally,

V (SC) =
∑

pi∈SC

Cpi . (1)

Moreover, for each good g we denote Sg as the set of partici-
pants willing to sell good g, and Bg as the set of participants
willing to buy good g.

Problem 1. The SCF problem is that of finding the feasi-
ble configuration with maximum value (optimal configuration
henceforth). In a scenario with participants P and goods G
the optimal configuration (SC∗) can be assessed as:

SC∗ = arg max
SC⊆P

V (SC)

subject to |Sg ∩ SC| = |Bg ∩ SC| , ∀g ∈ G

We say that a good is at equilibrium when it has the same
number of buyers and sellers. Hence, the SCF problem in-
troduces a constraint for each good(g) that guarantees that
it is at equilibrium, henceforth referred as equilibrium con-
straint. An SC configuration that satisfies every equilibrium
constraint is guaranteed to be feasible.

In our example, the optimal configuration corresponds to
SC1 = {Alice,Dave,Frank}, and its value is V (SC1) = −5+
(−10) + 22 = 7.

3. MAX-SUM ALGORITHM
Max-sum is an approximate optimization algorithm for

unconstrained optimization that has been applied in dif-
ferent coordination problems. In the following, let X =
〈x1, . . . , xn〉 be a sequence of variables, with each variable
xi taking states in a finite set Di known as its domain. The
joint domain DX is the cartesian product of the domain of
each variable. We use xi to refer to a possible state of xi,
that is xi ∈ Di and X to refer to a possible state for each
variable in X, that is X ∈ DX . We say that X is an assign-
ment. Given a sequence of variables Y ⊆ X, factor f is a
function f : DY → [−∞,∞). We refer to the variables in
the scope of f as Xf .

The max-sum algorithm provides an approximate solution
to the problem of maximizing a function that decomposes
additively as a sum of functions with smaller scope.

maximize
∑
f∈F

f(Xf ) (2)

subject to xi ∈ Di. ∀i ∈ {1, . . . , n} (3)

where Xf contains the states assigned by X to the variables
in the scope of factor f .
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Max-sum provides an approximate solution for this prob-
lem in two steps. First, messages are sent from variable to
factor and from factor to variable. This step is repeated un-
til the messages no longer change or until a specified number
of iterations is reached. After that, max-sum determines the
best state for each variable independently.

Thus, at the first stage, max-sum assesses the message
from variable x to factor f (µf

x) as follows:

µf
x(x) =

∑
g∈N (x)\{f}

µx
g(x). (4)

where N (x) stands for the factors that have variable x in its
scope, x stands for a state of x, and µx

g stands for the last
message received by variable x from factor g. Furthermore,
the message from f to x (µx

f ) is assessed as follows:

µx
f (x) = max

Y

(
f(x,Y) +

∑
y∈Y

µf
y(y)

)
. (5)

where Y is the set of variables in the scope of factor f exclud-
ing x, and Y is their joint state. Notice that the assessment
of the max-sum message for a factor over k d-ary variables
takes time O(dk).

At this point we can define the factor graph associated to
a max-sum encoding. A factor graph is a bipartite graph
with variable and factor nodes. The factor graph associated
to a max-sum encoding, contains a variable node for each of
the variables in the encoding and a factor node for each of
the factors in the encoding. Moreover, there is a link joining
a variable node an a factor node whenever the variable is in
the scope of the factor.

At the second stage, max-sum assesses the preferred states
for each variable x∗i as

x∗i = argmax
xi

∑
f∈N (xi)

µxi
f (xi). (6)

Finally, max-sum is guaranteed to converge to the optimal
configuration on acyclic factorizations. Whenever the under-
lying factorization contains cycles, max-sum may converge
to a suboptimal solutions and even fail to converge. Yet,
if max-sum converges, it is known to provide neighborhood
maximum configurations [19, 12]. For instance, in factor
graphs with a single cycle, the neighborhood maximum is
the global maximum.

4. RELATED WORK
In this section we review the state-of-the-art on decen-

tralized SCF after separating the contributions in the litera-
ture in two groups: market-based approaches and message-
passing approaches.

4.1 Market-based approaches
In [1], Babaioff and Nisan provide a distributed mecha-

nism providing ex-post individual rationality and incentive
compatibility, budget balance and high global economic ef-
ficiency in linear SCs. Later on, Babaioff and Walsh [2]
extended this result to SCs that satisfy the unique manu-
facturing technologies property, that is, markets where two
participants that have the same good, should have exactly
the same required goods in the same amounts. In this paper
we are interested in the more general SCF scenario intro-
duced in [15].

