
Speeding up Tabular Reinforcement Learning Using
State-Action Similarities

(Extended Abstract)
Ariel Rosenfeld
Bar-Ilan University

arielros1@gmail.com

Matthew E. Taylor
Washington State University
taylorm@eecs.wsu.edu

Sarit Kraus
Bar-Ilan University

sarit@cs.biu.ac.il

ABSTRACT
One of the most prominent approaches for speeding up reinforce-
ment learning is injecting human prior knowledge into the learning
agent. This paper proposes a novel method to speed up temporal
difference learning by using state-action similarities. These hand-
coded similarities are tested in three well-studied domains of vary-
ing complexity, demonstrating our approach’s benefits.

1. INTRODUCTION
Reinforcement Learning (RL) [1] has had many successes, solving
complex, real-world problems. When tackling such problems, the
designer must decide how much human knowledge into inject to
the system. From the engineering or practical perspective, inject-
ing human knowledge is desirable as it can help improve learning,
but only if it is practical to gather or leverage, and only as long
as it does not cause the agent to be limited to sub-optimal solu-
tions after training. One may consider this approach as a human
designer providing advice to an RL learner as opposed to the com-
mon framework in which agents advise people (e.g., [2, 3, 4, 5, 6,
7, 8]).

Many successful RL applications have used highly engineered
state features. With the recent successes of DeepRL [9], convo-
lutional neural networks have been shown to successfully learn
features directly from pixel-level representations. However, such
features are not necessarily optimal, significant amounts of human
time is necessary to define the deep neural network’s architecture,
and a significant amount of data is required to learn the features.
Therefore, this paper proposes a different, and potentially comple-
mentary, approach, in a ‘shallow RL’ setting.

Our novel approach, which we name SASS, standing for State
Action Similarity Solutions, allows the generalization of knowl-
edge across state-action values in the action-value function table
by leveraging hand-coded heuristics. While there are many ways
of leveraging human knowledge in an RL learner by leveraging
demonstrations or direct human knowledge (e.g., inverse reinforce-
ment learning [10, 11], learning from demonstration [12, 13], etc.),
SASS focuses on allowing designers to specify state-action sim-
ilarities in a given domain. In order to minimize confounding
factors, we consider the simplest representation for temporal dif-
ference RL algorithms, a tabular representation of an action-value
function, with variants of the well-studiedQ-learning algorithm [14].

Appears in: Proc. of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017),
S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),
May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

Our approach and its integration with the Q-learning framework
provide several desired properties that compare favorably with ex-
isting RL methods: 1) SASS is able to significantly speed up the
agents’ learning process in terms of sample efficiency; 2) Unlike
various other generalization techniques, SASS retains the conver-
gence and near-optimal guarantees of the original Q-learning algo-
rithm; 3) SASS is based on an arbitrary designer-defined similarity
function that does not assume any specific functional form, as other
generalization techniques often do.

We evaluate our methodology in three RL tasks of varying com-
plexity: 1) The “toy” task of simple soccer, providing a basic set-
ting for the evaluation of the proposed approach; 2) A large grid-
world task named Pursuit, showing the scale-up of our approach;
and 3) The popular game of Mario, exemplifying our approach’s
benefits in a task with billions of states.

2. THE SASS APPROACH
We define the RL task using a Markov Decision Process (MDP).

An MDP is defined as 〈S,A, T ,R, γ〉 where S is the state-space;
A is the action-space; T : S×A×S → [0, 1] defines the transition
probability; R : S ×A → R is the reward function; and γ ∈ [0, 1]
is the discount factor. T and R are initially unknown to the agent
and the agent seeks to learn a policy π : S 7→ A that maximizes the
expected total discounted reward (i.e., the expected return) while
interacting with the environment.

SASS focuses on injecting human knowledge into an RL learner
using the notion of similarity. We first formally define the similarity
function:

Definition 1. Let S and A be a state-space and an action-space,
respectively. A similarity function σ : S×A×S×A 7→ [0, 1] maps
every two state-action pairs in S × A to the degree to which we
expect the two state-action pairs to have a similar expected return.
σ is considered valid if ∀ pairs s, a, σ(s, a, s, a) > 0.

