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ABSTRACT
As large-scale, complex multiagent simulations are becoming
common, there is a need for new methods to analyze results
of these simulations. One of the goals in such cases is to
understand the effects of various behaviors on outcomes of
interest. Here, we present a method for contextual ranking
of behaviors where a partial context may already be provided
in the query. Our approach uses causally-relevant states
(states that have a measurable effect on the outcomes of
interest), which provide the context for ranking behaviors.
Apart from the partial context that may be provided in the
query, our method also discovers any additional context that
may affect behavioral ranking. We apply it to a large-scale
disaster simulation and present results.

Keywords
behavior ranking; causal states; multiagent simulations

1. INTRODUCTION
Outcomes of disasters are driven by human behavioral re-

sponses [1]. People engage in behaviors such as looking for
family members, following the crowd while attempting to
evacuate, seeking information, and more, in the process of
responding to any physical event. In order to develop effec-
tive plans, it is important to understand when and where
people’s behaviors are helpful or harmful, with the goal of
channeling their natural instincts in beneficial directions.

In general, therefore, we would like to be able to rank
behaviors in terms of their effects on outcomes. Here, we
study the problem of ranking behaviors based on their ef-
fects on the final outcomes of interest for multiagent sim-
ulations. However, it may be the case that behaviors have
different effects in different contexts, e.g., in the aftermath
of a nuclear blast, seeking healthcare may improve an in-
jured agent’s health but if the same agent is close to the
blast area and seeking healthcare early on, then it may be
exposed to more radiation and this behavior can actually
reduce health. Any model that does not take into account
contextual information would have to take average across all
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contexts. This may lead to inaccurate estimation of effects
and ranking. Therefore, we term this problem contextual
behavior ranking.

By context, we mean any information (current or previous
agent states and behaviors) that may lead to different out-
comes for the same behavior. In our previous work [3], we
proposed an algorithm to summarize simulation results by
extracting causally-relevant states – states that have a mea-
surable effect of the final outcome. These causally-relevant
states are the context information mentioned above.

2. OUR APPROACH
Our goal is to contextually rank behaviors given a query

which may include partial context. In addition to the partial
context provided in the query, it should also be able to dis-
cover any context that may affect behavioral ranking. We
use the causally-relevant states, extracted by our summa-
rization algorithm [3], as they provide the required context.
Next, we briefly describe this summarization algorithm.

It assumes that each agent trajectory is generated by the
same stochastic process. Let N be the number of agents in
the simulation. The state of an agent a at time t is defined by
a k-dimensional state vector xa(t) = [x1(t), x2(t), . . . xk(t)].
Let di be the number of possible values that xi can take
so d =

∏k
i=1 di is the total number of agent states. The

simulation proceeds in discrete time steps from t = 0 . . . T .
Let the outcome variable for agent a be denoted by ya.

In this algorithm, at each time step t, agents are divided
into a set of clusters, C(t) = {C1(t) ∪ C2(t) ∪ . . . Cm(t)}.
Initially, all agents belong to one cluster. At the next time
step, the state of an agent can change in d ways and so an ar-
bitrary cluster Ci(t) can split into up to d groups at the next
time step t+ 1. But not all of these changes may have a sig-
nificant effect on the outcome. We call each cluster derived
from cluster Ci(t) as candidate cluster CCi,j(t + 1) where
j = 1 . . . d. To check if the candidate cluster CCi,j(t+1) has
a significant effect on the outcome, we perform Kolmogorov-
Smirnov test. Our null hypothesis is

Pr(Y |CCi,j(t+ 1)) = Pr(Y |Ci(t)) (1)
There is also a threshold δ on the “effect size”, measured as a
KL-divergence between Pr(Y |Ci(t)) and Pr(Y |CCi,j(t+1)).
If the null hypothesis is rejected and DKL(Pr(Y |Ci(t))||
Pr(Y |CCi,j(t+1))) > δ, then candidate cluster CCi,j(t+1)
is accepted as a new cluster at time step t + 1. Thus, the
algorithm extracts causally-relevant states – states that have
a significant effect on the final outcome.
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However, it may be the case that two or more individual
states at consecutive time steps are not causally-relevant
but the consecutive sequence of them is. For example, in
a nuclear blast scenario, sheltering at any given time step
may not have any significant effect, but sheltering for a
long period of time may shield from radiation and lead to
a significant improvement in health. Such causally-relevant
sequences of states also provide the required context and
hence, we adapt the summarization algorithm to also extract
causally-relevant sequences of states as described below.