To efficiently solve a SCF problem, Walsh and Wellman
introduced the Simultaneous Ascending (M+1)st Price with
Simple Bidding protocol (samp-sb-d) [15]. samp-sb-d pro-
tocol is composed of an auction mechanism. A samp-sb-
d mechanism comprises a set of auctions (run by media-
tors), one per good. Each auction runs independently of the
other auctions in the SC. However, all auctions run simul-
taneously. Additionally, samp-sb-d provides simple bidding
policies for participants. Since samp-sb-d may converge to
solutions in which some participants obtain a negative util-
ity to participate in the SC, the samp-sb-d protocol includes
an additional phase that allows agents to decommit.

4.2 Message-passing approaches
Winsper and Chli [21] propose an alternative graphical

representation for the encoding of a SCF problem as a fac-
tor graph. Under this representation, the SCF problem is
cast as an optimization problem and subsequently approxi-
mated by the (max-sum) loopy belief propagation algorithm
(lbp)[6]. Recently, Penya-Alba et al. proposed an alterna-
tive factor graph encoding for the SCF problem [10], the so-
called Reduced Binary Loopy Belief Propagation (rb-lbp),
which dramatically lowers max-sum requirements, from ex-
ponential to quadratic, while leading to higher valued SCs
than lbp.

Since the goods are not explicitly represented in the en-
codings in [21] and [10], message-passing takes place di-
rectly between participants. This is different from samp-sb-
d, which does employ mediators. Upon convergence, each
message passing algorithm includes a decommitment phase
to guarantee feasibility in the resulting SC configuration.

5. THE CHAINME ENCODING
In this section we start describing our approach for decen-

tralized SCF, the so-called chainme (CHaining Agents IN
Mediated Environments) algorithm. First, in what follows,
we detail a novel way to encode the SCF problem defined
in Section 2 into an unconstrained optimization problem.
Thereafter, in Section 6 we will provide a description of the
chainme algorithm, which is based on an efficient max-sum
implementation specifically optimized to solve the uncon-
strained optimization problem introduced in this section.

To encode the SCF problem into a binary linear program,
we represent each SC configuration by means of a set of
binary variables, one per participant. Thus, for each par-
ticipant pi, her participant variable pi takes value 1 if pi is
active in the SC configuration, and 0 otherwise. The SCF
problem amounts to finding the values of p1, . . . ,pn that

maximize V (p1, . . . ,pn)

subject to
∑

pi∈Sg
pi =

∑
pj∈Bg

pj ∀g ∈ G

where V (p1, . . . ,pn) stands for the value of the SC encoded
by the values taken by the variables p1, . . . ,pn.

Now our purpose is to encode this problem in a way that
can be solved by max-sum. With this aim, we introduce two
types of factors on which max-sum is to operate: activation
factors to assess the cost of each participant, and equilibrium
factors to determine whether the equilibrium constraints are
satisfied.

First, notice that the value of an SC, V (p1, . . . ,pn), must
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include the activation cost of a participant pi only if she is
active. Thus, we define an activation factor for each partic-
ipant pi as follows:

fpi(pi) =

{
Cpi , if pi = 1

0, if pi = 0.
(7)

In the example in Figure 1, where Alice is participant p1,
fp1(p1) will take value -5 if p1 is active (p1 = 1) and 0 other-
wise. Therefore, the objective function of the above-defined
binary linear program, corresponding to the SC value, can
now be expressed as:

V (p1, . . . ,pn) =
∑
pi∈P

fpi(pi). (8)

Second, since max-sum is unable to deal with constrained
problems, we need to incorporate the equilibrium constraints
into the expression to maximize. Thus, we will add addi-
tional factors, one per good, representing all equilibrium
constraints. Each equilibrium factor will return 0 if the
constraint is satisfied and −∞ if it is violated. For each
good g, the factor encoding the equilibrium constraint for
the good only depends on the participant variables of the
sellers (Sg) and buyers (Bg) of that good. Thus, we use
Sg = {pi|pi ∈ Sg} to denote the joint state of the variables
of the sellers of g and Bg = {pi|pi ∈ Bg} to denote the joint
state of the variables of the buyers of g. The equilibrium
factor for a good g is defined as:

fg(Sg,Bg) =

0, if
∑

pi∈Sg
pi =

∑
pj∈Bg

pj

−∞, otherwise.
(9)

In the example in Figure 1, where Lime is good g1, the
equilibrium factor of good g1 will take as arguments Sg1 =
{p1,p2,p3} and Bg1 = {p4}. The value of g1’s equilibrium
factor will be zero whenever all participants are inactive, or
if p4 is active and there is one and only participant active
out of {p1, p2, p3}.