In this study, we assume that the similarity function can be easily
defined by a human designer. The investigation of this issue in a
study of human subjects, showing our approach’s effectiveness and
efficiency with both expert and non-expert designers, will be fully
described in future work.

In order to integrate the similarity function within theQ-learning
framework, we adopt a previously introduced technique [15], where
Q-learning is combined with a spreading function that “spreads"
the estimates of the Q-function in a given state to neighboring
states, exploiting an assumed spatial smoothness of the state-space.
We extend the authors’ approach as follows: for each experience
〈s, a, r, s′〉 that the agent encounters, depending on the similarity
function σ, we (potentially) update more than a single 〈s, a〉 entry
in theQ table. Multiple updates, one for each entry 〈s̃, ã〉 for which

1722



Figure 1: (a) Players in the simple soccer task are A and B; one
cell down (A* and B*) are considered similar. (b) Two similar
state-action pairs in the Pursuit domain. (c) A state in the Mario AI
task where walking or running right are similar (i.e., falling into the
gap).

σ(s, a, s̃, ã) > 0, are performed using the following update:

Q(s̃, ã) = Q(s̃, ã) + ασ(s, a, s̃, ã)δ (1)

where δ is the temporal difference error term (r+γmaxa′Q(s′, a′)−
Q(s, a)). The above update rule does not compromise the theoret-
ical guarantees of Q-learning (see [16, 17]).

In other words, the update rule states that as a consequence of
experiencing 〈s, a, r, s′〉, an update is made to other pairs 〈s̃, ã〉
as if the real experience actually was 〈s̃, ã, r, s′〉 (discounted by
the similarity function). We will use the term QS-learning for the
above Q-learning-with-SASS interpretation.

Similarity functions can be defined in multiple ways to capture
various assumptions and insights about the state-action space. Al-
though people can easily identify similarities in real-life, they are
often incapable of articulating sophisticated rules for defining such
similarities. Therefore, in the following, we identify and discuss
three notable similarity notions:
1) Representational Similarity from the tasks’ state-action space.
Function approximation [18] is perhaps the most popular exam-
ple of the use of this technique. The function approximator (e.g.,
tile coding, neural networks, abstraction, etc.) approximates the
Q-value and therefore implicitly forces a generalization over the
feature space. See Figure 1 (a) for an illustration.
2) Symmetry similarity seeks to consolidate state-action pairs that
are identical or completely symmetrical in order to avoid redundan-
cies. For example, in the Pursuit domain, one may consider the 90◦,
180◦ and 270◦ transpositions of the state around its center (along
with the direction of the action) as being similar (see Figure 1 (b)).
However, as the predators do not know the prey’s (potentially bi-
ased) policy, they can only assume such symmetry exists.
3) Transition similarity can be defined based on the idea of rel-
ative effects of actions in different states. A relative effect is the
change in the state’s features caused by the execution of an action.
Exploiting relative effects to speed up learning was proposed [19,
20] in the context of model learning. For example, in the Mario
domain, if Mario walks right or runs right, outcomes are assumed
to be similar as both actions induce similar relative changes to the
state (see Figure 1 (c)). In environments with complex or non-
obvious transition models, it can be difficult to intuit this type of
similarity.

3. EVALUATION
We evaluate our approach (denotedQS) against regularQ-learning

(denotedQ),Q-learning combined with state-space abstraction (de-
noted QA) and the Dyna algorithm (denoted Dyna) in three RL
tasks of varying complexity: Simple Soccer [21] (which we imple-
mented in this study), Pursuit [22] (as implemented in [23]) and
Mario AI [24] (as implemented in [11]).
Simple Soccer:
QA used a simple distance-based approach, which represented each
state according to the learning agent’s distance to its opponent and
goal.