Our goal is to also extract causally-relevant state sequences,
so while creating candidate clusters, rather than only look-
ing at the state at the current time step (as in [3]), we look at
increasingly longer past state sequences. Whenever a clus-
ter splits from its parent cluster, any effects that the state
variables upto that time step had on the final outcome has
already been captured. So while creating candidate clus-
ters for cluster Ci(t), we look back only upto the time step
when it was last split from its parent cluster. To check if
the sequence associated with a candidate cluster CCi,j(t+1)
affects the final outcome, we compare Pr(CCi,j(t+ 1)) with
Pr(Y |C′

i(t + 1 − l) using Kolmogorov-Smirnov test, where
t+ 1− l is the length of the state sequence associated with
CCi,j(t+1) and C′

i(t+1−l) is the ancestor of CCi,j(t+1) at
time step t+ 1− l. The “effect size” threshold δ is measured
as a total variation distance between Pr(CCi,j(t + 1)) and
Pr(Y |C′

i(t + 1 − l). But some of these clusters may over-
lap with each other. So among the overlapping candidate
clusters, we select the one that has the most effect on the
outcome (i.e. the one with the highest value of total vari-
ation distance from its ancestor). If two candidate clusters
have the same effect, we choose the one that requires the
least amount of information about the states (i.e., the one
associated with the smallest state sequence).

These causally-relevant sequences are organized in a tree
structure (called causal tree), which is then matched against
the query for contextual ranking of behaviors and discover-
ing the additional context required.

The ranking algorithm takes causal tree T , a context map
M , and a query q as input. Each cluster (or node) in the
causal tree contains information about the state sequence
associated with it, the time stamp when it was split from
the parent cluster, and its score (the expected change in
the final outcome that it leads to). Query q consists of time
step t when we want to rank behaviors and optionally partial
context (values for some of the state variables). The context
map M is a hash map that maps context (time stamp and
state variables) to the list of clusters matching that context.
Let qCls denote the set of clusters matching query q.

Our problem is to contextually rank clusters in qCls. The
complete context for a cluster c ∈ qCls is path from the root
of tree T to c. However, some of the clusters in qCls may
have common ancestors and context associated with these
common ancestors do not really differentiate them. Hence,
to get the context that differentiate these clusters, one only
needs to look back upto their least common ancestor lca.

The clusters which are siblings share the same context.
So they are ranked by their scores in descending order. Let
length of the context for cluster c be defined as sum over
length of state sequence associated with each node n in the
path from lca to its parent. So higher length gives more
detailed context information. For clusters which are not
siblings, they may have different lengths of contexts and it

may happen that the context for one is a subset of the other.
Ideally we would want clusters with more detailed context to
appear first. So non-sibling clusters are sorted in descending
order by the lengths of their contexts.

3. EXPERIMENTS
We apply our algorithm to a large-scale simulation of a hy-

pothetical detonation of a nuclear device in Washington DC
[4]. The simulation is comprised of a detailed, high fidelity
“synthetic information system” [2] which represents the hu-
man population of the region and detailed models of four
infrastructures: cell phone communication system, power
system, transportation system, and healthcare system.

Agents are defined by a number of state variables. How-
ever, for the ranking purpose, we focus on six variables:
agent health (modeled on a 0 to 7 range where 0 represents
dead and 7 represents full health), agent behavior (six be-
haviors mentioned in the next paragraph, plus categories in-
dicating if agent is in healthcare location or out of the area),
if the agent has received an emergency broadcast (EBR), the
agent’s exposure to radiation, the agent’s distance from the
blast area, and if the agent has received treatment.

Agent behavior is conceptually based on the formalism
of decentralized semi-Markov decision process (Dec-SMDP)
with communication using the options’ framework. High
level behaviors are modeled as a collection of options. We
model six high level behaviors: household reconstitution
(HRO), evacuation, shelter-seeking, healthcare-seeking, worry,
and aid & assist. These options are policies over low level
actions. The actions are: to call, to text or to move. These
actions are supported by infrastructural systems. Details of
agent design and behavior can be found in [4].

3.1 Results
We use δ = 0.5 for extracting causally-relevant states and

to create a causal tree, which is used for contextual behav-
ioral ranking. We present results from query: rank behaviors
after 1 hour for people who are moderately injured.

Results show that for people who started within 0.6 mile of
the blast area and with high radiation exposure, if they have
managed to get further than 1 mile from ground zero, then
seeking-healthcare is the best behavior, otherwise worry is
the best behavior. In worry behavior, people run outside
looking for information, call 911 or go to the nearest health-
care location. If the 911 call is successful, some of them may
be transported to the nearest healthcare location. So worry
behavior also includes some of the benefits of healthcare-
seeking behavior. Since the radiation exposure is already
high, reaching a healthcare location and receiving treatment
is the best thing for these people to do.

In contrast, for people who started further than 0.6 miles
from the ground zero and have low radiation exposure after
1 hour, all behaviors are better than worrying. Thus, our
algorithm discovers different situations when the same be-
havior (e.g., worry) might be the best or the worst behavior.
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