Finally, we are ready to express the SCF problem as an
unconstrained optimization problem:

maximize
∑

pi∈P
fpi(pi) +

∑
g∈G

fg(Sg,Bg) (10)

The first term of the objective function stands for the
SC value as computed by Equation 8, whereas the second
term stands for the equilibrium constraints. In the example
in Figure 1, the assignment that maximizes Equation 10 is
〈p1, . . . ,p7〉 = 〈1, 0, 0, 1, 0, 1, 0〉, whose SC value is 1 ·(−5)+
0 · (−7) + 0 · (−5) + 1 · (−10) + 0 · 20 + 1 · 22 + 0 · 18 = 7.

Observe that, in Equation 10, we have managed to pro-
vide a factorization of the SCF problem defined in Section 2.
It is worth noticing that chainme’s factorization does not
contain cycles as long as the original TDN does not contain
cycles in its undirected form. Recall that max-sum’s per-
formance is known to be affected in factorizations [19] with
higher number of cycles. On the other hand, other factoriza-
tions introduce additional cycles. That is because chainme
mapping creates just one variable per participant and the
connections between variables generated by the equilibrium
factor of each good follow the links present in the TDN. For
instance, in the TDN depicted in Figure 2, chainme pro-
duces a factorization without cycles, whereas rb-lbp will
introduce a cycle.

Bob

Alice Eve

Frank

Pie

-7

-5 20

22

p1

p2

p3

p4
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Figure 2: Example of a SCF scenario.

Moreover, chainme will be able to approximately solve
the SCF problem by means of an efficient max-sum imple-
mentation as we detail in Section 6.

6. THE CHAINME ALGORITHM
chainme employs two types of agents, participants and

mediators. On the one hand, there is a participant agent
for each of the participants in the SC. Each participant agent
communicates exclusively with the mediators of the goods
it is interested in buying or selling. On the other hand,
there is a mediator agent for each good on the SC. Each
mediator agent is responsible of enforcing the equilibrium
constraint of a particular good. Moreover, each mediator
communicates only with the participant agents interested in
buying or selling the good it is responsible for.

In this section we detail the operation of the chainme al-
gorithm. Agents in chainme follow a protocol that has two
phases: the max-sum phase and the decommitment phase.
During the max-sum phase, agents apply a new efficient im-
plementation of the max-sum algorithm to obtain an ap-
proximate solution to the problem in Equation 10. Since it
could happen that eventually the solution assessed is unfea-
sible, during the decommitment phase. Unfeasible solutions
are transformed into feasible ones.

Section 6.1 describes the max-sum phase, while Section 6.2
describes the decommitment phase. Finally, Section 6.3 an-
alyzes chainme’s resource requirements and compares them
with the state-of-the-art.

6.1 Max-sum phase
Recall from Section 3 that the max-sum algorithm has

two stages. During the first one, messages are iteratively
exchanged between variables and factors until convergence
(or a previously specified number of iterations) is reached.
During the second one, a solution is assessed. In max-sum
terms, the problem is distributed as follows. On the one
hand, each mediator agent handles the equilibrium factor
of one of the goods. On the other hand, each participant
agent handles a participant variable along with its activation
factor. In the following we provide a new and efficient way
of assessing max-sum messages for the chainme encoding of
the SCF problem.

6.1.1 Efficient message passing
Recall from Section 3 that, conventionally, the assessment

of the messages from a factor to a variable in max-sum can
take exponential time. Specifically, the assessment of the
max-sum message for a factor over k binary variables takes
time O(2k). In the remainder of this section we provide
chainme’s efficient version of max-sum messages.

Since in chainme all participant variables are binary, agents
can just exchange single-valued messages representing the
difference between two values [7]. Intuitively, this value en-
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codes the preference for the active state against the inactive
one. We use νba to denote the message from agent a to agent
b.

Before formally defining the messages from mediator to
participant, we need to introduce some notation. Let S�g =
〈s�1 , . . . , s�r 〉 (where r = |Sg|) be a sequence of the sellers
of good g ordered decreasingly by the value of the last mes-
sage sent to the mediator of good g. Similarly, let B�g =
〈b�1 , . . . , b�t 〉 (where t = |Bg|) be a sequence of the buyers of
good g ordered decreasingly by the value of the last message
sent the mediator of good g.