QS used two major similarity notions: First, representational sim-
ilarities – the agent artificially moves both players together across
the grid, keeping their original relative distance (see Figure 1). As
the players are moved further and further away from their original
positions, the similarity estimation gets exponentially lower. Sec-
ond, symmetry similarities – experiences in the upper half of the
field are mirrored in the bottom part by mirroring states and actions
with respect to the Y -axis and vice-versa. Transition similarities
were not defined by the expert for this task.
Pursuit:
QA was already defined by Brys et al. [23] who implemented tile-
code approximation.
QS was defined based on linear differences and angular rotations.
Each state is represented as 〈∆x1 ,∆y1 ,∆x2 ,∆y2〉where ∆xi (∆yi )
is the difference between predator i’s x-index (y-index) and the
prey’s x-index (y-index). A similarity of 1 was set for all states
in which the relative positioning of the prey and predators is the
same. Symmetry similarities were defined using 90◦, 180◦ and
270◦ transpositions of the state around its center (along with the di-
rection of the action). Furthermore, experiences in the upper (left)
half of the field are mirrored in the bottom (right) part by mirror-
ing states and actions. Transition similarities were defined for all
state-action pairs that are expected to result in the same state.
Mario AI:
QA was implicitly defined by the original authors as they had al-
ready abstracted the state space.
QS was defined on top of the authors’ abstraction. State is defined
such that whether Mario can jump or shoot are 2 Boolean variables.
Given a state-action pair in which Mario does not jump or shoot,
all respective states (with the four variations of these two Boolean
variables) were defined as similar to the original pair. Namely, if
Mario walks right, then regardless of Mario’s ability to shoot or
jump, the state-action pair is considered similar to the original one.
Symmetry similarities are defined using the mirroring of the state-
actions across an imaginary horizontal line that divides the environ-
ment in half, with Mario in the middle. As illustrated in Figure 1,
regardless of specific state, performing action a (e.g., move right)
is assumed similar to using action a+“run" (e.g., run right). In the
Mario AI task, due to the huge state-action space, Q-learning with-
out the authors’ abstraction will not be evaluated. Furthermore,
due to extreme memory requirements in run-time, we were unable
to evaluate the Dyna condition properly.

(a) Simple Soccer. (b) Pursuit. (c) Mario AI.

Figure 2: The QS-learning agent outperforms QA-learning, Q-
learning and Dyna agents in all three domains.

4. CONCLUSIONS
In this paper, we proposed and extensively evaluated a novel

approach for speeding up Q-learning agents using the notion of
state-action similarities. Our approach, SASS, and its instantiation
within the Q-leaning framework, QS-learning, are shown to sig-
nificantly speed up an agent’s learning process in well-studied do-
mains of varying complexity while accommodating different sim-
ilarity notions and retaining desired theoretical properties. In fu-
ture work we will fully describe an empirical investigation of our
approach in a study of human subjects, showing our approach’s ef-
fectiveness and efficiency among designers of different skills and
prior knowledge.

1723



REFERENCES
[1] Richard S Sutton and Andrew G Barto. Reinforcement

learning: An introduction. MIT press, 1998.
[2] Ariel Rosenfeld and Sarit Kraus. Providing arguments in

discussions on the basis of the prediction of human
argumentative behavior. TiiS, 6(4):30:1–30:33, 2016.

[3] Ariel Rosenfeld, Joseph Keshet, Claudia V. Goldman, and
Sarit Kraus. Online prediction of exponential decay time
series with human-agent application. In ECAI 2016 - 22nd
European Conference on Artificial Intelligence, 29 August-2
September 2016, The Hague, The Netherlands, pages
595–603, 2016.

[4] Ariel Rosenfeld. Automated agents for advice provision. In
Proceedings of the 24th International Conference on
Artificial Intelligence, IJCAI, Buenos Aires, Argentina, July
25-31, 2015, pages 4391–4392, 2015.

[5] Ariel Rosenfeld, Noa Agmon, Oleg Maksimov, Amos
Azaria, and Sarit Kraus. Intelligent agent supporting
human-multi-robot team collaboration. In Proceedings of the
24th International Conference on Artificial Intelligence,
IJCAI, Buenos Aires, Argentina, July 25-31, 2015, pages
1902–1908. AAAI Press, 2015.