Finally, we define

η = max{j|νg
s�j

+ νg
b�j
≥ 0}, (11)

τ+ = min(νg
b�η
,−νg

s�η+1

), (12)

τ− = max(−νg
s�η
, νg

b�η+1

), (13)

Sa
g = {s�i ∈ S�g |i ≤ η}, (14)

Ba
g = {b�i ∈ B�g |i ≤ η}. (15)

Now, messages in chainme can be proved to be the fol-
lowing ones1:

• The message from participant pi to the mediator
of good g contains a single value νgpi , computed as the
addition of all messages received by pi, excluding the
message received from g, plus the participant’s activa-
tion cost.

νgpi = Cp +
∑

g′∈N (pi)\g

νpig′ , (16)

where N (pi) is the set of goods pi is required to sell or
buy if active, and νpig′ is the last message received by

agent pi from the mediator of good g′.

• The message from the mediator of good g to its
seller si contains a single value νsig that is assessed as:

νsig =

{
τ+, if si ∈ Sa

g

τ−, otherwise .
(17)

• The message from the mediator of good g to its
buyer bi contains a single value νbig that is assessed
as:

νbig =

{
−τ−, if bi ∈ Ba

g

−τ+, otherwise.
(18)

Note that the assessment of messages from mediators to
participants is particularly efficient.

The assessment of the standard max-sum message for an
equilibrium factor with r sellers and t buyers can takeO(2r+t)
time. On the other hand, with chainme’s efficient message
calculation, it takes only O((r+t) · log(r+t)) time (the time
taken to order the messages). This simplification stems from

1A complete derivation of the messages can be found in [9].
Although the results are new, the techniques are similar to
the ones applied in [7, 11].

taking benefit of the fact that our equilibrium factor repre-
sents a constraint and the alternatives that do not satisfy
the constraint can directly be discarded.

Importantly, we are not approximating the messages, but
proposing a particularly efficient way to assess them. Since
the assessment of the messages is exact, it does not affect the
quality of the solution achieved by the max-sum algorithm.
Therefore, chainme keeps all theoretical guarantees proven
for the max-sum algorithm. That is, chainme max-sum
phase is guaranteed to converge to the optimal configuration
on acyclic factorizations. Morover, in cyclic factorizations,
chainme’s max-sum phase will produce neighborhood max-
imum configurations whenever it converges. Moreover, as
shown in Section 7, chainme also presents the good empir-
ical performance that max-sum has shown in a wide variety
of applications [18, 6].

6.1.2 Basic solution assessment
Since messages in chainme are single-valued, the basic

solution assessment slightly differs from regular max-sum.
However, the results are the same. In chainme, after message-
passing, each participant pi determines its activation value
as

Vpi = Cpi +
∑

g∈N (pi)

νpig . (19)

Then, it decides to be active (to set its variable to 1), when-
ever it has a positive activation value. In this case, we say
that pi is active in the basic solution. It could happen that
the solution assessed at this stage is unfeasible. Therefore,
in the next section, we describe a decommitment phase that
guarantees feasible solutions.

6.2 Decommitment phase
The decommitment phase follows an iterative protocol

where messages are sent from participants to mediators, pro-
cessed by mediators and sent back from mediators to par-
ticipants. Essentially, at each iteration each mediator de-
termines whether its good is at equilibrium. Whenever it is
not, it forces some of the good’s participants to be inactive.
This is repeated until every good is at equilibrium.

In what follows we describe this decommitment phase
in more detail. Each participant starts the decommitment
phase by sending whether it is active or not (as assessed in
the basic solution) to its neighboring mediators. Once a par-
ticipant decides that it is inactive, it will no further change
its status.

Algorithm 1 Active participant determination process for
the mediator of good g mediator.

1: Let 〈s′1, . . . , s′n〉 be the active sellers and 〈b′1, . . . , b′m〉 be
the active buyers, both sorted decreasingly by last mes-
sage

2: j ← 1
3: active← ∅
4: while νg

s′j
+ νg

b′j
≥ 0 and j ≤ max(|Sg|, |Bg|) do

5: active← active ∪ {s′j , b′j}
6: j ← j + 1
7: end while

After receiving the status from all its neighboring agents,
good g’s mediator determines the active participants as de-
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Measure chainme samp-sb-d rb-lbp
Memory (overall)

participant O(G) O(G) O(G · P )
mediator O(P ) O(P )

Bandwidth (per iteration)
participant O(G) O(G) O(G · P )
mediator O(P ) O(P )

Operations (per iteration)
participant O(G) O(G) O(G · P 2)
mediator O(P · logP ) O(logP )

Table 1: Worst case resource requirements.

scribed in Algorithm 1. The purpose of the algorithm is to
match buyers and sellers who are still active and have the
larger message values. After that, each mediator commu-
nicates to its participants whether they should be active or
not.

When a participant receives the status request from each
of its neighboring mediators, it decides to be active only if
all of its neighboring mediators requested it to be active.
Then, it sends its status to all the mediators it is connected
with. This process continues iteratively until no participant
changes its status. Participants who are active at this stage
will be the active agents in the decommited solution, and will
compose the SC configuration proposed by chainme.

6.3 Resource requirements
Next, we analyze the resources necessary to assess an SC

configuration using chainme. Provided that there are n
participants in a market with m goods, we will need a total
of n + m agents. Furthermore, assume that the maximum
number of participants a good is connected to is P , and the
maximum number of goods that a participant is connected
to is G.

Memory. Each participant needs to store the last message
received from each of the mediators it is connected to plus
its activation cost, namely O(G) memory. Each mediator
needs to store the messages sent by each of the participants
it is connected to, namely O(P ) memory.

Communication. For each iteration, each participant needs
to send messages to and receive messages from each of its me-
diators, namely O(G) messages per iteration. Each message
contains a single real number. Analogously, each mediator
needs to send messages to and receive messages from each
of its participants, namely O(P ) messages per iteration.

Computation. At each iteration, each participant requires
O(G) operations. On the other hand, the costliest opera-
tion for a mediator is ordering the messages, which takes
O(P · logP ) operations per iteration.

Table 1 compares the resources needed by the chainme,
rb-lbp, and samp-sb-d algorithms. Computational require-
ments for samp-sb-d mediators are in the order of O(logP )
[22]. Finding other values for samp-sb-d is direct from its
description in [15]. Values for rb-lbp are taken from [10].

7. EXPERIMENTAL EVALUATION
In this section we benchmark chainme against the state-

of-the-art on decentralized SCF algorithms: samp-sb-d and

rb-lbp. We perform our comparison in terms of solution
quality (SC value) and resource requirements (bandwidth,
computation and memory usage).

chainme has been tested in all the SC structures de-
scribed in [15]. These problems represent toy examples where
the three methods compared obtain optimal or near optimal
solutions at a minimal cost. Thus, our evaluation focuses on
large-scale problems where differences among these methods
arise.

We use the test-suite described in [13], along the lines of
[10], which is specifically designed to generate SCF prob-
lems. We generate SCs with 50 goods spread over four SC
levels. We analyze different scenarios by varying the number
of participants from 40 to 500. For each scenario, we gener-
ate 100 different instances. The code for the algorithms, the
generated problems, and the results obtained can be freely
downloaded from [8].

We solve each SCF problem with chainme, rb-lbp, and
samp-sb-d. We measure bandwidth as the number of mes-
sages sent and received by each agent times the size of the
message. To measure computation we simply count the
number of operations2 each agent performs.

Following [10], we impose a hard limit of 250 iterations af-
ter which the execution of rb-lbp and chainme is stopped
and a solution is assessed. samp-sb-d is run until conver-
gence since convergence is guaranteed [15]. The number of
iterations and the convergence rate of each algorithm is dis-
cussed in detail in Section 7.2.

Since the distributions obtained for these measures are
long-tailed and skewed, we use the median instead of the
mean as a measure of central tendency following the rec-
ommendations in [20]. Where possible, we also show the
20th and 80th percentile as a measure of dispersion. Results
reported in this section are statistically significant with a
p-value ≤ 0.03.

Section 7.1 analyzes the quality of the solution obtained
(in terms of the value of the SC) by each algorithm. Then,
Section 7.2 analyzes the resource requirements of each algo-
rithm.

7.1 Solution quality
We normalize solution quality to the 0-1 scale by divid-

ing by the value of the optimal SC.3 Hence, a quality of
one means that the SC found is optimal. Figure 3a shows
the median and dispersion of the SC value for chainme,
rb-lbp, and samp-sb-d as the number of participants in-
creases4. We observe that chainme outperforms rb-lbp
and performs slightly better than samp-sb-d. Moreover, the
quality of the solution obtained by rb-lbp and samp-sb-d
decreases as the number of participants increases whilst the
quality for chainme remains almost constant (this effect is
more noticeable for rb-lbp). Notice that, due to the small
variance in the quality of the solutions assessed by chainme,
the confidence bars for chainme are too small to be distin-
guished in print.