[6] Ariel Rosenfeld, Amos Azaria, Sarit Kraus, Claudia V.
Goldman, and Omer Tsimhoni. Adaptive advice in
automobile climate control systems. In Proceedings of the
2015 International Conference on Autonomous Agents and
Multiagent Systems, AAMAS, Istanbul, Turkey, May 4-8,
2015, pages 543–551, 2015.

[7] Amos Azaria, Ariel Rosenfeld, Sarit Kraus, Claudia V
Goldman, and Omer Tsimhoni. Advice provision for energy
saving in automobile climate-control system. AI Magazine,
36(3):61–72, 2015.

[8] Priel Levy and David Sarne. Intelligent advice provisioning
for repeated interaction. In Thirtieth AAAI Conference on
Artificial Intelligence, 2016.

[9] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Stig
Ostrovski, Georg Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level
control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[10] Andrew Y Ng and Stuart J Russell. Algorithms for inverse
reinforcement learning. In Icml, pages 663–670, 2000.

[11] Halit Bener Suay, Tim Brys, Matthew E Taylor, and Sonia
Chernova. Learning from demonstration for shaping through
inverse reinforcement learning. In AAMAS, pages 429–437,
2016.

[12] Brenna D Argall, Sonia Chernova, Manuela Veloso, and
Brett Browning. A survey of robot learning from
demonstration. Robotics and autonomous systems,
57(5):469–483, 2009.

[13] Matthew E Taylor, Halit Bener Suay, and Sonia Chernova.
Integrating reinforcement learning with human
demonstrations of varying ability. In The 10th International
Conference on Autonomous Agents and Multiagent
Systems-Volume 2, pages 617–624. International Foundation
for Autonomous Agents and Multiagent Systems, 2011.

[14] Christopher John Cornish Hellaby Watkins. Learning from
delayed rewards. PhD thesis, University of Cambridge
England, 1989.

[15] Carlos HC Ribeiro. Attentional mechanisms as a strategy for
generalisation in the q-learning algorithm. In Proceedings of
ICANN, volume 95, pages 455–460, 1995.

[16] Csaba Szepesvári and Michael L Littman. A unified analysis
of value-function-based reinforcement-learning algorithms.
Neural computation, 11(8):2017–2060, 1999.

[17] Carlos Ribeiro and Csaba Szepesvári. Q-learning combined
with spreading: Convergence and results. In Procs. of the
ISRF-IEE International Conf. on Intelligent and Cognitive
Systems (Neural Networks Symposium), pages 32–36, 1996.

[18] Lucian Busoniu, Robert Babuska, Bart De Schutter, and
Damien Ernst. Reinforcement learning and dynamic
programming using function approximators, volume 39.
CRC press, 2010.

[19] Nicholas K Jong and Peter Stone. Model-based function
approximation in reinforcement learning. In AAMAS,
page 95. ACM, 2007.

[20] Bethany R Leffler, Michael L Littman, and Timothy
Edmunds. Efficient reinforcement learning with relocatable
action models. In AAAI, volume 7, pages 572–577, 2007.

[21] Michael L Littman. Markov games as a framework for
multi-agent reinforcement learning. In ICML, volume 157,
pages 157–163, 1994.

[22] Miroslav Benda. On optimal cooperation of knowledge
sources. Technical Report BCS-G2010-28, 1985.

[23] Tim Brys, Ann Nowé, Daniel Kudenko, and Matthew E
Taylor. Combining multiple correlated reward and shaping
signals by measuring confidence. In AAAI, pages 1687–1693,
2014.

[24] Sergey Karakovskiy and Julian Togelius. The Mario AI
benchmark and competitions. IEEE Transactions on
Computational Intelligence and AI in Games, 4(1):55–67,
2012.

1724


	Introduction
	The SASS Approach
	Evaluation
	Conclusions