Figure 3b plots the number of problems for which each
method was able to find the optimal SC. The number of

2The number of operations is measured as the number of
additions/assignments/comparisons an agent performs.
3Optimal SCs are computed using a centralized mixed inte-
ger programming solver.
4Increasing the maximum number of iterations up to 2000
yields similar results in terms of quality.
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Figure 3: Solution quality comparison analysis.

problems optimally solved by samp-sb-d and rb-lbp de-
creases very rapidly as the number of participants increases.
By contrast, chainme finds the optimal SC in most of the
problems, even in scenarios with a large number of partici-
pants. In the 500 participants scenario, chainme finds the
optimal SC in more than 70% of the problems, whereas the
other methods almost never find it.

In summary, the SC values assessed by chainme are larger
than those obtained by its contenders. Moreover, chainme
finds optimal solutions much more frequently.

7.2 Resource Requirements
The memory requirements for each agent are proportional

to the number of neighbors for the three algorithms com-
pared. Thus, any current computational environment will
be able to run any of the algorithms.

Recall that chainme and samp-sb-d are mediated algo-
rithms whilst rb-lbp is not. For that reason we bench-
mark bandwidth usage along four different dimensions: to-
tal bandwidth used by all agents, maximum bandwidth used
by any participant, total bandwidth used by mediators, and
maximum bandwidth used by any mediator.

Figure 4 shows how the different algorithms performed
in terms of bandwidth usage. Note that rb-lbp is left out
of Figures 4c and 4d due to its lack of mediator agents.
Figures 4a and 4b show that chainme uses at most 1/60
of the bandwidth used by rb-lbp and at least 3 orders of
magnitude less bandwidth than samp-sb-d. This difference
is when only considering mediators (Figures 4c and 4d).

Figure 5 shows how the different algorithms performed in
terms of computation. In Figures 5a and 5b we see that the
number of operations performed by chainme is at least 2 or-
ders of magnitude less than those performed by the runner-
up. This difference is confirmed when we only consider me-
diators in Figures 5c and 5d.

Recall from Section 6.3 that samp-sb-d’s computational
complexity was in the order of O(logP ) whereas chainme’s
was inO(P ·logP ). Then, it may seem counter-intuitive that
chainme outperforms samp-sb-d in terms of computational
requirements. However, as shown in Figure 6a, samp-sb-d
requires up to four orders of magnitude more iterations than
chainme to converge to a solution thus resulting in higher
computational requirements. Finally, Figure 6b depicts the
convergence rate of each of the algorithms. As expected,
samp-sb-d converges in all instances (since convergence is
guaranteed [15]). Notice that, chainme converges to a so-
lution in over 70% of the instances even for the problems
with 500 agents. Finally, rb-lbp is unable to converge to a
solution in none of the problems tested.
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Figure 4: chainme, rb-lbp, and samp-sb-d bandwidth
requirements. Plots use a log-scale for the y axis.
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Figure 5: chainme, rb-lbp, and samp-sb-d operations.
Plots use a log-scale for the y axis.

In summary, we have shown that chainme yields better-
valued solutions than the state-of-the-art algorithms for de-
centralized SCF while requiring from one up to four orders
of magnitude less resources.

8. CONCLUSIONS AND FUTURE WORK
We have described chainme, a novel decentralized SCF

algorithm. In our experiments, chainme outperforms state-
of-the-art algorithms, rb-lbp and samp-sb-d, in terms of
the value of the SCs obtained. For instance, chainme finds
the optimal SC in more than 70% of the instances, whereas
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Figure 6: chainme, rb-lbp, and samp-sb-d iterations
and convergence. Plots use a log-scale for the y axis.

the other methods almost never find them, for large-scale
SCF problems. Furthermore, chainme consumes less than
one tenth of the communication resources and one percent
of the computational resources used by those algorithms.

Note that, since no payment function has been defined,
chainme (like rb-lbp) should only be considered as a dis-
tributed approximate winner determination algorithm. There-
fore, the design of a mechanism would require the definition
of a payment function. The design of such payment func-
tion and the analysis of the properties of the corresponding
mechanisms should be pursued as future work.

The experiments show that the SC values obtained by
chainme are optimal much more often than the state-of-the-
art algorithms. Thus, we consider that it could be an ap-
proximate, low resources alternative to optimal centralized
approaches (such as standard integer linear programming
solvers) in very large SCF scenarios. We plan to explore
that path in the future.
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